Hierarchical lattice	Results: Regimes	Results: Uniqueness	Results: Continuity	Discussion
0000000	000000	00000	000000	0000

Long-range percolation on the hierarchical lattice

Pieter Trapman

Department of Mathematics, Stockholm University

Paris, 30 January 2013

joint work with Slavik Koval (Utrecht University) Ronald Meester (VU University Amsterdam) Electronic Journal of Probability **17**.57

Pieter Trapman

Hierarchical lattice	Results: Regimes	Results: Continuity	Discussion
000000			

Epidemiological "justification"

- Consider a well organized population, where everybody lives in a household of *N* individuals,
- Every family lives in a *N*-floors apartment building, at each floor are *N* apartments,
- N of those apartment buildings are served by one supermarket
- etc.
- The frequency that people in the same household meet is higher than the frequency that people on the same floor, but not in the same household meet, which in turn is higher than the frequency at which people

from the same building but from different floors meet etc.

Hierarchical lattice	Results: Regimes	Results: Continuity	Discussion
000000			

Epidemiological "justification"

- Consider a well organized population, where everybody lives in a household of *N* individuals,
- Every family lives in a *N*-floors apartment building, at each floor are *N* apartments,
- N of those apartment buildings are served by one supermarket
- etc.
- The frequency that people in the same household meet is higher than the frequency that people on the same floor, but not in the same household meet,

which in turn is higher than the frequency at which people from the same building but from different floors meet etc.

Hierarchical lattice 0●00000	Results: Regimes 000000	Results: Uniqueness 00000	Results: Continuity 000000	Discussion 0000
Model				

The vertices are "the leaves of an infinite regular N-tree", and the distance between vertices is the distance to their "most recent common ancestor".

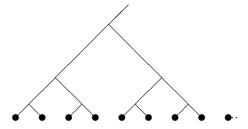


Figure: Hierarchical lattice of order 2 (the ultimate points) with the metric generating tree attached.

Hierarchical lattice	Results: Regimes	Results: Uniqueness	Results: Continuity	Discussion
00●0000	000000	00000	000000	0000

• Formal definition of hierarchical lattice of order N:

$$\Omega_N := \left\{ \mathbf{x} = (x_1, x_2, \ldots) : x_i \in \{0, 1, \ldots, N-1\}, \sum_{i=1}^{\infty} x_i < \infty \right\}$$

- Labeling by non-negative integers: $f(x_1, x_2, ...) = \sum_{i=1}^{\infty} x_i N^{i-1}$
- Distance on Ω_N

$$d(\mathbf{x}, \mathbf{y}) = \begin{cases} 0 & \text{if } \mathbf{x} = \mathbf{y}, \\ \max\{i : x_i \neq y_i\} & \text{if } \mathbf{x} \neq \mathbf{y} \end{cases}$$

Pieter Trapman

Hierarchical lattice	Results: Regimes	Results: Uniqueness	Results: Continuity	Discussion
00●0000	000000	00000	000000	0000

• Formal definition of hierarchical lattice of order N:

$$\Omega_N := \left\{ \mathbf{x} = (x_1, x_2, \ldots) : x_i \in \{0, 1, \ldots, N-1\}, \sum_{i=1}^{\infty} x_i < \infty \right\}$$

- Labeling by non-negative integers: $f(x_1, x_2, ...) = \sum_{i=1}^{\infty} x_i N^{i-1}$
- Distance on Ω_N

$$d(\mathbf{x}, \mathbf{y}) = \begin{cases} 0 & \text{if } \mathbf{x} = \mathbf{y}, \\ \max\{i : x_i \neq y_i\} & \text{if } \mathbf{x} \neq \mathbf{y} \end{cases}$$

Hierarchical lattice	Results: Regimes	Results: Uniqueness	Results: Continuity	Discussion
	000000	00000	000000	0000

For $x \in \Omega_N$, define $\mathcal{B}_r(x)$ to be the ball of radius r around x. Some properties:

• (Ω_N, d) is ultrametric: It satisfies the strengthened version of the triangle inequality

$$d(x,y) \le \max(d(x,z),d(z,y))$$

for any triple $x, y, z \in \Omega_N$

- **2** $\mathcal{B}_r(x)$ contains N^r vertices for any x
- For every $x \in \Omega_N$ there are $(N-1)N^{k-1}$ vertices at distance k
- If $y \in \mathcal{B}_r(x)$ then $\mathcal{B}_r(x) = \mathcal{B}_r(y)$
- So Either $\mathcal{B}_r(x) = \mathcal{B}_r(y)$ or $\mathcal{B}_r(x) \cap \mathcal{B}_r(y) = \emptyset$

Pieter Trapman

Hierarchical lattice	Results: Regimes	Results: Continuity	Discussion
0000000			

- SIR epidemic with fixed infectious period of length 1 on this network
- After infectious period infectious individual recovers and stay immune forever
- If an infectious person meets a susceptible person, the susceptible one becomes infectious: They share an edge in the *infection graph*
- Individuals at distance k meet according to Poisson process with intensity $\lambda(k) = \alpha/\beta^k$.
- Cluster of ultimately infected individuals is distributed as the cluster around the initial infected individual (the origin) in "long-range percolation" with $p(k) = 1 e^{-\lambda(k)}$.

