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SIR epidemic model on a graph

Idea: model an infectious disease (influenza, measles, ...) spreading
through a population (e.g. of people, computers, ...).

Each individual is either susceptible, infective or recovered.

Classical formulations (Reed-Frost, ...) assume anyone can infect
anyone.

But populations usually have local structure limiting possible
transmissions.



SIR epidemic model on a graph

Individuals = vertices in a graph G (’network’).

Edge = potential transmissions.

Each vertex is either susceptible, infective or recovered.
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Continuous time Markovian dynamics

Epidemic evolves stochastically in time.

Infective vertices infect each susceptible neighbour at rate β > 0
and recover at rate ρ ≥ 0. I.e. S → I → R.

No other transitions are possible.
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Take G = random graph

Behaviour and applicability of model depend on G .

Want G ≈ real world networks.

These are complicated and hard to capture.

But important features (small worlds, clustering, ...) are captured
by random graphs.

Natural to study epidemics on random graphs. Thomas House has
a recent survey (2012).

Random graphs are also interesting mathematically ¨̂



Random graph with given vertex degrees

Fix n ∈ N. Dependence on n will not be indicated explicitly.

Let (di )
n
i=1 be a given sequence of positive integers.

G ∼ uniform over all graphs with n vertices s.t. vertex i has degree
di

This is a flexible family of random graphs. Popular with theorists
and practicioners alike.

Theory parallels that of Erdos-Renyi G (n, p) graphs: giant
component; k-core; chromatic number, matching number, ...

Previous studies of SIR epidemic on this graph: Newman ’02, Volz
’07, Miller ’11, Decreusefond-Dhersin-Moyal-Tran ’12,
Bohman-Picollelli ’12.



Notation

Let: nk = #{i : di = k} = # vertices of degree k ≥ 0.

nSk , nIk , nRk = # those that are initially susceptible, infective,
recovered, resp.

nS =
∑

k n
S
k = # initially susceptible vertices, ...



Assumptions

Assumptions on asymptotics of the degree sequence (ALL limits
are as n→∞):

D1) nS/n→ αS ∈ (0, 1], nI/n→ αI ∈ [0, 1], nR/n→ αR ∈ [0, 1].

D2) nSk/n
S → pk , k ≥ 0; and λ :=

∑
k kpk <∞.

D3)
∑

k kn
S
k/n

S → λ. [⇐⇒ uniform integrability of degree of a
randomly chosen susceptible].

D4)
∑

k knk/n→ µ,
∑

k kn
I
k/n→ µI,

∑
k knR/n→ µR.

D5)
∑

i d
2
i = O(n) [ =⇒ maxi di = O(n1/2). Also =⇒ D3!]



Subcritical regime

Conditions to guarantee epidemic stays small:

Theorem

Suppose µI = 0 and

R0 :=

(
β

ρ+ β

)(
αSλ

µ

) ∑
k k(k − 1)pk∑

k kpk
≤ 1.

Then the number Z of initially susceptible vertices that ever get
infected is op(n), i.e. P(Z/n > ε)→ 0 for any ε > 0.

Threshold identified heuristically by Newman ’02 and Volz ’07.
Rigorous result by Bohman/Picollelli ’12 for bounded degree
sequences (and µR = 0).



Proving results is easier on a multigraph

Working with the uniform simple graph is hard.

Instead we consider the following multigraph (loops and multiple
edges are allowed):

Take n vertices and attach di half edges (‘stubs’) to vertex i . Pair
the half edges uniformly at random to form complete edges.

E.g. d = (1, 2, 3, 2, 2)

Called the configuration model [Canfield & Bender, Bollobas, ..] .
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Why is it sufficient to consider this multigraph?

Conditional on simplicity, it is UNIFORM.

Our results say P(A)→ 1 as n→∞ for some event A

Thus,

P(A,G is simple) = P(G is simple) + o(1),

and

P(A|G is simple) =
P(G is simple) + o(1)

P(G is simple)
= 1 + o(1)

provided e.g. lim infn→∞ P(G is simple) > 0.

Assumption (D5) guarantees this [Janson].

Results hold on multigraph if (D5) is replaced with maxi di = o(n)



Evolving graph and epidemic process
Can reveal edges in G dynamically, as required by epidemic process:
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Each infective half edge fires at rate β. It pairs up with a uniformly
sampled half edge. If that half edge belongs to a susceptible
vertex, then that vertex becomes infective.

