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What is it?

Point process: X1, . . . ,Xn a set of n points observed in a window W
of R2 (position and n are random).

Example of statistic: number of points within a ball of
radius r , distance between points, and so on ...

Statistical question is well defined

Clusters: areas with high concentration of points

first order statistic (eg intensity too high) ? second
order (distance between points) ?

Statistical question is not defined
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Few examples

Epidemiology

Ecology

Imagery

Earthquake

Mines

Astrophysic

etc...
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Scan statistic

L(Z, p, q) the likelihood of an area Z such that the probability of
having a point within Z is q and the probability of having a
point outside Z is p

H0 : p = q versus H1 : q > p

λ= SupZ∈W,q>p L(Z,p,q)
SupZ∈W,p=q L(Z,p,q)

simulate λ under H0

questions : which Z, # clusters, multiple tests , comput. burden

  

q = .02

p = .01
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Example of scan statistic: Bernoulli model

Sane/Unsane. nW : total number of cases within W and nZ number
of cases within Z ∈ W

Under H0 N(B) ∼B(µ(B), p) for all B

Under H1 N(B) ∼B(µ(B), p) for all B ∈ Z
and N(B) ∼B(µ(B), q) for all B ∈ Zc

L(Z, p, q) = pnz (1−p)µ(Z)−nz qnW−nz (1−q)µ(W)−µ(Z)−(nW−nZ)

For Z fixed L(Z) = maxp>q L(Z, p, q) then:
p = nZ

µ(Z) and q = nW−nZ
µ(W)−µ(Z)

and L0 =
(

nW
µ(W)

)nW
(
µ(W)−nW

µ(W)

)µ(W)−nW

λ= supZ∈W L(Z)

L0

L0 obtained with simulations
A. Bar-Hen & M. Emily Cluster detection



Transform R2 to R (Ch. Demattei)

(Xn, j ) j=1,...,n−1 ∼U [0,1]

spacings: Un, j = n(Xn,( j ) −Xn,( j−1)) (∼ β(1,n −1) → exp(1) when
n →+∞)

d w
k = dx ×EH0 (Dk |X(1) = x(1), . . . ,X(k) = x(k))
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Transform R2 to R (Ch. Demattei)
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Proposal (1/2)

Di = distance(X(i ),X(i+i )) 1 ≤ i ≤ n −1,

n −1 vector of distances: [D1, . . . ,Dn−1]

Probability that X2 at a distance D1 of X1 : λπD2
1 (surface of

B(X1,D1))

Probability that X3 at a distance D2 of X2 : λπD2
2 (surface of

B(X2,D2))

BUT Probability that X3 at a distance D2 of X2 conditionally on X1 :
(surface of B(X1,D1)) \ (surface of B(X2,D2))

Finally [D1, . . . ,Dn−1] becomes [p1, , . . . , pn−1], vector of probabilities
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Illustration : Paracou
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Proposal (1/2): illustration
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Proposal (1/2): illustration
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Proposal (1/2): illustration

3

●

●

●

●●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

A. Bar-Hen & M. Emily Cluster detection



Proposal (1/2): illustration
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Proposal (1/2): illustration
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Proposal (1/2): illustration
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Proposal (2/2) (Godehardt, 96)

For a given d ∈ [0,1], connect Xi and X j if |Xi −X j | ≤ d

Let Cn be the number of components in a random interval graph
Gn,d .

P(Cn = r ) =
min(n−1,b1/dc)∑

j=r−1

(
n −1

j

)(
j

r −1

)
(−1) j+r−1(1− j d)n

for r = 1,2, . . . ,min(n −1,b1/dc)+1.

Expected number of components of size greater than m:

n∑
k=m+1

E(Ck
n ) =

min(m+1,b1/dc)∑
j=0

(
m +1

j

)
(−1) j (1− j d)n+(n−m)

min(m,b1/dc)−1∑
j=0

(
m
j

)
(−1) j (1−( j+1)d)n
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Proposal (2/2): illustration
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Proposal (2/2): illustration
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Proposal (2/2): illustration
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Proposal (2/2): illustration
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Proposal (2/2): illustration
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Proposal (2/2): illustration
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Proposal (2/2): illustration
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Proposal (2/2): illustration
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Angélique: scan statistic and Demattei’s approach
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Boco2
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Boco7
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Stability of the procedure : importance of the first point ?

