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Crump-Mode-Jagers process counted by random characteristics
Informal description: a particle, say, x, is characterized by three random
processes

(λx, ξx(·), χx(·))
which are iid copies of a triple (λ, ξ(·), χ(·)) and have the following sense:
if a particle was born at moment σx then

λx− is the life-length of the particle;
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Crump-Mode-Jagers process counted by random characteristics
Informal description: a particle, say, x, is characterized by three random
processes

(λx, ξx(·), χx(·))
which are iid copies of a triple (λ, ξ(·), χ(·)) and have the following sense:
if a particle was born at moment σx then

λx− is the life-length of the particle;

ξx(t− σx)- is the number of children produced by the particle within
the time-interval [σx, t); ξx(t− σx) = 0 if t− σx < 0;

χx(t− σx)− is a random characteristic of the particle within the
time-interval [σx, t);χx(t− σx) = 0 if t− σx < 0.

The elements of the triple λx, ξx(·), χx(·) may be dependent.



The stochastic process

Zχ(t) =
∑

x

χx(t− σx)

where summation is taken over all particles x born in the process up to
moment t is called the branching process counted by random
characteristics.



Examples of random characteristics:

χ(t) = I {t ∈ [0, λ)} - in this case Zχ(t) = Z(t) is the number of
particles existing in the process up to moment t;
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Examples of random characteristics:

χ(t) = I {t ∈ [0, λ)} - in this case Zχ(t) = Z(t) is the number of
particles existing in the process up to moment t;

χ(t) = χ(t, y) = I{t ∈ [0,min(λ, y))} for some y > 0.

Then Zχ(t) = Z(y, t) is the number of particles existing at moment
t whose ages do not exceed y.

χ(t) = tI {t ∈ [0, λ)}+ λI {λ < t}
then

Zχ(t) =

∫ t

0

Z(u)du;
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χ(t) = I {t ≥ 0} then Zχ(t) is the total number of particles born up
to moment t.

χ(t) = I {t ∈ [0, λ)} I {ξ(t) < ξ(∞)} - the number of fertile
individuals at moment t.

coming generation size χ(t) = (ξ(∞)− ξ(t))I {t ∈ [0, λ)} .



Probability generating function
Let

0 ≤ δ1 ≤ δ2 ≤ ... ≤ δn ≤ ...
be the birth moments of the children of the initial particle. Then

ξ(t) = # {δi : δi ≤ t} =
∞
∑

i=1

I {δi ≤ t}

is the number of children of the initial particle born up to moment t with
N := ξ(∞). Clearly,

Z(t) = I {λ0 > t}+
∑

δi≤t

Zi(t− δi)

where Zi(t)
d
= Z(t) and are iid.



Denote
F (t; s) := E

[

sZ(t)|Z(0) = 1
]

.

Then

F (t; s) := E

[

sI{λ0>t}+
∑

δi≤t Zi(t−δi)
]

= E



sI{λ0>t}

ξ(t)
∏

i=1

F (t− δi; s)



 .

Let
P = P

(

lim
t→∞

Z(t) = 0
)

= lim
t→∞

F (t; 0).

Since λ0 <∞ a.s. we have by the dominated convergence theorem

P = lim
t→∞

E



0I{λ0>t}

ξ(t)
∏

i=1

F (t− δi; 0)



 = E
[

PN
]

:= f(P ).

Thus, if A := EN ≤ 1 then the probability of extinction equals 1.



Let us show that if EN > 1 then P , the probability of extinction, is the
smallest nonnegative root of s = f(s).
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Let us show that if EN > 1 then P , the probability of extinction, is the
smallest nonnegative root of s = f(s).

Denote ζn – the number of particles in generation n in the embedded
Galton-Watson process.

If Z(t) = 0 for some t then the total number of individuals born in the
process is finite. Hence ζn → 0 as n→∞. Therefore,

P = P

(

lim
t→∞

Z(t) = 0
)

≤ P

(

lim
n→∞

ζn = 0
)

as desired.



Classification
A := EN <,=, > 1 - subcritical, critical and supercritical, respectively.



Directly Riemann integrable functions:
Let g(t) ≥ 0, t ≥ 0 be a measurable function. Let h > 0 and let

Mk(h) := sup
kh≤t<(k+1)h

g(t), mk(h) := inf
kh≤t<(k+1)h

g(t)

and

Θh = h

∞
∑

k=0

Mk(h), θh = h

∞
∑

k=0

mk(h).

If
lim
h→0

Θh = lim
h→0

θh <∞

then g(t) is called directly Riemann integrable.



Examples of directly Riemann integrable functions:

g(t) is nonnegative, bounded, continuous and

∞
∑

k=0

Mk(1) <∞;

g(t) is nonnegative, monotone and Riemann integrable;

g(t) is Riemann integrable and bounded (in absolute value) by a
directly Riemann integrable function.



Example of NOT directly Riemann integrable function which is Riemann
integrable
Let the graph of g(t) is constituted buy the pieces of X−axis and
triangulars of heights hn with bottom-lengthes µn < 1/2, n = 1, 2, ...,
with the middles located at points n = 1, 2 . . . and such that
limn→∞ hn =∞ and

∫ ∞

0

h(t)dt =
1

2

∞
∑

n=1

hnµn <∞.

It is easy to see that
∞
∑

k=0

Mk(1) =∞,

and, therefore, for any δ ∈ (0, 1]

∞
∑

k=0

Mk(δ) =∞.



Consider the equation

H(t) = g(t) +

∫ t

0

H(t− u)R(du), t ≥ 0.

Theorem

If g(t) is directly Riemann integrable and R(t) is a nonlattice distribution
(i.e. it is not concentrated on a lattice a+ kh, k = 0,±1,±2, ...) with
finite mean then

lim
t→∞

H(t) =

∫∞

0 g(u)du
∫∞

0 uR(du)
.



Expectation
Let 0 ≤ δ1 ≤ δ2 ≤ ... ≤ δn ≤ ...be the birth moments of the children of
the initial particle and ξ0(t) = # {δi : δi ≤ t} . We have

Zχ(t) = χ0(t) +
∑

x 6=0

χx(t− σx) = χ0(t) +
∑

δi≤t

Zχ(t− δi)

giving

EZχ(t) = Eχ(t) + E





∑

δi≤t

Zχ(t− δi)





= Eχ(t) + E





∑

δi≤t

E [Zχ(t− δi)|δ1, δ2, ..., δn, ...]





