Branching Brownian motion seen from the tip

J. Berestycki ${ }^{1}$
${ }^{1}$ Laboratoire de Probabilité et Modèles Aléatoires, UPMC, Paris
$$
09 / 02 / 2011
$$

Joint work with Elie Aidekon, Eric Brunet and Zhan Shi

Outline

(1) BBM and FKPP

Outline

(1) BBM and FKPP

(2) BBM seen from the tip

Outline

(1) BBM and FKPP

(2) BBM seen from the tip

BBM

The model $=$ Particles $X_{1}(t), \ldots, X_{N(t)}(t)$ on \mathbb{R}

- Start with one particle at 0 .
- Movement $=$ independent Brownian motions
- Branching = at rate 1 into two new particles (more general possible).

Rightmost particle

Define $M(t)=\max _{i=1, \ldots, N(t)} X_{i}(t)$.
Theorem (Rightmost particle $M(t))$
$c^{*}=\sqrt{2}$.

- $\lim _{t \rightarrow \infty} \frac{M(t)}{t}=c^{*}$.
- $c^{*} t-M(t) \rightarrow \infty$ a.s.

Proof by martingale techniques

Rightmost particle

Define $M(t)=\max _{i=1, \ldots, N(t)} X_{i}(t)$. Define $u(t, x):=\mathbb{P}(M(t)<x)$.
Theorem (Rightmost particle $M(t))$
$c^{*}=\sqrt{2}$.

- $\lim _{t \rightarrow \infty} \frac{M(t)}{t}=c^{*}$.
- $c^{*} t-M(t) \rightarrow \infty$ a.s.

Proof by martingale techniques

Rightmost particle

Define $M(t)=\max _{i=1, \ldots, N(t)} X_{i}(t) . \quad$ Define $u(t, x):=\mathbb{P}(M(t)<x)$.

Theorem (Rightmost particle $M(t))$
$c^{*}=\sqrt{2}$.

- $\lim _{t \rightarrow \infty} \frac{M(t)}{t}=c^{*}$.
- $c^{*} t-M(t) \rightarrow \infty$ a.s.

Proof by martingale techniques

$$
\partial_{t} u=\frac{1}{2} \partial_{x}^{2} u+u(u-1)
$$

The map $u(t, x)=\mathbb{P}(M(t)<x)$ solves

$$
\operatorname{avec} 1-u(x, 0)=\left(\begin{array}{ll}
1 \varliminf_{0} \\
& \\
& \\
0
\end{array}\right)
$$

Rightmost particle

Define $M(t)=\max _{i=1, \ldots, N(t)} X_{i}(t) . \quad$ Define $u(t, x):=\mathbb{P}(M(t)<x)$.
Theorem (Rightmost particle $M(t))$
$c^{*}=\sqrt{2}$.

- $\lim _{t \rightarrow \infty} \frac{M(t)}{t}=c^{*}$.

$$
\partial_{t} u=\frac{1}{2} \partial_{x}^{2} u+u(u-1)
$$

- $c^{*} t-M(t) \rightarrow \infty$ a.s.

Proof by martingale techniques
The map $u(t, x)=\mathbb{P}(M(t)<x)$ solves

$$
\operatorname{avec} 1-u(x, 0)=\left(\begin{array}{l}
1 \bigsqcup_{0} \\
\\
\end{array}\right)
$$

Idea : Initial particle in 0 . After $d t$

- with proba $(1-d t)$ no split but diffuse : $u(t+d t, x) \mapsto u\left(t, x-\xi_{t}\right)$
- with proba $d t$ branch $u(t+d t, x) \mapsto u(t, x)^{2}$

Bramson's result

Define m_{t} by $u\left(t, m_{t}\right)=1 / 2$. i.e. m_{t} is the median of $M(t)$ (results still valid if we take the expectation).
KPP '37

$$
u\left(t, m_{t}+x\right) \rightarrow w(x) \text { unif. in } x \text { as } t \rightarrow \infty
$$

where $m_{t}=\sqrt{2} t+a(t)$ and $a(t) \rightarrow-\infty$. (McKean shows that $\left.a(t) \ll-2^{-3 / 2} \log t\right)$ and w solution to $\frac{1}{2} w^{\prime \prime}+\sqrt{2} w^{\prime}+\left(w^{2}-w\right)=0$. Purely analytical method.

Bramson's result

Define m_{t} by $u\left(t, m_{t}\right)=1 / 2$. i.e. m_{t} is the median of $M(t)$ (results still valid if we take the expectation).
KPP '37

$$
u\left(t, m_{t}+x\right) \rightarrow w(x) \text { unif. in } x \text { as } t \rightarrow \infty
$$

where $m_{t}=\sqrt{2} t+a(t)$ and $a(t) \rightarrow-\infty$. (McKean shows that $\left.a(t) \ll-2^{-3 / 2} \log t\right)$ and w solution to $\frac{1}{2} w^{\prime \prime}+\sqrt{2} w^{\prime}+\left(w^{2}-w\right)=0$. Purely analytical method.
Bramson '83 $m_{t}=\sqrt{2} t-\frac{3}{2^{3 / 2}} \log t+c+o_{t}(1)$

Bramson's result

Define m_{t} by $u\left(t, m_{t}\right)=1 / 2$. i.e. m_{t} is the median of $M(t)$ (results still valid if we take the expectation).
KPP '37

$$
u\left(t, m_{t}+x\right) \rightarrow w(x) \text { unif. in } x \text { as } t \rightarrow \infty
$$

where $m_{t}=\sqrt{2} t+a(t)$ and $a(t) \rightarrow-\infty$. (McKean shows that $\left.a(t) \ll-2^{-3 / 2} \log t\right)$ and w solution to $\frac{1}{2} w^{\prime \prime}+\sqrt{2} w^{\prime}+\left(w^{2}-w\right)=0$. Purely analytical method.
Bramson '83 $m_{t}=\sqrt{2} t-\frac{3}{2^{3 / 2}} \log t+c+o_{t}(1)$
If change initial condition from $\left(\begin{array}{ll}1- & \\ & L_{0}\end{array}\right)$, to $\left(\begin{array}{ll}1 \\ \square & L_{0}\end{array}\right)$ Then only the constant c changes

