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Darwinian or Adaptive Evolution
The population has the propensity to generate as well as to select
individual diversity .

Three main ingredients for this :

I Heredity

I Mutation

I Selection

Adaptive Dynamics studies this evolution (Hofbauer-Sigmund 1990,
Marrow-Law-Cannings 1992, Metz-Geritz-Meszéna et al. 1992,
1996, Dieckmann-Law 1996)

I Focus on the interplay between ecology and evolution .

I Emphasis on the ecological interactions : density-dependent
selection model .

I BUT (up to now)
I Asexual (clonal) reproduction
I No genetics in the reproduction



Three biological assumptions :

I (1) large populations

I (2) rare mutations

I (3) small mutation steps

and long (evolutive) time scale.

I In the approach of Metz et al., Champagnat 06 : (1) + (2)
then (3) .

I Individual-based model with stochastic tools mixed with
dynamical system arguments .
(Bolker-Pacala 97, Kisdi 99, Dieckmann-Law 00, Fournier-Méléard

04, Ferrière-Champagnat-Méléard 06, Champagnat-Méléard 10)

I OUR AIM IN THIS WORK : To generalise this approach to
diploid populations : make a link between ecology, genetics
and evolution



The Microscopic Model

I Each individual i is characterised by two allelic traits (u i
1
, ui

2
) .

(ui real number or vector).

I The corresponding phenotypic trait is given by a symmetric
function φ(ui

1
, ui

2
).

I Biologically, all coefficients (except the mutation law) depend
on the allelic traits u1 and u2 through the phenotypic trait
φ(u1, u2). This implies the symmetry of all (rate) functions in
(u1, u2). We will forget φ and denote g(u1, u2) for
g(φ(u1, u2)).

I K scales the size of the population : K large .

I uK scales the probability of mutation : uK small. (Only rare
mutations affect the phenotype of the individual).

I Population of NK (t) individuals and allelic traits

(u1
1
, u1

2
), . . . , (u

NK (t)
1

, u
NK (t)
2

). The size ( NK (t)) of the allelic

trait vector evolves with time.



A model for the reproduction mechanism.

An individual (ui
1
, ui

2
) produces large and small gametes.

The small gametes are far more numerous that the large ones.

The fertility rate for large gametes is f (u i
1
, ui

2
), and M f (ui

1
, ui

2
) for

small gametes, with M À 1.

The large gametes are in a “sea” of small gametes and choose one
at random (well mixed sea) with probability

M f (uk
1
, uk

2
)

M
∑NK

j=1
f (uj
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, uj

2
)
=

f (uk
1
, uk

2
)

∑NK

j=1
f (uj

1
, uj

2
)
.

Note that allelic pairs (u1, u2) with larger f (u1, u2) are favoured in
this choice.



Transitions for an individual with trait (u1, u2) in the

population, birth rate :

I An individual i is chosen with probability

f (ui
1
, ui

2
)

∑NK

j=1
f (uj

1
, uj

2
)
.

I With probability 1− uK µ , sexual Mendelian reproduction : 4
possibilities

(u1, u
i

1
), (u1, u

i

2
), (u2, u

i

1
), (u2, u

i

2
),

with probability 1/4.

I With probability uK µ : mutation on an allele . Let σ denote
the scale of the mutation .
A mutant from the allelic trait u1 is u1 + σh , with |h| = O(1)
chosen at random following a distribution m(u1, h)dh .



Transitions for an individual with trait (u1, u2) in the

population, death rate :

D0(u1, u2) +
1

K

NK

∑

j=1

α(u1, u2; u
j
1
, uj

2
) .

D0 is the natural death and α describes the competition between
individuals.



Assumptions :

I Initial size of order K (large).

I f , D0, α, and m smooth enough.

I f , D0 and α are bounded.

I "Natural growth rate" of the population of type (u1, u2) :
f (u1, u2)− D0(u1, u2) > 0.

I Interaction rate : α(u1, u2; v1, v2) > 0, ∀u1, u2, v1, v2 ∈ U .

Notation : If we consider two alleles A and a , we refer to uA by A,
and ua by a :

fAA = f (uA, uA); D0

AA = D0(uA, uA); αAA,AA = α(uA, uA; uA, uA),

and the same for Aa and aa.



Behaviour for large population and rare mutation. Time

scale of order 1

Large K ; small mutation probability uK ' 0. Denote by nK (t, u, v)
the number of individuals with allelic traits (u, v) at time t.

