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Evolution : Introduction

Evolution is the change over time in the types of individuals that are found in a
population

Natural Selection : Types that are “better adapted” to their natural
environment have more reproductive success.

Larger time scales : Better adapted types persist while the others become
extinct.

Suppose that the reproductive success of a type is characterized by a trait
(genotype/phenotype).

Processes like mutation and recombination (in sexual reproduction) add new trait
values into the population.

The individuals interact with the environment (competition for resources) and
with the rest of the population (predator-prey, host-parasite systems).

These interactions induce the selection mechanism.

This selection mechanism selects the trait values. Only the fit trait values survive
at larger time scales.

We want to understand mathematically how this evolutionary cycle works.
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Adaptive dynamics : Introduction

In adaptive dynamics, the feedback between the environment and the underlying
population dynamics is explicitly taken into account.

Models have the following characteristics.

Population exhibits asexual reproduction.

Work at the level of phenotypes. Only source of variation in trait values is
mutation.

Each trait value has an associated fitness value that changes with the population
dynamics. Hence the adaptive landscape for evolution is no longer fixed.

Typically we work under the following assumptions.

Assumption 1 : Mutations are rare. The probability of a mutation at the time of
birth is small.

Allows us to separate the time scale between the ecological dynamics and the
evolutionary dynamics.
Gives the selection mechanism enough time to select the advantageous trait values and
get rid of the deleterious trait values.

Assumption 2 : Population size is large.
Allows us to work with population density.
Makes models more tractable.
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Adaptive dynamics : The Trait Substitution Sequence (TSS)

We observe our process at the evolutionary time scale.

Initially the trait value φ0 is present in the population and the population
dynamics is at an equilibrium.

The current environment is set by the resident population.

Due to mutation, a new trait value φ1 arrives.

If this trait value is unfit in the current environment then it gets deleted quickly
by selection.

If this trait value is fit then it will initially enjoy supercritical growth. With a
positive probability, this new trait value may invade the population.

If invasion happens, the existing equilibrium gets disturbed and a new equilibrium
gets established. Then the whole cycle starts again.

We get a jump process over the space of equilibriums. This is called the TSS.
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Adaptive dynamics : The Trait Substitution Sequence (TSS)
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Adaptive dynamics : The Canonical Equation (CE)

We assume that there is no coexistence, then the population is monomorphic at
almost all times.
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We assume that there is no coexistence, then the population is monomorphic at
almost all times.

The process that gives the surviving trait value at any time is a jump process in
the trait space.

We can scale time and mutation step sizes to obtain an ordinary differential
equation in the trait space.
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Adaptive dynamics : The Canonical Equation (CE)

We assume that there is no coexistence, then the population is monomorphic at
almost all times.

The process that gives the surviving trait value at any time is a jump process in
the trait space.

We can scale time and mutation step sizes to obtain an ordinary differential
equation in the trait space.

This differential equation describes the evolution of advantageous trait values.
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Adaptive dynamics : Literature Survey

Seminal work : Hofbauer-Sigmund , Marrow-Law-Cannings, Metz-Nisbet-Geritz,
Metz-Geritz-Meszéna-Jacobs-Heerwaasden and Dieckmann-Law.
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Ankit Gupta Adaptive dynamics with function-valued traits



Adaptive dynamics : Literature Survey

Seminal work : Hofbauer-Sigmund , Marrow-Law-Cannings, Metz-Nisbet-Geritz,
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Starting with a discrete microscopic model, they showed how TSS and CE can be
obtained by taking the large population limit in a suitable way.

This mathematical framework was extended to populations with trait and age
structure by Tran and Méléard.
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Seminal work : Hofbauer-Sigmund , Marrow-Law-Cannings, Metz-Nisbet-Geritz,
Metz-Geritz-Meszéna-Jacobs-Heerwaasden and Dieckmann-Law.

Many macroscopic models were proposed by appealing to various biological
considerations.

For populations structured by a single vector-valued trait, these macroscopic
models were mathematically derived from individual-based-models by
Champagnat and Champagnat-Ferrière-Méléard.

Starting with a discrete microscopic model, they showed how TSS and CE can be
obtained by taking the large population limit in a suitable way.

This mathematical framework was extended to populations with trait and age
structure by Tran and Méléard.

In our case we consider infinite dimensional function-valued traits.

We use averaging techniques to construct the TSS. This technique works equally
well when the selection dynamics leads to coexistence or cyclic/chaotic attractors.
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Function-valued traits

Why are function-valued traits important ? Because the Biologists say so.
Dieckmann-Heino-Parvinen give the following examples.