Bramson's result

Define m_{t} by $u\left(t, m_{t}\right)=1 / 2$. i.e. m_{t} is the median of $M(t)$ (results still valid if we take the expectation).
KPP '37

$$
u\left(t, m_{t}+x\right) \rightarrow w(x) \text { unif. in } x \text { as } t \rightarrow \infty
$$

where $m_{t}=\sqrt{2} t+a(t)$ and $a(t) \rightarrow-\infty$. (McKean shows that $\left.a(t) \ll-2^{-3 / 2} \log t\right)$ and w solution to $\frac{1}{2} w^{\prime \prime}+\sqrt{2} w^{\prime}+\left(w^{2}-w\right)=0$. Purely analytical method.
Bramson '83 $m_{t}=\sqrt{2} t-\frac{3}{2^{3 / 2}} \log t+c+o_{t}(1)$
If change initial condition from $\left(\begin{array}{ll}1- \\ & L_{0} \\ & \\ & \end{array}\right)$, to $\left(\begin{array}{ll}1 \\ \square & L_{0}\end{array}\right)$ Then only the constant c changes Hence $\exists C_{B} \in \mathbb{R}$ such that

$$
M_{t}-\left(\sqrt{2} t-\frac{3}{2 \sqrt{2}} \log t+C_{B}\right) \rightarrow_{\text {dist }} W
$$

with $\mathbb{P}(W \leq x)=w(x)$.

Lalley-Sellke

KPP, Bramson $\Rightarrow \mathbb{P}\left(M_{t}-m_{t}<x\right) \rightarrow w(x)$ so $M_{t}-m_{t}$ converges in law to a variable with dist. w.

Lalley-Sellke

KPP, Bramson $\Rightarrow \mathbb{P}\left(M_{t}-m_{t}<x\right) \rightarrow w(x)$ so $M_{t}-m_{t}$ converges in law to a variable with dist. w.
Can't be ergodic i.e.

$$
\frac{1}{t} \int_{0}^{t} \mathbf{1}_{M_{s}<m_{s}+x} d s \nrightarrow w(x) \text { a.s. }
$$

Lalley-Sellke

KPP, Bramson $\Rightarrow \mathbb{P}\left(M_{t}-m_{t}<x\right) \rightarrow w(x)$ so $M_{t}-m_{t}$ converges in law to a variable with dist. w.
Can't be ergodic i.e.

$$
\frac{1}{t} \int_{0}^{t} \mathbf{1}_{M_{s}<m_{s}+x} d s \nrightarrow w(x) \text { a.s. }
$$

Suppose it holds. Then $t^{-1} \int_{0}^{t} \mathbf{1}_{M_{s}^{\times}<m_{s}+x} d s \rightarrow w(0)$ a.s. .

Lalley-Sellke

KPP, Bramson $\Rightarrow \mathbb{P}\left(M_{t}-m_{t}<x\right) \rightarrow w(x)$ so $M_{t}-m_{t}$ converges in law to a variable with dist. w.
Can't be ergodic i.e.

$$
\frac{1}{t} \int_{0}^{t} \mathbf{1}_{M_{s}<m_{s}+x} d s \nrightarrow w(x) \text { a.s. }
$$

Suppose it holds. Then $t^{-1} \int_{0}^{t} \mathbf{1}_{M_{s}^{\times}<m_{s}+x} d s \rightarrow w(0)$ a.s. . Start two independent BBM, one at x and one at 0 . Positive probability that they meet before any branching \rightarrow successfull coupling so $w(0)=w(x)$. Contradiction.

The derivative martingale

The derivative martingale

$$
Z(t)=\sum_{u \in N(t)}\left(\sqrt{2} t-X_{u}(t)\right) e^{\sqrt{2} X_{u}(t)-2 t}
$$

(additive martingale $W_{-\sqrt{2}}(t)=\sum_{u \in N(t)} e^{\sqrt{2} X_{u}(t)-2 t} \rightarrow 0$)
$Z:=\lim Z(t)$ exists, is finite and positive with proba. 1. Not UI.

The derivative martingale

The derivative martingale

$$
Z(t)=\sum_{u \in N(t)}\left(\sqrt{2} t-X_{u}(t)\right) e^{\sqrt{2} X_{u}(t)-2 t}
$$

(additive martingale $W_{-\sqrt{2}}(t)=\sum_{u \in N(t)} e^{\sqrt{2} X_{u}(t)-2 t} \rightarrow 0$)
$Z:=\lim Z(t)$ exists, is finite and positive with proba. 1. Not UI.
Theorem
$\exists C>0$ s.t. $\forall x \in \mathbb{R}$
$\lim _{s \rightarrow \infty} \lim _{t \rightarrow \infty} \mathbb{P}\left(M(t+s)-m(t+s) \leq x \mid \mathcal{F}_{s}\right)=\exp \left\{-C Z e^{-\sqrt{2} x}\right\}$, a.s.

The derivative martingale

The derivative martingale

$$
Z(t)=\sum_{u \in N(t)}\left(\sqrt{2} t-X_{u}(t)\right) e^{\sqrt{2} X_{u}(t)-2 t}
$$

(additive martingale $W_{-\sqrt{2}}(t)=\sum_{u \in N(t)} e^{\sqrt{2} X_{u}(t)-2 t} \rightarrow 0$)
$Z:=\lim Z(t)$ exists, is finite and positive with proba. 1. Not UI.
Theorem
$\exists C>0$ s.t. $\forall x \in \mathbb{R}$

$$
\lim _{s \rightarrow \infty} \lim _{t \rightarrow \infty} \mathbb{P}\left(M(t+s)-m(t+s) \leq x \mid \mathcal{F}_{s}\right)=\exp \left\{-C Z e^{-\sqrt{2} x}\right\}, \text { a.s. }
$$

Thus the TW has representation

$$
w(x)=\mathbb{E}\left[\exp \left\{-C Z e^{-\sqrt{2} x}\right\}\right]
$$

The derivative martingale

The derivative martingale

$$
Z(t)=\sum_{u \in N(t)}\left(\sqrt{2} t-X_{u}(t)\right) e^{\sqrt{2} X_{u}(t)-2 t}
$$

(additive martingale $W_{-\sqrt{2}}(t)=\sum_{u \in N(t)} e^{\sqrt{2} X_{u}(t)-2 t} \rightarrow 0$)
$Z:=\lim Z(t)$ exists, is finite and positive with proba. 1. Not UI.
Theorem
$\exists C>0$ s.t. $\forall x \in \mathbb{R}$
$\lim _{s \rightarrow \infty} \lim _{t \rightarrow \infty} \mathbb{P}\left(M(t+s)-m(t+s) \leq x \mid \mathcal{F}_{s}\right)=\exp \left\{-C Z e^{-\sqrt{2} x}\right\}$, a.s.
Thus the TW has representation

$$
w(x)=\mathbb{E}\left[\exp \left\{-C Z e^{-\sqrt{2} x}\right\}\right]
$$

$1-w(x) \sim C x e^{-\sqrt{2} x}$.

