Contrôle stochastique sur un processus de naissance et mort

Julien Claisse

Equipe-projet TOSCA, INRIA Sophia Antipolis

7 juin 2011

Motivations

- Mettre en place une théorie du contrôle stochastique pour les processus de branchement
 - utiliser les travaux antérieures sur d'autres types de processus comme les diffusions [Fleming, Krylov],
 - développer et analyser des outils spécifiques pour les processus de branchement.
- Développer des applications en biologie et sciences médicales
 - dosage médicamenteux permettant d'éliminer un cancer ou un virus tout en minimisant les risques liés au effet secondaires,
 - gestion de parasites d'une exploitation agricole tout en minimisant la pollution,
 - gestion de population en voie d'extinction,
 - contrôle de cultures de cellules in vitro.

Exemple simple

- Modèle. Population asexuée dans laquelle chaque individu agit indépendemment des autres et a une durée de vie aléatoire de loi exponentielle. A l'issue de ce temps aléatoire, il peut donner naissance à deux individus ou simplement mourir.
- **Contrôle.** Choix de la probabilité p_t qu'un individu branchant au temps t donne naissance à deux descendants.
- **Objectif.** Maximiser les chances que la taille d'une population soit "proche" d'une valeur n_{opt} à l'instant final T.
- **Formulation.** Déterminer un contrôle **p** minimisant la quantité

$$\mathbb{E}\left[\left|n_T^{\mathbf{p}}-n_{opt}\right|\right].$$

Plan de l'exposé

- Préliminaire
 - Modèle
 - 2 Problème
- équation de Hamilton-Jacobi-Bellman
 - Programmation dynamique
 - ② Dérivation de l'équation
 - 3 Théorème de vérification
- Exemple simple
 - Contrôle intuitif et optimal
 - Comparaison et interprétation

Cadre

Soit T>0, soit $(\Omega, \mathcal{F}, \mathbb{P})$ un espace de probabilités, on se donne une mesure ponctuelle de Poisson $N(\omega, \mathrm{d}t, \mathrm{d}z)$ sur $[0, T] \times \mathbb{R}^+$ d'intensité $\mathrm{d}t\,\mathrm{d}z$.

Soient $\gamma>0$, $p\in[0,1]$, $i\in\mathbb{N}$, la solution de

$$n_{s} = i + \int_{[0,s] \times \mathbb{R}^{+}} \left(\mathbf{1}_{z \leq \gamma p n_{\theta^{-}}} - \mathbf{1}_{\gamma p n_{\theta^{-}} \leq z \leq \gamma n_{\theta^{-}}} \right) N(d\theta, dz)$$

est un processus de naissance et mort classique.

Contrôle admissible

La filtration canonique associée à N est définie par

$$\mathcal{F}_{s} := \sigma\left(N\left(A\right); \ A \in \mathcal{B}\left(\left[0,s\right]\right) \otimes \mathcal{B}\left(\mathbb{R}^{+}\right)\right) \quad \forall s \in \left[0,T\right].$$

Soient $0 \le p < \overline{p} \le 1$.

Definition (Contrôle admissible)

On appelle contrôle admissible un processus $\mathbf{p}=(p_s;\ 0\leq s\leq T)$ à valeurs dans $[\underline{p},\overline{p}]$ qui est continue à gauche et adapté par rapport à la filtration \mathcal{F} . On note \mathcal{A} l'ensemble des contrôles admissibles.

Processus contrôlé

Pour tous $t \in [0, T]$, $i \in \mathbb{N}$, $\mathbf{p} \in \mathcal{A}$, on considère l'équation

$$n_s = i + \int_{(t,s] \times \mathbb{R}^+} \left(\mathbf{1}_{z \le \gamma p_\theta n_{\theta^-}} - \mathbf{1}_{\gamma p_\theta n_{\theta^-} \le z \le \gamma n_{\theta^-}} \right) N(d\theta, dz).$$

Elle admet une unique solution notée $(n_s^{t,i,\mathbf{p}};\ t \leq s \leq T)$. Le processus $n^{t,i,\mathbf{p}}$ est càdlàg et adapté à la filtration \mathcal{F} .. De plus, pour tout $q \in \mathbb{N}$, il existe C > 0 tel que

$$\mathbb{E}\left[\sup_{t\leq s\leq T}\left(n_{s}^{t,i,\mathbf{p}}\right)^{q}\right]\leq C\left(1+i^{q}\right)\quad\forall t,\forall i,\forall \mathbf{p}.$$

Décomposition en semimartingale

Soit (φ_i) une suite réelle, le processus $\varphi(n^{t,i,\mathbf{p}})$ admet pour représentation

$$\varphi_{n_s} = \varphi_i + \int_t^s L^{p_\theta} \varphi_{n_\theta} \, \mathrm{d}\theta + M_{t,s}^{\varphi}$$

où L^p est le générateur infinitésimal du processus de naissance et mort classique donné par

$$L^{p}\varphi_{i}:=\gamma i\left(\left(\varphi_{i+1}-\varphi_{i}\right)p+\left(\varphi_{i-1}-\varphi_{i}\right)\left(1-p\right)\right).$$

et $M_{t,s}^{\varphi} := (M_{t,s}^{\varphi}; \ t \leq s \leq T)$ est une martingale locale. En particulier, c'est une martingale si φ est à croissance polynômiale.