Also each infective vertex recovers at rate ρ.

Infective pressure = # infective half edges
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Branching process approximation in early stages

Infective half edges ’reproduce’ by pairing with a susceptible half
edge.

Mean off spring =

P(half edge fires before recovering) × P(it hits a susceptible) ×
E[other half edges attached to the susceptible]

≈
(

β

ρ+ β

)(
αSλ

µ

)(∑
k(k − 1)kpk∑

k kpk

)
=: R0.

If mean offspring < 1 then branching process dies out almost
surely!



Supercritical regime

µI > 0 means many initially infective half edges.

Epidemic is guaranteed to take off.

Let Xt = total # of half edges at time t ≥ 0.

XS,t = # susceptible half edges, XI,t = # infective half edges, etc.

Limiting evolution is governed by

fS(θ) := αS

∑
k

kθkpk , fR(θ) := µRθ+µ
ρ

β
θ(1−θ), fX(θ) := µθ2,

and fI(θ) := fX(θ)− fS(θ)− fR(θ), 0 ≤ θ ≤ 1,

θ = θt = suitable function of time.
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Theorem

Suppose µI > 0.

(a) fI has a unique root θ∞ ∈ (0, 1). Further, fI(θ) > 0 for
θ ∈ (θ∞, 1].

(b) ∃! θt : [0,∞)→ (θ∞, 1] s.t. θ0 = 1 and

d

dt
θt = −βfI(θt)(θt/fX(θt)

Interpretation: θt = P(that a given susceptible half edge has
not received infection).

(c) Let St = # susceptible vertices. Then uniformly in probability1

St/n
u.p.→ αS

∑
k

pkθ
k
t , XS,t /n

u.p.→ αS

∑
k

kpkθ
k
t = fS(θt).

1‘Uniformly in probability’
u.p.→ means supt≥0 |XS,t /n − fS(θt)|

p→ 0 etc



(d) Further,

Xt /n
u.p.→ fX(θt), XI,t /n

u.p.→ fI(θt),

XR,t /n
u.p.→ fR(θt).

If It ,Rt denote the number of infective and recovered then

It/n
u.p.→ αI(t), Rt/n

u.p.→ αR(t),

where αI(0) = αI, αR(0) = αR, and

α′I(t) = βfI(θt)
fS(θt)

fX(θt)
− ραI(t), α′R(t) = ραI(t).

(d) Z = # susceptible vertices that ever get infected satisfies

Z/nS
p→ 1−

∑
k

pkθ
k
∞.



Credits

Newman ’02: identified the final size heuristically.

Volz ’07: differential equations heuristic; let gS(θ) =
∑

k θ
kpk ,

pI(θ) = fI(θ)/fX(θ), pS(θ) = fS(θ)/fX(θ)

dpI(θt)

dt
= pI(θt)

(
−(ρ+ β) + βpI(θt) + βpS(θt)θt

g ′′S (θt)

g ′S(θt)

)
,

dpS(θt)

dt
= βpI(θt)pS(θt)

(
1− θt

g ′′S (θt)

g ′S(θt)

)
.

Miller ’11: alternative heuristic (µR = αR = 0, ...).

Decreusefond-Dhersin-Moyal-Tran ’12: proved a related result
involving measure valued processes

- assume fifth moment bound for degree distributions.
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Super criticality with few initially infectives

Suppose µI = 0 and R0 > 1.

Similar result holds. However, (a) epidemic may die before taking
off (b) time to infect εn vertices may be random.



Theorem

Suppose µI = 0, R0 > 1 [and p1 > 0 or ρ > 0 and µR > 0].

Take ε, δ > 0. Then with high probability, either:

(a) less than εn # vertices ever get infected OR

(b) After a random time

T↑ = inf{t ≥ 0 : XI,t > εn},

the epidemic becomes macroscopic and time shifted versions
of the concentration statements hold;
supt≥0 |XT↑+t/n − fX(θt)| < δ, ... where
d
dt θt = −βθt fI(θt)/fX(θt) and θ0 is s.t. fI(θ0) = ε.



In progress: (b) occurs with probability bounded away from zero.

Bohman/Picollelli ’12: proved for bounded degree sequences.

N.B. If ρ = µR = αR = 0 then the macroscopic epidemic occupies
the entire giant component [Molloy-Reed ’97].



Application to vaccination

Qn. Why bother allowing αR > 0?

