
Multitype GWBP (decomposable and indecomposable)
(Lecture 2)

8 июня 2011 г.

Multitype GWBP (decomposable and indecomposable) (Lecture 2)



Offspring generating functions for the type i particles:

f i(s) = f i(s1, ..., sN) = Esξi1

1 ...sξiN

N

Denote
f(s) = (f1(s), ..., fN (s)).
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Offspring generating functions for the type i particles:

f i(s) = f i(s1, ..., sN) = Esξi1

1 ...sξiN

N

Denote
f(s) = (f1(s), ..., fN (s)).

The mean matrix

M = ‖mij‖Ni,j=1 , mij =
∂f i(s)

∂sj
|s=1 = Eξij , Mn =

∥

∥

∥m
(n)
ij

∥

∥

∥

N

i,j=1
.
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F(n, s) = (F1(n, s), ..., FN (n, s)),

where

F i(n, s) = E
[

s
Zi1(n)
1 ...s

ZiN (n)
N |Zl(0) = δil

]

and Zil(n) is the number of particles of type l in the process at time n
steamed from a single particle of type i existing at moment 0.
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In terms of the particle reproduction

Zj(n) =
N
∑

k=1

Zk(n−1)
∑

r=1

ξkj(r),

where Zk(n− 1) is the number of particles in the process at time n− 1
and

(ξ1j(r), ..., ξNj(r))
dist
= (ξ1j , ..., ξNj) , r = 1, 2, ...

are offspring vectors of different particles which are iid for each
j = 1, . . . , N .
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Therefore,

Fi(n, s) = E





N
∏

j=1

s
Zj(n)
j |Zl(0) = δil





= E





N
∏

k=1

Zk(n−1)
∏

r=1

N
∏

j=1

s
ξkj(r)
j |Zl(0) = δil





= E

[

N
∏

k=1

(

fk(s)
)Zk(n−1) |Zl(0) = δil

]

= Fi(n− 1, f(s))

= ... = Fi(0, fn(s)) = f i
n(s).

or
F(n, s) = fn(s), fn(s) = f (fn−1(s)) .
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Therefore,

Fi(n, s) = E





N
∏

j=1

s
Zj(n)
j |Zl(0) = δil





= E





N
∏

k=1

Zk(n−1)
∏

r=1

N
∏

j=1

s
ξkj(r)
j |Zl(0) = δil





= E

[

N
∏

k=1

(

fk(s)
)Zk(n−1) |Zl(0) = δil

]

= Fi(n− 1, f(s))

= ... = Fi(0, fn(s)) = f i
n(s).

or
F(n, s) = fn(s), fn(s) = f (fn−1(s)) .

Hence, the vector P of probabilities of extinction solves the equation

P := lim
n→∞

fn+1(0) = f
(

lim
n→∞

fn(0)
)

= f(P).
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Mean matrix for the population size at time n

E [Zij(n)|Zl(0) = δil, l = 1, ..., N ] =
∂f i

n(s)

∂sj
|s=1 = m

(n)
ij .
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Mean matrix for the population size at time n

E [Zij(n)|Zl(0) = δil, l = 1, ..., N ] =
∂f i

n(s)

∂sj
|s=1 = m

(n)
ij .

Thus, if Z(n) = (Z1(n), ..., ZN (n)) then

E [Zj(n)|Z(n − 1)] =

N
∑

k=1

Zk(n−1)
∑

r=1

Eξkj(r) =

N
∑

k=1

Zk(n− 1)mkj
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Mean matrix for the population size at time n

E [Zij(n)|Zl(0) = δil, l = 1, ..., N ] =
∂f i

n(s)

∂sj
|s=1 = m

(n)
ij .

Thus, if Z(n) = (Z1(n), ..., ZN (n)) then

E [Zj(n)|Z(n − 1)] =
N
∑

k=1

Zk(n−1)
∑

r=1

Eξkj(r) =
N
∑

k=1

Zk(n− 1)mkj

or, in the vector form

E [Z(n)|Z(n − 1)] = Z(n− 1)M

leading to

E [Z(n)] = E [Z(n− 1)]M = ... = E [Z(0)] Mn.
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Indecomposable processes
1, ..., N-types. We write that i→j if there exists n such that

P (Zj(n) > 0|Zl(0) = δil, l = 1, ..., N) > 0.

If i→j and j→i then the types are connected. If all types in the process
are connected the process is called indecomposable.

Multitype GWBP (decomposable and indecomposable) (Lecture 2)



Indecomposable processes
1, ..., N-types. We write that i→j if there exists n such that

P (Zj(n) > 0|Zl(0) = δil, l = 1, ..., N) > 0.

If i→j and j→i then the types are connected. If all types in the process
are connected the process is called indecomposable.

A discrete-time processes is called periodic with period r if

Mt+r = Mt

for all t > 0.
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Indecomposable processes
1, ..., N-types. We write that i→j if there exists n such that

P (Zj(n) > 0|Zl(0) = δil, l = 1, ..., N) > 0.

If i→j and j→i then the types are connected. If all types in the process
are connected the process is called indecomposable.

A discrete-time processes is called periodic with period r if

Mt+r = Mt

for all t > 0.

We assume that the process is NONperiodic and NONsingular, that is
f(s) not of the form

f(s) = MsT .
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We say that a matrix M is strictly positive if there is n > 0 such that

Mn =
∥

∥

∥m
(n)
ij

∥

∥

∥

N

i,j=1
> 0.
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Theorem

(Perron-Frobenius) Any strictly positive matrix M has a maximal simple
eigenvalue ρ which has positive right and left eigenvectors

u = (u1, ..., ud) and v = (v1, ..., vN ) :

vM = ρv, Mu = ρu

If they are scaled in such a way that (v, u) = 1, and

(v,1) =

N
∑

k=1

vk = 1

then Mn = ρnS + Tn where S = ‖uivj‖Ni,j=1 and Tn =
∥

∥

∥t
(n)
ij

∥

∥

∥

ST = TS = 0

and |tij |(n) ≤ cρn
0 with some 0 < ρ0 < ρ.
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Let P (i) is the probability of extinction if the process starts by one
individual of type i, P = (P (1), ..., P (d)).

Theorem

Let Z(n) be positively regular: Mn0 > 0, and nonsingular. Then
1) if ρ ≤ 1 then the process dies out with probability 1
2) if ρ > 1 then P < 1,

lim
n→∞

fn(0) = P,

and P is the only solution of f(s) = s within the unit cube.