Formulation du problème

- (g_i) suite réelle à croissance polynômiale,
- (f_i) suite de fonctions continues sur $[0, T] \times [\underline{p}, \overline{p}]$ à croissance polynômiale en i uniformément par rapport aux autres variables.

Definition (Fonction coût)

$$J(t,i,\mathbf{p}) := \mathbb{E}\left[\int_t^T f\left(s,n_s^{t,i,\mathbf{p}},\rho_s\right)\mathrm{d}s + g\left(n_T^{t,i,\mathbf{p}}\right)\right].$$

Definition (Fonction valeur)

$$v(t,i) := \inf_{\mathbf{p} \in \mathcal{A}} J(t,i,\mathbf{p}).$$

Résultat principal

Theorem

L'équation de Hamilton-Jacobi-Bellman

$$\begin{cases} u_i' + \inf_{p \in \left[\underline{p}, \overline{p}\right]} L^p u_i + f_i(p) = 0 & \forall t \in [0, T], \forall i \ge 1 \\ u_0(t) = \int_t^T \inf_{p \in \left[\underline{p}, \overline{p}\right]} f_0(s, p) \, \mathrm{d}s + g_0 & \forall t \in [0, T] \\ u_i(T) = g_i & \forall i \in \mathbb{N} \end{cases}$$

admet une unique solution u de classe \mathcal{C}^1 à croissance polynômiale admettant la représentation probabiliste suivante

$$u_i(t) = \inf_{\mathbf{p} \in \mathcal{A}} \mathbb{E}\left[\int_t^T f\left(s, n_s^{t,i,\mathbf{p}}, p_s\right) \mathrm{d}s + g\left(n_T^{t,i,\mathbf{p}}\right)\right].$$

Principe de la programmation dynamique

Le principe de la programmation dynamique est le résultat clé de cette approche d'un problème de contrôle stochastique.

Proposition

Pour tout $\tau \in [t, T]$, on a

$$v(t,i) = \inf_{\mathbf{p} \in \mathcal{A}} \mathbb{E} \left[\int_{t}^{\tau} f\left(s, n_{s}^{t,i,\mathbf{p}}, p_{s}\right) ds + v\left(\tau, n_{\tau}^{t,i,\mathbf{p}}\right) \right].$$

$$J(t, i, \mathbf{p}) = \mathbb{E}\left[\mathbb{E}\left[\int_{t}^{T} f\left(s, n_{s}^{t, i, \mathbf{p}}, p_{s}\right) + g\left(n_{T}^{t, i, \mathbf{p}}\right) ds \middle| \mathcal{F}_{\tau}\right]\right]$$
$$= \mathbb{E}\left[\int_{t}^{\tau} f\left(s, n_{s}^{t, i, \mathbf{p}}, p_{s}\right) ds + J\left(\tau, n_{\tau}^{t, i, \mathbf{p}}, \mathbf{p}\right)\right]$$

Proposition

La fonction valeur v est de classe C^1 et sa dérivée vérifie

$$v_i' + \inf_{p \in \left[\underline{p}, \overline{p}\right]} L^p v_i + f_i(p) = 0 \quad \forall t \in \left[0, T\right], \forall i \geq 1.$$

D'autre part, il est facile de montrer que

$$v_0(t) = \int_t^T \inf_{p \in [\underline{p}, \overline{p}]} f_0(s, p) ds + g_0 \quad \forall t \in [0, T]$$

$$v_i(T) = g_i \quad \forall i \in \mathbb{N}.$$

Démonstration

Dérivabilité à droite. Soit h > 0, on a

$$\mathbb{E}\left[v\left(t+h,n_{t+h}^{\mathbf{p}}\right)\right]=v(t+h,i)+\int_{t}^{t+h}\mathbb{E}\left[L^{p_{s}}v\left(t+h,n_{s}^{\mathbf{p}}\right)\right]\mathrm{d}s.$$

On passe à l'infimum sur les contrôles $\mathbf{p} \in \mathcal{A}$. On utilise le PPD pour le terme de gauche et des calculs élémentaire pour le terme de droite pour obtenir

$$v(t,i) = v(t+h,i) + h \inf_{p \in [p,\overline{p}]} L^p v(t,i) + o(h).$$

Dérivabilité à gauche. Même idée en utilisant

$$u(t - h, i) = \inf_{\mathbf{p} \in \mathcal{A}} \mathbb{E} \left[v \left(t, n_t^{t-h, i, \mathbf{p}} \right) \right].$$

Théorème de vérification

Theorem

On suppose que l'équation de HJB admet une solution u de classe \mathcal{C}^1 à croissance au plus polynômiale en i uniformément par rapport à t, alors u=v. De plus, on peut identifier un contrôle optimal markovien $\hat{\mathbf{p}}$. En particulier, si f ne dépend pas de p, il est donné par $\hat{p}_s = \hat{p}(s, n_{s^-})$ tel que

$$\hat{p}(s,i) := \underline{p} \mathbf{1}_{v_{i+1}(s) > v_{i-1}(s)} + \overline{p} \mathbf{1}_{v_{i+1}(s) < v_{i-1}(s)}.$$