Theorem 1 (Fournier-Méléard 2004)

When K tends to infinity, the dynamics of the population is almost
deterministic. The (non random) limit Wt(u, v) of the normalised
number nK (t, u, v)/K of the allelic pair (u, v) is a solution of the
equation

∂tWt(u, v) =−Wt(u, v)
(

D0(u, v) +

∫

α(uv ; u′v ′)Wt(u
′, v ′)du′dv ′

)

+

( ∫

f (u, u1)Wt(u, u1)du1

)( ∫

f (v , v1)Wt(v , v1)dv1

)

∫

f (u1, u2)Wt(u1, u2)du1du2

.

No mutation appears at this time scale (uK ' 0).



Monomorphic homozygote case AA

If the initial population is composed of individuals with allelic trait
(uA, uA), it will stay monomorphic with trait (uA, uA) at this time
scale (i.e. until the first mutation).
The population process is a birth and death process with birth rate
fAA and death rate D0

AA + αAA,AANK (t)/K .

For large K , the normalised population size NK (t)/K is close to
n(t), solution of the logistic equation

ṅ = (fAA − D0

AA − αAA,AA n) n.

There is a unique equilibrium

n̄AA =
fAA − D0

AA

αAA,AA

,

stable since we assumed fAA − D0

AA > 0.



Three genotypes : AA, Aa and aa

Assume there are only two possible alleles, A and a.

I t 7→ (XK
t ,Y

K
t ,ZK

t ) : population process of individuals with
genotype AA, Aa and aa .

I Birth and death process with three types and birth rates
bAA, bAa, baa and death rates dAA, dAa, daa .

I The birth rates are given by :

bAA =
(fAA X + fAa Y /2)2

fAA X + fAa Y + faa Z
,

bAa =
2(fAA X + fAa Y /2)(faa Z + fAa Y /2)

fAA X + fAa Y + faa Z
,

baa =
(faa Z + fAa Y /2)2

fAA X + fAa Y + faa Z
.



Death rates are given by

dAA = (D0

AA + αAA,AA X/K + αAA,Aa Y /K + αAA,aa Z/K )X ,
dAa = (D0

Aa + αAa,AA X/K + αAa,Aa Y /K + αAa,aa Z/K )Y ,
daa = (D0

aa + αaa,AA X/K + αaa,Aa Y /K + αaa,aa Z/K )Z .

Theorem 2
For large K, the normalised population dynamics
(XK

t /K ,Y
K
t /K ,ZK

t /K ) evolves closely to a solution of the
dynamical system DS(AA,Aa,aa) given by the vector field

~X (x , y , z) =







b̃AA − d̃AA

b̃Aa − d̃Aa

b̃aa − d̃aa






(x , y , z) .

where b̃AA =
(fAA x + fAa y/2)2

fAA x + fAa y + faa z
,

d̃AA = (D0

AA + αAA,AA x + αAA,Aa y + αAA,aa z) x , etc.



Long time behaviour of DS(AA,Aa,aa)

The vector field has 15 parameters and generically around 3000
fixed points (most are complex hence irrelevant). There are two
main fixed points : (n̄AA, 0, 0) , (0, 0, n̄aa) with

n̄AA =
fAA − D0

AA

αAA,AA

, n̄aa =
faa − D0

aa

αaa,aa
.

Theorem 3
The differential D ~XAA is a triangular (3× 3) matrix with two
negative eigenvalues and the third one is equal to the invasion
fitness of mutant Aa in the resident population AA :

SAa,AA = fAa − D0

Aa − αAa,AA n̄AA .

A similar property holds for D ~Xaa.



Non linear vector fields in dimension 3 may have complex long time
behaviour (E. Lorenz).
It is possible to have AA unstable, aa stable but no fixation of the
mutant allele a. This is not possible for a two dimensional Lotka
Volterra model.

Fig.: Left, Lotka Volterra 2d case, right the vector field ~X for a particular
choice of the parameters. In both cases A is unstable and a is stable.



Let ε = σ h the (small) variation of the allelic trait, ua = uA + ε.
To study ~X (ε, · ), we will assume that mutants have small
amplitudes (a is close to A), namely perturb around the neutral
case. In any case this is what we are interested in at the end (small
mutation steps).

Neutral case.
We start by looking at this simpler case.
All parameters are equal : AA = aa, ε = 0. Let n̄0 = n̄AA = n̄aa.