Phenotypic plasticity : Function-valued trait is the reaction norm of an organism
that describes the phenotypic response to a particular set of environmental
conditions (temperature, salinity etc.)

Physiologically structured populations : The reproductive capabilities may vary
continuously with size/age/weight.

Resource utilization theory : Resources vary along a continuum. A
function-valued trait may describe the harvesting rate for each resource.
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Function-valued traits

Why are function-valued traits important ? Because the Biologists say so.
Dieckmann-Heino-Parvinen give the following examples.

Phenotypic plasticity : Function-valued trait is the reaction norm of an organism
that describes the phenotypic response to a particular set of environmental
conditions (temperature, salinity etc.)

Physiologically structured populations : The reproductive capabilities may vary
continuously with size/age/weight.

Resource utilization theory : Resources vary along a continuum. A
function-valued trait may describe the harvesting rate for each resource.

Apart from function-valued traits, the individuals in our model are also structured by :

Physical age.

Noise parameter that accounts for randomness in the environment.
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Ernande et. al. : Adaptive changes in harvested populations
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The individual based model

The function-valued trait belongs to a separable Hilbert space H.
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The individual based model

The function-valued trait belongs to a separable Hilbert space H.

The state of each individual at any time is given by a triple

(φ, a, θ) ∈ E := H× R+ × R.

Each individual has weight 1/K . Population at time t can be represented as a
point measure

XK (t) =
1

K

NK (t)
∑

i=1

δxi .

Ankit Gupta Adaptive dynamics with function-valued traits



The individual based model

The function-valued trait belongs to a separable Hilbert space H.

The state of each individual at any time is given by a triple

(φ, a, θ) ∈ E := H× R+ × R.

Each individual has weight 1/K . Population at time t can be represented as a
point measure

XK (t) =
1

K

NK (t)
∑

i=1

δxi .

For an individual with state x ∈ E in a population given by X :

Ankit Gupta Adaptive dynamics with function-valued traits



The individual based model

The function-valued trait belongs to a separable Hilbert space H.

The state of each individual at any time is given by a triple

(φ, a, θ) ∈ E := H× R+ × R.
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(

x,

∫

E
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The state of each individual at any time is given by a triple

(φ, a, θ) ∈ E := H× R+ × R.

Each individual has weight 1/K . Population at time t can be represented as a
point measure

XK (t) =
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NK (t)
∑
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For an individual with state x ∈ E in a population given by X :
Birth rate is

b (x,V ∗ X (x)) = b

(

x,

∫
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V (x, y)X (dy)

)

Death rate is

d (x,U ∗ X (x)) = d
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∫

E

U(x, y)X (dy)

)
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The individual based model

The function-valued trait belongs to a separable Hilbert space H.

The state of each individual at any time is given by a triple

(φ, a, θ) ∈ E := H× R+ × R.

Each individual has weight 1/K . Population at time t can be represented as a
point measure

XK (t) =
1

K

NK (t)
∑

i=1

δxi .

For an individual with state x ∈ E in a population given by X :
Birth rate is

b (x,V ∗ X (x)) = b

(

x,

∫

E

V (x, y)X (dy)

)

Death rate is

d (x,U ∗ X (x)) = d

(

x,

∫

E

U(x, y)X (dy)

)

.

The functions b, U and V are bounded while

sup
x∈E

d(x , u) ≤ d̄(1 + u).

Ankit Gupta Adaptive dynamics with function-valued traits



The individual based model : Generator

Birth Event : Suppose an individual with state x = (φ, a, θ) ∈ E produces an
offspring. The state of the offspring is x̄(h, ν) = (φ + h, 0, ν).
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The individual based model : Generator

Birth Event : Suppose an individual with state x = (φ, a, θ) ∈ E produces an
offspring. The state of the offspring is x̄(h, ν) = (φ + h, 0, ν).

Noise parameter : ν is chosen according to distribution Θ ∈ P(R).

No Mutation : h = 0 with probability (1− ukp(x)).

Mutation : With probability ukp(x), h is chosen according to distribution Ξ(x),
where Ξ is a transition probability kernel Ξ : E → P(H).
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The individual based model : Generator

Birth Event : Suppose an individual with state x = (φ, a, θ) ∈ E produces an
offspring. The state of the offspring is x̄(h, ν) = (φ + h, 0, ν).

Noise parameter : ν is chosen according to distribution Θ ∈ P(R).

No Mutation : h = 0 with probability (1− ukp(x)).

Mutation : With probability ukp(x), h is chosen according to distribution Ξ(x),
where Ξ is a transition probability kernel Ξ : E → P(H).

