Diffusion approximation of a multilocus model with assortative mating

S. Lemaire, Université Paris-Sud

October 19, 2011

Joint work with A. Etheridge, Oxford University http://hal.archives-ouvertes.fr/hal-00560285
To appear in Electron. J. Probab.

Introduction

Question: What are the consequences of assortative mating on the evolution of the genetic composition of a population?

Outline:

1. Serva \& Peliti (1991) random mating model and Higgs \& Derrida (1992) modifications
2. Description of a Moran model with assortative mating
3. Approximation by a diffusion
4. Properties of the limiting diffusion
5. Extensions of the model

Random mating model (Serva \& Peliti, 1991)

Wright-Fisher type model

- Population of size N
- Diallelic model with n loci: an individual is represented by its type $\boldsymbol{i}=\left(i_{1}, \ldots, i_{n}\right) \in\{0,1\}^{n}$
- Random pairing: each individual α has 2 parents α_{1} and α_{2} randomly chosen from the previous generation.
random sampling of 2 individuals

Genetic distance (Serva \& Peliti, 1991)

Genetic distance between 2 individuals of type \boldsymbol{i} and \boldsymbol{j}

$$
d_{n}(\boldsymbol{i}, \boldsymbol{j})=\sum_{k=1}^{n}\left|\dot{i}_{k}-j_{k}\right| \text { (Hamming distance) }
$$

Genetic distance (Serva \& Peliti, 1991)

Genetic distance between 2 individuals of type \boldsymbol{i} and \boldsymbol{j}

$$
d_{n}(\boldsymbol{i}, \boldsymbol{j})=\sum_{k=1}^{n}\left|\dot{i}_{k}-j_{k}\right| \text { (Hamming distance) }
$$

$D_{t, n, N}$: Hamming distance between 2 individuals randomly sampled in the population at time t.

Genetic distance (Serva \& Peliti, 1991)

Genetic distance between 2 individuals of type \boldsymbol{i} and \boldsymbol{j}

$$
d_{n}(\boldsymbol{i}, \boldsymbol{j})=\sum_{k=1}^{n}\left|\dot{i}_{k}-j_{k}\right| \text { (Hamming distance) }
$$

$D_{t, n, N}$: Hamming distance between 2 individuals randomly sampled in the population at time t.

Asymptotic behavior.
Assume that $\mu_{N}=\frac{\mu}{N}$. Let t, n and N converge to $+\infty$.

- $E\left(\frac{1}{n} D_{t, n, N}\right) \rightarrow \lambda:=\frac{2 \mu}{1+4 \mu}$
- $\operatorname{Var}\left(\frac{1}{n} D_{t, n, N}\right) \rightarrow 0$.

Genetic distance (Serva \& Peliti, 1991)

Genetic distance between 2 individuals of type \boldsymbol{i} and \boldsymbol{j}

$$
d_{n}(\boldsymbol{i}, \boldsymbol{j})=\sum_{k=1}^{n}\left|\dot{i}_{k}-j_{k}\right| \text { (Hamming distance) }
$$

$D_{t, n, N}$: Hamming distance between 2 individuals randomly sampled in the population at time t.

Asymptotic behavior.
Assume that $\mu_{N}=\frac{\mu}{N}$. Let t, n and N converge to $+\infty$.

- $E\left(\frac{1}{n} D_{t, n, N}\right) \rightarrow \lambda:=\frac{2 \mu}{1+4 \mu}$
- $\operatorname{Var}\left(\frac{1}{n} D_{t, n, N}\right) \rightarrow 0$.
- If reproduction is possible only between 2 individuals of type \boldsymbol{i} and \boldsymbol{j} so that $\frac{1}{n} d_{n}(\boldsymbol{i}, \boldsymbol{j})<\lambda_{0}$ and if $\lambda_{0}<\lambda$ the population will never reach its natural equilibrium.

Species-Formation model (Higgs \& Derrida, 1992)

Modification of the previous model:

- Population of size N
- Diallelic model with n loci: an individual is represented by its type $\boldsymbol{i}=\left(i_{1}, \ldots, i_{n}\right) \in\{0,1\}^{n}$
- Random pairing: each individual α has 2 parents α_{1} and α_{2} randomly chosen from the previous generation.
- Free recombination: each allele of α is inherited from either α_{1} or α_{2} with probability $(1 / 2,1 / 2)$ independently at each locus.
- a mutation occurs with probability μ_{N} independently at each locus.

Species-Formation model (Higgs \& Derrida, 1992)

- Population of size N
- Diallelic model with n loci: an individual is represented by its type $\boldsymbol{i}=\left(i_{1}, \ldots, i_{n}\right) \in\{0,1\}^{n}$
- assortative pairing: each individual α has 2 parents α_{1} and α_{2} chosen from the previous generation
- α_{1} is chosen at random
- α_{2} is chosen only from those individuals having a Hamming distance smaller than $n \lambda_{0}$.
If impossible, α_{1} is discarded.
- Free recombination: each allele of α is inherited from either α_{1} or α_{2} with probability $(1 / 2,1 / 2)$ independently at each locus.
- a mutation occurs with probability μ_{N} independently at each locus.