Structure of W

Suggests that, once we "know" Z,

$$
\mathbb{P}(M(t)-m(t) \leq x) \sim \exp \left\{-e^{-\sqrt{2} x+\log C Z}\right\}, \text { a.s. }
$$

so that $\mathbb{P}(\sqrt{2}(M(t)-m(t))-\log (C Z) \leq x) \rightarrow \exp \left(-e^{-x}\right)$ and hence

$$
M(t)-m(t)-2^{-1 / 2} \log (C Z) \rightarrow_{\text {dist }} 2^{-1 / 2} G
$$

where G is a Gumbel variable. $W={ }_{\text {dist }}(G+\log (C Z)) / \sqrt{2}$

Structure of W

Suggests that, once we "know" Z,

$$
\mathbb{P}(M(t)-m(t) \leq x) \sim \exp \left\{-e^{-\sqrt{2} x+\log C Z}\right\}, \text { a.s. }
$$

so that $\mathbb{P}(\sqrt{2}(M(t)-m(t))-\log (C Z) \leq x) \rightarrow \exp \left(-e^{-x}\right)$ and hence

$$
M(t)-m(t)-2^{-1 / 2} \log (C Z) \rightarrow_{\text {dist }} 2^{-1 / 2} G
$$

where G is a Gumbel variable. $W={ }_{\text {dist }}(G+\log (C Z)) / \sqrt{2}$

- Purple line is $m(t)$

Structure of W

Suggests that, once we "know" Z,

$$
\mathbb{P}(M(t)-m(t) \leq x) \sim \exp \left\{-e^{-\sqrt{2} x+\log C Z}\right\}, \text { a.s. }
$$

so that $\mathbb{P}(\sqrt{2}(M(t)-m(t))-\log (C Z) \leq x) \rightarrow \exp \left(-e^{-x}\right)$ and hence

$$
M(t)-m(t)-2^{-1 / 2} \log (C Z) \rightarrow_{\text {dist }} 2^{-1 / 2} G
$$

where G is a Gumbel variable. $W={ }_{\text {dist }}(G+\log (C Z)) / \sqrt{2}$

- Purple line is $m(t)$
- Because of early fluctuation a random delay is created $\left(2^{-1 / 2} \log (C Z)\right)$

Structure of W

Suggests that, once we "know" Z,

$$
\mathbb{P}(M(t)-m(t) \leq x) \sim \exp \left\{-e^{-\sqrt{2} x+\log C Z}\right\}, \text { a.s. }
$$

so that $\mathbb{P}(\sqrt{2}(M(t)-m(t))-\log (C Z) \leq x) \rightarrow \exp \left(-e^{-x}\right)$ and hence

$$
M(t)-m(t)-2^{-1 / 2} \log (C Z) \rightarrow_{\text {dist }} 2^{-1 / 2} G
$$

where G is a Gumbel variable. $W={ }_{\text {dist }}(G+\log (C Z)) / \sqrt{2}$

Outline

(1) BBM and FKPP

(2) BBM seen from the tip

Conjecture

Let $X_{1}(t)>X_{2}(t)>\ldots$ be the particles ordered by position at time t.

Conjecture

Let $X_{1}(t)>X_{2}(t)>\ldots$ be the particles ordered by position at time t. Lalley and Sellke conjecture that the point process of particles

$$
X_{i}(t)-m(t)+c-\log (C Z(t)) / \sqrt{2}
$$

converges to an equilibrium state.

Conjecture

Let $X_{1}(t)>X_{2}(t)>\ldots$ be the particles ordered by position at time t. Lalley and Sellke conjecture that the point process of particles

$$
X_{i}(t)-m(t)+c-\log (C Z(t)) / \sqrt{2}
$$

converges to an equilibrium state.
First we show a simple argument due to Brunet Derrida to show that the PP $X_{i}(t)-m(t)$ converges. Uses Bramson and McKean representation.

McKean Representation

Recall : $u(t, x):=\mathbb{P}(M(t)<x)$ solves $\partial_{t} u=\frac{1}{2} \partial_{x}^{2} u+u(u-1)$ with $1-u(x, 0)=\left(\begin{array}{ll}1- \\ & \\ 0\end{array}\right)$.
More generally, let $g: \mathbb{R} \mapsto[0,1]$ then
Theorem (McKean, 1975)
If $u: \mathbb{R} \times \mathbb{R}_{+} \mapsto[0,1]$ solves the FKPP equation

$$
\partial_{t} u=\frac{1}{2} \partial_{x}^{2} u+u(u-1)
$$

with initial condition $u(0, x)=g(x)$, then

$$
u(t, x)=\mathbb{E}\left[\prod_{u \in N(t)} g\left(X_{u}(t)+x\right)\right]
$$

McKean Representation

Recall : $u(t, x):=\mathbb{P}(M(t)<x)$ solves $\partial_{t} u=\frac{1}{2} \partial_{x}^{2} u+u(u-1)$ with $1-u(x, 0)=\left(\begin{array}{ll}1- \\ & \\ 0\end{array}\right)$.
More generally, let $g: \mathbb{R} \mapsto[0,1]$ then
Theorem (McKean, 1975)
If $u: \mathbb{R} \times \mathbb{R}_{+} \mapsto[0,1]$ solves the FKPP equation

$$
\partial_{t} u=\frac{1}{2} \partial_{x}^{2} u+u(u-1)
$$

with initial condition $u(0, x)=g(x)$, then

$$
u(t, x)=\mathbb{E}\left[\prod_{u \in N(t)} g\left(X_{u}(t)+x\right)\right]
$$

In general $\partial_{t} u=\frac{1}{2} \partial_{x}^{2} u+\beta(f(u)-u)$.