For any x ∈ E define, ΛK (x) ∈ P(H× R) as

ΛK (x , dh, dν) = (uK p(x)Ξ(x , dh) + (1 − uKp(x))δ0) Θ(dν).
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The individual based model : Generator

Birth Event : Suppose an individual with state x = (φ, a, θ) ∈ E produces an
offspring. The state of the offspring is x̄(h, ν) = (φ + h, 0, ν).

Noise parameter : ν is chosen according to distribution Θ ∈ P(R).

No Mutation : h = 0 with probability (1− ukp(x)).

Mutation : With probability ukp(x), h is chosen according to distribution Ξ(x),
where Ξ is a transition probability kernel Ξ : E → P(H).

For any x ∈ E define, ΛK (x) ∈ P(H× R) as

ΛK (x , dh, dν) = (uK p(x)Ξ(x , dh) + (1 − uKp(x))δ0) Θ(dν).

The process XK characterized by its generator LK . For Ff (X ) = F (〈f ,X 〉) we define

LKFf (X )

= F ′ (〈f ,X 〉)

〈

∂f

∂a
,X

〉

+ K

∫

E

d(x ,U ∗ X (x))

(

Ff

(

X −
1

K
δx

)

− Ff (X )

)

X (dx)

+ K

∫

E

b(x ,V ∗ X (x))

[
∫

H×R

(

Ff

(

X +
1

K
δx̄(h,ν)

)

− Ff (X )

)

ΛK (x , dh, dν)

]

X (dx).
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The rare mutation limit

Theorem (Deterministic Approximation)

Suppose that uK → 0 as K → ∞. Also assume that XK (0) ⇒ ξ(0). Then the

sequence {XK : K ≥ 1} converges weakly in D([0,∞),MF (E)) to the deterministic

continuous MF (E)-valued process ξ which is characterized by the following equation.

For all nice functions f : E → R

〈f , ξ(t)〉 = 〈f , ξ(0)〉 +

∫ t

0

〈

∂f

∂a
, ξ(s)

〉

ds −

∫ t

0

∫

E

d (x , (U ∗ ξ(s))(x)) f (x)ξ(s, dx)ds

+

∫ t

0

∫

E

b (x , (V ∗ ξ(s))(x))

(
∫

R

f (x̄(0, ν))Θ(dν)

)

ξ(s, dx)ds
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The rare mutation limit

Theorem (Deterministic Approximation)

Suppose that uK → 0 as K → ∞. Also assume that XK (0) ⇒ ξ(0). Then the

sequence {XK : K ≥ 1} converges weakly in D([0,∞),MF (E)) to the deterministic

continuous MF (E)-valued process ξ which is characterized by the following equation.

For all nice functions f : E → R

〈f , ξ(t)〉 = 〈f , ξ(0)〉 +

∫ t

0

〈

∂f

∂a
, ξ(s)

〉

ds −

∫ t

0

∫

E

d (x , (U ∗ ξ(s))(x)) f (x)ξ(s, dx)ds

+

∫ t

0

∫

E

b (x , (V ∗ ξ(s))(x))

(
∫

R

f (x̄(0, ν))Θ(dν)

)

ξ(s, dx)ds

The mutation term does not appear in the limit.

To prove the result we only have to worry about compact containment.

One can show that the total weight of mutants produced in any time interval
[0,T ] is O(uk ).

Ankit Gupta Adaptive dynamics with function-valued traits



Evolutionary time scale

Mutations happen at rate Kuk .
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Evolutionary time scale

Mutations happen at rate Kuk .

We assume that KuK → 0 and compress time by the factor of 1/Kuk .

ZK (t) = XK

(

t

KuK

)

.
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Evolutionary time scale

Mutations happen at rate Kuk .

We assume that KuK → 0 and compress time by the factor of 1/Kuk .

ZK (t) = XK

(

t

KuK

)

.

The generator of ZK is

L
KFf (Z) =

(

1

KuK

)

LKFf (Z)

=

∫

E

p(x)b
(

x ,V ∗ Z(x)
)

[
∫

R

∫

H

(

Ff

(

Z +
1

K
δx̄(h,ν)

)

− Ff (Z)

)

Ξ(x , dh)Θ(dν)

]

Z(dx)

+
1

KuK

[

F ′ (〈f ,Z〉)

〈

∂f

∂a
,Z

〉

+K

∫

E

(1− uKp(x))b(x ,V ∗ Z(x))

(
∫

R

(

Ff

(

Z +
1

K
δx̄(0,ν)

)

− Ff (Z)

)

Θ(dν)

)

Z(dx)

+K

∫

E

d(x ,U ∗ Z(x))

(

Ff

(

Z −
1

K
δx

)

− Ff (Z)

)

Z(dx)

]

= Mutation +

(

1

KuK

)

Population Dynamics.