Theorem 4
The neutral vector field ~X (0, · ) has a curve of fixed points

C0(s) =









(s−n̄0)2

4 n̄0

−
s2
−n̄2

0

2 n̄0

(s+n̄0)2

4 n̄0









.

This curve is transversally stable (attracting).



Fig.: The neutral curve.



General perturbations around the neutral case
By the stability of transversally hyperbolic invariant manifolds of
Hirsh, Pugh and Shub we know that after a small enough
perturbation there is still and invariant attracting curve.
Question : What is the dynamics on this curve ?



General perturbations around the neutral case
By the stability of transversally hyperbolic invariant manifolds of
Hirsh, Pugh and Shub we know that after a small enough
perturbation there is still and invariant attracting curve.
Question : What is the dynamics on this curve ?
Define a function g by

g(s) = det

(

∂ε~X (0,C0(s)),C0(s),
d2

ds2
C0(s)

)

.

Theorem 5
Assume the function g satisfies dg/ds(±n̄0) 6= 0 and g does not
vanish on ]− n̄0, n̄0[. Then there exists ε0 = ε0(~X ( · , · )) > 0 such
that for any ε ∈ [−ε0, ε0]\{0}, the vector field ~X (ε, · ) has only two
fixed points in a tubular neighbourhood of C0. These two fixed
points are (n̄AA, 0, 0) and (0, 0, n̄aa).

Remark : g(±n̄0) = 0.
This Theorem is for general (small) perturbations, which are not
necessarily coming from small mutations.



Small mutations I.

What is special about perturbations coming from small mutations ?



Small mutations I.

What is special about perturbations coming from small mutations ?
ua = uA + ε with |ε| ¿ 1.

fAa = f (uA + ε, uA) = fAA + ∂1f (uA, uA)ε+O(ε
2).

Note that because of the symmetry ∂1f (uA, uA) = ∂2f (uA, uA).
Similarly

faa = f (uA+ε, uA+ε) = fAA+ε
(

∂1f (uA, uA)+∂2f (uA, uA)
)

+O(ε2)

= fAA + 2 ε ∂1f (uA, uA) +O(ε
2) = fAA + 2 ε ∂2f (uA, uA) +O(ε

2) .

This is sometimes represented by

(

AA Aa aa
1 1 + s 1 + 2s

)



Small mutations II .

ua = uA + ε with |ε| ¿ 1.
The fitness of a mutant Aa in the resident population AA
(SAa,AA = fAa −D0

Aa − αAa,AA n̄AA), is a function of ε. At neutrality
(ε = 0) we have SAa,AA(0) = 0. Therefore

SAa,AA(ε) = ε
dSAa,AA

dε
(0) +O(ε2).

Theorem 6

dSAa,AA

dε
(0) = −

dSAa,aa

dε
(0) = −2

dg

ds
(−n̄0) = 2

dg

ds
(n̄0) .

In particular, for ε small enough, if
dSAa,AA

dε
(0) 6= 0 and AA is stable

then aa is unstable and vice versa. Moreover the condition
dg
ds
(±n̄0) 6= 0 of the previous theorem can be read on the fitnesses.

Proof : compute.



Small mutations III.

ua = uA + ε with |ε| ¿ 1.

Theorem 7
For ε small enough, if

dSAa,AA

dε
(0) 6= 0, there are only only two

equilibria which are the homozygote populations AA and aa.

I If ε
dSAa,AA

dε
(0) > 0, the fixed point AA is unstable and we have

invasion (by aa) for the macroscopic dynamics.

I If ε
dSAa,AA

dε
(0) < 0, the fixed point AA is stable and the

mutant disappears in the macroscopic dynamics.

Proof :
compute

g(s) =
1

4 n̄0

dFAa,AA

dε
(0) (s2 − n̄2

0) ,

then apply Theorem 5.



Fig.: Left : neutral case - Right : small mutant case
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Fig.: Simulation of invasion by a successful mutant.

The whole invasion process takes a time of order log K .
The mutation rate is small enough so that during the invasion
period no other mutant appears (with large probability).
We can now go to the next (larger) time scale, namely squeeze this
picture. We will only see a jump from uA to ua.



The time scales

Now that we control the dynamical system, and the invasion by a
successful mutant, we can consider the larger time scale of
mutation events.