= Eχ(t) + E





∑

u≤t

E [Zχ(t− u)] (ξ0(u)− ξ0(u−))





= Eχ(t) +

∫ t

0

EZχ(t− u)Eξ(du)



Thus, we get the following renewal equation for

Aχ(t) = EZχ(t)

and
µ(t) = Eξ(t) :

Aχ(t) = Eχ(t) +

∫ t

0

Aχ(t− u)µ(du).



Malthusian parameter: a number α is called the Malthusian parameter of
the process if

∫ ∞

0

e−αtµ(dt) =

∫ ∞

0

e−αt
Eξ(dt) = 1.

(such a solution not always exist). For the critical processes α = 0, for
the supercritical processes α > 0 for the subcritical processes α < 0 (if
exists).
If the Malthusian parameter exists we can rewrite the equation for Aχ(t)
as

e−αtAχ(t) = e−αt
Eχ(t) +

∫ t

0

e−α(t−u)Aχ(t− u)e−αuµ(du).



Let now
g(t) := e−αt

Eχ(t), R(dt) := e−αuµ(du)

If eαt
Eχ(t) is directly Riemann integrable and
∫ ∞

0

e−αu
Eχ(u)du <∞, β :=

∫ ∞

0

ue−αuµ(du) <∞,

then by the renewal theorem

lim
t→∞

e−αtAχ(t) =

∫ ∞

0

e−αu
Eχ(u)du

(
∫ ∞

0

ue−αuµ(du)

)−1

.



Applications
If

χ(t) = I {t ∈ [0, λ)}
then Zχ(t) = Z(t) is the number of particles existing in the process up

to moment t. We have

Eχ(t) = EI {t ∈ [0, λ)} = P (t ≤ λ) = 1−G(t)

and, therefore,

EZ(t) ∼ eαt

β

∫ ∞

0

e−αu(1 −G(u))du.



If
χ(t) = χ(t, y) = I {t ∈ [0,min(λ, y))}

then

Eχ(t) = EI {t ∈ [0,min(λ, y))}
= P (t ≤ min(λ, y)) = (1−G(t)) I {t ≤ y}

Hence
Aχ(t) = EZ(y, t)

is the average number of particles existing at moment t whose ages do
not exceed y. We see that

EZ(y, t) ∼ eαt

β

∫ y

0

e−αu (1−G(u)) du



As a result

lim
t→∞

EZ(y, t)

EZ(t)
=

∫ y

0 e
−αu (1−G(u)) du

∫∞

0 e−αu(1−G(u))du

=
α

1−m−1

∫ y

0

e−αu (1−G(u)) du

(the last if m 6= 1).
If χ(t) = I {t ≥ 0} then

Eχ(t) = 1.

Hence, for the expectation EZχ(t) of the total number of particles born
up to moment t in a supercritical process we have

EZχ(t) ∼ eαt

β

∫ ∞

0

e−αudu =
eαt

αβ
.



Applications
1) Reproduction by splitting. Assume that an individual gives birth to
N her daughters at once at random moment λ. Then

ξ(t) = NI {λ ≤ t} , µ(t) = E [N ;λ ≤ t]

and
A = EN, β = ENλe−αλ

This is the so-called Sevastyanov process.

If the random variables N and λ are independent then we get the
so-called Bellman-Harris process or the age-dependent process.



2) Constant fertility. We assume now that time is discrete, i.e.,
t = 0, 1, 2, ... and suppose that the offspring birth times are uniformly
distributed over the fertility interval 1, 2, ..., λ. Then, given N = k, λ = j
the number v(t) individuals born at time t ≤ j is Binomial with
parameters k and j−1.
Thus,

µ(t) = E

[

N min(t, λ)

λ

]

.



Inhomogeneous Galton-Watson process
The probability generating function

fn(s) :=

∞
∑

k=0

p
(n)
k sk

specifies the reproduction law of the offspring size of particles in
generation n = 0, 1, ... and let Z(n) be the number of particles in
generation n.

This Markov chain is called a branching process in varying environment.



One can show that

E

[

sZ(n);Z(0) = 1
]

= f0(f1(...(fn−1(s)...)).

If p
(n)
0 > 0 for each n = 0, 1, 2, ... then

lim
n→∞

Z(n)

exists and is nonrandom with probability 1 (and may be equal to +∞).



One can show that

E

[

sZ(n);Z(0) = 1
]

= f0(f1(...(fn−1(s)...)).

If p
(n)
0 > 0 for each n = 0, 1, 2, ... then

lim
n→∞

Z(n)

exists and is nonrandom with probability 1 (and may be equal to +∞).

It is known (Lindvall T., Almost sure convergence of branching
processes in varying and random environments, Ann. Probab.,
2(1974), N2, 344-346) that the limit is equal to a positive natural
number with a positive probability if and only if

∞
∑

n=1

(

1− p(n)
1

)

< +∞.

If this is not the case, then

P( lim
n→∞

Z(n) = 0) + P( lim
n→∞

Z(n) =∞) = 1



Let now
Π = (p0, p1, ..., pk, ...)

be a probability measure on the set of nonnegative integers and

Ω := {Π}

be the set of all such probability measures.



Let now
Π = (p0, p1, ..., pk, ...)

be a probability measure on the set of nonnegative integers and

Ω := {Π}

be the set of all such probability measures. For

Π1 =
(

p
(1)
0 , p

(1)
1 , ..., p

(1)
k , ...

)

and Π2 =
(

p
(2)
0 , p

(2)
1 , ..., p

(2)
k , ...

)

we introduce the distance of total variation

d(Π1,Π2) =
1

2

∞
∑

k=0

∣

∣

∣
p
(1)
k − p

(2)
k

∣

∣

∣
.



Let now
Π = (p0, p1, ..., pk, ...)

be a probability measure on the set of nonnegative integers and

Ω := {Π}

be the set of all such probability measures. For

Π1 =
(

p
(1)
0 , p

(1)
1 , ..., p

(1)
k , ...