Ankit Gupta Adaptive dynamics with function-valued traits



Evolutionary time scale

Let χK be the MP(H)-valued process such that if

χK (t) =
n

∑

i=1

δφi

then n mutant trait values {φ1, · · · , φn} have appeared in the population until
time t.
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Evolutionary time scale

Let χK be the MP(H)-valued process such that if

χK (t) =
n

∑

i=1

δφi

then n mutant trait values {φ1, · · · , φn} have appeared in the population until
time t.

Let ΓK be the occupation measure process of ZK . For any t ≥ 0 and
A ∈ B (MF (E))

ΓK ([0, t]× A) =

∫ t

0
1lA(Z

K (s))ds.
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Evolutionary time scale

Let χK be the MP(H)-valued process such that if

χK (t) =
n

∑

i=1

δφi

then n mutant trait values {φ1, · · · , φn} have appeared in the population until
time t.

Let ΓK be the occupation measure process of ZK . For any t ≥ 0 and
A ∈ B (MF (E))

ΓK ([0, t]× A) =

∫ t

0
1lA(Z

K (s))ds.

We will use the averaging techniques developed by Kurtz in 1992 to study the
behaviour of {

(

χK ,ΓK
)

} as K → ∞.
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Evolutionary time scale

Let χK be the MP(H)-valued process such that if

χK (t) =
n

∑

i=1

δφi

then n mutant trait values {φ1, · · · , φn} have appeared in the population until
time t.

Let ΓK be the occupation measure process of ZK . For any t ≥ 0 and
A ∈ B (MF (E))

ΓK ([0, t]× A) =

∫ t

0
1lA(Z

K (s))ds.

We will use the averaging techniques developed by Kurtz in 1992 to study the
behaviour of {

(

χK ,ΓK
)

} as K → ∞.

Tightness is easier to prove but convergence requires additional assumptions.
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Evolutionary time scale

Let χK be the MP(H)-valued process such that if

χK (t) =
n

∑

i=1

δφi

then n mutant trait values {φ1, · · · , φn} have appeared in the population until
time t.

Let ΓK be the occupation measure process of ZK . For any t ≥ 0 and
A ∈ B (MF (E))

ΓK ([0, t]× A) =

∫ t

0
1lA(Z

K (s))ds.

We will use the averaging techniques developed by Kurtz in 1992 to study the
behaviour of {

(

χK ,ΓK
)

} as K → ∞.

Tightness is easier to prove but convergence requires additional assumptions.

When we have convergence we get the TSS.
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More assumptions
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More assumptions

Remark (Metivier)

A subset A ⊂ H is relatively compact if and only if it is bounded and for every ǫ > 0,
there exists a finite dimensional vector space Gǫ such that

sup
φ∈A

d(φ,Gǫ) < ǫ.
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More assumptions

Remark (Metivier)

A subset A ⊂ H is relatively compact if and only if it is bounded and for every ǫ > 0,
there exists a finite dimensional vector space Gǫ such that

sup
φ∈A

d(φ,Gǫ) < ǫ.

Assumption

There exists a positive constant d > 0 such that for any (φ, a, θ) ∈ E and any

measure Z ∈ MF (E) we have

d((φ, a, θ),U ∗ Z(φ, a, θ)) ≥ d 〈1,Z〉+ d1(a)

where
∫ ∞

0
d1(a)da = ∞.
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More assumptions

Remark (Metivier)

A subset A ⊂ H is relatively compact if and only if it is bounded and for every ǫ > 0,
there exists a finite dimensional vector space Gǫ such that

sup
φ∈A

d(φ,Gǫ) < ǫ.

Assumption

There exists a positive constant d > 0 such that for any (φ, a, θ) ∈ E and any

measure Z ∈ MF (E) we have

d((φ, a, θ),U ∗ Z(φ, a, θ)) ≥ d 〈1,Z〉+ d1(a)

where
∫ ∞

0
d1(a)da = ∞.

For all ǫ > 0 there exists a ρǫ > 0 such that

sup
x∈E

Ξ (x , {h ∈ H : ‖h‖ ≥ ρǫ}) < ǫ.
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More assumptions

Remark (Metivier)

A subset A ⊂ H is relatively compact if and only if it is bounded and for every ǫ > 0,
there exists a finite dimensional vector space Gǫ such that

sup
φ∈A

d(φ,Gǫ) < ǫ.