Classification:
supercritical, critical, subcritical processes depending on the value of ρ.
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Example 1. Let
f1(s1, s2) = 1

3 + 1
3s1 + 1

3s2
2

f2(s1, s2) = 1
4 + 1

2s1 + 1
4s2

2

Then

M =

(

1
3

2
3

1
2

1
2

)

the process is critical P = (1, 1).
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Example 2. Let
f1(s1, s2) = 1

4 + 1
4s1 + 1

2s2
2

f2(s1, s2) = 1
8 + 1

8s1 + 3
4s2

2

Then

M =

(

1
4 1
1
8

3
2

)

the process is supercritical. The eigenvalues of the matrix

ρ :=
1

8

√
33 +

7

8
= 1. 593 1 and

7

8
− 1

8

√
33,

Solving
s1 = 1

4 + 1
4s1 + 1

2s2
2

s2 = 1
8 + 1

8s1 + 3
4s2

2

we get

(1, 1) and

(

9

25
,
1

5

)

.

Hence

P =

(

9

25
,
1

5

)

.
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Composition of population
Assume that

E [Z(0)] = cv

Then
E [Z(n)] = E [Z(0)] Mn = cvMn = cρnv

Therefore, for each k = 1, ..., N

lim
n→∞

E [Zk(n)]

E [Z1(n) + ... + ZN(n)]
=

vk

v1 + ... + vN
= vk.
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In the general case for any initial population size we have by the
Perron-Frobenius theorem

E [Z(n)] = E [Z(0)]Mn = E [Z(0)] (ρnS + Tn) ≈ ρnE [Z(0)]S.
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In the general case for any initial population size we have by the
Perron-Frobenius theorem

E [Z(n)] = E [Z(0)]Mn = E [Z(0)] (ρnS + Tn) ≈ ρnE [Z(0)]S.

Therefore,

E [Zk(n)] ≈ ρn
N
∑

i=1

E [Zi(0)] uivk = ρnvk

N
∑

i=1

E [Zi(0)] ui.
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In the general case for any initial population size we have by the
Perron-Frobenius theorem

E [Z(n)] = E [Z(0)]Mn = E [Z(0)] (ρnS + Tn) ≈ ρnE [Z(0)]S.

Therefore,

E [Zk(n)] ≈ ρn
N
∑

i=1

E [Zi(0)] uivk = ρnvk

N
∑

i=1

E [Zi(0)] ui.

Hence, expectations of the numbers of particles of different types grow
like ρn. In particular,

lim
n→∞

E [Zk(n)]

E [Z1(n) + ... + ZN(n)]
=

vk

v1 + ... + vN
= vk.
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Generation overlap
Example 3. Small mammals, such as squirrels have one reproduction
period per year and a large yearly mortality risk, due to starvation or
predation.
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Generation overlap
Example 3. Small mammals, such as squirrels have one reproduction
period per year and a large yearly mortality risk, due to starvation or
predation.
Assume that each year a female squirrel has a constant probability r of
dying, a probability q of surviving without reproduction and a probability
p of getting one offspring. (We count only female individuals.)
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Generation overlap
Example 3. Small mammals, such as squirrels have one reproduction
period per year and a large yearly mortality risk, due to starvation or
predation.
Assume that each year a female squirrel has a constant probability r of
dying, a probability q of surviving without reproduction and a probability
p of getting one offspring. (We count only female individuals.)
If these probabilities are assumed to be independent of age, the
population can be modeled as a single-type Galton-Watson process with
reproduction generating function

f(s) = r + qs + ps2.

The expected number of offspring per individual thus equals 2p + q and
thus the expected population size in the nth season is (2p + q)n. If
2p + q > 1 then the expected population size increases exponentially.
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The parity of an individual is the total number of offspring she has
produced during her life. The (asymptotic) distribution of the parity in a
population can be calculated by means of a multitype branching process,
type corresponding to parity in this case.
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The parity of an individual is the total number of offspring she has
produced during her life. The (asymptotic) distribution of the parity in a
population can be calculated by means of a multitype branching process,
type corresponding to parity in this case.

We only count up to a maximum parity: if a female has had N or more
offspring she has type N . Thus, we distinguish N + 1 types of females.
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The parity of an individual is the total number of offspring she has
produced during her life. The (asymptotic) distribution of the parity in a
population can be calculated by means of a multitype branching process,
type corresponding to parity in this case.

We only count up to a maximum parity: if a female has had N or more
offspring she has type N . Thus, we distinguish N + 1 types of females.

The probability generating functions looks as follows

f0(s0, s1, ..., sN ) = r + qs0 + ps0s1,

fk(s0, s1, ..., sN ) = r + qsk + ps0sk+1, 1 ≤ k < N,

fN(s0, s1, ..., sN ) = r + (q + ps0)sN .
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The mean (N + 1)× (N + 1) matrix of the process looks as follows:

M =

















p + q p 0 0 · · · 0
p q p 0 · · · 0
p 0 q p 0 · · ·
· · · 0 0 · · · p 0
· · · · · · · · · · · · q p
p 0 0 · · · 0 p + q

















.

The process is indecomposable. The maximal eigenvalue of the matrix, ρ,
is 2p + q and the corresponding (normalized) transposed right
eigenvector has the form

uT = (1, 1, . . . , 1)

while the left eigenvector (properly normalized and transposed) equals

vT = (v0, . . . , vk, . . . , vN−1, vN ) =

(

1

2
, . . . ,

1

2k+1
, . . . ,

1

2N
,

1

2N

)

.
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By the Perron-Frobenius theorem the ‘parity distribution’ of the
population tends to

lim
n→∞

m
(n)
0k

m
(n)
00 + m

(n)
01 + · · ·+ m

(n)
0N

=
vk

v0 + · · ·+ vN
=

1

2k+1
,

for k = 0, . . . , N − 1 and

lim
n→∞

m
(n)
0N

m
(n)
00 + m

(n)
01 + · · ·+ m

(n)
0N

=
1

2N
.

This result does not depend on the particular values of p and q.
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Example 4. Consider a bi-annual plant species. If it were strictly
bi-annual, individuals that are one year old produce no seeds and have a
positive chance p1 of survival. Two-year olds would always produce seeds
and die. Since such plant species usually have enormous amounts of
seeds, only few of which germinate, a Poisson offspring distribution seems
natural.
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Example 4. Consider a bi-annual plant species. If it were strictly
bi-annual, individuals that are one year old produce no seeds and have a
positive chance p1 of survival. Two-year olds would always produce seeds
and die. Since such plant species usually have enormous amounts of
seeds, only few of which germinate, a Poisson offspring distribution seems
natural.

In most instances, bi-annual plant species do not follow the strict
"two-years" rule , but instead there is only a chance that they flower,
and then die, when they are two years old. If they do not flower, they can
survive for another year (up to a certain maximum age), but as soon as
they have produced flowers they die.
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Model: Suppose that the maximum age of the plants is 3 years.

