Detection of spatial cluster using nearest neighbour distance

Avner Bar-Hen \& Mathieu Emily

Paris: October 2011

What is it?

Point process: $\mathrm{X}_{1}, \ldots, \mathrm{X}_{n}$ a set of n points observed in a window W of \mathbb{R}^{2} (position and n are random).

Example of statistic: number of points within a ball of radius r, distance between points, and so on ...

Statistical question is well defined
Clusters: areas with high concentration of points
first order statistic (eg intensity too high) ? second order (distance between points) ?

Statistical question is not defined

Few examples

- Epidemiology
- Ecology
- Imagery
- Earthquake
- Mines
- Astrophysic
- etc...

Scan statistic

- $\mathrm{L}(\mathrm{Z}, p, q)$ the likelihood of an area Z such that the probability of having a point within Z is q and the probability of having a point outside Z is p
- $\mathrm{H}_{0}: p=q$ versus $\mathrm{Hl}: q>p$
- $\lambda=\frac{S u p_{Z \in W, q>p} \mathrm{~L}(\mathrm{Z}, p, q)}{\mathrm{Sup} \mathrm{peW}_{\mathrm{W}, p=q} \mathrm{~L}(\mathrm{Z}, p, q)}$
- simulate λ under H_{0}
- questions : which Z , \# clusters, multiple tests , comput. burden

Example of scan statistic: Bernoulli model

Sane/Unsane. n_{W} : total number of cases within W and n_{Z} number of cases within $\mathrm{Z} \in \mathrm{W}$

- Under $\mathrm{H}_{0} \mathrm{~N}(\mathrm{~B}) \sim \mathscr{B}(\mu(\mathrm{B}), p)$ for all B
- Under $\mathrm{H}_{1} \mathrm{~N}(\mathrm{~B}) \sim \mathscr{B}(\mu(\mathrm{B}), p)$ for all $\mathrm{B} \in \mathrm{Z}$ and $\mathrm{N}(\mathrm{B}) \sim \mathscr{B}(\mu(\mathrm{B}), q)$ for all $\mathrm{B} \in \mathrm{Z}^{c}$
- $\mathrm{L}(\mathrm{Z}, p, q)=p^{n_{z}}(1-p)^{\mu(\mathrm{Z})-n_{z}} q^{n_{\mathrm{W}}-n_{z}}(1-q)^{\mu(\mathrm{W})-\mu(\mathrm{Z})-\left(n_{\mathrm{W}}-n_{\mathrm{Z}}\right)}$
- For Z fixed $\mathrm{L}(\mathrm{Z})=\max _{p>q} \mathrm{~L}(\mathrm{Z}, p, q)$ then:

$$
p=\frac{n_{\mathrm{Z}}}{\mu(\mathrm{Z})} \text { and } q=\frac{n_{\mathrm{W}}-n_{\mathrm{Z}}}{\mu(\mathrm{~W})-\mu(\mathrm{Z})}
$$

- and $\mathrm{L}_{0}=\left(\frac{n_{\mathrm{W}}}{\mu(\mathrm{W})}\right)^{n_{\mathrm{W}}}\left(\frac{\mu(\mathrm{W})-n_{\mathrm{W}}}{\mu(\mathrm{W})}\right)^{\mu(\mathrm{W})-n_{\mathrm{W}}}$
-

$$
\lambda=\frac{\sup _{\mathrm{Z} \in \mathrm{~W}} \mathrm{~L}(\mathrm{Z})}{\mathrm{L}_{0}}
$$

L_{0} obtained with simulations

- $\left(\mathrm{X}_{n, j}\right)_{j=1, \ldots, n-1} \sim \mathscr{U}[0,1]$
- spacings: $U_{n, j}=n\left(X_{n,(j)}-X_{n,(j-1)}\right)(\sim \beta(1, n-1) \rightarrow \exp (1)$ when $n \rightarrow+\infty$)

$$
d_{k}^{w}=d_{x} \times \mathrm{E}_{\mathrm{H}_{0}}\left(\mathrm{D}_{k} \mid \mathrm{X}_{(1)}=x_{(1)}, \ldots, \mathrm{X}_{(k)}=x_{(k)}\right)
$$

Proposal (1/2)

$\mathrm{D}_{i}=\operatorname{distance}\left(\mathrm{X}_{(i)}, \mathrm{X}_{(i+i)}\right) \quad 1 \leq i \leq n-1$,
$n-1$ vector of distances: $\left[\mathrm{D}_{1}, \ldots, \mathrm{D}_{n-1}\right]$
Probability that X_{2} at a distance D_{1} of $\mathrm{X}_{1}: \lambda \pi \mathrm{D}_{1}^{2}$ (surface of $\left.\mathscr{B}\left(\mathrm{X}_{1}, \mathrm{D}_{1}\right)\right)$