Assumption

There exists a positive constant d > 0 such that for any (φ, a, θ) ∈ E and any

measure Z ∈ MF (E) we have

d((φ, a, θ),U ∗ Z(φ, a, θ)) ≥ d 〈1,Z〉+ d1(a)

where
∫ ∞

0
d1(a)da = ∞.

For all ǫ > 0 there exists a ρǫ > 0 such that

sup
x∈E

Ξ (x , {h ∈ H : ‖h‖ ≥ ρǫ}) < ǫ.

For all η, ǫ > 0 there exists a finite dimensional subspace Gη,ǫ ⊂ H such that

sup
x∈E

Ξ(x , {h ∈ H : d(h,Gη,ǫ) > η}) < ǫ.
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Averaging : Tightness

Under the above assumptions we have the following.

The total mass is bounded in expectation at all times.

sup
K≥1, t≥0

E

(

〈1,ZK (t)〉2
)

< ∞.
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Averaging : Tightness

Under the above assumptions we have the following.

The total mass is bounded in expectation at all times.

sup
K≥1, t≥0

E

(

〈1,ZK (t)〉2
)

< ∞.

The total number of mutants produced by time t is finite in expectation

sup
K≥1

E

(

〈1, χK (t)〉
)

≤ C(t) < ∞.
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Averaging : Tightness

Under the above assumptions we have the following.

The total mass is bounded in expectation at all times.

sup
K≥1, t≥0

E

(

〈1,ZK (t)〉2
)

< ∞.

The total number of mutants produced by time t is finite in expectation

sup
K≥1

E

(

〈1, χK (t)〉
)

≤ C(t) < ∞.

For any T , ǫ > 0 there exists a compact set KT
ǫ ⊂ MF (E) such that

sup
K≥1,t∈[0,T ]

P

(

ZK (t) /∈ KT
ǫ

)

≤ ǫ.
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Averaging : Tightness

Under the above assumptions we have the following.

The total mass is bounded in expectation at all times.

sup
K≥1, t≥0

E

(

〈1,ZK (t)〉2
)

< ∞.

The total number of mutants produced by time t is finite in expectation

sup
K≥1

E

(

〈1, χK (t)〉
)

≤ C(t) < ∞.

For any T , ǫ > 0 there exists a compact set KT
ǫ ⊂ MF (E) such that

sup
K≥1,t∈[0,T ]

P

(

ZK (t) /∈ KT
ǫ

)

≤ ǫ.

Hence for any t ∈ [0,T ]

inf
K≥1

E

(

ΓK ([0, t]×KT
ǫ )

)

≥ (1 − ǫ)t.
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Averaging : Tightness

Under the above assumptions we have the following.

The total mass is bounded in expectation at all times.

sup
K≥1, t≥0

E

(

〈1,ZK (t)〉2
)

< ∞.

The total number of mutants produced by time t is finite in expectation

sup
K≥1

E

(

〈1, χK (t)〉
)

≤ C(t) < ∞.

For any T , ǫ > 0 there exists a compact set KT
ǫ ⊂ MF (E) such that

sup
K≥1,t∈[0,T ]

P

(

ZK (t) /∈ KT
ǫ

)

≤ ǫ.

Hence for any t ∈ [0,T ]

inf
K≥1

E

(

ΓK ([0, t]×KT
ǫ )

)

≥ (1 − ǫ)t.

The sequence of random measures {ΓK } is relatively compact.
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Averaging : Tightness

For any continuous bounded function G : MP(H) → R,

M
χ,K
G

(t) = G(χK (t)) − G(χK (0)) −

∫ t

0

∫

E

b
(

x , (V ∗ ZK (s))(x)
)

p(x)

∫

H

(

G(χK (s) + δφ+h) − G(χK (s))
)

Ξ(x , dh)ZK (s, dx)ds

is a martingale. Here φ = PrH(x).
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Averaging : Tightness

For any continuous bounded function G : MP(H) → R,

M
χ,K
G

(t) = G(χK (t)) − G(χK (0)) −

∫ t

0

∫

E

b
(

x , (V ∗ ZK (s))(x)
)

p(x)

∫

H

(

G(χK (s) + δφ+h) − G(χK (s))
)

Ξ(x , dh)ZK (s, dx)ds

is a martingale. Here φ = PrH(x).