1-year old individuals survive with chance p1.

2 years old individuals flower with chance q2 and if they do not, they
survive with probability p2. If they do produce flowers they get a
Poisson(λ2) distributed number of offspring.

3-year old individuals always produce flowers and get a Poisson(λ3)
distributed number of offspring.
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This results in the following reproduction generating functions

f1(s1, s2, s3) = 1− p1 + p1s2

f2(s1, s2, s3) = q2e
λ2(s1−1) + (1− q2) (1− p2 + p2s3).

f3(s1, s2, s3) = eλ3(s1−1).

The mean reproduction matrix equals

M =





0 p1 0
q2λ2 0 (1− q2)p2

λ3 0 0



 .

Multitype GWBP (decomposable and indecomposable) (Lecture 2)



More about the composition of supercritical populations

Theorem

If ρ > 1 and the process Z(n) is nonsingular and positive regular then a.s.

lim
n→∞

Z(n)

ρn
= vW,

where W is a nonnegative random variable such that

P (W > 0) > 0

if and only if for all i, j

Eξij log+ ξij <∞.

Thus, on the set of nonextinction,

Zi(n)

(u,Z(n))
→ vi a.s.

as n→∞.
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Limit theorem for the critical case

Theorem

If Z(n) is positively regular, ρ = 1 and for all i, j, k ∈ {1, ..., N}

bk
ij := E (ξkiξkj − δijξkj) <∞

then, as n→∞
P (Z(n) 6= 0|Z(0)= ei) ∼

2ui

Bn

where

B :=

N
∑

k,i,j=1

vkuib
k
ijuj.

Moreover, for any vector h = (h1, ..., hN) such that (v,h) > 0
{

2

Bn
(Z(n),h) |Z(n) 6= 0;Z(0)= ei

}

d→ η1

where η1 is an exponential random variable with parameter β := (v,h).
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If under the condition above (v,h) = 0 then
{

(Z(n),h)√
n
|Z(n) 6= 0;Z(0)= ei

}

d→ η2

where η2 is a random variable with density

d(x) :=
β2

2
e−β2|x|, β2 > 0.
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Limit theorems for the subcritical case

Theorem

If Z(n) is positively regular, ρ < 1 and for all i, j

Eξij log+ ξij <∞.

then, as n→∞

P (Z(n) 6= 0|Z(0)= ei) ∼ Kiρ
n, Ki > 0.
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Theorem

If Z(n) is positively regular and ρ < 1 then for j = (j1, ..., jN ) ∈ Z
N
0

lim
n→∞

P (Z(n) = j|Z(n) 6= 0;Z(0)= ei) = b(j)

is independent on i,
∑

j∈Z
N
0

,j6=0

b(j) = 1

and
∑

j∈Z
N
0

,j6=0

‖j‖ b(j) <∞

if and only if for all i, j

Eξij log+ ξij <∞.
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Branching processes with sibling dependence
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Branching processes with sibling dependence

EXAMPLE 1. Consider a sibling-dependent Galton-Watson process where
an individual can beget zero or three children, and where the
dependencies are such that, in a group of three siblings, two will always
reproduce while the third never will. All individuals are equally likely to be
among the reproducing ones.
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Branching processes with sibling dependence

EXAMPLE 1. Consider a sibling-dependent Galton-Watson process where
an individual can beget zero or three children, and where the
dependencies are such that, in a group of three siblings, two will always
reproduce while the third never will. All individuals are equally likely to be
among the reproducing ones.

Thus we have a joint probability measure on {0, 3}3 which gives equal
probabilities to the points (0, 3, 3), (3, 0, 3) and (3, 3, 0) and has the
marginals p0 = 1/3 and p3 = 2/3.
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Branching processes with sibling dependence

EXAMPLE 1. Consider a sibling-dependent Galton-Watson process where
an individual can beget zero or three children, and where the
dependencies are such that, in a group of three siblings, two will always
reproduce while the third never will. All individuals are equally likely to be
among the reproducing ones.

Thus we have a joint probability measure on {0, 3}3 which gives equal
probabilities to the points (0, 3, 3), (3, 0, 3) and (3, 3, 0) and has the
marginals p0 = 1/3 and p3 = 2/3.

Clearly, there are sibling dependencies; if we, for instance, know that an
individual has no children, we also know that her sisters have three
children each.
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The dependent process will have a deterministic generation size of 3× 2n

individuals in the nth generation (if it starts from a full group of siblings)
and hence it never becomes extinct.
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Compare this process to an ordinary independent Galton-Watson process
which has the same individual marginals. That is, the offspring
reproduction function is

f(s) :=
1

3
+

2

3
s3
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Compare this process to an ordinary independent Galton-Watson process
which has the same individual marginals. That is, the offspring
reproduction function is

f(s) :=
1

3
+

2

3
s3

The expected number of children is 2, the probability of extinction is the
minimal nonnegative root of the equation

1

3
+

2

3
s3 = s

giving

P =

√
3− 1

2
.

and there is a positive probability of nonextinction, in which case the
generation size tends to ∞ with the rate proportional to 2n.
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Let Z(n) be the number of individuals in the nth generation in the
independent process and ζ(n) be the corresponding variable in the
dependent process.
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Let Z(n) be the number of individuals in the nth generation in the
independent process and ζ(n) be the corresponding variable in the
dependent process.

If the processes both start from a group of three siblings, we have, for
some random variable w

Z(n)

2n
→ w

where

P (w = 0) =
(

√
3− 1

2

)3

and
ζ(n)

2n
= 3

so that the growth rates are the same in the two processes.
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How the asymptotic composition may be affected by sibling dependencies

Let A be the event that an individual has no children and define ZA(n)
and ζA(n) the number of individuals without children in the nth
generation of the independent population and the dependent population,
respectively.
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How the asymptotic composition may be affected by sibling dependencies

Let A be the event that an individual has no children and define ZA(n)
and ζA(n) the number of individuals without children in the nth
generation of the independent population and the dependent population,
respectively.

The probability of A is 1/3 in both populations. Hence, as n→∞

ZA(n)

Z(n)
→ 1

3

and
ζA(n)

ζ(n)
=

1

3
.

The asymptotic proportion of childless individuals is thus the same in the
two populations.
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Let B be the event that an individual has no grandchildren.
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Let B be the event that an individual has no grandchildren.

In the dependent population for the probability of the event B we have

1

3
+

2

3
× 0 =

1

3
,

i.e., the same probability as the event A.
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Now let B be the event that an individual has no grandchildren.

In the dependent population for the probability of the event B we have

1

3
+

2

3
× 0 =

1

3
,

i.e., the same probability as the event A.