)

and Π2 =
(

p
(2)
0 , p

(2)
1 , ..., p

(2)
k , ...

)

we introduce the distance of total variation

d(Π1,Π2) =
1

2

∞
∑

k=0

∣

∣

∣
p
(1)
k − p

(2)
k

∣

∣

∣
.

Thus, Ω becomes a metric space and on the Borel σ-algebra F of the
sets of Ω we may introduce a probability measure P and consider the
probability space

(Ω,F ,P) .



BP in random environemnt
Let

Πn =
(

p
(n)
0 , p

(n)
1 , ..., p

(n)
k , ...

)

, n = 0, 1, ...

be a sequence of random elements selected from Ω in iid manner. The
sequence

Π0,Π1, ...,Πn, ...

is called a random environment. Clearly

fn(s) :=

∞
∑

k=0

p
(n)
k sk ←→ Πn =

(

p
(n)
0 , p

(n)
1 , ..., p

(n)
k , ...

)

.

BP in random environment is specified by the relationship

E

(

sZ(n)|Π0,Π1, ...,Πn−1;Z(0) = 1
)

= f0(f1(...(fn−1(s)...)).



Now we let
P̂ (...) = P (...|Π0,Π1, ...,Πn, ...)

and
Ê (...) = E (...|Π0,Π1, ...,Πn, ...) .

Clearly,
P (Z(n) ∈ B) = EP̂ (Z(n) ∈ B) .

This leads to TWO different approaches to study BPRE:



Quenched approach: the study the behavior of characteristics of a BPRE
for typical realizations of the environment Π0,Π1, ...,Πn, ....

This means that, for instance

P̂ (Z(n) > 0)

is a random variable on the space of realizations of the environment and

P̂ (Z(n) ∈ B)

is a random law and

P̂ (Z(n) ∈ B|Z(n) > 0)

is a random conditional law.



Annealed approach: the study the behavior of characteristics of a BPRE
performing averaging over possible scenarios Π0,Π1, ...,Πn, ... on the
space of realizations of the environment:

P (Z(n) > 0) = EP̂ (Z(n) > 0)

is a number.



Introduce a sequence of random variables

Xn = log f ′
n−1(1), n = 1, 2, ...

and set
S0 = 0, Sk = X1 + ...+Xn, n = 1, 2, ...

The sequence {Sn, n ≥ 0} is called an associated RW for our BPRE.
Clearly,

ÊZ(n) = f ′
0(1)f ′

1(1)...f ′
n−1(1) = eSn , n = 0, 1, ....

and
E

(

ÊZ(n)
)

= EeSn .

We assume in what follows that the random variables p
(n)
0 and p

(n)
1 are

positive with probability 1 and p
(n)
0 + p

(n)
1 < 1 .



Theorem in Feller, Volume 2, Chapter XII, Section 2 :
There are only four types of random walks with S0 = 0:

lim
n→∞

Sn = +∞ with probability 1; (1)

lim
n→∞

Sn = −∞ with probability 1; (2)

lim
n→∞

supSn = +∞, lim
n→∞

inf Sn = −∞, (3)

with probability 1;

Sn ≡ 0.

Classification:
BPRE are called supercritical if (1) is valid, subcritical, if (2) is valid and
critical, if (3) is valid.



For the critical and subcritical cases

P̂ (Z(n) > 0) = P̂ (Z(n) ≥ 1) = min
0≤k≤n

P̂ (Z(k) ≥ 1)

≤ min
0≤k≤n

ÊZ(k) = emin0≤k≤n Sk → 0

with probability 1 as n→∞. This means that the critical and subcritical
processes die out for almost all realizations of the environment.



For the critical and subcritical cases

P̂ (Z(n) > 0) = P̂ (Z(n) ≥ 1) = min
0≤k≤n

P̂ (Z(k) ≥ 1)

≤ min
0≤k≤n

ÊZ(k) = emin0≤k≤n Sk → 0

with probability 1 as n→∞. This means that the critical and subcritical
processes die out for almost all realizations of the environment.
In particular, if

EX = E log f ′(1) = 0, E (log f ′(1))
2
> 0

then the process is critical, and if

EX = E log f ′(1) < 0

then the process is subcritical.



Our aim is to study the asymptotic behavior of the probabilities

P̂ (Z(n) > 0) and P (Z(n) > 0)

as n→∞ for the critical and subcritical processes and to prove the
conditional theorems of the form

P (Z(n) ∈ B|Z(n) > 0)

and
P̂ (Z(n) ∈ B|Z(n) > 0)

for such processes.



Main steps

1) To express the needed characteristics in terms of some reasonable
functionals and the associated random walks

2) To prove conditional limit theorems for the associated random walks

3) To make a change of measures in an appropriate way

4) To apply the results established for the associated random walks



Sparre-Anderson and Spitzer identities
Let

τ = τ1 = min {n > 0 : Sn ≤ 0}
be the first weak descending ladder epoch, and

τj := min
{

n > τj−1 : Sn ≤ Sτj−1

}

, j = 2, 3, ...

(PICTURE).
Clearly,

(τ1, Sτ1
) , (τ2 − τ1, Sτ2

− Sτ1
) , ...,

(

τj − τj−1, Sτj
− Sτj−1

)

are iid.



Strong descending ladder epochs :

τ ′ = τ ′1 = min {n > 0 : Sn < 0}

and

τ ′j := min
{

n > τ ′j−1 : Sn < Sτ ′
j−1

}

Introduce also strong and weak ascending ladder epochs:

T = T1 = min {n > 0 : Sn > 0}
and

Tj := min
{

n > Tj−1 : Sn > STj−1

}

, j = 2, 3, ...

and
T ′ = T ′

1 = min {n > 0 : Sn ≥ 0}
and

T ′
j := min

{

n > T ′
j−1 : Sn ≥ ST ′

j−1

}

, j = 2, 3, ...



Sparre-Anderson identity

Theorem

For λ > 0 and |s| < 1

1−
∞
∑

n=1

sn
E
[

e−λSn ;T = n
]

= exp

{

−
∞
∑

n=1

sn

n
E
[

e−λSn ;Sn > 0
]

}

.