The process {χK} is tight in the space D ([0,T ],MP(H)).
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Averaging : Tightness

For any continuous bounded function G : MP(H) → R,

M
χ,K
G

(t) = G(χK (t)) − G(χK (0)) −

∫ t

0

∫

E

b
(

x , (V ∗ ZK (s))(x)
)

p(x)

∫

H

(

G(χK (s) + δφ+h) − G(χK (s))
)

Ξ(x , dh)ZK (s, dx)ds

is a martingale. Here φ = PrH(x).

The process {χK} is tight in the space D ([0,T ],MP(H)).

In fact {
(

χK ,ΓK
)

} is tight. Let (χ, Γ) be any limit point.
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Averaging : Tightness

For any continuous bounded function G : MP(H) → R,

M
χ,K
G

(t) = G(χK (t)) − G(χK (0)) −

∫ t

0

∫

E

b
(

x , (V ∗ ZK (s))(x)
)

p(x)

∫

H

(

G(χK (s) + δφ+h) − G(χK (s))
)

Ξ(x , dh)ZK (s, dx)ds

is a martingale. Here φ = PrH(x).

The process {χK} is tight in the space D ([0,T ],MP(H)).

In fact {
(

χK ,ΓK
)

} is tight. Let (χ, Γ) be any limit point.

Then the following is a martingale

M
χ
G
(t) = G(χ(t)) − G(χ(0)) −

∫ t

0

∫

MF (E )

[
∫

E

b (x ,V ∗ µ(x)) p(x)

∫

H

(

G(χ(s) + δφ+h)− G(χ(s))
)

Ξ(x , dh)µ(dx)

]

Γ(ds × dµ).
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Characterizing the limit

Define the population dynamics operator B by

BFf (µ) = F ′ (〈f , µ〉)

[〈

∂f

∂a
, µ

〉

+

∫

E

(

b(x ,V ∗ µ(x))

∫

R

f (x̄(0, ν))Θ(dν) − d(x ,U ∗ µ(x))f (x)

)

µ(dx)

]

.
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Characterizing the limit

Define the population dynamics operator B by

BFf (µ) = F ′ (〈f , µ〉)

[〈

∂f

∂a
, µ

〉

+

∫

E

(

b(x ,V ∗ µ(x))

∫

R

f (x̄(0, ν))Θ(dν) − d(x ,U ∗ µ(x))f (x)

)

µ(dx)

]

.

We can see that

Ff (Z
K (t)) − Ff (Z

K (0)) −

(

1

KuK

)
∫ t

0
BFf (Z

K (s))ds = MartingaleK (t) + ErrorK (t).
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Characterizing the limit

Define the population dynamics operator B by

BFf (µ) = F ′ (〈f , µ〉)

[〈

∂f

∂a
, µ

〉

+

∫

E

(

b(x ,V ∗ µ(x))

∫

R

f (x̄(0, ν))Θ(dν) − d(x ,U ∗ µ(x))f (x)

)

µ(dx)

]

.

We can see that

Ff (Z
K (t)) − Ff (Z

K (0)) −

(

1

KuK

)
∫ t

0
BFf (Z

K (s))ds = MartingaleK (t) + ErrorK (t).

Multiplying by KuK and passing to the limit gives
∫ t

0

∫

MF (E )
BFf (µ)Γ(ds × dµ) = 0 a.s.
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Characterizing the limit

Define the population dynamics operator B by

BFf (µ) = F ′ (〈f , µ〉)

[〈

∂f

∂a
, µ

〉

+

∫

E

(

b(x ,V ∗ µ(x))

∫

R

f (x̄(0, ν))Θ(dν) − d(x ,U ∗ µ(x))f (x)

)

µ(dx)

]

.

We can see that

Ff (Z
K (t)) − Ff (Z

K (0)) −

(

1

KuK

)
∫ t

0
BFf (Z

K (s))ds = MartingaleK (t) + ErrorK (t).

Multiplying by KuK and passing to the limit gives
∫ t

0

∫

MF (E )
BFf (µ)Γ(ds × dµ) = 0 a.s.

There exists a P(MF (E))-valued process γs such that Γ(ds × dµ) = γs (dµ)ds
a.s.
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Characterizing the limit

Define the population dynamics operator B by

BFf (µ) = F ′ (〈f , µ〉)

[〈

∂f

∂a
, µ

〉

+

∫

E

(

b(x ,V ∗ µ(x))

∫

R

f (x̄(0, ν))Θ(dν) − d(x ,U ∗ µ(x))f (x)

)

µ(dx)

]

.

We can see that

Ff (Z
K (t)) − Ff (Z

K (0)) −

(

1

KuK

)
∫ t

0
BFf (Z

K (s))ds = MartingaleK (t) + ErrorK (t).