In the independent population B has probability

f2(0) = f(f(0)) =
1

3
+

2

3
× (f(0))

3

=
1

3
+

2

3
×
(

1

3

)3

=
29

81
.
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The basic idea:

To compare processes with sibling dependencies with another process, a
macro process. This macro process consists of sibling groups, to be called
macro individuals.
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The basic idea:

To compare processes with sibling dependencies with another process, a
macro process. This macro process consists of sibling groups, to be called
macro individuals.

The difference: while individuals do not reproduce independently, macro
individuals do, since the only dependencies are within the sibling groups.
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The basic idea:

To compare processes with sibling dependencies with another process, a
macro process. This macro process consists of sibling groups, to be called
macro individuals.

The difference: while individuals do not reproduce independently, macro
individuals do, since the only dependencies are within the sibling groups.

Assume that each particle of the branching process with sibling
dependence cannot produce more than N offspring. Let the reproduction
and dependence structure of a sibling group of size k is described by a
joint probability measure P (k, ·) on {0, 1, ..., N}k.
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The basic idea:

To compare processes with sibling dependencies with another process, a
macro process. This macro process consists of sibling groups, to be called
macro individuals.

The difference: while individuals do not reproduce independently, macro
individuals do, since the only dependencies are within the sibling groups.

Assume that each particle of the branching process with sibling
dependence cannot produce more than N offspring. Let the reproduction
and dependence structure of a sibling group of size k is described by a
joint probability measure P (k, ·) on {0, 1, ..., N}k.
The macroprocess generated by siblings is a multitype Galton-Watson
process

Z1(n), Z2(n), ..., ZN (n),

the type of a macro individual being the number of siblings in that group.
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We may use the classical theory for multitype Galton-Watson processes
to study the macro process. And if Zk(n), k = 1, 2, ..., N is the number
of macro individuals of type k of the nth generation of the macro
process, then

ζ(n) =

N
∑

k=1

kZk(n).
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We may use the classical theory for multitype Galton-Watson processes
to study the macro process. And if Zk(n), k = 1, 2, ..., N is the number
of macro individuals of type k of the nth generation of the macro
process, then

ζ(n) =

N
∑

k=1

kZk(n).

In our example
ζ(n) = 3Z3(n).
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EXAMPLE 2. Consider a population where an individual can beget 0, 1 or
2 children. A single individual begets 0, 1 or 2 children with probabilities

17

32
,

8

32
,

7

32
.

In a group of 2, one individual always splits into 2, the other begets
either 0 or 1 child with equal probabilities. The two siblings are equally
likely to be the splitting one.

Multitype GWBP (decomposable and indecomposable) (Lecture 2)



EXAMPLE 2. Consider a population where an individual can beget 0, 1 or 2
children. A single individual begets 0, 1 or 2 children with probabilities

17

32
,

8

32
,

7

32
.

In a group of 2, one individual always splits into 2, the other begets either 0 or

1 child with equal probabilities. The two siblings are equally likely to be the

splitting one.

We wish to compare this process with the corresponding independent 2-type

process that has the same marginals.
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EXAMPLE 2. Consider a population where an individual can beget 0, 1 or 2
children. A single individual begets 0, 1 or 2 children with probabilities

17

32
,

8

32
,

7

32
.

In a group of 2, one individual always splits into 2, the other begets either 0 or

1 child with equal probabilities. The two siblings are equally likely to be the

splitting one.

We wish to compare this process with the corresponding independent 2-type

process that has the same marginals. At the level of marginals we have

f
1(s1, s2) =

17

32
+

8

32
s1 +

7

32
s
2

2,

and

f
2(s1, s2) =

1

4
+

1

4
s1 +

1

2
s
2

2.
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As a result, the mean matrix of the new process (Zindiv
1 (n), Zindiv

2 (n))
with two types and independent reproduction of individuals looks as
follows

Mindiv =

(

8
32

14
32

1
4 1

)

.

Multitype GWBP (decomposable and indecomposable) (Lecture 2)



As a result, the mean matrix of the new process (Zindiv
1 (n), Zindiv

2 (n))
with two types and independent reproduction of individuals looks as
follows

Mindiv =

(

8
32

14
32

1
4 1

)

.

Thus, the Perron root equals ρ = 9/8 and the respective scaled left
eigenvector is

(

2

9
,
7

9

)

,

the process will grow proportional to

(

Zindiv
1 (n), Zindiv

2 (n)
)

∼
(

9

8

)n(
2

9
,
7

9

)

Windiv

where Windivid is a random variable
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On the other hand, we have in the example two macro-types {1,2} and
in the settings above we have for the joint probability measures
P (k, ·) , k = 1, 2

P (1, 0) =
17

32
, P (1, 1) =

8

32
, P (1, 2) =

7

32

and

P (2, (0, 2)) = P (2, (1, 2)) = P (2, (2, 0)) = P (2, (2, 1)) =
1

4
.
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On the other hand, we have in the example two macro-types {1,2} and
in the settings above we have for the joint probability measures
P (k, ·) , k = 1, 2

P (1, 0) =
17

32
, P (1, 1) =

8

32
, P (1, 2) =

7

32

and

P (2, (0, 2)) = P (2, (1, 2)) = P (2, (2, 0)) = P (2, (2, 1)) =
1

4
.

Thus, at the macro-process level we have

F 1(s1, s2) =
17

32
+

8

32
s1 +

7

32
s2

and

F 2(s1, s2) =

(

1

2
+

1

2
s1

)

s2.
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The mean matrix of this macro-type process is

Mmacro =

(

8
32

7
32

1
2 1

)

The Perron root is ρ = 9/8, the respective scaled left eigenvector is
(

4

11
,

7

11

)

.

Thus,

(Z1(n), Z2(n)) ∼
(

9

8

)n(
4

11
,

7

11

)

Wmacro

for some random variable Wmacro.
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Therefore, the number of individuals ζ(n) in the sibling-dependent
process grows like

ζ(n) = Z1(n) + 2Z2(n) ∼
(

9

8

)n(
4

11
+

14

11

)

Wmacro =
18

11

(

9

8

)n

Wmacro.
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The general case of the sibling-dependent Galton- Watson process
Let

Z(n + 1) =

Z(n)
∑

j=1

ξj(n).

Thus, the (n + 1)-th generation consists of Z(n) siblings group of sizes

ξ1(n), ..., ξZ(n)(n).

