The tree-valued Fleming-Viot process with mutation and selection

Peter Pfaffelhuber University of Freiburg

Joint work with Andrej Depperschmidt and Andreas Greven

February 9th, 2011

Population genetic models

Populations of constant size have been modelled by

- Markov Chains (Wright-Fisher-model, Moran model)
- Diffusion approximations (Fisher-Wright diffusion)

$$dX = \alpha X(1-X)dt + \sqrt{X(1-X)}dW$$

or Measure-valued diffusions (Fleming-Viot superprocess)

New: Extend Fleming-Viot process by genealogical information → Tree-valued Fleming-Viot process

The Moran model with mutation and selection

Introduction

000000

Results

Introduction

The Moran model with mutation and selection

Results

Introduction

0000000

0000000

The Moran model with mutation and selection

0000000

The Moran model with mutation and selection

Goal: construct a tree-valued stochastic process $\mathcal{U} = (\mathcal{U}_t)_{t>0}$

- describe genealogical relationships dynamically
- make forward and backward picture implicit

Summary: The tree-valued Fleming-Viot process

- ▶ **Theorem:** The (Ω, Π) -martingale problem is well-posed. Its solution – the tree-valued Fleming-Viot process – arises as weak limit of tree-valued Moran models
- **Theorem:** Tree-valued processes for different α are absolutely continuous with respect to each other.
- ▶ Theorem: The measure-valued Fleming-Viot process is ergodic iff the tree-valued Fleming-Viot process is ergodic.
- ▶ **Theorem:** The distribution of R_{12}^{α} , the distance of **two** randomly sampled points in equilibrium, can be computed.

Formalizing genealogical trees

► Leaves in genealogical trees form a metric space; leaves are marked by elements of *I* (compact)

A tree is given by:

- (X, r) complete and separable **metric** space
- $r(x_1, x_2)$ defines the genealogical distance of individuals x_1 and x_2

Formalizing genealogical trees

 Leaves in genealogical trees form a metric space; leaves are marked by elements of I (compact)

A tree is given by:

$$(X, r)$$
 complete and separable **metric** space, $\mu \in \mathcal{P}(X)$

- $r(x_1, x_2)$ defines the genealogical distance of individuals x_1 and x2
- $\blacktriangleright \mu$ marks currently living individuals

 Leaves in genealogical trees form a metric space; leaves are marked by elements of I (compact)

A tree is given by:

$$(X,r)$$
 complete and separable **metric** space, $\mu \in \mathcal{P}(X \times I)$

- $r(x_1, x_2)$ defines the genealogical distance of individuals x_1 and x2
- $\triangleright \mu$ marks currently living individuals

Formalizing genealogical trees

 Leaves in genealogical trees form a metric space; leaves are marked by elements of I (compact)

State space of \mathcal{U} :

$$\mathbb{X} := \{ \text{isometry class of } (X, r, \mu) : \\ (X, r) \text{ complete and separable } \mathbf{metric} \text{ space}, \ \mu \in \mathcal{P}(X \times I) \}$$

- $r(x_1, x_2)$ defines the genealogical distance of individuals x_1 and x2
- $\triangleright \mu$ marks currently living individuals

Martingale Problem

Introduction

▶ Given: Markov process $\mathcal{X} = (\mathcal{X}_t)_{t \geq 0}$. The generator is

$$\Omega\Phi(x) := \lim_{h\to 0} \frac{1}{h} \mathbf{E}_x [\Phi(\mathcal{X}_h) - \Phi(x)].$$

Given: Operator Ω on Π . A solution of the (Ω,Π) -martingale problem is a process $\mathcal{X}=(\mathcal{X}_t)_{t\geq 0}$ if for all $\Phi \in \Pi$,

$$\left(\Phi(\mathcal{X}_t) - \int_0^t \Omega\Phi(\mathcal{X}_s) ds
ight)_{t\geq 0}$$

is a martingale. The MP is well-posed if there is exactly one such process.

Polynomials on $\mathcal{P}(I)$

Introduction

Π: functions of the form (polynomials)

$$\Phi(\qquad \mu) := \langle \mu^{\mathbb{N}}, \phi \rangle := \int \phi(\qquad \underline{u}) \mu^{\mathbb{N}} (d \quad \underline{u})$$

for $\underline{u} = (u_1, u_2, ...), \phi \in \mathcal{C}_b(I^{\mathbb{N}})$ depending on finitely many coordinates

▶ Π separates points in $\mathcal{P}(I)$

Polynomials on \mathbb{U}

Introduction

 Π : functions on $\mathbb U$ of the form (polynomials)

$$\Phi(X, r, \mu) := \langle \mu^{\mathbb{N}}, \phi \rangle := \int \phi(r(\underline{x}, \underline{x}), \underline{u}) \mu^{\mathbb{N}}(d(\underline{x}, \underline{u}))$$

for
$$(\underline{x},\underline{u}) = ((x_1,u_1),(x_2,u_2),\ldots), \phi \in \mathcal{C}_b(\mathbb{R}^{\binom{\mathbb{N}}{2}} \times I^{\mathbb{N}})$$
 depending on finitely many coordinates