Ans. Suppose vertices can be vaccinated prior to epidemic (or as
soon as they become infective).

Vaccinated vertices behave same as recovered vertices in SIR
dynamics.



Sketch proof

R

S

S

S I

I

Epidemic stops spreading once XI,t = 0. Stop the process then.

Susceptible half edges get fired at by infective half edges.

Speed everything up so that each susceptible half edge is hit at
unit rate.

I.e. if there are xI infective half edges and x half edges in total
then multiply rates by x−1

βxI
.



Denote new time variable by τ .



Each susceptible vertex of degree k ≥ 0 is now infected with rate
k ; i.e. has life time ∼ Exponential(k).

So Sτ (k) = # susceptible vertices of degree k =

Sτ (k) =

nSk∑
i=1

1Li>τ ,

where Li , i = 1, . . . , nSk are i.i.d Exponential(k).

Glivenko-Cantelli Lemma2: the empirical CDF

1

nSk

nSk∑
i=1

1Li>τ
u.p.→ P(Li > τ) = exp(−kτ)

as nSk →∞.

2a corollary of law of large numbers



Then, by our assumptions,

Sτ (k)/n
u.p.→ αSpk exp(−kτ),

Sτ/n =
∑
k

Sτ (k)/n
u.p.→ αS

∑
k

pk exp(−kτ),

and

XS,τ /n =
∑
k

kSτ (k)/n
u.p.→ αS

∑
k

kpk exp(−kτ) = fS(e−τ ).

[The summation here relies on the uniform integrability assumption
(D3)!]



Total number of half edges

Consider: ∆Xτ = −2 whenever an infective half edge fires.

In new time scale: this happens at rate

β XI,τ ×
(
Xτ −1

β XI,τ

)
= Xτ −1

This is near enough Xτ after dividing by n.

Glivenko-Cantelli again gives

Xτ /n
u.p.→ µe−2τ = fX(e−τ ).



Now for XR,τ ;

XR,τ = XR,0 +

∫ τ

0

(
−βXI,σ

XR,σ

Xσ − 1
+ ρ

∑
k

kIσ(k)

)(
Xσ − 1

βXI,σ

)
dσ + Mτ

= XR,0 +

∫ τ

0

(
−βXI,σ

XR,σ

Xσ − 1
+ ρXI,σ

)(
Xσ − 1

βXI,σ

)
dσ + Mτ



XR,τ

n
=

XR,0

n
+

∫ τ

0

(
−
XR,σ

n
+
ρ

β

(
Xσ − 1

n

))
dσ + Mτ/n.

Mτ is a finite variation Martingale;

[M]τ =
∑
σ≤τ

(∆Mσ)2 =
∑
σ≤τ

(∆XR,σ)2

≤ X0 +
∑
i

d2
i

≤ X0 + (max
i

di )
∑
i

di = o(n2)



XR,τ

n
=

XR,0

n
+

∫ τ

0

(
−
XR,σ

n
+
ρ

β

(
Xσ − 1

n

))
dσ + Mτ/n.

Doob’s inequality says

E sup
t
|Mt |2 ≤ 4E[M]∞ = o(n2).

I.e. Mτ/n
u.p.→ 0.

Gronwall’s inequality then shows

XR,τ
p→ fR(e−τ )

uniformly on any bounded interval.



XI,τ = Xτ −XS,τ −XI,τ so XI,τ
u.p.→ fI(e

−τ ) on bounded intervals.

But then XI,τ = 0 for some τ < − ln(θ∞) + 1.



Now invert the time change:

Can show τ(t) is the inverse of the (increasing) process∫ τ

0

Xσ −1

β XI,σ
dσ

u.p.→
∫ τ

0

1

βpI(e−σ)
dσ, 0 ≤ τ ≤ − ln(θ∞)− δ.

[This is for pI(e
−0) = pI(1) = µI/µ > 0; µI = 0 is more delicate]

So τ(t)
u.p.→ τ̂(t), where τ̂ ′(t) = βpI(exp(−τ̂(t))), and τ̂(0) = 0.

Thus θt = exp(−τ̂(t)) satisfies d
dt θt = −βpI(θt)θt .



Work in progress: describe early stages in more detail

[- If R0 > 1 then a positive fraction is infected with probability
bounded above zero]

- T↑/ ln(n)
p→ c > 0



Thanks! Any questions?
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