Hierarchical lattice	Results: Regimes	Results: Continuity	Discussion
0000000			

- SIR epidemic with fixed infectious period of length 1 on this network
- After infectious period infectious individual recovers and stay immune forever
- If an infectious person meets a susceptible person, the susceptible one becomes infectious: They share an edge in the *infection graph*
- Individuals at distance k meet according to Poisson process with intensity $\lambda(k) = \alpha/\beta^k$.
- Cluster of ultimately infected individuals is distributed as the cluster around the initial infected individual (the origin) in "long-range percolation" with $p(k) = 1 e^{-\lambda(k)}$.

Hierarchical lattice	Results: Regimes	Results: Uniqueness	Results: Continuity	Discussion
00000●0	000000	00000	000000	0000

- Hierarchical lattice of order N, denoted by Ω_N
- Presence of absence of (undirected) edges between different pairs of vertices are independent
- Connection probability of vertices at distance k is $p_k = 1 \exp[-\alpha/\beta^k] \ (\approx \alpha/\beta^k$ for large k)
- C(x) is the cluster (connected component) of vertex x and |C(x)| is its size
- All vertices are "the same", so we may consider $\mathcal{C}=\mathcal{C}(0),$ without loss of generality
- $\mathbb{P}_{\alpha,\beta}$ is the probability measure corresponding to long-range percolation with parameters α and β
- $\theta(\alpha,\beta) := \mathbb{P}_{\alpha,\beta}(|\mathcal{C}| = \infty)$
- For $S_1, S_2 \subset \Omega_N$, $S_1 \leftrightarrow S_2$ denotes the presence of an edge between the two sets

Pieter Trapman

Hierarchical lattice 000000●	Results: Regimes 000000	Results: Uniqueness 00000	Results: Continuity 000000	Discussion 0000

Remark: If we represent the vertices by the non-negative integers and if the (Euclidean) distance between x and y is r, then the distance in the hierarchical tree is at least $\log[r]/\log[N]$ The probability that two vertices at (Euclidean) distance r are connected is therefore at most

$$\hat{p}_r = 1 - \exp[-\alpha\beta^{-\log[r]/\log[N]}] = 1 - \exp[-\alpha r^{-\log[\beta]/\log[N]}]$$

Behaviour of the largest cluster of long-range percolation on hierarchical lattice with exponentially decaying connection function is expected to be comparable with behaviour of the largest cluster of ordinary long-range percolation on (half-)line with polynomially decaying connection function

Hierarchical lattice 000000●	Results: Regimes 000000	Results: Uniqueness 00000	Results: Continuity 000000	Discussion 0000

Remark: If we represent the vertices by the non-negative integers and if the (Euclidean) distance between x and y is r, then the distance in the hierarchical tree is at least $\log[r]/\log[N]$ The probability that two vertices at (Euclidean) distance r are connected is therefore at most

$$\hat{p}_r = 1 - \exp[-\alpha\beta^{-\log[r]/\log[N]}] = 1 - \exp[-\alpha r^{-\log[\beta]/\log[N]}]$$

Behaviour of the largest cluster of long-range percolation on hierarchical lattice with exponentially decaying connection function is expected to be comparable with behaviour of the largest cluster of ordinary long-range percolation on (half-)line with polynomially decaying connection function

Hierarchical lattice	Results: Regimes	Results: Uniqueness	Results: Continuity	Discussion
0000000	●00000	00000	000000	0000

Regime $\beta \leq N$

Theorem

If
$$\beta \leq N$$
, then $\theta(\alpha, \beta) = 1$.

Almost trivial: By

$$\sum_{k=1}^{\infty} (N-1)N^{k-1}(1-\exp[-\alpha/\beta^k]) = \infty$$

the origin is almost surely connected to infinitely many vertices

Pieter Trapman

Stockholm University

Hierarchical lattice	Results: Regimes	Results: Uniqueness	Results: Continuity	Discussion
0000000	●00000	00000	000000	0000

Regime $\beta \leq N$

Theorem

If
$$\beta \leq N$$
, then $\theta(\alpha, \beta) = 1$.

Almost trivial: By

$$\sum_{k=1}^{\infty} (N-1)N^{k-1}(1-\exp[-\alpha/\beta^k]) = \infty$$

the origin is almost surely connected to infinitely many vertices

Hierarchical lattice	Results: Regimes	Results: Uniqueness	Results: Continuity	Discussion
0000000	0●0000	00000	000000	0000

Regime $\beta \geq N^2$

Theorem

If
$$\beta \geq N^2$$
, then $\theta(\alpha, \beta) = 0$.

Proof for $\beta = N^2$: Proof relies on the fact that for each k, the probability that "ball of diameter k around 0 is not connected to its complement" is bounded away from 0.

$$\mathcal{B}(\mathcal{B}_k(0) \not\leftrightarrow \overline{\mathcal{B}_k(0)}) = \exp\left(-\alpha N^k \sum_{j=k+1}^{\infty} \frac{(N-1)N^{j-1}}{N^{2j}}\right)$$

$$= \exp\left(-\alpha \frac{(N-1)}{N^2} \sum_{j=1}^{\infty} N^{-(j-1)}\right) = \exp\left(-\frac{\alpha}{N}\right) > 0,$$

So, this event will eventually happen and therefore $\theta(\alpha, \beta) = 0$

Pieter Trapman

Hierarchical lattice	Results: Regimes	Results: Uniqueness	Results: Continuity	Discussion
0000000	0●0000	00000	000000	0000

Regime $\beta \geq N^2$

Theorem

If
$$\beta \geq N^2$$
, then $\theta(\alpha, \beta) = 0$.