Brunet Derrida argument (seen from m_{t})

$$
\begin{aligned}
& H_{\phi}(x, t)=\mathbb{E}\left[\prod_{\phi} \phi\left(x-X_{u}(t)\right)\right], H_{\phi} \text { solves KPP with } \\
& H_{\phi}(x, 0)=\phi(x)
\end{aligned}
$$

- If $\phi H_{\phi}(x, t)=\mathbb{P}(M(t)<x)$
- If $\phi H_{\phi}(x, t)=\mathbb{E}\left[e^{-k N(x, t)}\right]$ with $N(x, t)=\# u: X_{u}(t)>x$.

Bramson: $H_{\phi}(m(t)+z, t) \rightarrow w(z+\delta(\phi))$.

Brunet Derrida argument (seen from m_{t})

$$
\begin{aligned}
H_{\phi}(x, t) & =\mathbb{E}\left[\prod_{\phi} \phi\left(x-X_{u}(t)\right)\right], H_{\phi} \text { solves KPP with } \\
H_{\phi}(x, 0) & =\phi(x)
\end{aligned}
$$

- If $\phi H_{\phi}(x, t)=\mathbb{P}(M(t)<x)$
- If $\phi H_{\phi}(x, t)=\mathbb{E}\left[e^{-k N(x, t)}\right]$ with $N(x, t)=\# u: X_{u}(t)>x$.
0
Bramson : $H_{\phi}(m(t)+z, t) \rightarrow w(z+\delta(\phi))$.
For any Borel set $A \subset \mathbb{R}$, the Laplace transform of $\#\left\{u: X_{u}(t) \in m(t)+A\right\}$ converges.

Theorem (Brunet Derrida 2010)

The point process of the particles seen from $m(t)$ converges in distribution as $t \rightarrow \infty$.

Not too hard to show : the limit point process $\left(X_{i}, i=1,2, \ldots\right)$ has the superposition property, i.e.

$$
\forall, \alpha, \beta \text { s.t. } e^{\alpha}+e^{\beta}=1: X^{\alpha}+X^{\beta}={ }_{d} X .
$$

Clearly the PPP $\left(e^{-x}\right)$ has this property. Who else?

Not too hard to show : the limit point process $\left(X_{i}, i=1,2, \ldots\right)$ has the superposition property, i.e.

$$
\forall, \alpha, \beta \text { s.t. } e^{\alpha}+e^{\beta}=1: X^{\alpha}+X^{\beta}={ }_{d} X
$$

Clearly the PPP $\left(e^{-x}\right)$ has this property. Who else ?

each atom is replaced by an iid copy of a point process

Maillard (2011) show those are the only superposable PP. What is the decoration of BBM ?

Not too hard to show : the limit point process $\left(X_{i}, i=1,2, \ldots\right)$ has the superposition property, i.e.

$$
\forall, \alpha, \beta \text { s.t. } e^{\alpha}+e^{\beta}=1: X^{\alpha}+X^{\beta}={ }_{d} X
$$

Clearly the PPP $\left(e^{-x}\right)$ has this property. Who else?
 each atom is replaced by an iid copy of a point process

Maillard (2011) show those are the only superposable PP. What is the decoration of BBM ?

Independently, Bovier, Arguin and Kestler 2010 obtain results that are similar to part of what follows. Seem to use \neq techniques.

Normalization

We do the following change of coordinates: we suppose that the Brownian motions have diffusion $\sigma^{2}=2$ and drift $\rho=2$. Instead of rightmost focus on leftmost.

Tilts the cone in which the BBM lives.
Left-most particle $m(t)=\frac{3}{2} \log t+C_{B}$.

Normalization

We do the following change of coordinates: we suppose that the Brownian motions have diffusion $\sigma^{2}=2$ and drift $\rho=2$. Instead of rightmost focus on leftmost.

Tilts the cone in which the BBM lives.
Left-most particle $m(t)=\frac{3}{2} \log t+C_{B}$.
In this framework

$$
Z(t):=\sum_{u \in N(t)} X_{u}(t) e^{-X_{u}(t)}
$$

is the derivative martingale. Recall its limit exists and is positive a.s.

BBM seen from the tip

$$
Y_{i}(t):=X_{i}(t)-m_{t}+\log (C Z), \quad 1 \leq i \leq N(t) .
$$

Theorem (Aidekon, B., Brunet, Shi '11)

As $t \rightarrow \infty$ the point process $\left(Y_{i}(t), 1 \leq i \leq N(t)\right)$ converges in distribution to the point process \mathcal{L} obtained as follows
(i) Define \mathcal{P} a Poisson point process on \mathbb{R}_{+}, with intensity measure $\frac{\sqrt{2}}{\sigma} e^{\sqrt{2} x / \sigma} d x$ where a is a constant.
(ii) For each atom x of \mathcal{P}, we attach a point process $x+\mathcal{Q}^{(x)}$ where $\mathcal{Q}^{(x)}$ are i.i.d. copies of a certain point process \mathcal{Q}.
(iii) \mathcal{L} is then the superposition of all the point processes $x+\mathcal{Q}^{(x)}$:

$$
\mathcal{L}:=\left\{x+y: x \in \mathcal{P} \cup\{0\}, y \in \mathcal{Q}^{(x)}\right\}
$$

Bovier Arguin and Kistler (2010) obtain a very similar result (and much more).

Structure of \mathcal{Q}

Structure of \mathcal{Q}

Structure of \mathcal{Q}

$\mathscr{N}_{x}(t)=\mathrm{BBM}$ at time t started from one ptc at x.
$\mathscr{N}_{x}^{*}(t)=$ BBM at time t conditioned to $\min \mathscr{N}_{x}^{*}(t)>0$ started from one ptc at x.

$$
G_{t}(x):=\mathbb{P}\left\{\min \mathscr{N}_{0}(t) \leq x\right\}
$$

so that $G_{t}\left(x+m_{t}\right) \rightarrow \mathbb{P}(\sigma W \leq x)$ by Bramson.