Multiplying by KuK and passing to the limit gives
∫ t

0

∫

MF (E )
BFf (µ)Γ(ds × dµ) = 0 a.s.

There exists a P(MF (E))-valued process γs such that Γ(ds × dµ) = γs (dµ)ds
a.s.

Hence
∫ t

0

∫

MF (E )
BFf (µ)γs (dµ)ds = 0 a.s.
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Characterizing the limit

Taking the domain of B to be separable one can show that with probability 1,

∫

MF (E )
BFf (µ)γs (dµ) = 0 for all Ff ∈ D(B) and for a.e. s ≥ 0.
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Characterizing the limit

Taking the domain of B to be separable one can show that with probability 1,

∫

MF (E )
BFf (µ)γs (dµ) = 0 for all Ff ∈ D(B) and for a.e. s ≥ 0.

γs is the distribution of the distribution of population at time s.
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Characterizing the limit

Taking the domain of B to be separable one can show that with probability 1,

∫

MF (E )
BFf (µ)γs (dµ) = 0 for all Ff ∈ D(B) and for a.e. s ≥ 0.

γs is the distribution of the distribution of population at time s.

Above relation says that almost surely for almost every s, the distribution at time
s is stationary for the selection dynamics.
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Characterizing the limit

Taking the domain of B to be separable one can show that with probability 1,

∫

MF (E )
BFf (µ)γs (dµ) = 0 for all Ff ∈ D(B) and for a.e. s ≥ 0.

γs is the distribution of the distribution of population at time s.

Above relation says that almost surely for almost every s, the distribution at time
s is stationary for the selection dynamics.

We need to do more work to characterize the process γ.
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Characterizing the limit

Taking the domain of B to be separable one can show that with probability 1,

∫

MF (E )
BFf (µ)γs (dµ) = 0 for all Ff ∈ D(B) and for a.e. s ≥ 0.

γs is the distribution of the distribution of population at time s.

Above relation says that almost surely for almost every s, the distribution at time
s is stationary for the selection dynamics.

We need to do more work to characterize the process γ.

We know that the mutants arrive according to the process χ.
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Characterizing the limit

Taking the domain of B to be separable one can show that with probability 1,

∫

MF (E )
BFf (µ)γs (dµ) = 0 for all Ff ∈ D(B) and for a.e. s ≥ 0.

γs is the distribution of the distribution of population at time s.

Above relation says that almost surely for almost every s, the distribution at time
s is stationary for the selection dynamics.

We need to do more work to characterize the process γ.

We know that the mutants arrive according to the process χ.

To characterize the process γ we need to ensure the following :
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Characterizing the limit

Taking the domain of B to be separable one can show that with probability 1,

∫

MF (E )
BFf (µ)γs (dµ) = 0 for all Ff ∈ D(B) and for a.e. s ≥ 0.

γs is the distribution of the distribution of population at time s.

Above relation says that almost surely for almost every s, the distribution at time
s is stationary for the selection dynamics.

We need to do more work to characterize the process γ.

We know that the mutants arrive according to the process χ.

To characterize the process γ we need to ensure the following :

The process γ can only jump at a jump time of χ and it is constant otherwise.
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Characterizing the limit

Taking the domain of B to be separable one can show that with probability 1,

∫

MF (E )
BFf (µ)γs (dµ) = 0 for all Ff ∈ D(B) and for a.e. s ≥ 0.

γs is the distribution of the distribution of population at time s.

Above relation says that almost surely for almost every s, the distribution at time
s is stationary for the selection dynamics.

We need to do more work to characterize the process γ.

We know that the mutants arrive according to the process χ.

To characterize the process γ we need to ensure the following :

The process γ can only jump at a jump time of χ and it is constant otherwise.

The jump location is determined by the deterministic approximation.
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Characterizing the limit

Invasion 

Deterministic Approximation

Time τK βK
1

βK
2τ

ǫ

S
p
a
c
e
o
f
st
a
ti
o
n
a
ry

d
is
tr
ib
u
ti
o
n
s
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Characterizing the limit

For any finite set A ⊂ H define

MA
F (E) = {µ ∈ MF (E) : µ({h} × R+ × R) > 0 for all h ∈ A}
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Characterizing the limit

For any finite set A ⊂ H define

MA
F (E) = {µ ∈ MF (E) : µ({h} × R+ × R) > 0 for all h ∈ A}

Suppose πA ∈ P (MF (E)) is such that πA

(

MA
F
(E)

)

= 1 and

∫

MF (E )
BFf (µ)πA(dµ) = 0 for all Ff ∈ D(B).
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Characterizing the limit

For any finite set A ⊂ H define

MA
F (E) = {µ ∈ MF (E) : µ({h} × R+ × R) > 0 for all h ∈ A}

Suppose πA ∈ P (MF (E)) is such that πA

(

MA
F
(E)

)

= 1 and

∫

MF (E )
BFf (µ)πA(dµ) = 0 for all Ff ∈ D(B).