Proof for $\beta = N^2$: Proof relies on the fact that for each k, the probability that "ball of diameter k around 0 is not connected to its complement" is bounded away from 0.

$$\mathbb{P}(\mathcal{B}_k(0) \not\leftrightarrow \overline{\mathcal{B}_k(0)}) = \exp\left(-\alpha N^k \sum_{j=k+1}^{\infty} \frac{(N-1)N^{j-1}}{N^{2j}}\right)$$
$$= \exp\left(-\alpha \frac{(N-1)}{N^2} \sum_{j=1}^{\infty} N^{-(j-1)}\right) = \exp\left(-\frac{\alpha}{N}\right) > 0,$$

So, this event will eventually happen and therefore $\theta(\alpha, \beta) = 0$

Pieter Trapman

Hierarchical lattice	Results: Regimes	Results: Uniqueness	Results: Continuity	Discussion
	00●000	00000	000000	0000

Regime $N < \beta < N^2$

Theorem

If $N < \beta < N^2$, then $0 < \alpha_c(\beta) := \inf\{\alpha; \theta(\alpha, \beta) > 0\} < \infty$

Lower bound follows by coupling with branching process Upper bound: brute force and renormalization:

Hierarchical lattice	Results: Regimes	Results: Uniqueness	Results: Continuity	Discussion
0000000	00●000	00000	000000	0000

Regime
$$N < \beta < N^2$$

Theorem

If $N < \beta < N^2$, then $0 < \alpha_c(\beta) := \inf\{\alpha; \theta(\alpha, \beta) > 0\} < \infty$

Lower bound follows by coupling with branching process Upper bound: brute force and renormalization:

Hierarchical lattice	Results: Regimes	Results: Uniqueness	Results: Continuity	Discussion
0000000	00●000	00000	000000	0000

Regime
$$N < \beta < N^2$$

Theorem

If $N < \beta < N^2$, then $0 < \alpha_c(\beta) := \inf\{\alpha; \theta(\alpha, \beta) > 0\} < \infty$

Lower bound follows by coupling with branching process Upper bound: brute force and renormalization:

 Hierarchical lattice
 Results: Regimes
 Results:

 0000000
 000000
 000000

Results: Uniqueness

Results: Continuity 000000 Discussion 0000

Upper bound: brute force and renormalization:

- Choose η and K such that $\sqrt{\beta} < \eta \le (N^K 1)^{1/K}$ this is possible since $\sqrt{\beta} < N$
- A ball of radius nK is good if the largest connected component contained in it (say C^m_{nK}) has size at least η^{nK}

$$s_n := \mathbb{P}\left(|\mathcal{C}_{nK}^m| \ge \eta^{nK}\right)$$

 Probability that two good clusters of radius nK at distance (n+1)K share an edge is at least

$$1 - \exp\left(-rac{lpha}{eta^K}\left(rac{\eta^2}{eta}
ight)^{nK}
ight)$$

Pieter Trapman

Upper bound: brute force and renormalization:

- Choose η and K such that $\sqrt{\beta} < \eta \le (N^K 1)^{1/K}$ this is possible since $\sqrt{\beta} < N$
- A ball of radius nK is good if the largest connected component contained in it (say C^m_{nK}) has size at least η^{nK}

$$s_n := \mathbb{P}\left(|\mathcal{C}_{nK}^m| \geq \eta^{nK}
ight)$$

 Probability that two good clusters of radius nK at distance (n+1)K share an edge is at least

$$1 - \exp\left(-rac{lpha}{eta^K}\left(rac{\eta^2}{eta}
ight)^{nK}
ight)$$

Pieter Trapman

 Hierarchical lattice
 Results: Regimes
 Results: Uniqueness
 Results: Continuity
 Discussion

 0000000
 000000
 000000
 000000
 00000
 00000

Upper bound: brute force and renormalization:

- Choose η and K such that $\sqrt{\beta} < \eta \le (N^K 1)^{1/K}$ this is possible since $\sqrt{\beta} < N$
- A ball of radius nK is good if the largest connected component contained in it (say C^m_{nK}) has size at least η^{nK}

$$s_n := \mathbb{P}\left(|\mathcal{C}_{nK}^m| \geq \eta^{nK}
ight)$$

 Probability that two good clusters of radius nK at distance (n+1)K share an edge is at least

$$1 - \exp\left(-\frac{\alpha}{\beta^K} \left(\frac{\eta^2}{\beta}\right)^{nK}\right)$$

chical lattice Results: Regimes

Results: Uniqueness

Results: Continuity

Discussion 0000

 s_{n+1} is bounded below by the probability that N^k − 1 out of the N^k balls of radius nK in C_{(n+1)K} are good, and the good clusters are all connected to the the first of the good clusters So, s_{n+1} is at least

$$\mathbb{P}\left[Bin\left(N^{k}, s_{n}\left[1-\exp\left(-\frac{\alpha}{\beta^{K}}\left(\frac{\eta^{2}}{\beta}\right)^{nK}\right)\right]\right) \geq N^{K}-1\right]$$