Recall
T = min {n > 0 : Sn > 0}



Proof. Along with
X1, X2, ..., Xn

consider the permutations

Xi, Xi+1, ..., XnX1, X2, ..., Xi−1

for i = 2, 3, ..., n.



Proof. Along with

X1, X2, ..., Xn

consider the permutations

Xi, Xi+1, ..., XnX1, X2, ..., Xi−1

for i = 2, 3, ..., n. Let

S
(i)
0 = 0, and S

(i)
k = Xi + Xi+1 + ...

the permutable random walks.

Clearly,
{

S
(i)
k , k = 0, 1, ..., n

}

d
= {Sk, k = 0, 1, ..., n} .



Let T
(i)
r be the rth strict ascending epoch for

{

S
(i)
k , k = 0, 1, ..., n

}

.

If Tr = n for some r then T
(i)
r = n for exactly r − 1 sequences

{

S
(i)
k , k = 0, 1, ..., n

}

, i = 2, 3, ..., n

(PROOF by picture!!!)
Besides,

Sn = S(2)
n = ... = S(n)

n .



Consider for a positive a the probability

P (Tr = n, 0 < Sn ≤ a)

and let
ηi = I

{

T (i)
r = n, 0 < S(i)

n ≤ a
}

, i = 1, 2, ..., n

be a sequence of identically distributed RW.



Consider for a positive a the probability

P (Tr = n, 0 < Sn ≤ a)

and let
ηi = I

{

T (i)
r = n, 0 < S(i)

n ≤ a
}

, i = 1, 2, ..., n

be a sequence of identically distributed RW. Hence

P (Tr = n, 0 < Sn ≤ a) = Eη1 =
1

n

n
∑

i=1

Eηi.



Consider for a positive a the probability

P (Tr = n, 0 < Sn ≤ a)
and let

ηi = I
{

T (i)
r = n, 0 < S(i)

n ≤ a
}

, i = 1, 2, ..., n

be a sequence of identically distributed RW. Hence

P (Tr = n, 0 < Sn ≤ a) = Eη1 =
1

n

n
∑

i=1

Eηi.

In view of the remark about the number of strong ascending epochs

n
∑

i=1

ηi

takes only two values: either 0 or r. This gives

n
∑

i=1

Eηi = rP

(

n
∑

i=1

ηi = r

)

.



Let Sn > 0 and let i0 be the first moment when the maximal value of the
sequence S0, S1, ..., Sn is attained. Then

S(i0+1)
n > S

(i0+1)
i

for all i = 1, 2, ..., n− 1 and, therefore, for the sequence

{

S
(i0+1)
i , i = 0, 1, ..., n

}

the moment n is a strict ascending epoch for some r.



Let Sn > 0 and let i0 be the first moment when the maximal value of the
sequence S0, S1, ..., Sn is attained. Then

S(i0+1)
n > S

(i0+1)
i

for all i = 1, 2, ..., n− 1 and, therefore, for the sequence

{

S
(i0+1)
i , i = 0, 1, ..., n

}

the moment n is a strict ascending epoch for some r. Thus,

{0 < Sn ≤ a} =
{

0 < S(i0+1)
n ≤ a

}

= ∪∞r=1 {η1 + ...+ ηn = r}



Let Sn > 0 and let i0 be the first moment when the maximal value of the
sequence S0, S1, ..., Sn is attained. Then

S(i0+1)
n > S

(i0+1)
i

for all i = 1, 2, ..., n− 1 and, therefore, for the sequence

{

S
(i0+1)
i , i = 0, 1, ..., n

}

the moment n is a strict ascending epoch for some r. Thus,

{0 < Sn ≤ a} =
{

0 < S(i0+1)
n ≤ a

}

= ∪∞r=1 {η1 + ...+ ηn = r}

Therefore,

P (0 < Sn ≤ a) =

∞
∑

r=1

P (η1 + ...+ ηn = r) .



Thus,

1

n
P (0 < Sn ≤ a) =

∞
∑

r=1

1

rn
rP (η1 + ...+ ηn = r)

=

∞
∑

r=1

1

rn

n
∑

i=1

Eηi =

∞
∑

r=1

1

r
P (Tr = n, 0 < Sn ≤ a) .



Thus,

1

n
P (0 < Sn ≤ a) =

∞
∑

r=1

1

rn
rP (η1 + ...+ ηn = r)

=

∞
∑

r=1

1

rn

n
∑

i=1

Eηi =

∞
∑

r=1

1

r
P (Tr = n, 0 < Sn ≤ a) .

Passing to the Laplace transforms we get

∞
∑

r=1

1

r
E
(

e−λSn ;Tr = n
)

=
1

n
E
(

e−λSn ;Sn > 0
)



Thus,

1

n
P (0 < Sn ≤ a) =

∞
∑

r=1

1

rn
rP (η1 + ...+ ηn = r)

=

∞
∑

r=1

1

rn

n
∑

i=1

Eηi =

∞
∑

r=1

1

r
P (Tr = n, 0 < Sn ≤ a) .

Passing to the Laplace transforms we get

∞
∑

r=1

1

r
E
(

e−λSn ;Tr = n
)

=
1

n
E
(

e−λSn ;Sn > 0
)

Multiplying by sn and summing over n = 1, 2, ... we obtain

∞
∑

r=1

1

r

∞
∑

n=1

sn
E
(

e−λSn ;Tr = n
)

=
∞
∑

n=1

sn

n
E
(

e−λSn ;Sn > 0
)

.



Further,

∞
∑

n=1

sn
E
(

e−λSn ;Tr = n
)

= E
(

sTre−λSTr ;Tr <∞
)

=
(

E
(

sT e−λST ;T <∞
))r

=

(

∞
∑

n=1

sn
E
(

e−λSn ;T = n
)

)r

and, therefore,

∞
∑

r=1

1

r

∞
∑

n=1

sn
E
(

e−λSn ;Tr = n
)

= − log
(

1−E
(

sT e−λSτ ;T <∞
))

.



