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Description of BPRE

Random environment
Let ξ = (ξn)n≥0 be a sequence of i.i.d. random variables (in
space Θ) indexed by time n ∈ N = {0,1,2, · · · }.
Each ξn corresponds to a probability on N, denoted by
p(ξn) = {pk (ξn) : k ≥ 0}, where

0 ≤ pk (ξn) ≤ 1 and
∑

k

pk (ξn) = 1.

We call ξ a random environment.
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Branching Process in a Random Environment (BPRE)

X=X1 2

11 1X1

u

u1 u2 uXu

φ

Pξ(Xu = k) = pk(ξn)

∅

|u| = n,

Given ξ

X ∼ p(ξ0)

Xu ∼ p(ξn)
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Denote

Zn – the population size of the n-th generation,

Xu– the number of offspring of u.

By definition,

Z0 = 1, Zn+1 =
∑
|u|=n

Xu, (n ≥ 0).

where given ξ, {Xu : |u| = n} are conditionally independent
of each other and have a common distribution
p(ξn) = {pk (ξn) : k ≥ 0}.
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Quenched and annealed laws
Let (Γ,Pξ) be the probability space under which the process is
defined when the environment ξ is fixed. As usual, Pξ is called
quenched law.

The total probability space can be formulated as the product
space (ΘN × Γ,P), where P = Pξ ⊗ τ , and τ is the law of the
environment ξ. The total probability P is called annealed law.

Pξ can be considered to be the conditional probability of P given
ξ.
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The martingale in BPRE
Denote

mn =
∑

k

kpk (ξn)

P0 = 1, Pn = m0 · · ·mn−1 for n ≥ 1.

Then the normalized population size

Wn =
Zn

Pn

is a nonnegative martingale and converges a.s. to a
nonnegative random variable:

W = lim
n→∞

Wn a.s.

with EW ≤ 1.
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Supercritical BRPE
We consider the supercritical case where

E log m0 ∈ (0,∞) and E
Z1

m0
log+ Z1 <∞.

For simplicity, let pk = pk (ξ0) and assume that

p0 = 0 a.s.,

Therefore
W > 0 and Zn →∞ a.s..
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Objective

Law of large numbers
It is well known [see e.g. Tanny(1977)] that

lim
n→∞

log Zn

n
= E log m0 a.s. (on {Zn →∞}).

We are interested in the asymptotic properties of the
corresponding deviation probabilities.
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Objective

Notice that

log Zn = log Pn + log Wn

and
Wn →W > 0 a.s..

Certain asymptotic properties of log Zn can be determined
by those of log Pn.

We show that log Zn and log Pn satisfy the same limit
theorems under suitable conditions.
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Central Limit Theorem

Central Limit Theorem
At first, log Zn and log Pn = log m0 + ...+ log mn−1 satisfy
the same central limit theorem.

Theorem 1 (Central Limit Theorem)

If σ2 = var(log m0) ∈ (0,∞), then

log Zn − nE log m0√
nσ

→ N (0,1) in law.
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Large Deviations

The central limit theorem suggests that log Zn and log Pn
would satisfy the same large deviation principle.

Rate function
Let

Λ(t) = logEmt
0,

and
Λ∗(x) = sup

t∈R
{xt − Λ(t)}

be the Fenchel-Legendre transform of Λ.
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Large Deviations

We need the following assumption.

Assumption (H)
There exist constants δ > 0 and A > A1 > 1 such that a.s.

A1 ≤ EξZ1, EξZ 1+δ
1 ≤ A1+δ.

So A1 ≤ m0 ≤ A a.s..
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Large Deviations

Large Deviation Principle

Theorem 2 (Large Deviation Principle)

Assume (H). If EZ s
1 <∞ for all s > 1 and p1 = 0 a.s., then for

any measurable subset B of R,

− inf
x∈Bo

Λ∗(x) ≤ lim inf
n→∞

1
n

logP
(

log Zn

n
∈ B

)
≤ lim sup

n→∞

1
n

logP
(

log Zn

n
∈ B

)
≤ − inf

x∈B̄
Λ∗(x).
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Large Deviations

Probabilities of tail events
From LDP, we obtain the following corollary.

Corollary (Bansaye and Berestycki (2009))

Assume (H). If EZ s
1 <∞ for all s > 1 and p1 = 0 a.s., then

lim
n→∞

1
n

logP
(

log Zn

n
≤ x

)
= −Λ∗(x) for x < E log m0,

lim
n→∞

1
n

logP
(

log Zn

n
≥ x

)
= −Λ∗(x) for x > E log m0.