• If $X \sim Bin(n, p)$, then $\mathbb{P}(X \ge n-1) \ge 1 - \binom{n}{2}(1-p)^2$. Therefore, s_{n+1} is at least

$$1 - \binom{N^{K}}{2} \left(1 - s_{n} + \exp\left(-\frac{\alpha}{\beta^{K}} \left(\frac{\eta^{2}}{\beta}\right)^{nK}\right)\right)^{2}$$

• That is:
$$1 - s_{n+1} < \binom{N^K}{2} \left(1 - s_n + \exp\left(-\frac{\alpha}{\beta^K} \left(\frac{\eta^2}{\beta}\right)^{nK}\right)\right)^2$$

Pieter Trapman

• s_{n+1} is bounded below by the probability that $N^k - 1$ out of the N^k balls of radius nK in $C_{(n+1)K}$ are good, and the good clusters are all connected to the the first of the good clusters So, s_{n+1} is at least

$$\mathbb{P}\left[Bin\left(N^{k}, s_{n}\left[1-\exp\left(-\frac{\alpha}{\beta^{K}}\left(\frac{\eta^{2}}{\beta}\right)^{nK}\right)\right]\right) \geq N^{K}-1\right]$$

• If $X \sim Bin(n, p)$, then $\mathbb{P}(X \ge n-1) \ge 1 - \binom{n}{2}(1-p)^2$. Therefore, s_{n+1} is at least

$$1 - \binom{N^{K}}{2} \left(1 - s_{n} + \exp\left(-\frac{\alpha}{\beta^{K}} \left(\frac{\eta^{2}}{\beta}\right)^{nK}\right) \right)^{2}$$

• That is:
$$1 - s_{n+1} < {N^K \choose 2} \left(1 - s_n + \exp\left(-\frac{\alpha}{\beta^K} \left(\frac{\eta^2}{\beta}\right)^{nK}\right)\right)^2$$

Pieter Trapman

• s_{n+1} is bounded below by the probability that $N^k - 1$ out of the N^k balls of radius nK in $C_{(n+1)K}$ are good, and the good clusters are all connected to the the first of the good clusters So, s_{n+1} is at least

$$\mathbb{P}\left[Bin\left(N^{k}, s_{n}\left[1-\exp\left(-\frac{\alpha}{\beta^{K}}\left(\frac{\eta^{2}}{\beta}\right)^{nK}\right)\right]\right) \geq N^{K}-1\right]$$

• If $X \sim Bin(n, p)$, then $\mathbb{P}(X \ge n-1) \ge 1 - \binom{n}{2}(1-p)^2$. Therefore, s_{n+1} is at least

$$1 - \binom{N^{K}}{2} \left(1 - s_{n} + \exp\left(-\frac{\alpha}{\beta^{K}} \left(\frac{\eta^{2}}{\beta}\right)^{nK}\right)\right)^{2}$$

That is: $1 - s_{n+1} < \binom{N^{K}}{2} \left(1 - s_{n} + \exp\left(-\frac{\alpha}{\beta^{K}} \left(\frac{\eta^{2}}{\beta}\right)^{nK}\right)\right)^{2}$

Pieter Trapman

• s_{n+1} is bounded below by the probability that $N^k - 1$ out of the N^k balls of radius nK in $C_{(n+1)K}$ are good, and the good clusters are all connected to the the first of the good clusters So, s_{n+1} is at least

$$\mathbb{P}\left[Bin\left(N^{k}, s_{n}\left[1-\exp\left(-\frac{\alpha}{\beta^{K}}\left(\frac{\eta^{2}}{\beta}\right)^{nK}\right)\right]\right) \geq N^{K}-1\right]$$

• If $X \sim Bin(n, p)$, then $\mathbb{P}(X \ge n-1) \ge 1 - \binom{n}{2}(1-p)^2$. Therefore, s_{n+1} is at least

$$1 - \binom{N^{K}}{2} \left(1 - s_{n} + \exp\left(-\frac{\alpha}{\beta^{K}} \left(\frac{\eta^{2}}{\beta}\right)^{nK}\right)\right)^{2}$$

• That is:
$$1 - s_{n+1} < {N^K \choose 2} \left(1 - s_n + \exp\left(-\frac{\alpha}{\beta^K} \left(\frac{\eta^2}{\beta}\right)^{nK}\right)\right)^2$$

Pieter Trapman

• s_{n+1} is bounded below by the probability that $N^k - 1$ out of the N^k balls of radius nK in $C_{(n+1)K}$ are good, and the good clusters are all connected to the the first of the good clusters So, s_{n+1} is at least

$$\mathbb{P}\left[Bin\left(N^{k}, s_{n}\left[1-\exp\left(-\frac{\alpha}{\beta^{K}}\left(\frac{\eta^{2}}{\beta}\right)^{nK}\right)\right]\right) \geq N^{K}-1\right]$$