Time
scales

initial
process

allele
substitution

allele
mutation

evolutionnary
branching

mutant
branching

process

dynamical
system

TSS
canonical
equation

1/(KuK) 1/(KuKσ
2)logK



Mutation time scale : of order
t

K uK

Dynamics of the microscopic process :

Theorem 8
Assume a monomorphic homozygote initial population with trait
A0A0. Assume that

∀C > 0, ln K ¿
1

KuK

¿ exp(CK ), for large K . (1)

Then, for σ small enough (ε = σh), the population process at time
t

KuK
is approximated by a jump process defined as follows :

I Initial configuration : all individuals with traits (uA0
, uA0

).

I The process jumps from n̄AA individuals with trait (uA, uA) to
n̄aa individuals with trait (ua, ua), with ua = uA + σh .

I The jumps happen after an exponential time with parameter

2µ fAA n̄AA
[SAa,AA]+

fAa
.

I The amplitude of the jump is distributed following m(uA, h)dh.





Generalisation of the trait substitution sequence (TSS) .
Monomorphic asexual case : Metz et al. 1996 ; Champagnat 06 .

Idea of the proof :

I The selection process has sufficient time between two
mutations to eliminate disadvantaged types ( time scale
separation ).

I Assumption of large populations : between mutations, the
population is close to the deterministic population dynamics ,
so that one can predict the outcome of competition between
the traits.

I Succession of phases of mutant invasion , and phases of
competition between traits



The time scales
Now that we have control on the TSS we can go the next time
scale.

Time
scales

initial
process

allele
substitution

allele
mutation

evolutionnary
branching

mutant
branching

process

dynamical
system

TSS
canonical
equation

1/(KuK) 1/(KuKσ
2)logK



The time scales
Now that we have control on the TSS we can go the next time
scale.

Time
scales

initial
process

allele
substitution

allele
mutation

evolutionnary
branching

mutant
branching

process

dynamical
system

TSS
canonical
equation

1/(KuK) 1/(KuKσ
2)logK

We will rescale time and the amplitude
of mutations simultaneously. The TSS
curve will become a continuous curve.



The Canonical Equation of Adaptive Dynamics

What happens for σ small ? (σ : mutation amplitude)

At its time scale, the TSS process disappears (no more jumps). We

need to rescale the time : longer time t
KuKσ

2 .

Theorem 9
When σ is small, the dynamics of equilibria allelic traits is given by

du

dt
= 2µ n̄uu ∂1S(u, u; u, u)

∫

R

h2 m(u, h)dh.

Canonical equation of the adaptive dynamics.

Evolutionary singularities : points (u, u) such that
∂1S(u, u; u, u) = 0 : possibility of evolutionary branching.



Evolutionary branching for u ∈ R beyond ∂1S(u, u; u, u) = 0.
Champagnat-Méléard 2010 (asexual case). Time

scales

initial
process

allele
substitution

allele
mutation

evolutionnary
branching

mutant
branching

process

dynamical
system

TSS
canonical
equation

1/(KuK) 1/(KuKσ
2)logK



Before the first mutation, K large

I Monomorphic population with genotype AA : the size of the
population for t large enough is close to n̄AA .

I If 1

KuK
¿ eCK , the first mutation occurs before the exit time

of a neighbourhood of n̄AA with high probability . (Large
deviations).

I Before this exit time, the rate of mutation from trait (uA, uA)
is close to 2µ uK fAA K n̄AA .

I On the time scale t
KuK

: 2µ fAA n̄AA .



After the first mutation : competition phase

I An allelic mutant trait appears at time t0.

I between t0 and t1 : the number of mutant individuals with
trait Aa is close to a branching process with birth rate fAa and
death rate D0

Aa + αAa,AA n̄AA .

I Growth rate = fitness function :

SAa;AA = fAa − D0

Aa − αAa,AA n̄AA.

I Survival probability :
[SAa,AA]+

fAa
.

I After t1 : close to DS(AA,Aa, aa) .



I Convergence of DS(AA,Aa, aa) to the equilibrium n̄aa .

I The population density of genotype aa reaches the
η-neighbourhood of n̄aa at time t2.

I After t2 : the densities of genotypes AA and Aa are
approximated by sub-critical branching process .

I Time scale : ln K .

I If ln K ¿ 1

KuK
, the next mutation occurs after these three

phases with high probability.

I We reiterate the procedure by Markovian arguments.



Time
scales

initial
process

allele
substitution

allele
mutation

evolutionnary
branching

mutant
branching

process

dynamical
system

TSS
canonical
equation

1/(KuK) 1/(KuKσ
2)logK

That’s all for this time scale.

Thank you.