As a result

− log
(

1−E
(

sT e−λSτ ;T <∞
))

=

∞
∑

n=1

sn

n
E
(

e−λSn ;Sn > 0
)

or

1−
∞
∑

n=1

sn
E
[

e−λSn ;T = n
]

= exp

{

−
∞
∑

n=1

sn

n
E
[

e−λSn ;Sn > 0
]

}

.



Theorem

For λ > 0 and |s| < 1

1 +

∞
∑

n=1

sn
E
[

e−λSn ; τ > n
]

= exp

{

∞
∑

n=1

sn

n
E
[

e−λSn ;Sn > 0
]

}

and

1 +

∞
∑

n=1

sn
E
[

eλSn ;T > n
]

= exp

{

∞
∑

n=1

sn

n
E
[

eλSn ;Sn ≤ 0
]

}

Proof is omitted.



Spitzer identity.
Let

Mn = max
0≤k≤n

Sn.

Theorem

For λ, µ > 0 and |s| < 1

∞
∑

n=1

sn
E

[

e−λMn−µ(Mn−Sn)
]

= exp

{

∞
∑

n=1

sn

n

(

E
[

e−λSn ;Sn > 0
]

+ E
[

eµSn ;Sn ≤ 0
] )

}

.

In particular,

∞
∑

n=1

sn
Ee−λMn = exp

{

∞
∑

n=1

sn

n
Ee−λ max(0,Sn)

}

.



Proof. Let

Rn := min {k : Sk = Mn} .

We have

E

[

e
−λMn−µ(Mn−Sn)

]

=

n
∑

k=0

E

[

e
−λMn−µ(Mn−Sn)

; Rn = k
]

=

n
∑

k=0

E

[

e
−λSk−µ(Sk−Sn)

; Rn = k
]

=

n
∑

k=0

E

[

e
−λSk−µ(Sk−Sn)

; Rk = k, Sk ≥ Sj , j = k + 1, ..., n
]

=

n
∑

k=0

E

[

e
−λSk ; Rk = k

]

E

[

e
−µ(Sk−Sn)

; Sk ≥ Sj , j = k + 1, ..., n
]

=

n
∑

k=0

E

[

e
−λSk ; τ > k

]

E

[

e
µSn−k ; T > n − k

]

.



Now multiplying by sn and summing over n = 0, 1, ... gives

∞
∑

n=1

sn
E

[

e−λMn−µ(Mn−Sn)
]

=

∞
∑

k=0

sk
E
[

e−λSk ; τ > k
]

∞
∑

l=0

sl
E
[

eµSl ;T > l
]

= exp

{

∞
∑

n=1

sn

n

(

E
[

e−λSn ;Sn > 0
]

+ E
[

eµSn ;Sn ≤ 0
])

}

.



Application of Sparre-Anderson and Spitzer identities



Recall that a function L(t), t > 0 is called slowly varying if

lim
t→+∞

L(tx)

L(t)
= 1 for any x > 0.

Theorem

(Tauberian theorem). Assume an ≥ 0 and the series R(s) =
∑∞

n=0 ans
n

converges for s ∈ [0, 1). Then the following statements are equivalent for
ρ ∈ [0,∞) :

R(s) ∼ 1

(1− s)ρL

(

1

1− s

)

as s ↑ 1 (4)

and

Rn :=

n
∑

k=0

ak ∼
1

Γ(ρ+ 1)
nρL (n) as n→∞.

If an is monotone and ρ ∈ (0,∞) then (4) is equivalent to

an ∼
1

Γ(ρ)
nρ−1L (n) as n→∞.



Theorem

Let EX = 0, σ2 := EX2 ∈ (0,∞). Then
1) the random variables τ, τ ′, T and T ′ are proper random variables
2)

∞
∑

n=1

P (Sn = 0)

n
:= c0 <∞ and

∞
∑

n=1

1

n

[

P (Sn > 0)− 1

2

]

:= c

3)

EST =
σ√
2
e−c, EST ′ =

σ√
2
e−c−c0

and
ESτ =

σ√
2
ec, ESτ ′ =

σ√
2
ec+c0 .



Proof. By Sparre-Anderson identity

1−
∞
∑

n=1

sn
E
[

e−λSn ;T = n
]

= exp

{

−
∞
∑

n=1

sn

n
E
[

e−λSn ;Sn > 0
]

}

(5)

and

1−
∞
∑

n=1

sn
E
[

e−λSn ;T ′ = n
]

= exp

{

−
∞
∑

n=1

sn

n
E
[

e−λSn ;Sn ≥ 0
]

}

. (6)

Hence, letting λ ↓ 0 we get

1−
∞
∑

n=1

sn
P (T ′ = n) = exp

{

−
∞
∑

n=1

sn

n
P (Sn ≥ 0)

}

.



This, in turn, gives as s ↑ 1

1−P (T ′ <∞) = exp

{

−
∞
∑

n=1

1

n
P (Sn ≥ 0)

}

= 0

since P (Sn ≥ 0) ∼ 2−1 as n→∞. Hence P (T ′ <∞) = 1. The
arguments for τ, T and τ ′ are similar.
Now using (6) we conclude by letting λ→∞ that

1−
∞
∑

n=1

sn
P (ST ′ = 0;T ′ = n) = exp

{

−
∞
∑

n=1

sn

n
P (Sn = 0)

}



and now as s ↑ 1

1−
∞
∑

n=1

P (ST ′ = 0;T ′ = n) = 1−P (ST ′ = 0) = exp

{

−
∞
∑

n=1

1

n
P (Sn = 0)

}

> 0

since σ2 := EX2 ∈ (0,∞). Hence

c0 :=

∞
∑

n=1

1

n
P (Sn = 0) <∞.

Further, differentiating (5) with respect to λ we get

∞
∑

n=1

sn
E
[

Sne
−λSn ;T = n

]

=

∞
∑

n=1

sn

n
E
[

Sne
−λSn ;Sn > 0

]

exp

{

−
∞
∑

n=1

sn

n
E
[

e−λSn ;Sn > 0
]

}

.