• If $X \sim Bin(n, p)$, then $\mathbb{P}(X \ge n-1) \ge 1 - \binom{n}{2}(1-p)^2$. Therefore, s_{n+1} is at least

$$1 - \binom{N^{K}}{2} \left(1 - s_{n} + \exp\left(-\frac{\alpha}{\beta^{K}} \left(\frac{\eta^{2}}{\beta}\right)^{nK}\right)\right)^{2}$$

• That is:
$$1 - s_{n+1} < \binom{N^{\kappa}}{2} \left(1 - s_n + \exp\left(-\frac{\alpha}{\beta^{\kappa}} \left(\frac{\eta^2}{\beta}\right)^{n\kappa}\right)\right)^2$$

Pieter Trapman

• s_{n+1} is bounded below by the probability that $N^k - 1$ out of the N^k balls of radius nK in $C_{(n+1)K}$ are good, and the good clusters are all connected to the the first of the good clusters So, s_{n+1} is at least

$$\mathbb{P}\left[Bin\left(N^{k}, s_{n}\left[1-\exp\left(-\frac{\alpha}{\beta^{K}}\left(\frac{\eta^{2}}{\beta}\right)^{nK}\right)\right]\right) \geq N^{K}-1\right]$$

• If $X \sim Bin(n, p)$, then $\mathbb{P}(X \ge n-1) \ge 1 - \binom{n}{2}(1-p)^2$. Therefore, s_{n+1} is at least

$$1 - \binom{N^{K}}{2} \left(1 - s_{n} + \exp\left(-\frac{\alpha}{\beta^{K}} \left(\frac{\eta^{2}}{\beta}\right)^{nK}\right)\right)^{2}$$

• That is:
$$1 - s_{n+1} < \binom{N^{\kappa}}{2} \left(1 - s_n + \exp\left(-\frac{\alpha}{\beta^{\kappa}} \left(\frac{\eta^2}{\beta}\right)^{n\kappa}\right)\right)^2$$

Pieter Trapman

Hierarchical lattice 0000000	Results: Regimes 00000●	Results: Uniqueness 00000	Results: Continuity 000000	Discussion 0000

- By induction we can show that for α large enough and all n > 1, $1 s_n < \gamma^{n+1}$, for $0 < \gamma$ arbitrary small
- This implies that a large ball is with high probability good
- Proving that with positive probability the origin is contained in a large good cluster for all large enough *n* can be done along the same lines

Hierarchical lattice 0000000	Results: Regimes 00000●	Results: Uniqueness 00000	Results: Continuity 000000	Discussion 0000

- By induction we can show that for α large enough and all n > 1, $1 s_n < \gamma^{n+1}$, for $0 < \gamma$ arbitrary small
- This implies that a large ball is with high probability good
- Proving that with positive probability the origin is contained in a large good cluster for all large enough *n* can be done along the same lines

Hierarchical lattice	Results: Regimes	Results: Uniqueness	Results: Continuity	Discussion
0000000	000000		000000	0000

Uniqueness of infinite component

Theorem

The infinite component for supercritical long-range percolation on the hierarchical lattice is almost surely unique.

Hierarchical lattice	Results: Regimes	Results: Uniqueness	Results: Continuity	Discussion
	000000	0●000	000000	0000

Use

Theorem (Gandolfi, Keane and Newman (1992))

If a supercritical long-range percolation measure on \mathbb{Z}^d is translation invariant and satisfies a finite energy condition, then the infinite component is almost surely unique.

The finite energy condition is that the configuration of edges on $\Omega_N \times \Omega_N \setminus e$, does almost surely not determine whether edge e is present or absent.

Hierarchical lattice	Results: Regimes	Results: Uniqueness	Results: Continuity	Discussion
0000000	000000	00●00	000000	0000

Problem: We do not consider percolation on \mathbb{Z}^d .

Idea of solution: Construct random projection of "distance generating tree" in \mathbb{Z} , which is translation invariant (even ergodic)

Hierarchical lattice	Results: Regimes	Results: Uniqueness	Results: Continuity	Discussion
0000000	000000	00●00	000000	0000

Problem: We do not consider percolation on \mathbb{Z}^d .

Idea of solution: Construct random projection of "distance generating tree" in \mathbb{Z} , which is translation invariant (even ergodic)

Hierarchical lattice	Results: Regimes	Results: Uniqueness	Results: Continuity	Discussion
0000000	000000	000●0	000000	0000

Construction for N = 2:

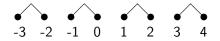
Step 1: $(n \in \mathbb{Z})$ Flip a fair coin: if heads, then 2n has distance 1 to 2n + 1, if tails, then 2n has distance 1 to 2n - 1.

Step k Flip a fair coin: if heads, then $2^k n$ has distance k to $2^{k-1}(2n+1)$, if tails, then $2^k n$ has distance k to $2^{k-1}(2n-1)$.

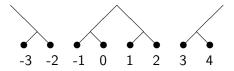
Hierarchical lattice	Results: Regimes	Results: Uniqueness	Results: Continuity	Discussion
0000000	000000	000●0	000000	0000

Construction for N = 2:

Step 1: $(n \in \mathbb{Z})$ Flip a fair coin: if heads, then 2n has distance 1 to 2n + 1, if tails, then 2n has distance 1 to 2n - 1.



Step k Flip a fair coin: if heads, then $2^k n$ has distance k to $2^{k-1}(2n+1)$, if tails, then $2^k n$ has distance k to $2^{k-1}(2n-1)$.