Démonstration

Par régularité de u, pour tout $\mathbf{p} \in \mathcal{A}$, on a

$$u\left(T, n_{T}^{\mathbf{p}}\right) = u(t, i) + \int_{t}^{T} \left(u'\left(s, n_{s}^{\mathbf{p}}\right) + L^{p_{s}}u\left(s, n_{s}^{\mathbf{p}}\right)\right)ds + M_{t, T}^{u}$$

avec $M^u_{t,T}$ une martingale (locale). Puisque u est solution de l'équation de HJB, on a

$$\mathbb{E}\left[g\left(n_T^{\mathbf{p}}\right)\right] \geq u(t,i).$$

On en déduit $v \geq u$. Réciproquement, on utilise le fait que l'infinimum est atteint dans l'équation de HJB et on construit un contrôle markovien $\hat{\mathbf{p}}$ tel que $u'(s, n_s^{\hat{\mathbf{p}}}) + L^{\hat{p}_s}u(s, n_s^{\hat{\mathbf{p}}}) = 0$. On en déduit $\mathbb{E}[g(n_T^{\hat{\mathbf{p}}})] = u(t, i)$ et donc $v \leq u$.

Résolution théorique

- **Objectif.** Maximiser les chances que la taille d'une population soit "proche" d'une valeur n_{opt} à l'instant final T.
- Formulation. Déterminer un contrôle p minimisant la fonction

$$J(t, i, \mathbf{p}) = \mathbb{E}\left[\left|n_T^{t, i, \mathbf{p}} - n_{opt}\right|\right].$$

• **Théorie.** Contrôle optimal $\hat{p}_s = \hat{p}(s, n_{s^-})$ tel que

$$\hat{p}(s,i) := \underline{p} \mathbf{1}_{v_{i+1}(s) > v_{i-1}(s)} + \overline{p} \mathbf{1}_{v_{i+1}(s) < v_{i-1}(s)}$$

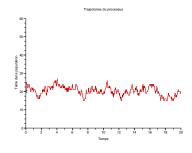
et v solution de l'équation de HJB associée.

• Simulation. $\gamma=1,\ \underline{p}=0.4,\ \overline{p}=0.6,\ T=20$ et $n_{opt}=20.6$

Résolution intuitive

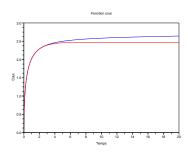
On note **p**^{int} le contrôle intuitif candidat à l'optimalité défini par

$$\mathbf{p^{int}}(s,\omega) := \left\{ \begin{array}{l} \frac{p}{\overline{p}} & \text{si } n_{s^{-}}(\omega) > n_{opt} \\ \hline si & n_{s^{-}}(\omega) \leq n_{opt} \end{array} \right..$$



Comparaison

Sauf dans les cas $\overline{p}=1$ ou $n_{opt}=0$, la fonction coût associée à $\mathbf{p^{int}}$ est strictement plus grande que la fonction valeur du problème pour T suffisamment grand.

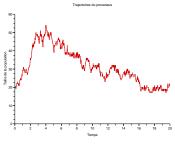


Contrôle optimal

Le contrôle optimal **p**^{opt} admet une représentation de la forme

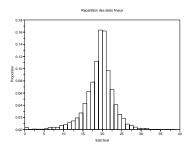
$$\mathbf{p^{opt}}(s,\omega) := \left\{ \begin{array}{l} \frac{p}{\overline{p}} & \text{si } n_{s^{-}}(\omega) > n_{opt} + k(T-s) \\ \hline p & \text{si } n_{s^{-}}(\omega) \leq n_{opt} + k(T-s) \end{array} \right.$$

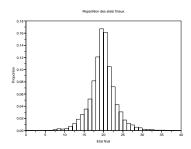
où k est une fonction croissante prenant successivement les valeurs $0,1,2,\ldots$



Interprétation

La population peut s'éteindre avec probabilité non nulle. Ainsi la fonction coût discrimine les contrôles pour lesquels la probabilité d'extinction avant T est trop grande.





Généralisation

- Généralisation facile
 - contrôle de la durée de vie γ ou du couple (γ, p) ,
 - processus de naissance et mort de la forme $b(\alpha, i) \leq \overline{\alpha}i$ et $d(\alpha, i)$ quelconque,
 - nombre de descendants par individu fini.
- Généralisation moins facile
 - problème de contrôle à horizon infini,
 - problème de contrôle à horizon aléatoire.
- Il reste du travail pour
 - étudier la dynamique de la fonction valeur et exprimer explicitement le contrôle optimal dans le cas simple,
 - généraliser à des processus de branchements plus complexes, notamment dans le cas *age-dependent*.

Perspectives d'application

- Équipe de J. Pouysségur, Institute of Developmental Biology and Cancer Research,
- pH-mediated cancer therapy.