▶ П separates points in X

$$\Omega := \qquad \quad \Omega^{\rm res} + \Omega^{\rm mut} + \Omega^{\rm sel}$$

- $ightharpoonup \Omega^{res}$: resampling
- Ω^{mut} : mutation
- $ightharpoonup \Omega^{sel}$: selection

Generator for the Fleming-Viot process: tree-valued

$$\Omega := \Omega^{\mathrm{grow}} {+} \Omega^{\mathrm{res}} + \Omega^{\mathrm{mut}} + \Omega^{\mathrm{sel}}$$

- $ightharpoonup \Omega^{grow}$: tree growth
- $ightharpoonup \Omega^{\text{res}}$: resampling

- $ightharpoonup \Omega^{\mathsf{mut}}$: mutation
- $ightharpoonup \Omega^{
 m sel}$: selection

When no resampling occurs the tree grows

Distances in the sample grow

$$\Omega^{\mathsf{grow}}\Phi(X,r,\mu) = \langle \mu^{\mathbb{N}}, \mathsf{div}\phi \rangle$$

with

$$\operatorname{div} \phi := 2 \sum_{i < j} \frac{\partial}{\partial r(x_i, x_j)} \phi(r(\underline{x}, \underline{x}), \underline{u})$$

$$\Omega^{ ext{res}} \Phi(\qquad \mu) := \sum_{\mathsf{k} < \mathsf{l}} \langle \mu^{\mathbb{N}}, \phi \circ heta_{\mathsf{k}, \mathsf{l}} - \phi
angle$$

with

$$(\theta_{k,l}(\underline{u}))_i := \begin{cases} u_i, & i \neq l \\ u_k, & i = l \end{cases}$$

Resampling: tree-valued

$$\Omega^{ ext{res}} \Phi(\mathsf{X},\mathsf{r},\!\mu) := \sum_{\mathsf{k} < \mathsf{l}} \langle \mu^{\mathbb{N}}, \phi \circ heta_{\mathsf{k},\mathsf{l}} - \phi
angle$$

with

Introduction

$$(\theta_{k,l}(\underline{u}))_i := \begin{cases} u_i, & i \neq l \\ u_k, & i = l \end{cases}$$

In addition.

$$(\theta_{k,l}r(\underline{x},\underline{x}))_{i,j} := \begin{cases} r(x_i,x_j), & \text{if } i,j \neq l, \\ r(x_i,x_k), & \text{if } j=l, \\ r(x_k,x_j), & \text{if } i=l, \end{cases}$$

Mutation: measure-valued

Introduction

- $\triangleright \vartheta$: total mutation rate
- $\vartheta \cdot \beta(u, dv)$: mutation rate from u to v

$$\Omega^{\mathsf{mut}}\Phi(\qquad \mu) = \vartheta \cdot \sum_{\mathsf{k}} \langle \mu^{\mathbb{N}}, \beta_{\mathsf{k}}\phi - \phi \rangle$$

Tree-valued FV process

0000000000000

with $\beta_k(\underline{u}, dv)$ acting on kth variable

- $\triangleright \vartheta$: total mutation rate
- $\vartheta \cdot \beta(u, dv)$: mutation rate from u to v

$$\Omega^{\mathsf{mut}}\Phi(\mathsf{X},\mathsf{r},\mu) = \vartheta \cdot \sum_{\mathsf{k}} \langle \mu^{\mathbb{N}}, \beta_{\mathsf{k}}\phi - \phi \rangle$$

Tree-valued FV process

0000000000000

with $\beta_k(\underline{u}, dv)$ acting on kth variable

- α: selection coefficient
- $\chi(u) \in [0,1]$: fitness of type u (continuous)

$$\Omega^{\mathrm{sel}}\Phi(\qquad \mu) := lpha \cdot \sum_{\mathsf{k}=1}^\mathsf{n} \langle \mu^\mathbb{N}, \chi_\mathsf{k} \cdot \phi - \chi_\mathsf{n+1} \cdot \phi
angle$$

where ϕ only depends on sample of size n with χ_k acting on kth variable

Selection: tree-valued

- α: selection coefficient
- $\chi(u) \in [0,1]$: fitness of type u (continuous)

$$\Omega^{\mathrm{sel}}\Phi(\mathsf{X},\mathsf{r},\!\mu) := lpha \cdot \sum_{\mathsf{k}=1}^\mathsf{n} \langle \mu^\mathbb{N}, \chi_\mathsf{k} \cdot \phi - \chi_\mathsf{n+1} \cdot \phi
angle$$