Probability that X_{3} at a distance D_{2} of $\mathrm{X}_{2}: \lambda \pi \mathrm{D}_{2}^{2}$ (surface of $\left.\mathscr{B}\left(\mathrm{X}_{2}, \mathrm{D}_{2}\right)\right)$

BUT Probability that X_{3} at a distance D_{2} of X_{2} conditionally on X_{1} : (surface of $\mathscr{B}\left(\mathrm{X}_{1}, \mathrm{D}_{1}\right)$) \backslash (surface of $\mathscr{B}\left(\mathrm{X}_{2}, \mathrm{D}_{2}\right)$)

Finally $\left[\mathrm{D}_{1}, \ldots, \mathrm{D}_{n-1}\right]$ becomes $\left[p_{1}, \ldots, p_{n-1}\right]$, vector of probabilities

Illustration : Paracou

Proposal (1/2): illustration

1

Proposal (1/2): illustration

Proposal (1/2): illustration

3

Proposal (1/2): illustration

Proposal (1/2): illustration

Proposal (1/2): illustration

Proposal (2/2) (Godehardt, 96)

For a given $d \in[0,1]$, connect X_{i} and X_{j} if $\left|\mathrm{X}_{i}-\mathrm{X}_{j}\right| \leq d$
Let C_{n} be the number of components in a random interval graph $\mathrm{G}_{n, d}$.

$$
\mathbb{P}\left(\mathrm{C}_{n}=r\right)=\sum_{j=r-1}^{\min (n-1,\lfloor 1 / d\rfloor)}\binom{n-1}{j}\binom{j}{r-1}(-1)^{j+r-1}(1-j d)^{n}
$$

for $r=1,2, \ldots, \min (n-1,\lfloor 1 / d\rfloor)+1$.
Expected number of components of size greater than m :
$\sum_{k=m+1}^{n} \mathbb{E}\left(C_{n}^{k}\right)=\sum_{j=0}^{\min (m+1,\lfloor 1 / d\rfloor)}\binom{m+1}{j}(-1)^{j}(1-j d)^{n}+(n-m) \sum_{j=0}^{\min (m,\lfloor 1 / d\rfloor)-1}\binom{m}{j}(-1)^{j}(1-(j+1) d)^{n}$

Proposal (2/2): illustration

Proposal (2/2): illustration

Dicorynia $\boldsymbol{-}$ Threshold $=0.1$ 24 Clusters

Proposal (2/2): illustration

Dicorynia - Threshold = 0.2
13 Clusters

Proposal (2/2): illustration

Dicorynia - Threshold $=0.3$ 9 Clusters

Proposal (2/2): illustration

Dicorynia - Threshold $=0.4$
7 Clusters

Proposal (2/2): illustration

Dicorynia - Threshold $=0.5$ 6 Clusters

Proposal (2/2): illustration

Dicorynia - Threshold $=0.7$ 6 Clusters

Proposal (2/2): illustration

Dicorynia

Angélique: scan statistic and Demattei's approach

Boco2

Boco7

Stability of the procedure : importance of the first point?

For a sequence $d_{1}<d_{2}<\ldots<d_{n}$, the connected components corresponds to a nested sequence of clusters (hierarchy)

Our proposal is equivalent to construct a hierarchical clustering based on minimum distance

Stability of the procedure : importance of the first point?

Comparison of the hierarchy based on the various starting points with Rand index :

$$
\mathrm{R}=\frac{\mathrm{a}+\mathrm{b}}{\binom{n}{2}}
$$

a : nb pairs in the same set in the two partitions ;
b : nb pairs not in the same set in the two partitions

Yet Another Problem

Point de départ 7 - Seuil 0

Seuil 0.4

Seuil 0.2

Seuil 0.6

Stability of the procedure : proposal

First idea: for each pair of points X, Y, mean over all paths of p_{XY}.

$$
d(\mathrm{~A}, \mathrm{~B})=\frac{p_{1}+p_{4}^{\prime}}{2}, d(\mathrm{C}, \mathrm{E})=p_{2}^{\prime}
$$

BUT unequal variance
Second idea: for each pair of points X, Y, mean over all paths of connecting probability of X and Y

$$
d(\mathrm{~A}, \mathrm{~B})=\frac{p_{1}+p_{4}^{\prime}}{2}, d(\mathrm{C}, \mathrm{E})=\frac{p_{2}^{\prime}+\max \left(p_{3}, p_{4}\right)}{2}
$$

Then connect X and Y if $d(\mathrm{X}, \mathrm{Y})<d$ (for a given d)
Resulting structure is no more a line but a graph

Evolution of the cluster with respect to the size

Dicorynia - Threshold $=0.01$

Law of the number of components for Erdös graph (with M. Koskas and N. Picard)