For a sequence d1 < d2 < . . . < dn , the connected components
corresponds to a nested sequence of clusters (hierarchy)

A B C D E

p2 p3 p1 p4

Our proposal is equivalent to construct a hierarchical clustering
based on minimum distance
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Stability of the procedure : importance of the first point ?

Comparison of the hierarchy based on the various starting points
with Rand index :

R = a+b(n
2

)
a: nb pairs in the same set in the two partitions ;
b: nb pairs not in the same set in the two partitions
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Yet Another Problem
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Stability of the procedure : proposal

A B C D E

p1 p2 p3 p4

D C E B A

p′1 p′2 p′3 p′4

First idea: for each pair of points X,Y, mean over all paths of pXY.

d(A,B) = p1 +p ′
4

2
, d(C,E) = p ′

2

BUT unequal variance
Second idea: for each pair of points X,Y, mean over all paths of

connecting probability of X and Y

d(A,B) = p1 +p ′
4

2
, d(C,E) = p ′

2 +max(p3, p4)

2
Then connect X and Y if d(X,Y) < d (for a given d)
Resulting structure is no more a line but a graph
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Evolution of the cluster with respect to the size
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Law of the number of components for Erdös graph (with
M. Koskas and N. Picard)

Erdös’ graph with n vertices and p the probability of having an
edge

connected components are sets of vertices with a path
between all vertices of the component and no path with
vertices outside the component

pk,n probability of having k connected components among n
vertices

pk,n = 1
k

∑n−(k−1)
l=1

(n
l

)
p1,l pk−1,n−l q l (n−l )

p1,n = 1−∑n
k=2 pk,n

pk,n = 1
k !

∑
∀1≤i≤k, li≥1,

l1+l2+···+lk=n

( n
l1,l2,...,lk

)
p1,l1 p1,l2 . . . p1,lk q

∑
1≤a<b≤k la lb .

p1,n = 1−∑n
d=2

1
d !

∑
l1+···+ld=n

li≥1

( n
l1,...,ld

)
p1,l1 p1,l2 . . . p1,ld q

∑
1≤a<b≤d la lb
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Related results

Let K (the number of connected component) be a random
variable taking integer values 1, . . . , n with probability function
defined by pk,n , then:

E(K) =
n∑

l=1

(
n

l

)
p1,l q l (n−l )

p ′
n,d be the probability that the connected component

including s is of size d : p ′
n,d = (n−1

d−1

)
p1,d qd(n−d)

Let D (the size of a component) be a random variable taking
integer values 1, . . . , n with probability distribution function
defined by p ′

n,d . Then

E(D−1)−1 = n/E(K)

Harmonic expectation of the size of a connected component
taken at random is equal to the size of the graph divided by its
expected number of connected components
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Few practical remarks

pk,n probability of having k connected components among n
vertices

pk,n = 1
k

∑n−(k−1)
l=1

(n
l

)
p1,l pk−1,n−l q l (n−l )

p1,n = 1−∑n
k=2 pk,n

precision is an issue: difficult pour n > 30

Symbolic calculus: computational time increases
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What about isolates ?

Tk,n,d be the probability of having k connected components of size
greater or equal than d .

Tk,n,d =
n∑

s=kd

(
n

s

)
T′′

k,s,d

n−s∑
k ′=⌈

n−s
d−1

⌉T′
k ′,n−s,d−1q s(n−s)

where dxe = min{n ∈Z,n ≥ x} and

T′′
k,n,d is the probability of having k connected components of

size greater or equal to d with no component of size strictly
less that d ,

T′
k,n,d is the probability of having k connected components of

size smaller than d .

T′
k,n,d = 1

k

∑min(d ,n−1)
l=1

(n
l

)
p1,l T′

k−1,n−l ,d q l (n−l ) si kd ≥ n ≥ k −1
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Angélique
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Law of the number of components for Erdös’ graph for
multivariate process

Erdös’ graph with c classes, V1, . . . , Vc of size (n1, . . . ,nc )

Probability of connection P = (
pi , j

)
1≤i , j≤c

pk,n1,...,nc =
1

k

∑
0≤l1≤n1

.

.

.
0≤lc≤nc

c∏
i=1

(
ni

li

)
p1,l1,...,lc pk−1,n1−l1,...,nc−lc

∏
1≤i≤ j≤c

(1−pi , j )li (n j−l j )

Same computational burden..

A. Bar-Hen & M. Emily Cluster detection



What next?

Computational issues

Cut-off for the number of clusters

Inhomogeneous Poisson Process

Other suggestions
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Thank you for your attention
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