This allows us to pass to the limit as λ ↓ 0 to get

∞
∑

n=1

sn
E [Sn;T = n]

=

∞
∑

n=1

sn

n
E [Sn;Sn > 0] exp

{

−
∞
∑

n=1

sn

n
P (Sn > 0)

}

or

∞
∑

n=1

sn
E [Sn;T = n]

=

∑∞
n=1

sn

n E [Sn;Sn > 0] exp
{
∑∞

n=1
sn

n

[

P (Sn > 0)− 1
2

]}

√
1− s

.



Note, that

E [Sn;Sn > 0] = σ
√
nE

[

Sn

σ
√
n

;
Sn

σ
√
n
> 0

]

∼ σ
√
n

1√
2π

∫ ∞

0

xe−x2/2dx =
σ
√
n√

2π
.

If

an :=
1

n
E [Sn;Sn > 0] ∼ σ√

2π
n−1/2

then
n
∑

k=1

ak ∼
σ√
2π

n
∑

k=1

1√
k
∼ 2σ√

2π

√
n



implying by Tauberian theorem

∞
∑

n=1

sn

n
E [Sn;Sn > 0] ∼ Γ

(

3
2

)

√
1− s

2σ√
2π

=
1√

1− s
σ√
2

as s ↑ 1.

Thus, as s ↑ 1

∞
∑

n=1

sn
E [Sn;T = n] ∼ σ√

2
exp

{

∞
∑

n=1

sn

n

[

P (Sn > 0)− 1

2

]

}



In view of

lim
s↑1

∞
∑

n=1

sn
E [Sn;T = n] = E [ST ;T < +∞] = EST > 0.

for ANY random walk there exists the limit

lim
s↑1

exp

{

∞
∑

n=1

sn

n

[

P (Sn > 0)− 1

2

]

}

:= b > 0. (7)

and
ESτ =

σ√
2
b.

We show that b <∞.



Assume the opposite. Then

lim
s↑1

∞
∑

n=1

sn

n

[

−1

2
+ P (Sn > 0)

]

= +∞

Hence

lim
s↑1

∞
∑

n=1

sn

n

[

−1

2
+ P (Sn < 0)

]

= −∞

For the random walk {S∗
n} with steps −X1,−X2, ...,−Xn, ... we get

lim
s↑1

∞
∑

n=1

sn

n

[

−1

2
+ P (S∗

n > 0)

]

= −∞

and this contradicts (7) applied to {S∗
n} . Thus,

b = exp

{

−
∞
∑

n=1

1

n

[

P (Sn > 0)− 1

2

]

}

= e−c

implying

EST =
σ√
2
e−c.



Theorem

Let EX = 0, σ2 := EX2 ∈ (0,∞). Then as n→∞

P (τ > n) ∼ 1√
π
ec 1√

n
, P (T > n) ∼ 1√

π
e−c 1√

n
.



Proof. Only the first statement. By Sparre-Anderson identity we have

1 +

∞
∑

n=1

sn
E
[

e−λSn ; τ > n
]

= exp

{

∞
∑

n=1

sn

n
E
[

e−λSn ;Sn > 0
]

}

or, passing to the limit as λ ↓ 0

1 +

∞
∑

n=1

sn
P (τ > n) = exp

{

∞
∑

n=1

sn

n
P (Sn > 0)

}

=
1√

1− s
exp

{

∞
∑

n=1

sn

n

[

P (Sn > 0)− 1

2

]

}

.



Therefore, as s ↑ 1

1 +

∞
∑

n=1

sn
P (τ > n) ∼ 1√

1− s
ec

or, by monotonicity of P (τ > n)

P (τ > n) ∼ 1

Γ(1
2 )
ec 1√

n
=

1√
π
ec 1√

n
.

The rest is similar.



Let
Mn = max

1≤k≤n
Sk, Ln = min

1≤k≤n
Sk

We evaluate the probabilities

P (Mn ≤ x) , P (Ln ≥ −x) .

Recall
T = T1 = min {n > 0 : Sn > 0}

and
Tj := min

{

n > Tj−1 : Sn > STj−1

}

, j = 2, 3, ...

and
τ = τ1 = min {n > 0 : Sn ≤ 0}

and
τj := min

{

n > τj−1 : Sn ≤ Sτj−1

}

, j = 2, 3, ...



Theorem

Let EX = 0, σ2 := EX2 ∈ (0,∞). Then for any x ≥ 0 as n→∞

P (Mn ≤ x) ∼
e−c

√
π
U(x)

1√
n
, P (Ln ≥ −x) ∼

ec

√
π
V (x)

1√
n

where

U(x) = 1 +

∞
∑

i=1

P (STi
≤ x) V (x) = 1 +

∞
∑

i=1

P (Sτi
≥ −x) .



Proof. Only the first. By Spitzer identity

∞
∑

n=1

sn
Ee−λMn = exp

{

∞
∑

n=1

sn

n
Ee−λ max(0,Sn)

}

= exp

{

∞
∑

n=1

sn

n
E
[

e−λSn ;Sn > 0
]

}

exp

{

∞
∑

n=1

sn

n
P (Sn ≤ 0)

}

.



Proof. Only the first. By Spitzer identity

∞
∑

n=1

sn
Ee−λMn = exp

{

∞
∑

n=1

sn

n
Ee−λ max(0,Sn)

}

= exp

{

∞
∑

n=1

sn

n
E
[

e−λSn ;Sn > 0
]

}

exp

{

∞
∑

n=1

sn

n
P (Sn ≤ 0)

}

.

By a Sparre -Anderson identity

exp

{

∞
∑

n=1

sn

n
E
[

e−λSn ;Sn > 0
]

}

= 1 +

∞
∑

n=1

sn
E
[

e−λSn ; τ > n
]

=

∫ +∞

0

e−λxUs(dx)

where

Us(x) =

∞
∑

n=0

sn
P (Sn ≤ x; τ > n) .