- Erdös' graph with n vertices and p the probability of having an edge
- connected components are sets of vertices with a path between all vertices of the component and no path with vertices outside the component
- $p_{k, n}$ probability of having k connected components among n vertices
- $p_{k, n}=\frac{1}{k} \sum_{l=1}^{n-(k-1)}\binom{n}{l} p_{1, l} p_{k-1, n-l} q^{l(n-l)}$
- $p_{1, n}=1-\sum_{k=2}^{n} p_{k, n}$
- $p_{k, n}=\frac{1}{k!} \sum_{\forall 1 \leq i \leq k, l_{i} \geq 1,}^{\forall 1,}\left(\begin{array}{c}l_{1}, l_{2}, \ldots, l_{k}\end{array}\right) p_{1, l_{1}} p_{1, l_{2}} \ldots p_{1, l_{k}} q^{\sum_{1 \leq a<b \leq k} l_{a} l_{b}+\cdots+l_{k}}$.
- $p_{1, n}=1-\sum_{d=2}^{n} \frac{1}{d!} \sum_{\substack{l_{1}+\ldots+l_{d}=n \\ l_{i} \geq 1}}\binom{n}{l_{1}, \ldots, l_{d}} p_{1, l_{1}} p_{1, l_{2}} \ldots p_{1, l_{d}} q^{\sum_{1 \leq a<b \leq d} l_{a} l_{b}}$

Related results

- Let K (the number of connected component) be a random variable taking integer values $1, \ldots, n$ with probability function defined by $p_{k, n}$, then:

$$
\mathbb{E}(\mathrm{K})=\sum_{l=1}^{n}\binom{n}{l} p_{1, l} q^{l(n-l)}
$$

- $p_{n, d}^{\prime}$ be the probability that the connected component including s is of size $d: p_{n, d}^{\prime}=\binom{n-1}{d-1} p_{1, d} q^{d(n-d)}$
- Let D (the size of a component) be a random variable taking integer values $1, \ldots, n$ with probability distribution function defined by $p_{n, d}^{\prime}$. Then

$$
\mathbb{E}\left(\mathrm{D}^{-1}\right)^{-1}=n / \mathbb{E}(\mathrm{K})
$$

Harmonic expectation of the size of a connected component taken at random is equal to the size of the graph divided by its expected number of connected components

Few practical remarks

- $p_{k, n}$ probability of having k connected components among n vertices
- $p_{k, n}=\frac{1}{k} \sum_{l=1}^{n-(k-1)}\binom{n}{l} p_{1, l} p_{k-1, n-l} q^{l(n-l)}$
- $p_{1, n}=1-\sum_{k=2}^{n} p_{k, n}$
- precision is an issue: difficult pour $n>30$
- Symbolic calculus: computational time increases

What about isolates?

$\mathrm{T}_{k, n, d}$ be the probability of having k connected components of size greater or equal than d.

$$
\mathrm{T}_{k, n, d}=\sum_{s=k d}^{n}\binom{n}{s} \mathrm{~T}_{k, s, d}^{\prime \prime} \sum_{k^{\prime}=\left\lceil\frac{n-s}{d-1}\right\rceil}^{n-s} \mathrm{~T}_{k^{\prime}, n-s, d-1}^{\prime} q^{s(n-s)}
$$

where $\lceil x\rceil=\min \{n \in \mathbb{Z}, n \geq x\}$ and

- $\mathrm{T}_{k, n, d}^{\prime \prime}$ is the probability of having k connected components of size greater or equal to d with no component of size strictly less that d,
- $\mathrm{T}_{k, n, d}^{\prime}$ is the probability of having k connected components of size smaller than d.

$$
\mathrm{T}_{k, n, d}^{\prime}=\frac{1}{k} \sum_{l=1}^{\min (d, n-1)}\binom{n}{l} p_{1, l} \mathrm{~T}_{k-1, n-l, d}^{\prime} q^{l(n-l)} \text { si } k d \geq n \geq k-1
$$

Angélique

Angélique

Law of the number of components for Erdös' graph for multivariate process

- Erdös' graph with c classes, $\mathrm{V}_{1}, \ldots, \mathrm{~V}_{c}$ of size $\left(n_{1}, \ldots, n_{c}\right)$
- Probability of connection $\mathrm{P}=\left(p_{i, j}\right)_{1 \leq i, j \leq c}$

$$
\begin{gathered}
p_{k, n_{1}, \ldots, n_{c}}=\frac{1}{k} \sum_{0 \leq l_{1} \leq n_{1}} \prod_{i=1}^{c}\binom{n_{i}}{l_{i}} p_{1, l_{1}, \ldots, l_{c}} p_{k-1, n_{1}-l_{1}, \ldots, n_{c}-l_{c}} \prod_{1 \leq i \leq j \leq c}\left(1-p_{i, j}\right)^{l_{i}\left(n_{j}-l_{j}\right)} \\
0 \leq l_{c} \leq n_{c}
\end{gathered}
$$

- Same computational burden..

What next?

- Computational issues
- Cut-off for the number of clusters
- Inhomogeneous Poisson Process
- Other suggestions

Thank you for your attention