Different sibling groups are assumed to evolve independently conditioned
upon what has happened up to the previous generation, i.e. for k 6= j the
evolution of the individuals of the groups ξk(n) and ξj(n) are
independent.
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Assume that we have a population where an individual can beget at most
N children and the sibling dependencies are described by the measures

P (i, ·), i = 1, ..., N

with identical marginals

pij - the probability that an individual belonging to a sibling group of size
i begets j children.
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With this process with dependencies we associate TWO processes.
The first one is a N -type branching (macro process consisting of
MACRO-particles of sizes(types) 1, ..., N in which a macroparticle of type
i produces offspring in accordance with the probability generating
function

Fi (s1, ..., sN ) = P (i,0) +
∑

(k1,...,ki)

P (i, (k1, ..., ki)) sk1
...ski

.
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With this process with dependencies we associate TWO processes.
The first one is a N -type branching (macro process consisting of
MACRO-particles of sizes(types) 1, ..., N in which a macroparticle of type
i produces offspring in accordance with the probability generating
function

Fi (s1, ..., sN ) = P (i,0) +
∑

(k1,...,ki)

P (i, (k1, ..., ki)) sk1
...ski

.

The mean matrix Mmacro = (Mij) of this process has elements

Mij = E

[

i
∑

k=1

I {ξk = j} | the group of siblings has size i

]

= iP (ξ1 = j| the group of siblings has size i) = ipij

where
pij =

∑

(k2,...,ki)

P (i, (j, k2, ..., ki))

Recall that the type of an individual is the number of individuals in her
sibling group; i.e., if an individual begets j children, they will all be of
type j.
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The second process is a N -type branching process WITHOUT
dependencies in which particles of type i produce children in accordance
with the probability generating function

fi(s1, ..., sN ) = pi0 +

N
∑

j=1

pijs
j
j .

We call this process as an individual process.
Clearly, the mean matrix of this process has the form

Mindiv = (mij) = (jpij).
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The second process is a N -type branching process WITHOUT
dependencies in which particles of type i produce children in accordance
with the probability generating function

fi(s1, ..., sN ) = pi0 +

N
∑

j=1

pijs
j
j .

We call this process as an individual process.
Clearly, the mean matrix of this process has the form

Mindiv = (mij) = (jpij).
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Thus

Mij = ipij =
i

j
jpij =

i

j
mij .
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Thus

Mij = ipij =
i

j
jpij =

i

j
mij .

Lemma

For any λ
det (Mmacro − λI) = det (Mindiv − λI) .

Proof. We have

det (Mmacro − λI) = det (Mij − λδij) = det

(

i

j
mij − λδij

)

= det

(

i

j
mij −

i

j
λδij

)

= det

(

i

j
(mij − λδij)

)

= det (mij − λδij) = det (Mindiv − λI) .
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Therefore, the growth rates of both processes are equal (at least at the
level of expectations).

We may go further (cousin dependent - macro-process for the first
macro-process and so on...).

Only constants will be changed, the rate of growth not!
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Assume that the matrix

Mindiv = (mij)
N
i,j=1

has maximal eigenvalue ρ, is indecomposable and has the right and left
eigenvectors

u =(u1, u2, ..., uN ), v =(v1, v2, ..., vN ).
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Assume that the matrix

Mindiv = (mij)
N
i,j=1

has maximal eigenvalue ρ, is indecomposable and has the right and left
eigenvectors

u =(u1, u2, ..., uN ), v =(v1, v2, ..., vN ).

Then the matrix

Mmacro = (Mij) =

(

i

j
mij

)

has the eigenvectors

u∗=

(

N
∑

k=1

vk

k

)

(u1, 2u2..., NuN)

and

v∗=
1

∑N
k=1

vk

k

(

v1,
v2

2
, ...,

vN

N

)

.
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If, further, ρ = 1 then for the macroprocess

P (Z(n) 6= 0|Z(0) = ei) ∼
u∗

i

B∗n
, n→∞.

Therefore,

P (ζ(n) > 0 | ζ(0) = i) = P

(

N
∑

k=1

kZk(n) > 0|Z(0) = ei

)

= P (Z(n) 6= 0|Z(0) = ei) ∼
u∗

i

B∗n
.
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Decomposable processes
A BP is called decomposable if there exists a pair of types such that
i→ j and j 9 i .
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Decomposable processes
A BP is called decomposable if there exists a pair of types such that
i→ j and j 9 i .
Particular cases Assume that

k ←→ j

for all k, j ≤ i < N and

i→ i + 1→ · · · → N.

Then the mean matrix of the process has the form

M =

∥

∥

∥

∥

M1 M12

0 M2

∥

∥

∥

∥
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Here

M1 =

∥

∥

∥

∥

∥

∥

∥

∥

m11 m12 · · · m1i

m21 m22 · · · m2i

· · · · · · · · · · · ·
mi1 mi2 · · · mii

∥

∥

∥

∥

∥

∥

∥

∥

,M12 6= 0,

and

M2 =

∥

∥

∥

∥

∥

∥

∥

∥

mi+1,i+1 mi+1,i+2 · · · mi+1,N

0 mi+2,i+2 · · · mi+2,N

0 0 · · · · · ·
0 0 0 mN,N

∥

∥

∥

∥

∥

∥

∥

∥

.
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Classification: By the maximal of the absolute value of the eigenvalues of
the matrix.

However, the asymptotic representations for the population sizes and
survival probabilities are essentially different!
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Consider only the case when i = 1. Then, assuming that

1→ 2→ · · · → N and j ↔ j, j = 1, ..., N

and
f j(sj , 1..., 1) 6= sk

j

we have for the mean matrix

M =

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

m11 m12 m12 · · ·
0 m22 m11

0 0 m33 m11

0 0 0 · · ·
... ... ... 0 · · ·
0 0 0 mN−1,N−1

0 0 0 mNN

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

.

The criticality is specified by the maximal eigenvalue: maxi mii.

Multitype GWBP (decomposable and indecomposable) (Lecture 2)



If f i(si, 1..., 1) 6= si for all i = 1, ..., d and ρ ≤ 1 then the probability of
extinction of this process is 1.

The asymptotic behavior of the probability of survival is rather
complicated.
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We treat the critical case only.