Hierarchical lattice	Results: Regimes	Results: Uniqueness	Results: Continuity	Discussion
0000000	000000	0000●	000000	0000

Finite energy condition is satisfied and by construction the percolation measure is translation invariant

For ergodicity some extra work has to be done.

Long-range percolation on the hierarchical lattice

Hierarchical lattice	Results: Regimes	Results: Uniqueness	Results: Continuity	Discussion
0000000	000000	0000●	000000	0000

Finite energy condition is satisfied and by construction the percolation measure is translation invariant For ergodicity some extra work has to be done.

Hierarchical lattice	Results: Regimes	Results: Uniqueness	Results: Continuity	Discussion
0000000	000000	00000	•00000	0000

Continuity of $\theta(\alpha, \beta)$

Theorem

The percolation probability $\theta(\alpha, \beta)$ is continuous for $\alpha, \beta > 0$.

Proof of continuity from the right (resp. left) in α (resp. β) is standard.

Proof of continuity from the left (resp. right) in α (resp. β) is involved. The ideas of the proof are similar to ideas used by Noam Berger (2002). We need an intermediate lemma.

Hierarchical lattice	Results: Regimes	Results: Uniqueness	Results: Continuity	Discussion
0000000	000000	00000	•00000	0000

Continuity of $\theta(\alpha, \beta)$

Theorem

The percolation probability $\theta(\alpha, \beta)$ is continuous for $\alpha, \beta > 0$.

Proof of continuity from the right (resp. left) in α (resp. β) is standard.

Proof of continuity from the left (resp. right) in α (resp. β) is involved. The ideas of the proof are similar to ideas used by Noam Berger (2002).

We need an intermediate lemma.

Hierarchical lattice	Results: Regimes	Results: Uniqueness	Results: Continuity	Discussion
0000000	000000	00000	•00000	0000

Continuity of $\theta(\alpha, \beta)$

Theorem

The percolation probability $\theta(\alpha, \beta)$ is continuous for $\alpha, \beta > 0$.

Proof of continuity from the right (resp. left) in α (resp. β) is standard.

Proof of continuity from the left (resp. right) in α (resp. β) is involved. The ideas of the proof are similar to ideas used by Noam Berger (2002). We need an intermediate lemma.

Hierarchical lattice 0000000	Results: Regimes 000000	Results: Uniqueness 00000	Results: Continuity 0●0000	Discussion 0000

Lemma

The fraction of vertices in the largest component of long-range percolation graph restricted to \mathcal{B}_k is for large k close to θ , with high probability.

Idea of proof:

- For every constant K > 0 the indicator function of the event that both |C(0)| = ∞ and |C_n(0)| < K(β/N)ⁿ converges a.s. to 0 as n → ∞. (straightforward computation)
- One fraction of the vertices in B_n(0) which are in a cluster of size at least K(β/N)ⁿ, converges a.s. to θ as n → ∞.(ergodicity)
- ⁽³⁾ Combine the previous two steps: The large clusters at level n, are with high probability all in the same cluster at level n + 1

Hierarchical lattice 0000000	Results: Regimes 000000	Results: Uniqueness 00000	Results: Continuity 0●0000	Discussion 0000

Lemma

The fraction of vertices in the largest component of long-range percolation graph restricted to \mathcal{B}_k is for large k close to θ , with high probability.

Idea of proof:

- For every constant K > 0 the indicator function of the event that both |C(0)| = ∞ and |C_n(0)| < K(β/N)ⁿ converges a.s. to 0 as n → ∞. (straightforward computation)
- The fraction of the vertices in B_n(0) which are in a cluster of size at least K(β/N)ⁿ, converges a.s. to θ as n → ∞.(ergodicity)
- O Combine the previous two steps: The large clusters at level n, are with high probability all in the same cluster at level n + 1

Hierarchical lattice 0000000	Results: Regimes 000000	Results: Uniqueness 00000	Results: Continuity 0●0000	Discussion 0000

Lemma

The fraction of vertices in the largest component of long-range percolation graph restricted to \mathcal{B}_k is for large k close to θ , with high probability.

Idea of proof:

- For every constant K > 0 the indicator function of the event that both |C(0)| = ∞ and |C_n(0)| < K(β/N)ⁿ converges a.s. to 0 as n → ∞. (straightforward computation)
- The fraction of the vertices in B_n(0) which are in a cluster of size at least K(β/N)ⁿ, converges a.s. to θ as n → ∞.(ergodicity)
- Combine the previous two steps: The large clusters at level n, are with high probability all in the same cluster at level n + 1

Hierarchical lattice	Results: Regimes	Results: Uniqueness	Results: Continuity	Discussion
0000000	000000	00000	00●000	0000

$\theta(\alpha_c(\beta),\beta) = 0$ for $N < \beta < N^2$.