Law of Y.

$$
U_{v}^{(b)}:= \begin{cases}B_{v}, & \text { if } v \in\left[0, T_{b}\right], \\ b-R_{v-T_{b}}, & \text { if } v \geq T_{b} .\end{cases}
$$

Law of Y.

$$
U_{v}^{(b)}:= \begin{cases}B_{v}, & \text { if } v \in\left[0, T_{b}\right], \\ b-R_{v-T_{b}}, & \text { if } v \geq T_{b} .\end{cases}
$$

Take b random : $\mathbb{P}(b \in d x)=f(x) / c_{1}$ where

$$
\begin{equation*}
f(x):=\mathbb{E}\left[e^{-2 \lambda \int_{0}^{\infty} G_{v}\left(\sigma U_{v}^{(x)}\right) d v}\right] \tag{1}
\end{equation*}
$$

and $c_{1}=$ constant.

Law of Y.

$$
U_{v}^{(b)}:= \begin{cases}B_{v}, & \text { if } v \in\left[0, T_{b}\right], \\ b-R_{v-T_{b}}, & \text { if } v \geq T_{b} .\end{cases}
$$

Take b random : $\mathbb{P}(b \in d x)=f(x) / c_{1}$ where

$$
\begin{equation*}
f(x):=\mathbb{E}\left[e^{-2 \lambda \int_{0}^{\infty} G_{v}\left(\sigma U_{v}^{(x)}\right) d v}\right] \tag{1}
\end{equation*}
$$

and $c_{1}=$ constant.
Conditionally on b, Y has a density $/ U^{(b)}$ given by

$$
\begin{equation*}
\frac{1}{f(b)} e^{-2 \lambda \int_{0}^{\infty} G_{v}\left(\sigma U_{v}^{(b)}\right) d v} \tag{2}
\end{equation*}
$$

Structure of \mathcal{Q}

Theorem (Aidekon, B., Brunet, Shi '11)
Let $(Y(t), t \geq 0)$ be as above. Start independent BBMs $\mathscr{N}_{-Y(t)}^{*}(t)$ conditioned to finish to the right of $X_{1, t}$ along the path Y at rate $2 \lambda\left(1-\mathbb{P}\left(\min \mathscr{N}_{Y(t)}(t) \leq 0\right)\right) d t$. Then $\cup_{t \in \pi} \mathscr{N}_{-Y(t)}^{*}(t)$ is distributed as \mathcal{Q}.

$$
D(\zeta, t):=\cup_{\tau_{i} x_{1, t} \geq t-\zeta} \mathscr{N}_{t, X_{1, t}}^{(i)}
$$

particles born off $X_{1, t}$ less than ζ unit of time ago, then we have the following joint convergence in distribution
$\lim _{\zeta \rightarrow \infty} \lim _{t \rightarrow \infty}\left\{\left(X_{1, t}(t-s)-X_{1, t}(t), s \geq 0\right), D(\zeta, t)\right\}=\{(Y(s), s \geq 0), \mathcal{Q}\}$.

Structure of \mathcal{Q}

$$
I_{\zeta}(t)=\mathbb{E}\left\{\exp \left(-\sum_{i} \mathbf{1}_{t-\tau_{i}<\zeta} \sum_{j=1}^{n} \alpha_{j} \#\left[\mathcal{N}_{t, X_{1, t}}^{\tau_{i}} \cap\left(X_{1}(t)+A_{j}\right)\right]\right)\right\}
$$

Structure of \mathcal{Q}

$$
I_{\zeta}(t)=\mathbb{E}\left\{\exp \left(-\sum_{i} \mathbf{1}_{t-\tau_{i}<\zeta} \sum_{j=1}^{n} \alpha_{j} \#\left[\mathcal{N}_{t, X_{1, t}}^{\tau_{i}} \cap\left(X_{1}(t)+A_{j}\right)\right]\right)\right\}
$$

Theorem (Aidekon, B., Brunet, Shi '11)
$\forall \alpha_{j} \geq 0$ (for $1 \leq j \leq n$),
$\mathbb{E}\left\{e^{-\sum_{j=1}^{n} \alpha_{j} \mathcal{Q}\left(A_{j}\right)}\right\}=\lim _{\zeta \rightarrow \infty} \lim _{t \rightarrow \infty} I_{\zeta}(t)=\frac{\int_{0}^{\infty} \mathbb{E}\left(e^{-2 \lambda \int_{0}^{\infty} G_{v}^{*}\left(\sigma U_{v}^{(b)}\right) d v}\right) d b}{\int_{0}^{\infty} \mathbb{E}\left(e^{-2 \lambda \int_{0}^{\infty} G_{v}\left(\sigma U_{v}^{(b)}\right) d v}\right) d b}$,
where $G_{v}(x):=\mathbb{P}\{\min \mathcal{N}(v) \leq x\}$,
$G_{v}^{*}(x):=1-\mathbb{E}\left[e^{-\sum_{j=1}^{n} \alpha_{j} \#\left[\mathcal{N}(v) \cap\left(x+A_{j}\right)\right]} \mathbf{1}_{\{\min \mathcal{N}(v) \geq x\}}\right]$.

Define

$$
I(t):=\mathbb{E}\left\{F\left(X_{1, t}(s), s \in[0, t]\right)\right.
$$

$$
\left.\exp \left(-\sum_{i} f\left(t-\tau_{i}^{X_{1, t}}\right) \sum_{j=1}^{n} \alpha_{j} \#\left[\mathcal{N}_{t, X_{1, t}}^{\tau_{i}} \cap\left(X_{1}(t)+A_{j}\right)\right]\right)\right\}
$$

Define

$$
I(t):=\mathbb{E}\left\{F\left(X_{1, t}(s), s \in[0, t]\right)\right.
$$

$$
\left.\exp \left(-\sum_{i} f\left(t-\tau_{i}^{X_{1, t}}\right) \sum_{j=1}^{n} \alpha_{j} \#\left[\mathcal{N}_{t, X_{1, t}}^{\tau_{i}} \cap\left(X_{1}(t)+A_{j}\right)\right]\right)\right\}
$$

Define

$$
I(t):=\mathbb{E}\left\{F\left(X_{1, t}(s), s \in[0, t]\right)\right.
$$

$$
\left.\exp \left(-\sum_{i} f\left(t-\tau_{i}^{X_{1, t}}\right) \sum_{j=1}^{n} \alpha_{j} \#\left[\mathcal{N}_{t, X_{1, t}}^{\tau_{i}} \cap\left(X_{1}(t)+A_{j}\right)\right]\right)\right\}
$$

Theorem (Aidekon, B., Brunet, Shi '11)
We have $I(t)=\mathbb{E}\left[e^{\sigma B_{t}} F\left(\sigma B_{s}, s \in[0, t]\right) e^{-2 \lambda \int_{0}^{t}\left[1-\bar{G}_{t-s}^{(f)}\left(\sigma B_{t}-\sigma B_{s}\right)\right] s}\right]$, where B is $B M$.