Theorem

If
m11 = m22 = ... = mNN = 1

and for all i, j, k ∈ {1, ..., N}

bk
ij := E (ξkiξkj − δijξkj) <∞

then, as n→∞

P (Z (n) 6= 0|Z (n) = e1) ∼ Cn−21−N

.
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Proof. We consider the case N = 2 only. Let, as s1 ↑ 1 and s2 ↑ 1

1− f1(s1; s2) = m11 (1− s1)− σ2
1 (1− s1)

2
(1 + o(1)))

+m12(1 − s2)(1 + o(1)),
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Proof. We consider the case N = 2 only. Let, as s1 ↑ 1 and s2 ↑ 1

1− f1(s1; s2) = m11 (1− s1) + m12(1− s2)(1 + o(1))

−σ2
1 (1− s1)

2
(1 + o(1))) ,

Denote

Q1(n) := P (Z (n) 6= 0|Z (0) = e1) , Q2(n) = P (Z2(n) > 0|Z (0) = e2).
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Proof. We consider the case N = 2 only. Let, as s1 ↑ 1 and s2 ↑ 1

1− f1(s1; s2) = m11 (1− s1) + m12(1− s2)(1 + o(1))

−σ2
1 (1− s1)

2 (1 + o(1))) ,

Denote

Q1(n) := P (Z (n) 6= 0|Z (0) = e1) , Q2(n) = P (Z2(n) > 0|Z (0) = e2).

Then

Q1(k + 1) = P (Z (k + 1) 6= 0|Z (0) = e1)

= 1− f1
k+1(0) = 1− f1(F 1(k,0);F 2(k,0))

= 1− f1(1 −Q1(k);1−Q2(k))

= Q1(k) + m12Q2(k)(1 + o(1))− σ2
1Q2

1(k) (1 + o(1)))
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Hence
σ2

1Q2
1(k) ∼ m12Q2(k) + (Q1(k)−Q1(k + 1))
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Hence
σ2

1Q2
1(k) ∼ m12Q2(k) + (Q1(k)−Q1(k + 1))

or
σ2

1kQ2
1(k) ∼ m12kQ2(k) + k (Q1(k)−Q1(k + 1)).
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Hence
σ2

1Q2
1(k) ∼ m12Q2(k) + (Q1(k)−Q1(k + 1))

or
σ2

1kQ2
1(k) ∼ m12kQ2(k) + k (Q1(k)−Q1(k + 1)).

Recalling that

Q2(k) ∼ 2

σ2
2k

, k→∞,

and summing over k from 1 to n we get

σ2
1

n
∑

k=1

kQ2
1(k) ∼ m12

n
∑

k=1

kQ2(k) +

n
∑

k=1

k (Q1(k)−Q1(k + 1))

∼ 2m12

σ2
2

n +

n
∑

k=1

Q1(k)− nQ1(n + 1).
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Therefore,
n
∑

k=1

kQ2
1(k) ∼ 2m12

(σ1σ2)
2 n.
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To complete the proof we need the following statement:

Lemma

If a positive function h(k) is monotone in k and, as n→∞
n
∑

k=1

kθh(k) ∼ nθ+1−βl(n)

for some 0 ≤ β < θ + 1 and a slowly varying function l(n) then

h(n) ∼ (θ + 1− β)n−βl(n), n→∞.
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Thus, the representation

n
∑

k=1

kQ2
1(k) ∼ 2m12

(σ1σ2)
2 n

implies

nQ2
1(n) ∼ 2m12

(σ1σ2)
2

or

Q1(n) ∼
√

2m12

σ1σ2
n−1/2.
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Example 1. Introgression is the permanent incorporation of genes from
one population into another through hybridization and backcrossing.
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Example 1. Introgression is the permanent incorporation of genes from
one population into another through hybridization and backcrossing.

Particular concern: a possible mechanism for the spread of modified
crop genes to wild population. This may have severe negative
environmental effects such as the spread of insectecide or herbicide
resistance genes.
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Example 1. Introgression is the permanent incorporation of genes from
one population into another through hybridization and backcrossing.

Particular concern: a possible mechanism for the spread of modified
crop genes to wild population. This may have severe negative
environmental effects such as the spread of insectecide or herbicide
resistance genes.

It may lead to transgene escape and, as a result, the production of
superweeds.
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Consider a plant species that dies after flowering once. NO
age-dependence for simplicity.
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Consider a plant species that dies after flowering once. NO
age-dependence for simplicity.

Assume that there is a large stable wild population and a random number
of hybrid seeds are produced by polen flow from a nearby crop. Time
period - one year. Seeds may germinate at the beginning of the year and
plants grow up to be adults and may flower later in the same year.
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Consider a plant species that dies after flowering once. NO
age-dependence for simplicity.

Assume that there is a large stable wild population and a random number
of hybrid seeds are produced by polen flow from a nearby crop. Time
period - one year. Seeds may germinate at the beginning of the year and
plants grow up to be adults and may flower later in the same year.

Let q be the probability that a seed germinate and that the seedling
survives to become an adult plant.
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Consider a plant species that dies after flowering once. NO
age-dependence for simplicity.

Assume that there is a large stable wild population and a random number
of hybrid seeds are produced by polen flow from a nearby crop. Time
period - one year. Seeds may germinate at the beginning of the year and
plants grow up to be adults and may flower later in the same year.

Let q be the probability that a seed germinate and that the seedling
survives to become an adult plant.

Hybrid formation is of type 1 and is assumed to be less fit than wild
individuals. However, the hybrid formation can be followed by repeated
backcrossing with wild plants and the backcrossed individuals have a
positive probability of producing a permanent introgressed lineage.
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The model: An individual of artificial type 0 existing in the k−the year of
observation produces at the moment of death an individual of type 0 and
a random number η of hybrid seeds. Each of these hybrid seeds survives
to the adult age with probability q, becoming a type 1 individual. Thus,

f0(s0, s1, s2) = s0E(1− q + qs1)
η.
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The model: An individual of artificial type 0 existing in the k−the year of
observation produces at the moment of death an individual of type 0 and
a random number η of hybrid seeds. Each of these hybrid seeds survives
to the adult age with probability q, becoming a type 1 individual. Thus,

f0(s0, s1, s2) = s0E(1− q + qs1)
η.

Type 1 individual flowers with probability r and produces ξ back-crossed
seeds. If it does not flower (with probability 1− r) it may then survive to
become a type 1 individual for the next year with probability p or it will
die with probability 1− p. Each backcrossed seed germinates and survives
with probability q to produce a type 2 individual.

f1(s0, s1, s2) = (1− r)(1 − p) + (1− r)ps1 + rE(1 − q + qs2)
ξ.
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The model: An individual of artificial type 0 existing in the k−the year of
observation produces at the moment of death an individual of type 0 and
a random number η of hybrid seeds. Each of these hybrid seeds survives
to the adult age with probability q, becoming a type 1 individual. Thus,

f0(s0, s1, s2) = s0E(1− q + qs1)
η.

Type 1 individual flowers with probability r and produces ξ back-crossed
seeds. If it does not flower (with probability 1− r) it may then survive to
become a type 1 individual for the next year with probability p or it will
die with probability 1− p. Each backcrossed seed germinates and survives
with probability q to produce a type 2 individual.

f1(s0, s1, s2) = (1− r)(1 − p) + (1− r)ps1 + rE(1 − q + qs2)
ξ.