- Assume θ := θ(α, β) > 0: The density of the largest component of random graph restricted to large sub-ball is close to θ, with high probability
- Since subballs are finite, the density of largest cluster in large subball using $\alpha-$ and $\beta+$ is also close to θ
- Rescaled process at level K has parameters β + and $\alpha \approx (\alpha -)\theta^2 (N^2/\beta)^K$, which can be taken arbitrary large, by choosing K large enough
- So, there is also percolation for $\alpha-$ and $\beta+$, with density arbitrary close to θ

Hierarchical lattice	Results: Regimes	Results: Uniqueness	Results: Continuity	Discussion
	000000	00000	00●000	0000

$$\theta(\alpha_c(\beta), \beta) = 0$$
 for $N < \beta < N^2$.

- Assume θ := θ(α, β) > 0: The density of the largest component of random graph restricted to large sub-ball is close to θ, with high probability
- Since subballs are finite, the density of largest cluster in large subball using $\alpha-$ and $\beta+$ is also close to θ
- Rescaled process at level K has parameters β + and $\alpha \approx (\alpha -)\theta^2 (N^2/\beta)^K$, which can be taken arbitrary large, by choosing K large enough
- So, there is also percolation for $\alpha-$ and $\beta+$, with density arbitrary close to θ

Hierarchical lattice	Results: Regimes	Results: Uniqueness	Results: Continuity	Discussion
0000000	000000	00000	00●000	0000

$$\theta(\alpha_c(\beta), \beta) = 0$$
 for $N < \beta < N^2$.

- Assume θ := θ(α, β) > 0: The density of the largest component of random graph restricted to large sub-ball is close to θ, with high probability
- Since subballs are finite, the density of largest cluster in large subball using $\alpha-$ and $\beta+$ is also close to θ
- Rescaled process at level K has parameters β + and $\alpha \approx (\alpha -)\theta^2 (N^2/\beta)^K$, which can be taken arbitrary large, by choosing K large enough
- So, there is also percolation for $\alpha-$ and $\beta+$, with density arbitrary close to θ

Hierarchical lattice	Results: Regimes	Results: Uniqueness	Results: Continuity	Discussion
0000000	000000	00000	00●000	0000

$$\theta(\alpha_c(\beta),\beta) = 0$$
 for $N < \beta < N^2$.

- Assume θ := θ(α, β) > 0: The density of the largest component of random graph restricted to large sub-ball is close to θ, with high probability
- Since subballs are finite, the density of largest cluster in large subball using $\alpha-$ and $\beta+$ is also close to θ
- Rescaled process at level K has parameters β + and $\alpha \approx (\alpha -)\theta^2 (N^2/\beta)^K$, which can be taken arbitrary large, by choosing K large enough
- $\bullet\,$ So, there is also percolation for $\alpha-$ and $\beta+$, with density arbitrary close to θ

Results: Regimes	Results: Continuity	Discussion
	000000	

Continuity of $\alpha_c(\beta)$

Theorem

$\alpha_{c}(\beta)$ is continuous on $\beta \in (0, N^{2})$ and strictly increasing on $\beta \in [N, N^{2})$. Furthermore, $\alpha_{c}(\beta) \nearrow \infty$ for $\beta \nearrow N^{2}$.

The proof relies on the result by Aizenman and Barsky (1987) that for independent long-range percolation on \mathbb{Z}^d :

$\inf\{\alpha: \theta(\alpha, \beta) > 0\} = \sup\{\alpha: \mathbb{E}_{\alpha, \beta}(|\mathcal{C}(0)|) < \infty\}$

Close inspection of their proof shows that this result also holds for independent long-range percolation on the hierarchical lattice.

Hierarchical lattice	Results: Regimes	Results: Uniqueness	Results: Continuity	Discussion
	000000	00000	000●00	0000

Continuity of $\alpha_c(\beta)$

Theorem

 $\alpha_{c}(\beta)$ is continuous on $\beta \in (0, N^{2})$ and strictly increasing on $\beta \in [N, N^{2})$. Furthermore, $\alpha_{c}(\beta) \nearrow \infty$ for $\beta \nearrow N^{2}$.

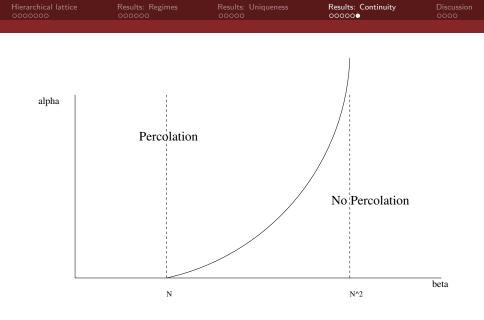
The proof relies on the result by Aizenman and Barsky (1987) that for independent long-range percolation on \mathbb{Z}^d :

$$\inf\{\alpha: \theta(\alpha, \beta) > 0\} = \sup\{\alpha: \mathbb{E}_{\alpha, \beta}(|\mathcal{C}(0)|) < \infty\}$$

Close inspection of their proof shows that this result also holds for independent long-range percolation on the hierarchical lattice.