Theorem (Aidekon, B., Brunet, Shi '11)
In particular, the path ($s \mapsto X_{1, t}(s), 0 \leq s \leq t$) is a standard Brownian motion in a potential :

$$
\begin{align*}
& \mathbb{E}\left[F\left(X_{1, t}(s), s \in[0, t]\right)\right] \\
& \quad=\mathbb{E}\left[e^{\sigma B_{t}} F\left(\sigma B_{s}, s \in[0, t]\right) e^{-2 \lambda} \int_{0}^{t} G_{t-s}\left(\sigma B_{t}-\sigma B_{s}\right) d s\right] . \tag{3}
\end{align*}
$$

path of the leftmost particle

path of the leftmost particle

Theorem (Aidekon, B., Brunet, Shi '11)

As $t \rightarrow \infty$ the point process $\left(Y_{i}(t), 1 \leq i \leq N(t)\right)$ converges in distribution to the point process \mathcal{L} obtained as follows
(i) Define \mathcal{P} a Poisson point process on \mathbb{R}_{+}, with intensity measure $\frac{\sqrt{2}}{\sigma} e^{\sqrt{2} x / \sigma} d x$ where a is a constant.
(ii) For each atom x of $\mathcal{P} \cup\{0\}$, we attach a point process $x+\mathcal{Q}^{(x)}$ where $\mathcal{Q}^{(x)}$ are i.i.d. copies of a certain point process \mathcal{Q}.
(iii) \mathcal{L} is then the superposition of all the point processes $x+\mathcal{Q}^{(x)}$: $\mathcal{L}:=\left\{x+y: x \in \mathcal{P} \cup\{0\}, y \in \mathcal{Q}^{(x)}\right\}$

With extreme value theory.

Idea : Fix $K>0$ large and stop particles when they hit k for the first time. (no escape).

$H_{k}=\#$ particles stoped at k

$$
\begin{equation*}
Z=\lim _{k \rightarrow \infty} 2^{-1 / 2} k e^{-k} H_{k} \tag{4}
\end{equation*}
$$

exists a.s., is in $(0, \infty)$.

Idea : Fix $K>0$ large and stop particles when they hit k for the first time. (no escape).

$H_{k}=\#$ particles stoped at k

$$
\begin{equation*}
Z=\lim _{k \rightarrow \infty} 2^{-1 / 2} k e^{-k} H_{k} \tag{4}
\end{equation*}
$$

exists a.s., is in $(0, \infty)$.
Start iid BBM so that $\forall u \in \mathcal{H}_{k}, X_{1}^{u}(t)={ }_{d} k+X_{1}\left(t-\xi_{k, u}\right)$, where $\xi_{k, u}=$ time when u reaches k. By Bramson $\forall k \geq 1, u \in \mathcal{H}_{k}$,

$$
X_{1}^{u}(t)-m_{t} \xrightarrow{\text { law }} k+W_{u}, \quad t \rightarrow \infty
$$

(see also Bovier Arguin and Kistler (2010) : extremal particles in BBM either branch at the very beginning or at the end)

Define

$$
\mathcal{P}_{k, \infty}^{*}:=\sum_{u \in \mathcal{H}_{k}} \delta_{k+W(u)+\log Z .} .
$$

Recall that $\mathcal{P}=$ PPP with intensity $a e^{x} d x$.

Proposition

$$
\mathcal{P}_{k, \infty}^{*} \rightarrow \mathcal{P}
$$

In the sense of convergence in distribution.

Take $\left(X_{i}, i \in \mathbb{N}\right)$ a sequence of i.i.d. r.v. such that

$$
\mathbb{P}\left(X_{i} \geq x\right) \sim C x e^{-x}, \text { as } x \rightarrow \infty
$$

Call $M_{n}=\max _{i=1, \ldots, n} X_{i}$ the record. Define $b_{n}=\log n+\log \log n$. Then

$$
\begin{aligned}
\mathbb{P}\left(M_{n}-b_{n} \leq y\right) & =\left(\mathbb{P}\left(X_{i} \leq y+b_{n}\right)\right)^{n} \\
& =\left(1-(1+o(1)) C\left(y+b_{n}\right) e^{-\left(y+b_{n}\right)}\right)^{n} \\
& \sim \exp \left(-n C\left(y+b_{n}\right) \frac{1}{n \log n} e^{-y}\right) \\
& \sim \exp \left(-C e^{-y}\right)
\end{aligned}
$$

Take $\left(X_{i}, i \in \mathbb{N}\right)$ a sequence of i.i.d. r.v. such that

$$
\mathbb{P}\left(X_{i} \geq x\right) \sim C x e^{-x}, \text { as } x \rightarrow \infty
$$

Call $M_{n}=\max _{i=1, \ldots, n} X_{i}$ the record. Define $b_{n}=\log n+\log \log n$. Then

$$
\begin{aligned}
\mathbb{P}\left(M_{n}-b_{n} \leq y\right) & =\left(\mathbb{P}\left(X_{i} \leq y+b_{n}\right)\right)^{n} \\
& =\left(1-(1+o(1)) C\left(y+b_{n}\right) e^{-\left(y+b_{n}\right)}\right)^{n} \\
& \sim \exp \left(-n C\left(y+b_{n}\right) \frac{1}{n \log n} e^{-y}\right) \\
& \sim \exp \left(-C e^{-y}\right)
\end{aligned}
$$

Therefore $\mathbb{P}\left(M_{n}-\left(b_{n}+\log C\right) \leq y\right) \sim \exp \left(-e^{-y}\right)$. By classical results the point process

$$
\zeta_{n}:=\sum_{i=1}^{n} \delta X_{i}-b_{n}-\log C
$$

converges in distribution to a Poisson point process on \mathbb{R} with intensity $e^{-x} d x$.