A type 2 individual produces only a random number ζ of type 2
offspring:

f2(s0, s1, s2) = Esζ
2.
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The model: An individual of artificial type 0 existing in the k−the year of
observation produces at the moment of death an individual of type 0 and
a random number η of hybrid seeds. Each of these hybrid seeds survives
to the adult age with probability q, becoming a type 1 individual. Thus,

f0(s0, s1, s2) = s0E(1− q + qs1)
η.

Type 1 individual flowers with probability r and produces ξ back-crossed
seeds. If it does not flower (with probability 1− r) it may then survive to
become a type 1 individual for the next year with probability p or it will
die with probability 1− p. Each backcrossed seed germinates and survives
with probability q to produce a type 2 individual.

f1(s0, s1, s2) = (1− r)(1 − p) + (1− r)ps1 + rE(1 − q + qs2)
ξ.

A type 2 individual produces only a random number ζ of type 2
offspring:

f2(s0, s1, s2) = Esζ
2.

Thus we have a 3-type Galton-Watson decomposable process
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The mean matrix of the process is

M =





1 m01 0
0 (1− r)p m12

0 0 m22





where m01 = qEη, m12 = rqEξ and m22 = Eζ. Hence

Mn =







1 m
(n)
01 0

0 (1− r)npn m
(n)
12

0 0 mn
22







where

m
(n)
01 = m01

n−1
∏

k=0

(

1 + (1− r)kpk
)

m
(n)
12 = m12

n−1
∏

k=0

(

(1 − r)kpk + mk
22

)

.
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Crump-Mode-Jagers processes counted by random
characteristics

8 июня 2011 г.
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Crump-Mode-Jagers process counted by random characteristics
Informal description: a particle, say, x, is characterized by three random
processes

(λx, ξx(·), χx(·))
which are iid copies of a triple (λ, ξ(·), χ(·)) and have the following sense:
if a particle was born at moment σx then

λx− is the life-length of the particle;
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Crump-Mode-Jagers process counted by random characteristics
Informal description: a particle, say, x, is characterized by three random
processes

(λx, ξx(·), χx(·))
which are iid copies of a triple (λ, ξ(·), χ(·)) and have the following sense:
if a particle was born at moment σx then

λx− is the life-length of the particle;

ξx(t− σx)- is the number of children produced by the particle within
the time-interval [σx, t); ξx(t− σx) = 0 if t− σx < 0;
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Crump-Mode-Jagers process counted by random characteristics
Informal description: a particle, say, x, is characterized by three random
processes

(λx, ξx(·), χx(·))
which are iid copies of a triple (λ, ξ(·), χ(·)) and have the following sense:
if a particle was born at moment σx then

λx− is the life-length of the particle;

ξx(t− σx)- is the number of children produced by the particle within
the time-interval [σx, t); ξx(t− σx) = 0 if t− σx < 0;

χx(t− σx)− is a random characteristic of the particle within the
time-interval [σx, t); χx(t− σx) = 0 if t− σx < 0.

The elements of the triple λx, ξx(·), χx(·) may be dependent.
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The stochastic process

Zχ(t) =
∑

x

χx(t− σx)

where summation is taken over all particles x born in the process up to
moment t is called the branching process counted by random
characteristics.
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Examples of random characteristics:

χ(t) = I {t ∈ [0, λ)} - in this case Zχ(t) = Z(t) is the number of
particles existing in the process up to moment t;
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Examples of random characteristics:

χ(t) = I {t ∈ [0, λ)} - in this case Zχ(t) = Z(t) is the number of
particles existing in the process up to moment t;

χ(t) = χ(t, y) = I{t ∈ [0, min(λ, y))} for some y > 0.

Then Zχ(t) = Z(y, t) is the number of particles existing at moment
t whose ages do not exceed y.
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Examples of random characteristics:

χ(t) = I {t ∈ [0, λ)} - in this case Zχ(t) = Z(t) is the number of
particles existing in the process up to moment t;

χ(t) = χ(t, y) = I{t ∈ [0, min(λ, y))} for some y > 0.

Then Zχ(t) = Z(y, t) is the number of particles existing at moment
t whose ages do not exceed y.

χ(t) = tI {t ∈ [0, λ)}+ λI {λ < t}
then

Zχ(t) =

∫ t

0

Z(u)du;
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χ(t) = I {t ≥ 0} then Zχ(t) is the total number of particles born up
to moment t.
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χ(t) = I {t ≥ 0} then Zχ(t) is the total number of particles born up
to moment t.

χ(t) = I {t ∈ [0, λ)} I {ξ(t) < ξ(∞)} - the number of fertile
individuals at moment t.
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χ(t) = I {t ≥ 0} then Zχ(t) is the total number of particles born up
to moment t.

χ(t) = I {t ∈ [0, λ)} I {ξ(t) < ξ(∞)} - the number of fertile
individuals at moment t.

coming generation size χ(t) = (ξ(∞)− ξ(t))I {t ∈ [0, λ)} .
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Probability generating function
Let

0 ≤ δ1 ≤ δ2 ≤ ... ≤ δn ≤ ...

be the birth moments of the children of the initial particle. Then

ξ(t) = # {δi : δi ≤ t} =
∞
∑

i=1

I {δi ≤ t}

is the number of children of the initial particle born up to moment t with
N := ξ(∞). Clearly,

Z(t) = I {λ0 > t}+
∑

δi≤t

Zi(t− δi)

where Zi(t)
d
= Z(t) and are iid.
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Denote
F (t; s) := E

[

sZ(t)|Z(0) = 1
]

.

Then

F (t; s) := E
[

sI{λ0>t}+
∑

δi≤t Zi(t−δi)
]

= E



sI{λ0>t}

ξ(t)
∏

i=1

F (t− δi; s)



 .

Let
P = P

(

lim
t→∞

Z(t) = 0
)

= lim
t→∞

F (t; 0).

Since λ0 <∞ a.s. we have by the dominated convergence theorem

P = lim
t→∞

E



0I{λ0>t}

ξ(t)
∏

i=1

F (t− δi; 0)



 = E
[

PN
]

:= f(P ).

Thus, if A := EN ≤ 1 then the probability of extinction equals 1.
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Let us show that if EN > 1 then P , the probability of extinction, is the
smallest nonnegative root of s = f(s).
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Let us show that if EN > 1 then P , the probability of extinction, is the
smallest nonnegative root of s = f(s).

Denote ζn – the number of particles in generation n in the embedded
Galton-Watson process.
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Let us show that if EN > 1 then P , the probability of extinction, is the
smallest nonnegative root of s = f(s).