Therefore,

∞
∑

n=1

sn
P (Mn ≤ x) = Us(x) exp

{

∞
∑

n=1

sn

n
P (Sn ≤ 0)

}



Therefore,

∞
∑

n=1

sn
P (Mn ≤ x) = Us(x) exp

{

∞
∑

n=1

sn

n
P (Sn ≤ 0)

}

Note that

lim
s↑1

Us(x) =

∞
∑

n=0

P (Sn ≤ x; τ > n)

= 1 +
∞
∑

n=1

P (Sn ≤ x;Sn > Sj , j = 0, 1, ..., n− 1)



Therefore,

∞
∑

n=1

sn
P (Mn ≤ x) = Us(x) exp

{

∞
∑

n=1

sn

n
P (Sn ≤ 0)

}

Note that

lim
s↑1

Us(x) =

∞
∑

n=0

P (Sn ≤ x; τ > n)

= 1 +

∞
∑

n=1

P (Sn ≤ x;Sn > Sj , j = 0, 1, ..., n− 1)

= 1 +

∞
∑

n=1

n
∑

r=1

P (Sn ≤ x;Tr = n)



Therefore,

∞
∑

n=1

sn
P (Mn ≤ x) = Us(x) exp

{

∞
∑

n=1

sn

n
P (Sn ≤ 0)

}

Note that

lim
s↑1

Us(x) =
∞
∑

n=0

P (Sn ≤ x; τ > n)

= 1 +

∞
∑

n=1

P (Sn ≤ x;Sn > Sj , j = 0, 1, ..., n− 1)

= 1 +

∞
∑

n=1

n
∑

r=1

P (Sn ≤ x;Tr = n)

= 1 +

∞
∑

r=1

∞
∑

n=r

P (Sn ≤ x;Tr = n) = 1 +

∞
∑

r=1

P (STr
≤ x) = U(x)

is a renewal function!



Clearly, as s ↑ 1

exp

{

∞
∑

n=1

sn

n
P (Sn ≤ 0)

}

=
1√

1− s
exp

{

∞
∑

n=1

sn

n

[

P (Sn ≤ 0)− 1

2

]

}

∼ e−c

√
1− s

Thus, as s ↑ 1
∞
∑

n=1

sn
P (Mn ≤ x) ∼

U(x)√
1− s

e−c

and, by monotonicity of P (Mn ≤ x) we get

P (Mn ≤ x) ∼
U(x)√
π
e−c 1√

n
.



Corollary

Let EX = 0, σ2 := EX2 ∈ (0,∞). Then there exists a constant K <∞
such that for any x ≥ 0

P (Mn ≤ x) ≤
KU(x)√

n
, P (Ln ≥ −x) ≤

KV (x)√
n

.



Proof. We have

∞
∑

n=1

sn
P (Mn ≤ x) ≤ U(x) exp

{

∞
∑

n=1

sn

n
P (Sn ≤ 0)

}

=
U(x)√
1− sh(s)

where

h(s) := exp

{

∞
∑

n=1

sn

n

[

P (Sn ≤ 0)− 1

2

]

}

.



Clearly,

n

2

(

1− 1

n

)n

P (Mn ≤ x) ≤
∑

n/2≤k≤n

(

1− 1

n

)k

P (Mk ≤ x)

≤ U(x)
√
nh

(

1− 1

n

)

implying the desired statement as s ↑ 1, i.e. n→∞.



Properties of some renewal functions
As we know

U(x) = 1 +

∞
∑

n=1

P (Sn ≤ x;Ln ≥ 0) = 1 +

∞
∑

i=1

P (STi
≤ x)

where
T = T1 = min {n > 0 : Sn > 0}

and
Tj := min

{

n > Tj−1 : Sn > STj−1

}

, j = 2, 3, ...

Thus, U(x) is a renewal function (we assume that U(x) = 0, x < 0).
Therefore, if EX = 0 and EX2 <∞ then, as x→∞

U(x) =
x

EST
+ o(x).



Let us show that U(x) is a harmonic function, that is,

E [U(x−X);x−X ≥ 0] = U(x), x ≥ 0.

where X has the same distribution as X1, ..., Xn, ...



We have

E [U(x−X);x−X ≥ 0] = P (X ≤ x) +

∞
∑

k=1

P (Sk ≤ x−X ;Lk ≥ 0)



We have

E [U(x−X);x−X ≥ 0] = P (X ≤ x) +
∞
∑

k=1

P (Sk ≤ x−X ;Lk ≥ 0)

= P (X1 ≤ x;L1 ≥ 0)

+

∞
∑

k=1

P (Sk+1 ≤ x;Lk+1 ≥ 0)

+P (X1 < 0) +

∞
∑

k=1

P (Sk+1 < 0;Lk ≥ 0)



We have

E [U(x−X);x−X ≥ 0] = P (X ≤ x) +

∞
∑

k=1

P (Sk ≤ x−X ;Lk ≥ 0)

= P (X1 ≤ x;L1 ≥ 0)

+

∞
∑

k=1

P (Sk+1 ≤ x;Lk+1 ≥ 0)

+P (X1 < 0) +
∞
∑

k=1

P (Sk+1 < 0;Lk ≥ 0)

Clearly,

P (X1 < 0) +

∞
∑

k=1

P (Sk+1 < 0;Lk ≥ 0) = P (Sk < 0 for some k) = 1.

Hence the statement follows.



Consider strong descending ladder epochs :

τ ′ = τ ′1 = min {n > 0 : Sn < 0}

and
τ ′j := min

{

n > τj−1 : Sn < Sτ ′
j−1

}

and consider the renewal function

V (x) :=







1 +
∑∞

i=1 P
(

Sτ ′
i
≥ −x

)

if x ≥ 0

0 if x < 0

Again as x→∞
V (x) =

x

ESτ ′

+ o(x).

Besides, V (x) is a harmonic function:

E[V (x+X);x+X > 0] = V (x), x ≥ 0.



Let Fn = σ (Π0,Π1, ...,Πn−1;Z(0), Z(1), ...Z(n− 1)) and let

F := ∨∞n=1Fn

be a filtration. As earlier, denote

Ln := min
0≤i≤n

Sn, Mn = max
1≤i≤n

Sn.

Lemma

The sequences
V (Sn)I {Ln ≥ 0}

and
U(−Sn)I {Mn < 0}

are martingales with respect to filtration F .