Recall that $\mathbb{P}(W \leq x) \sim C x e^{-x}$ so apply to

$$
\sum_{u \in \mathcal{H}_{k}} \delta_{W(u)+\left(\log H_{k}+\log \log H_{k}\right)+\log C}
$$

which converges in dist. to a PPP on \mathbb{R} with intensity $e^{x} d x$.

Recall that $\mathbb{P}(W \leq x) \sim C x e^{-x}$ so apply to

$$
\sum_{u \in \mathcal{H}_{k}} \delta_{W(u)+\left(\log H_{k}+\log \log H_{k}\right)+\log C}
$$

which converges in dist. to a PPP on \mathbb{R} with intensity $e^{x} d x$. Use $k 2^{-1 / 2} e^{-k} H_{k} \rightarrow Z$ to obtain

$$
H_{k} \sim \sigma k^{-1} e^{k} Z
$$

and therefore

$$
\log H_{k}+\log \log H_{k} \sim k+\log Z+c
$$

and hence

$$
\mathcal{P}_{k, \infty}^{*}=\sum_{u \in \mathcal{H}_{k}} \delta_{k+W(u)+\log Z}
$$

also converges (as $k \rightarrow \infty$) towards a PPP on \mathbb{R} with intensity $\frac{\sqrt{2}}{\sigma} e^{\sqrt{2} x / \sigma} d x$.
many-to-one

$$
W_{t}:=\sum_{u \in \mathscr{N}(t)} e^{-X(u)}, \quad t \geq 0
$$

is the additive martingale. Because critical not UI and $\rightarrow 0$.

$$
\mathbb{Q}_{\mathscr{F}_{t}}=W_{t} \bullet \mathbb{P}_{\mid \mathscr{F}_{t}} .
$$

Under \mathbb{Q} spine $=\mathrm{BM}$ drift (0), branch at rate 2 into two particles.

$$
\mathbb{Q}\left\{\Xi_{t}=u \mid \mathscr{F}_{t}\right\}=\frac{e^{-X(u)}}{W_{t}}
$$

For each $u \in \mathscr{N}(t), G_{u}=$ a r.v. in \mathcal{F}_{t}.

$$
\begin{aligned}
\mathbb{E}_{\mathbb{P}}\left[\sum_{u \in \mathscr{N}(t)} G_{u}\right] & =\mathbb{E}_{\mathbb{Q}}\left[\frac{1}{W_{t}} \sum_{u \in \mathscr{N}(t)} G_{u}\right] \\
& =\mathbb{E}_{\mathbb{Q}}\left[e^{X\left(\Xi_{t}\right)} G_{\equiv}\right] .
\end{aligned}
$$

Suppose that we want to check if \exists a path $X^{u}(s)$ with some property A

$$
\mathbb{P}\left(\exists|u|=t:\left(X^{u}(s), s \in[0, t]\right) \in A\right)=\mathbb{P}\left(e^{\sigma B_{t}} ;\left(\sigma B_{s}, s \in[0, t]\right) \in A\right) .
$$

path of the leftmost particle

$$
A_{t}(x):=E_{1}(x) \cap E_{2}(x) \cap E_{3}(x) \cap E_{4}(x)
$$

where the events E_{i} are defined by

$$
\begin{aligned}
& E_{1}(x):=\left\{\left|X_{1, t}-\frac{3}{2} \log t\right| \leq x\right\} \\
& E_{2}(x):=\left\{\min _{[0, t]} X_{1, t}(s) \geq-x, \min _{[t / 2, t]} X_{1, t}(s) \geq \frac{3}{2} \log t-x\right\} \\
& E_{3}(x):=\left\{\forall s \in[x, t / 2], X_{1, t}(s) \geq s^{1 / 3}\right\} \\
& E_{4}(x):=\left\{\forall s \in[t / 2, t-x], X_{1, t}(s)-X_{1, t} \in\left[(t-s)^{1 / 3},(t-s)^{2 / 3}\right]\right\} .
\end{aligned}
$$

the event E_{3}

Suppose we have $E_{1}(z)$ and $E_{2}(z)$ for z large enough. By the many-to-one lemma, we get

$$
\begin{aligned}
& \mathbb{P}\left(E_{3}(x)^{c}, E_{1}(z), E_{2}(z)\right) \\
& \leq e^{z} t^{3 / 2} \mathbb{P}\left\{\exists s \in[x, t / 2]: B_{s} \leq s^{1 / 3}, \min _{[0, t / 2]} B_{s} \geq-z\right. \\
&\left.\min _{t / 2, t} B_{s} \geq \frac{3}{2} \log t-z, B_{t} \leq \frac{3}{2} \log t+z\right\}
\end{aligned}
$$

Applying the Markov property at time $t / 2$, it yields that

$$
\begin{aligned}
& \mathbb{P}\left\{\exists s \in[x, t / 2]: B_{s} \leq s^{1 / 3}, \min _{[0, t / 2]} B_{s} \geq-z, \min _{t / 2, t} B_{s} \geq \frac{3}{2} \log t-z, B_{t} \leq \frac{3}{2} \log t+z\right\} \\
&= \mathbb{E}\left[\mathbf{1}_{\left\{\exists s \in[x, t / 2]: B_{s} \leq s^{1 / 3}\right\}} \mathbf{1}_{\left\{\min _{[0, t / 2]} B_{s} \geq-z\right\}}\right. \\
&\left.\mathbb{P}_{B_{t / 2}}\left\{\min _{s \in[0, t / 2]} B_{s} \geq \frac{3}{2} \log t-z, B_{t / 2} \leq \frac{3}{2} \log t+z\right\}\right] \\
& \leq c 2 z t^{-3 / 2} \mathbb{E}\left[\mathbf{1}_{\left\{\exists s \in[x, t / 2]: B_{s} \leq s^{1 / 3}\right\}} \mathbf{1}_{\left\{\min _{[0, t / 2]} B_{s} \geq-z\right\}}\left(B_{t / 2}-\frac{3}{2} \log t+z\right)\right] \\
& \leq c 2 z t^{-3 / 2} \mathbb{E}\left[\mathbf{1}_{\left\{\exists s \in[x, t / 2]: B_{s} \leq s^{1 / 3}\right\}} \mathbf{1}_{\left\{\min _{[0, t / 2]} B_{s} \geq-z\right\}}\left(B_{t / 2}+z\right)\right]
\end{aligned}
$$

where the second inequality comes from bound on
$\mathbb{P}\left\{\min _{s \in[0, t]} B_{s} \geq-x, B_{t} \leq-x+y\right\}$. We recognize the h-transform of the Bessel.