Denote ζn – the number of particles in generation n in the embedded
Galton-Watson process.

If Z(t) = 0 for some t then the total number of individuals born in the
process is finite. Hence ζn → 0 as n→∞. Therefore,

P = P
(

lim
t→∞

Z(t) = 0
)

≤ P
(

lim
n→∞

ζn = 0
)

as desired.
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Classification
A := EN <, =, > 1 - subcritical, critical and supercritical, respectively.
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Directly Riemann integrable functions:
Let g(t) ≥ 0, t ≥ 0 be a measurable function. Let h > 0 and let

Mk(h) := sup
kh≤t<(k+1)h

g(t), mk(h) := inf
kh≤t<(k+1)h

g(t)

and

Θh = h

∞
∑

k=0

Mk(h), θh = h

∞
∑

k=0

mk(h).

If
lim
h→0

Θh = lim
h→0

θh <∞

then g(t) is called directly Riemann integrable.

Multitype GWBP (decomposable and indecomposable) (Lecture 2)



Examples of directly Riemann integrable functions:

g(t) is nonnegative, bounded, continuous and

∞
∑

k=0

Mk(1) <∞;

g(t) is nonnegative, monotone and Riemann integrable;

g(t) is Riemann integrable and bounded (in absolute value) by a
directly Riemann integrable function.
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Example of NOT directly Riemann integrable function which is Riemann
integrable
Let the graph of g(t) is constituted buy the pieces of X−axis and
triangulars of heights hn with bottom-lengthes µn < 1/2, n = 1, 2, ...,
with the middles located at points n = 1, 2 . . . and such that
limn→∞ hn =∞ and

∫ ∞

0

h(t)dt =
1

2

∞
∑

n=1

hnµn <∞.

It is easy to see that
∞
∑

k=0

Mk(1) =∞,

and, therefore, for any δ ∈ (0, 1]

∞
∑

k=0

Mk(δ) =∞.
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Consider the equation

H(t) = g(t) +

∫ t

0

H(t− u)R(du), t ≥ 0.

Theorem

If g(t) is directly Riemann integrable and R(t) is a nonlattice distribution
(i.e. it is not concentrated on a lattice a + kh, k = 0,±1,±2, ...) with
finite mean then

lim
t→∞

H(t) =

∫∞

0 g(u)du
∫∞

0 uR(du)
.
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Expectation
Let 0 ≤ δ1 ≤ δ2 ≤ ... ≤ δn ≤ ...be the birth moments of the children of
the initial particle and ξ0(t) = # {δi : δi ≤ t} . We have

Zχ(t) = χ0(t) +
∑

x 6=0

χx(t− σx) = χ0(t) +
∑

δi≤t

Zχ(t− δi)

giving

EZχ(t) = Eχ(t) + E





∑

δi≤t

Zχ(t− δi)





= Eχ(t) + E





∑

δi≤t

E [Zχ(t− δi)|δ1, δ2, ..., δn, ...]





= Eχ(t) + E





∑

u≤t

E [Zχ(t− u)] (ξ0(u)− ξ0(u−))





= Eχ(t) +

∫ t

0

EZχ(t− u)Eξ(du)
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Thus, we get the following renewal equation for

Aχ(t) = EZχ(t)

and
µ(t) = Eξ(t) :

Aχ(t) = Eχ(t) +

∫ t

0

Aχ(t− u)µ(du).
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Malthusian parameter: a number α is called the Malthusian parameter of
the process if

∫ ∞

0

e−αtµ(dt) =

∫ ∞

0

e−αtEξ(dt) = 1.

(such a solution not always exist). For the critical processes α = 0, for
the supercritical processes α > 0 for the subcritical processes α < 0 (if
exists).
If the Malthusian parameter exists we can rewrite the equation for Aχ(t)
as

e−αtAχ(t) = e−αtEχ(t) +

∫ t

0

e−α(t−u)Aχ(t− u)e−αuµ(du).
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Let now
g(t) := e−αtEχ(t), R(dt) := e−αuµ(du)

If eαtEχ(t) is directly Riemann integrable and
∫ ∞

0

e−αuEχ(u)du <∞, β :=

∫ ∞

0

ue−αuµ(du) <∞,

then by the renewal theorem

lim
t→∞

e−αtAχ(t) =

∫ ∞

0

e−αuEχ(u)du

(∫ ∞

0

ue−αuµ(du)

)−1

.
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Applications
If

χ(t) = I {t ∈ [0, λ)}
then Zχ(t) = Z(t) is the number of particles existing in the process up

to moment t. We have

Eχ(t) = EI {t ∈ [0, λ)} = P (t ≤ λ) = 1−G(t)

and, therefore,

EZ(t) ∼ eαt

β

∫ ∞

0

e−αu(1 −G(u))du.
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If
χ(t) = χ(t, y) = I {t ∈ [0, min(λ, y))}

then

Eχ(t) = EI {t ∈ [0, min(λ, y))}
= P (t ≤ min(λ, y)) = (1−G(t)) I {t ≤ y}

Hence
Aχ(t) = EZ(y, t)

is the average number of particles existing at moment t whose ages do
not exceed y. We see that

EZ(y, t) ∼ eαt

β

∫ y

0

e−αu (1−G(u)) du
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As a result

lim
t→∞

EZ(y, t)

EZ(t)
=

∫ y

0 e−αu (1−G(u)) du
∫∞

0 e−αu(1−G(u))du

=
α

1−m−1

∫ y

0

e−αu (1−G(u)) du

(the last if m 6= 1).
If χ(t) = I {t ≥ 0} then

Eχ(t) = 1.

Hence, for the expectation EZχ(t) of the total number of particles born
up to moment t in a supercritical process we have

EZχ(t) ∼ eαt

β

∫ ∞

0

e−αudu =
eαt

αβ
.
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Applications
1) Reproduction by splitting. Assume that an individual gives birth to
N her daughters at once at random moment λ. Then

ξ(t) = NI {λ ≤ t} , µ(t) = E [N ; λ ≤ t]

and
A = EN, β = ENλe−αλ

This is the so-called Sevastyanov process.

If the random variables N and λ are independent then we get the
so-called Bellman-Harris process or the age-dependent process.

Multitype GWBP (decomposable and indecomposable) (Lecture 2)



2) Constant fertility. We assume now that time is discrete, i.e.,
t = 0, 1, 2, ... and suppose that the offspring birth times are uniformly
distributed over the fertility interval 1, 2, ..., λ. Then, given N = k, λ = j
the number v(t) individuals born at time t ≤ j is Binomial with
parameters k and j−1.
Thus,

µ(t) = E

[

N min(t, λ)

λ

]

.
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