This result has been obtained by Bansaye and Berestycki in 2009. Our
approach is different, and it is also available to get the following result.
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Large Deviations

Theorem 3

(i) Let a > 0. If a ∈ (0,1] and Ema−1
0 Z1 log+ Z1 <∞, or a > 1

and EZ a
1 <∞, then

lim
n→∞

1
n

logP
(

log Zn

n
≥ x

)
= −Λ∗(x), ∀x ∈ (E log m0,Λ

′(a)).

(ii) Let a < 0. Assume (H) and ‖p1‖∞ := esssup p1 < 1. If
Ep1 < Ema

0, then

lim
n→∞

1
n

logP
(

log Zn

n
≤ x

)
= −Λ∗(x), ∀x ∈ (Λ′(a),E log m0).
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Moderate Deviations

Moderate Deviation Principle

Large deviation: log Zn−nE log m0
n

Central limit theorem: log Zn−nE log m0√
n

Moderate deviation: log Zn−nE log m0
an

Let {an} be a sequence of positive numbers satisfying

an

n
→ 0 and

an√
n
→∞, as n→∞.
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Moderate Deviations

Theorem 4 (Moderate Deviation Principle)

Assume (H) and write σ2 = var(log m0) ∈ (0,∞). Then for any
measurable subset B of R,

− inf
x∈Bo

x2

2σ2 ≤ lim inf
n→∞

n
a2

n
logP

(
log Zn − nE log m0

an
∈ B

)
≤ lim sup

n→∞

n
a2

n
logP

(
log Zn − nE log m0

an
∈ B

)
≤ − inf

x∈B̄

x2

2σ2 .
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Proof – Large deviations

Proof for large deviations
Notice that the Laplace transform of log Zn is

Eet log Zn = EZ t
n.

Our results about large deviations (Theorems 2 and 3) are
consequences of the Gärtner-Ellis theorem and the following
result.

Theorem 5 (Moments of Zn)

Under certain moment conditions, we have

lim
n→∞

EZ t
n(

Emt
0

)n = C(t) ∈ (0,∞), ∀t ∈ R.

This is an extension of a result of Ney and Vidyashankar (2003) on the
Galton-Watson process.
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Harmonic moments of W

To study the moments of Zn, we need to consider the
moments of W .

Moments of positive orders
Guivarc’h and Liu (2001) showed that for p > 1,

EW p ∈ (0,∞) iff E
(

Z1

m0

)p

<∞ and Em1−p
0 < 1.
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Harmonic moments of W

Harmonic moments (moments of negative orders)

Theorem 6 (Harmonic moments of W )
Assume (H).
(i) (General case) There exists a constant a > 0 such that

EW−a <∞.

(ii) (Special case) If ‖p1‖∞ < 1, then ∀a > 0,

EW−a <∞ if and only if Ep1ma
0 < 1.
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Harmonic moments of W

Corollary (Critical value)

Assume (H) and ‖p1‖∞ < 1. If Ep1ma0
0 = 1, then

EW−a <∞ if 0 < a < a0,
EW−a =∞ if a ≥ a0.

Remark
Hambly (1992) proved that under some assumption similar to (H), the
number α0 := − E log p1

E log m0
is the critical value for the a.s. existence of

the quenched moments EξW−a(a > 0). By Jensen’s inequality, it is
easy to see that a0 ≤ α0.
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Proof – Harmonic moments of W

Proof for Harmonic moments of W (Theorem 6)
(ii) Special case where ‖p1‖∞ < 1.

Necessity

W =
1

m0

Z1∑
i=1

W (1)
i a.s.,

where W (1)
i is the limit related to the i-th particle of the first

generation. Since P(Z1 ≥ 2) > 0,

EW−a > Ema
0

(
W (1)

1

)−a
1{Z1=1} = Ep1ma

0EW−a.

Therefore Ep1ma
0 < 1.
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Proof – Harmonic moments of W

Sufficiency
Set

φξ(t) = Eξe−tW and φ(t) = Eφξ(t) (t > 0).

Lemma (Liu, 2001)

Let A be a positive random variable such that for some 0 < p < 1,
t0 ≥ 0 and all t > t0,

φ(t) ≤ pEφ(At).

If pEA−a1 < 1 for some a1 > 0, then

φ(t) = O(t−a1 )(t →∞) and EW−a <∞ for all a ∈ (0,a1).
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Proof – Harmonic moments of W

Lemma (Upper bound for φξ)

Assume (H). Then there exist constants β ∈ (0,1) and K > 0 such
that a.s.

φξ(t) ≤ β ∀t ≥ 1/K .

If additionally ‖p1‖∞ < 1, then for some constants a > 0 and C > 0,
a.s.