We end up with

$$
\begin{aligned}
\mathbb{P}\left(E_{3}(x)^{c}, E_{1}(z), E_{2}(z)\right) & \leq e^{z} c 2 z \mathbb{P}_{z}\left(\exists s \in[x, t / 2]: R_{s} \leq s^{1 / 3}\right) \\
& \leq e^{z} c 2 z \mathbb{P}_{z}\left(\exists s \geq x: R_{s} \leq s^{1 / 3}\right)
\end{aligned}
$$

which is less than ε for x large enough.

proof

Step 1: The process $V^{x}(t):=\prod_{u \in N(t)} w\left(\sqrt{2} t-X_{i}(t)+x\right)$ is a $\mathcal{F}_{t^{-}}$-martingale

proof

Step 1 : The process $V^{x}(t):=\prod_{u \in N(t)} w\left(\sqrt{2} t-X_{i}(t)+x\right)$ is a \mathcal{F}_{t}-martingale
Step 2 : $\sum_{u \in N(t)} e^{\sqrt{2} X_{u}(t)-2 t}$ is a positive martingale, converges to a finite value, so $\min _{u}\left(\sqrt{2} t-X_{u}(t)\right)=+\infty$ a.s.

proof

Step 1: The process $V^{x}(t):=\prod_{u \in N(t)} w\left(\sqrt{2} t-X_{i}(t)+x\right)$ is a $\mathcal{F}_{t^{-}}$-martingale
Step 2 : $\sum_{u \in N(t)} e^{\sqrt{2} X_{u}(t)-2 t}$ is a positive martingale, converges to a finite value, so $\min _{u}\left(\sqrt{2} t-X_{u}^{-x}(t)\right)=+\infty$ a.s.
Step 3: $1-w(y)=C y e^{-\sqrt{2} y}$.

$$
\begin{aligned}
\log V^{x}(t) & =\sum_{u \in N(t)} \log w\left(\sqrt{2} t-X_{i}(t)+x\right) \\
& \sim \sum_{u \in N(t)}-C\left(\sqrt{2} t-X_{i}(t)+x\right) e^{-2 t+\sqrt{2} x_{i}(t)-\sqrt{2} x} \\
& \sim-C Z(t) e^{-\sqrt{2} x}-C Y(t) x e^{-\sqrt{2} x}
\end{aligned}
$$

with $Y(t)=\sum_{u \in N(t)} e^{\sqrt{2} X_{i}(t)-2 t}$. Clearly $\lim Y / Z=0 . \lim Y(t)=Y \geq 0$ exists a.s. so $Z(t) \rightarrow \infty$ a.s. on the event $Y>0$, this $\Rightarrow V^{x}=0$. But since $\mathbb{E}\left(V^{x}\right)=w(x) \rightarrow 1$ when $x \rightarrow \infty, \mathbb{P}(Y>0)=0$.

proof 2

Step 4 : Thus $\lim Z(t)=-e^{\sqrt{2} x} C^{-1} \log V^{x}$. We conclude that $\lim Z(t)$ exists and >0 a.s.

$$
w(x)=\mathbb{E}\left[V^{x}(\infty)\right]=\mathbb{E}\left[\exp \left\{-C Z e^{-\sqrt{2} x}\right\}\right]
$$

proof 2

Step 4 : Thus $\lim Z(t)=-e^{\sqrt{2} x} C^{-1} \log V^{x}$. We conclude that $\lim Z(t)$ exists and >0 a.s.

$$
w(x)=\mathbb{E}\left[V^{x}(\infty)\right]=\mathbb{E}\left[\exp \left\{-C Z e^{-\sqrt{2} x}\right\}\right]
$$

Step 5 :
$\mathbb{P}\left(M(t+s) \leq m(t+s)+x \mid \mathcal{F}_{s}\right)=\prod_{u \in N(t)} u\left(t, x+m(t+s)-X_{u}(s)\right)$.

proof 2

Step 4 : Thus $\lim Z(t)=-e^{\sqrt{2} x} C^{-1} \log V^{x}$. We conclude that $\lim Z(t)$ exists and >0 a.s.

$$
w(x)=\mathbb{E}\left[V^{x}(\infty)\right]=\mathbb{E}\left[\exp \left\{-C Z e^{-\sqrt{2} x}\right\}\right]
$$

Step 5 :

$\mathbb{P}\left(M(t+s) \leq m(t+s)+x \mid \mathcal{F}_{s}\right)=\prod_{u \in N(t)} u\left(t, x+m(t+s)-X_{u}(s)\right)$.Recall that $u(t, x+m(t))=\mathbb{P}(M(t) \leq m(t)+x) \rightarrow w(x)$ and that $\lim _{t}(m(t+s)-m(t)-\sqrt{2} s)=0$

proof 2

Step 4 : Thus $\lim Z(t)=-e^{\sqrt{2} x} C^{-1} \log V^{x}$. We conclude that $\lim Z(t)$ exists and >0 a.s.

$$
w(x)=\mathbb{E}\left[V^{x}(\infty)\right]=\mathbb{E}\left[\exp \left\{-C Z e^{-\sqrt{2} x}\right\}\right]
$$

Step 5 :
$\mathbb{P}\left(M(t+s) \leq m(t+s)+x \mid \mathcal{F}_{s}\right)=\prod_{u \in N(t)} u\left(t, x+m(t+s)-X_{u}(s)\right)$.Recall that $u(t, x+m(t))=\mathbb{P}(M(t) \leq m(t)+x) \rightarrow w(x)$ and that $\lim _{t}(m(t+s)-m(t)-\sqrt{2} s)=0$ so that $\lim _{t} \mathbb{P}\left(M(t+s) \leq m(t+s)+x \mid \mathcal{F}_{s}\right)=\prod_{u \in N(t)} w\left(x+m(t+s)-X_{u}(s)-m(t)\right.$

$$
\begin{aligned}
& =\prod_{u \in N(t)} w\left(x+\sqrt{2} s-X_{u}(s)\right) \\
& :=V^{x}(s)
\end{aligned}
$$