Proof. Only the first statement. Observe that

V (Sn+1)I {Ln+1 ≥ 0} = V (Sn +Xn+1)I {Ln ≥ 0}

Therefore,

E [V (Sn+1)I {Ln+1 ≥ 0} |Fn] = E [V (Sn +Xn+1)|Fn] I {Ln ≥ 0}
= V (Sn)I {Ln ≥ 0}

as desired.



Introduce two sequence of probability measures

dP+
n = V (Sn)I {Ln ≥ 0} dP, n ∈ N

and
dP−

n = U(−Sn)I {Mn < 0} dP, n ∈ N

on Fn or, what is the same, for any nonnegative random variable Yn

measurable with respect to Fn

E
+
n [Yn] = E [YnV (Sn)I {Ln ≥ 0}]

and
E

−
n [Yn] = E [YnU(−Sn)I {Mn < 0}] .



They are consistent since, for instance, for any Yn ∈ Fn

E
+
n+1 [Yn] = E [YnV (Sn+1)I {Ln+1 ≥ 0}]

= E [YnV (Sn)I {Ln ≥ 0}] = E
+
n [Yn] .

Hence, there exists a probability measure P
+ on F such that

P
+|Fn = P

+
n , n ≥ 0.

or,
E

+ [Yn] = E [YnV (Sn)I {Ln ≥ 0}] .
Similarly, we have a measure P

− on F such that

P
−|Fn = P

−
n , n ≥ 0.



We know that

P (Ln ≥ −x) ∼
cV (x)√

n

and there exists a constant K > 0 such that

P (Ln ≥ −x) ≤
KV (x)√

n

for all n and x ≥ 0.



Lemma

Let EX = 0 and σ2 := EX2 ∈ (0,∞). Then for any Fk-measurable
bounded random variable ψκ, k ∈ N

lim
n→∞

E [ψκ|Ln ≥ 0] = E
+ [ψκ] = E [ψκV (Sk)I {Lk ≥ 0}] ,

lim
n→∞

E [ψκ|Mn < 0] = E
− [ψκ] = E [ψκU(−Sk)I {Mk < 0}] .

If the sequence ψ1, ψ2, ..., ψn, ... is uniformly bounded and is adopted to
filtration F and

lim
n→∞

ψn := ψ∞

P
+ a.s., (P− a.s.) then

lim
n→∞

E [ψn|Ln ≥ 0] = E
+ [ψ∞]

and
lim

n→∞
E [ψn|Mn < 0] = E

− [ψ∞]



Proof. Only the first. Let

Lk,n := min
k≤i≤n

(Si − Sk)

We have

E [ψk|Ln ≥ 0] =
E [ψkI {Ln ≥ 0}]

P (Ln ≥ 0)
=

E [ψkI {Lk ≥ 0}P (Lk,n ≥ −Sk)]

P (Ln ≥ 0)

= E

[

ψkI {Lk ≥ 0} P (Lk,n ≥ −Sk)

P (Ln ≥ 0)

]

.

By theorems of the previous part

P (Ln ≥ −x) ≤
KV (x)√

n

for all x ≥ 0 and

P (Ln ≥ −x) ∼
CV (x)√

n

for any fixed x.



This and the bounded convergence theorem imply

lim
n→∞

E

[

ψkI {Lk ≥ 0} P (Lk,n ≥ −Sk)

P (Ln ≥ 0)

]

= E

[

ψkI {Lk ≥ 0} lim
n→∞

P (Lk,n ≥ −Sk)

P (Ln ≥ 0)

]

= E [ψkV (Sk)I {Lk ≥ 0}]

proving the first part of the lemma.



For the second we fix γ > 1 and observe that

E [ψk|Lnγ ≥ 0]−E [|ψn − ψk| |Lnγ ≥ 0] ≤ E [ψn|Lnγ ≥ 0]

≤ E [ψk|Lnγ ≥ 0] + E [|ψn − ψk| |Lnγ ≥ 0]

and

E [|ψn − ψk| |Lnγ ≥ 0]

=
E [|ψn − ψk| I {Lnγ ≥ 0}]

P (Lnγ ≥ 0)

= E

[

|ψn − ψk| I {Ln ≥ 0} P (Ln,nγ ≥ −Sn)

P (Lnγ ≥ 0)

]

≤ KP
(

Ln(γ−1) ≥ 0
)

P (Lnγ ≥ 0)
E [|ψn − ψk| I {Ln ≥ 0}V (Sn)]

≤ K1E [|ψn − ψk| I {Ln ≥ 0}V (Sn)] = K1E
+ [|ψn − ψk|] .



Now first we let n→∞ and then k→∞ we get

lim
n→∞

E [ψn|Lnγ ≥ 0] = lim
k→∞

lim
n→∞

E [ψk|Lnγ ≥ 0] = E
+ψ∞.



Further we have

|E [ψn|Ln ≥ 0]−E [ψn|Lnγ ≥ 0]|

= |E [ψnI {Ln ≥ 0}]
P (Ln ≥ 0)

− E [ψnI {Lnγ ≥ 0}]
P (Lnγ ≥ 0)

|

= |E [ψn (I {Ln ≥ 0} − I {Lnγ ≥ 0})]
P (Ln ≥ 0)

−
(

1

P (Lnγ ≥ 0)
− 1

P (Ln ≥ 0)

)

E [ψnI {Lnγ ≥ 0}] |

≤
∣

∣

∣

∣

E [ψn (I {Ln ≥ 0} − I {Lnγ ≥ 0})]
P (Ln ≥ 0)

∣

∣

∣

∣

+K

(

1

P (Lnγ ≥ 0)
− 1

P (Ln ≥ 0)

)

P (Lnγ ≥ 0)

≤ K1
P (Ln ≥ 0, Lnγ < 0)

P (Ln ≥ 0)
+K

(

1− P (Lnγ ≥ 0)

P (Ln ≥ 0)

)

≤ K2

(

1− P (Lnγ ≥ 0)

P (Ln ≥ 0)



and, therefore, in view of

P (Ln ≥ 0) ∼ C√
n

we have

lim sup
γ↓1

lim sup
n→∞

|E [ψn|Ln ≥ 0]−E [ψn|Lnγ ≥ 0]|

≤ K2 lim sup
γ↓1

(

1− 1√
γ

)

= 0.

from which the statement of the lemma follows.