For φ ∈ H∩ Ac , let π̂A(φ) ∈ P (MF (E)) be a small perturbation of πA such that
under π̂A(φ) all the trait values in A ∪ {φ} coexist.
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Characterizing the limit

For any finite set A ⊂ H define

MA
F (E) = {µ ∈ MF (E) : µ({h} × R+ × R) > 0 for all h ∈ A}

Suppose πA ∈ P (MF (E)) is such that πA

(

MA
F
(E)

)

= 1 and

∫

MF (E )
BFf (µ)πA(dµ) = 0 for all Ff ∈ D(B).

For φ ∈ H∩ Ac , let π̂A(φ) ∈ P (MF (E)) be a small perturbation of πA such that
under π̂A(φ) all the trait values in A ∪ {φ} coexist.

Let {ξ(t) : t ≥ 0} be the Markov process determined by the generator B with
initial distribution π̂A(φ).
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Characterizing the limit

For any finite set A ⊂ H define

MA
F (E) = {µ ∈ MF (E) : µ({h} × R+ × R) > 0 for all h ∈ A}

Suppose πA ∈ P (MF (E)) is such that πA

(

MA
F
(E)

)

= 1 and

∫

MF (E )
BFf (µ)πA(dµ) = 0 for all Ff ∈ D(B).

For φ ∈ H∩ Ac , let π̂A(φ) ∈ P (MF (E)) be a small perturbation of πA such that
under π̂A(φ) all the trait values in A ∪ {φ} coexist.

Let {ξ(t) : t ≥ 0} be the Markov process determined by the generator B with
initial distribution π̂A(φ).

We assume that there exists a set A′ ⊂ A ∪ {φ} and a distribution
πA′ ∈ P (MF (E)) such that for any C ∈ B (MF (E)) we have

lim
t→∞

1

t

∫ t

0
1lC (ξ(s))ds = πA′ (C).
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Characterizing the limit

This assumption tells us the next stationary distribution if a mutant φ is able to
invade the environment set by the trait values in the set A.

Ankit Gupta Adaptive dynamics with function-valued traits



Characterizing the limit

This assumption tells us the next stationary distribution if a mutant φ is able to
invade the environment set by the trait values in the set A.

To allow a mutant enough time to invade the resident population (if it can):

logK ≪
1

Kuk
.
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Characterizing the limit

This assumption tells us the next stationary distribution if a mutant φ is able to
invade the environment set by the trait values in the set A.
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This assumption tells us the next stationary distribution if a mutant φ is able to
invade the environment set by the trait values in the set A.

To allow a mutant enough time to invade the resident population (if it can):

logK ≪
1

Kuk
.

To make sure that the resident population does not drift away stochastically from
the stationary distribution :

1

Kuk
≪ exp (CK) for any C > 0.

For any x ∈ E and Π ∈ P(MF (E)) we define

b̂(x : Π) =

∫

MF (E )
b (x ,V ∗ µ(x)) Π(dµ)

and

d̂(x : Π) =

∫

MF (E )
d (x ,U ∗ µ(x)) Π(dµ).
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Characterizing the limit

Expected number of children that a mutant with trait value φ will produce in its
lifetime in the environment Π is

R0(φ : Π) =

∫

R

∫

R+

b̂((φ, a, θ) : Π)e−
∫ a
0 d̂((φ,α,θ):Π)dαdadθ.
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Let {χ′
t : t ≥ 0} be a MP(H)-valued process that gives the values of the

surviving trait values at any time t.
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be defined as p(φ : Π) = 1− z where z is the smallest solution of the equation

∫

R

∫

R+

b̂((φ, a, θ) : Π)e((z−1)
∫ a
0 b̂((φ,α,θ):Π)dα−

∫ a
0 d̂((φ,α,θ):Π)dα)dadθ = 1.

Let {χ′
t : t ≥ 0} be a MP(H)-valued process that gives the values of the

surviving trait values at any time t.

We can now characterize {(χ′
t , γt) : t ≥ 0} as a MP(H) × P (MF (E))-valued

Markov process.

This would be the TSS in our setting.

If for all s ≥ 0, γs = δm̂s
, then we recover the TSS obtained in earlier literature.

In this case convergence is in the sense of finite dimensional distributions.
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