Hierarchical lattice	Results: Regimes	Results: Uniqueness	Results: Continuity	Discussion
0000000	000000	00000	0000●0	0000

- By continuity of θ : If $\theta(\alpha, \beta) > 0$, then $\theta(\alpha -, \beta +) > 0$. This implies continuity from the right of $\alpha_c(\beta)$
- If $\mathbb{E}_{\alpha,\beta}(|\mathcal{C}(0)|) < \infty$, then (after some work:) $\mathbb{E}_{\alpha+,\beta-}(|\mathcal{C}(0)|) < \infty$ This implies continuity from the left of $\alpha_c(\beta)$



Pieter Trapman

Stockholm University

Long-range percolation on the hierarchical lattice

Hierarchical lattice	Results: Regimes	Results: Uniqueness	Results: Continuity	Discussion
0000000	000000	00000	000000	●000
Related wo	rk			

• In independent work, Dawson and Gorostiza also studied percolation on the hierarchical lattice. They obtained additional results on percolation around $\beta = N^2$ In particular they studied

$$\lambda(k) = \alpha k^{\gamma} N^{-2k}$$

and for given constants C, K, a, b, with $k_n = \lfloor Kn \log[n] \rfloor$, $\lambda(k_n) = C + a \log[n] n^{b \log[N]} N^{-2k_n}$

• Athreya and Swart studied the contact process on the hierarchical lattice and derrived conditions for survival. In particular if the contact rate is exponentially decaying in the distance, there is survival for large enough recovery rate

Hierarchical lattice	Results: Regimes	Results: Uniqueness	Results: Continuity	Discussion
0000000	000000	00000	000000	●000
Related wo	rk			

• In independent work, Dawson and Gorostiza also studied percolation on the hierarchical lattice. They obtained additional results on percolation around $\beta = N^2$ In particular they studied

$$\lambda(k) = \alpha k^{\gamma} N^{-2k}$$

and for given constants C, K, a, b, with $k_n = \lfloor Kn \log[n] \rfloor$, $\lambda(k_n) = C + a \log[n] n^{b \log[N]} N^{-2k_n}$

• Athreya and Swart studied the contact process on the hierarchical lattice and derrived conditions for survival. In particular if the contact rate is exponentially decaying in the distance, there is survival for large enough recovery rate

Pieter Trapman

Hierarchical lattice 0000000	Results: Regimes 000000	Results: Uniqueness 00000	Results: Continuity 000000	Discussion 0●00

- Biskup studied the graph diameter for long-range percolation on \mathbb{Z}^d , with polynomial decay. It is expected that his results also hold for percolation on the Hierarchical lattice with $N < \beta < N^2$
- T. investigated how the volume of the random "graph-ball" of radius k grows in k for long-range percolation on \mathbb{Z}^d . The results imply that for long-range percolation on the hierarchical lattice this growth is sub-exponential for $\beta > N$. If $\lambda(k) = f(k)N^{-k}$, where f(k) is polynomial, this growth might be exponential

Hierarchical lattice 0000000	Results: Regimes 000000	Results: Uniqueness 00000	Results: Continuity 000000	Discussion 0●00

- Biskup studied the graph diameter for long-range percolation on \mathbb{Z}^d , with polynomial decay. It is expected that his results also hold for percolation on the Hierarchical lattice with $N < \beta < N^2$
- T. investigated how the volume of the random "graph-ball" of radius k grows in k for long-range percolation on \mathbb{Z}^d . The results imply that for long-range percolation on the hierarchical lattice this growth is sub-exponential for $\beta > N$. If $\lambda(k) = f(k)N^{-k}$, where f(k) is polynomial, this growth might be exponential

Hierarchical lattice	Results: Regimes	Results: Uniqueness	Results: Continuity	Discussion
0000000	000000	00000	000000	00●0

- How to deal with random "metric generating" trees and how to construct them?
- Is it possible to give useful bounds for $\alpha_c(\beta)$?
- How about FK-models on the hierarchical lattice?

Hierarchical lattice	Results: Regimes	Results: Uniqueness	Results: Continuity	Discussion
0000000	000000	00000	000000	00●0

- How to deal with random "metric generating" trees and how to construct them?
- Is it possible to give useful bounds for $\alpha_c(\beta)$?
- How about FK-models on the hierarchical lattice?

Hierarchical lattice	Results: Regimes	Results: Uniqueness	Results: Continuity	Discussion
0000000	000000	00000	000000	00●0

- How to deal with random "metric generating" trees and how to construct them?
- Is it possible to give useful bounds for $\alpha_c(\beta)$?
- How about FK-models on the hierarchical lattice?

Hierarchical lattice	Results: Regimes	Results: Uniqueness	Results: Continuity	Discussion
0000000	000000	00000	000000	00●0

- How to deal with random "metric generating" trees and how to construct them?
- Is it possible to give useful bounds for $\alpha_c(\beta)$?
- How about FK-models on the hierarchical lattice?

Hierarchical lattice	Results: Regimes	Results: Uniqueness	Results: Continuity	Discussion
0000000	000000	00000	000000	000●
Bibliography	r			

- M. Aizenman and D.J. Barsky, *Comm. Math. Phys.*, 108(3):489–526, 1987.
- S.R. Athreya and J.M. Swart, *Probab. Theory Relat. Fields* 147:529563, 2010.
- N. Berger, Comm. Math. Phys., 226(3):531-558, 2002.
- M. Biskup, to appear in Random Structures & Algorithms
- D. Dawson and L. Gorostiza, arXiv:1006.4400
- A. Gandolfi, M.S. Keane, and C.M. Newman, *Probab. Theory Related Fields*, 92(4):511–527, 1992.
- P. Trapman, Ann. Probab., 38(4): 1583-1608, 2010.