φξ(t) ≤ Ct−a ∀t ≥ 1/K .

By this lemma, ∀ε > 0, there exists a constant tε > 0 such that
a.s.

φξ(t) ≤ ε, ∀t ≥ tε.
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Proof – Harmonic moments of W

Notice that φξ satisfies the functional equation

φξ(t) = f0(φTξ(
t

m0
)),

where f0(s) =
∑∞

i=0 pi(ξ0)si , s ∈ [0,1], is the generating
function of p(ξ0). We therefore have a.s.

φξ(t) ≤ (p1 + (1− p1)ε)φTξ(
t

m0
), ∀t ≥ Atε.
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Proof – Harmonic moments of W

Taking expectation, we obtain for t ≥ Atε,

φ(t) ≤ E(p1 + (1− p1)ε)φ(
t

m0
) = pεEφ(Ãεt),

where pε = E(p1 + (1− p1)ε) < 1 and Ãε is a positive
random variable whose distribution is determined by

Eg(Ãε) =
1
pε

E(p1 + (1− p1)ε)g(
1

m0
)

for all bounded and measurable function g.
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Proof – Harmonic moments of W

Since Ep1ma
0 < 1, we can take a1 > a such that

Ep1ma1
0 < 1. Take ε > 0 small enough such that

pεEÃ−a1
ε = E(p1 + (1− p1)ε)ma1

0 < 1.

Then by the lemma of Liu (2001),

φ(t) = O(t−a1)(t →∞) and EW−a <∞.

(i) General case
Notice that φξ(t) ≤ β a.s. for t ≥ tβ = 1

K . It suffices to
repeat the proof of sufficiency of (ii) with β in place of ε.
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Proof – Moments of Zn

Theorem 5 (Moments of Zn)

Under certain moment conditions, we have

lim
n→∞

EZ t
n

(Emt
0)n = C(t) ∈ (0,∞), ∀t ∈ R.

Proof. Denote the distribution of ξ0 by τ0. Fix t ∈ R and
define a new distribution τ̃0 as

τ̃0(dx) =
m(x)tτ0(dx)

Emt
0

,

where m(x) = E[Z1|ξ0 = x ] =
∑∞

i=0 ipi(x).
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Proof – Moments of Zn

Consider the new BPRE whose environment distribution is
τ̃ = τ̃⊗N0 instead of τ = τ⊗N0 . The corresp. total probability
and expectation are denoted by P̃ = Pξ ⊗ τ̃ and Ẽ.

Then
EZ t

n(
Emt

0

)n = ẼW t
n.

We distinguish three cases: t ∈ (0,1), t > 1 and t < 0.
For each case, under certain moment conditions,

lim
n→∞

ẼW t
n = ẼW t ∈ (0,∞).

Take C(t) = ẼW t .
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Proof – Moderate deviations

Proof of MDP (Theorem 3)
Similar to the proof of LDP (Theorem 2), the proof of MDP
is a combination of the Gärtner-Ellis theorem and the
following result.

Theorem 7

Assume (H). Let Λn(t) = logEexp
(

log Zn−nE log m0
an

t
)

and

Λ̃n(t) = logEexp
(

log Pn−nE log m0
an

t
)

. Then

lim
n→∞

Λn(a2
n

n t)

Λ̃n(a2
n

n t)
= 1, ∀t 6= 0.

Chunmao HUANG Branching Process in Random Environment



Introduction
Main results

Proofs

References

V. Bansaye, J. Berestycki.
Large deviations for branching processes in random environment. Markov
Process. Related Fields, 15 (2009), 493-524.

Y. Guivarc’h, Q. Liu.
Propriétés asymptotiques des processus de branchement en environnement
aléatoire. C. R. Acad. Sci. Paris, Ser I, 332 (2001), 339-344.

B. Hambly.
On the limit distribution of a supercritical branching process in a random
environment. J. Appl. Prob., 29 (1992), 499-518.

Q. Liu.
Asymptotic properties and absolute continuity of laws stable by random weighted
mean. Stoch. Proc. Appl., 95 (2001), 83-107.

P. E. Ney, A. N. Vidyashanker.
Harmonic moments and large deviation rates for supercritical branching process.
Ann. Appl. Proba., 13 (2003), 475-489.

D. Tanny.
Limit theorems for branching processes in a random environment. Ann. Proba., 5
(1977), 100-116.

Chunmao HUANG Branching Process in Random Environment



Introduction
Main results

Proofs

Thank you !
chunmao.huang@cmap.polytechnique.fr

Chunmao HUANG Branching Process in Random Environment


	Introduction
	Main results
	Proofs 