where ϕ only depends on sample of size n with χ_k acting on kth variable

- ▶ Why is selection the same as for measure-valued case?
- $ightharpoonup \Omega_N^{\text{sel}}$: generator for finite model of size N
- ϕ : only depends on first $\mathbf{n} \ll \mathbf{N}$ individuals

$$\Omega_{N}^{\text{sel}}\Phi(X,r,\mu) \approx \frac{\alpha}{N} \sum_{k,l=1}^{N} \langle \mu^{N}, \chi_{k}(\phi \circ \theta_{k,l} - \phi) \rangle
\approx \alpha \cdot \sum_{l=1}^{n} \langle \mu^{N}, \chi_{n+1}(\phi \circ \theta_{n+1,l} - \phi) \rangle
= \alpha \cdot \sum_{l=1}^{n} \langle \mu^{N}, \chi_{l} \cdot \phi - \chi_{n+1} \cdot \phi \rangle$$

- ▶ **Theorem:** The (Ω, Π) -martingale problem is well-posed. Its solution $\mathcal{X} = (\mathcal{X}_t)_{>0}$, $\mathcal{X}_t = (X_t, r_t, \mu_t)$ – the tree-valued Fleming-Viot process – arises as weak limit of tree-valued Moran models and satisfies:
 - ▶ $P(t \mapsto \mathcal{X}_t \text{ is continuous}) = 1$,
 - ▶ $P((X_t, r_t)$ is compact for all t > 0) = 1,
 - X is Feller (hence strong Markov)

Results

0000

Theorem: Let $\alpha, \alpha' \in \mathbb{R}$.

 ${\mathcal X}$ solution of (Ω,Π) -MP for selection coefficient α ,

$$\Psi(\qquad \mu) := (\alpha' - \alpha) \cdot \langle \mu^{\mathbb{N}}, \chi_1 \rangle$$

and

$$\mathcal{M} = \left(\Psi(\qquad \mu_t) - \Psi(\qquad \mu_0) - \int_0^t \Omega \Psi(\qquad \mu_s) ds \right)_{t \geq 0}.$$

Then, **Q**, defined by

$$\left. rac{d\mathbf{Q}}{d\mathbf{P}} \right|_{\mathcal{F}_t} = e^{\mathcal{M}_t - rac{1}{2}[\mathcal{M}]_t}$$

solves (Ω, Π) -MP for selection coefficient α'

Theorem: Let $\alpha, \alpha' \in \mathbb{R}$.

 ${\mathcal X}$ solution of (Ω,Π) -MP for selection coefficient α ,

$$\Psi(\mathsf{X},\mathsf{r},\mu) := (\alpha' - \alpha) \cdot \langle \mu^{\mathbb{N}}, \chi_1 \rangle$$

and

Introduction

$$\mathcal{M} = \left(\Psi(X_t, r_t, \mu_t) - \Psi(X_0, r_0, \mu_0) - \int_0^t \Omega \Psi(X_s, r_s, \mu_s) ds\right)_{t \geq 0}.$$

Then, **Q**, defined by

$$\left. rac{d\mathbf{Q}}{d\mathbf{P}} \right|_{\mathcal{F}_t} = e^{\mathcal{M}_t - rac{1}{2}[\mathcal{M}]_t}$$

solves (Ω, Π) -MP for selection coefficient α'

Long-time behavior

Introduction

Theorem:

The tree-valued Fleming-Viot process is ergodic iff the measure-valued Fleming-Viot process is ergodic

Application: distances is equilibrium

Theorem:

Introduction

- $I = \{\bullet, \bullet\}, \ \chi(u) = 1_{\{u = \bullet\}} \ (\bullet \text{ is fit, } \bullet \text{ is unfit)}$
- $\frac{\vartheta}{2}$: mutation rate \rightarrow and \rightarrow •
- \triangleright R_{12}^{α} : distance of two randomly sampled points in equilibrium

$$\mathbf{E}[e^{-\lambda R_{12}^{\alpha}/2}] = \frac{1}{1+\lambda} + \frac{4\vartheta(2+\lambda+2\vartheta)\lambda}{(1+\vartheta)(1+\lambda+\vartheta)(6+\lambda+\vartheta)(1+\lambda)(6+2\lambda+\vartheta)}\alpha^2 + \mathcal{O}(\alpha^3)$$

Proof: Use

$$\mathbf{E}[\Omega\langle\mu_{\infty}^{\mathbb{N}},e^{-\lambda r(x_1,x_2)/2}\rangle]=0$$

- Once the right state-space is chosen, construction of tree-valued Fleming-Viot process straight-forward
- Genealogical distances can be computed using generators
- ▶ Next step: Include recombination