Species-Formation model (Higgs \& Derrida, 1992)

The introduction of a cut off value λ_{0} leads to a partition into isolated subgroups they called 'species'.

Species: a member of a species A have

- Hamming distance smaller than $n \lambda_{0}$ with at least one member of A,
- Hamming distance greater than or equal to $n \lambda_{0}$ with each member of another species.

Species-Formation model (Higgs \& Derrida, 1992)

The introduction of a cut off value λ_{0} leads to a partition into isolated subgroups they called 'species'.

Species: a member of a species A have

- Hamming distance smaller than $n \lambda_{0}$ with at least one member of A,
- Hamming distance greater than or equal to $n \lambda_{0}$ with each member of another species.

Observations by simulations

- A continuous process of divisions into 'species' and extinctions.

Assortative mating Moran model

Modifications:

- Moran model: at each step, 2 individuals α_{1} and α_{2} are chosen in the population; α is removed and is replaced by an offspring of $\left(\alpha_{1}, \alpha_{2}\right)$.

Assortative mating Moran model

Modifications:

- Moran model: at each step, 2 individuals α_{1} and α_{2} are chosen in the population; α is removed and is replaced by an offspring of $\left(\alpha_{1}, \alpha_{2}\right)$.
- Assortment: let $s_{N, 0}, \ldots, s_{N, n} \geq 0$.
- α_{1} is chosen at random. Let \boldsymbol{i} denote its type.
- each individual of type \boldsymbol{j} have a probability $\propto\left(1+S_{N, d_{n}(i, j)}\right)$ to be α_{2}.

Assortative mating Moran model

Modifications:

- Moran model: at each step, 2 individuals α_{1} and α_{2} are chosen in the population; α is removed and is replaced by an offspring of $\left(\alpha_{1}, \alpha_{2}\right)$.
- Assortment: let $s_{N, 0}, \ldots, s_{N, n} \geq 0$.
- α_{1} is chosen at random. Let \boldsymbol{i} denote its type.
- each individual of type \boldsymbol{j} have a probability $\propto\left(1+s_{N, d_{n}(i, j)}\right)$ to be α_{2}.
- positive assortative mating if $s_{N, 0} \geq \ldots \geq s_{N, n}$.

Assortative mating Moran model

Modifications:

- Moran model: at each step, 2 individuals α_{1} and α_{2} are chosen in the population; α is removed and is replaced by an offspring of $\left(\alpha_{1}, \alpha_{2}\right)$.
- Assortment: let $s_{N, 0}, \ldots, s_{N, n} \geq 0$.
- α_{1} is chosen at random. Let \boldsymbol{i} denote its type.
- each individual of type \boldsymbol{j} have a probability $\propto\left(1+S_{N, d_{n}(i, j)}\right)$ to be α_{2}.
- positive assortative mating if $s_{N, 0} \geq \ldots \geq s_{N, n}$.

Other features are unchanged:

- free recombination
- mutation with probability μ_{N} independently at each locus.

Transition probabilities of the Markov chain $\left(Z_{t}^{(N)}\right)_{t}$

$Z_{t}^{(N)}(\boldsymbol{k})$: proportion of individuals of type $\boldsymbol{k} \in\{0,1\}^{n}$ at time t.
$Z_{t}^{(N)}:=\left\{Z_{t}^{(N)}(\boldsymbol{k}), \boldsymbol{k} \in\{0,1\}^{n}\right\}$ composition of the population at time t

- $\left(Z_{t}^{(N)}\right)_{t}$ is a Markov chain

Assume that $Z_{t}^{(N)}=z$.
In one step, one individual of type \boldsymbol{i} is removed and replaced by one individual of type $\boldsymbol{j} \neq \boldsymbol{i}$ with probability:
$\sum_{\boldsymbol{k}, \ell \in\{0,1\}^{n}} z(\boldsymbol{i}) \frac{\left(1+s_{N, d(i, \boldsymbol{k})}\right) z(\boldsymbol{k})}{1+\sum_{\boldsymbol{h}} s_{N, d(i, \boldsymbol{h})} z(\boldsymbol{h})} 2^{-d(\boldsymbol{i}, \boldsymbol{k})} \mathbf{1}_{\left\{\ell_{u} \in\left\{i_{u}, k_{u}\right\} \forall u\right\}} \mu_{N}^{d(\ell, j)}\left(1-\mu_{N}\right)^{n-d(\ell, j)}$.

Transition probabilities of the Markov chain $\left(Z_{t}^{(N)}\right)_{t}$

$Z_{t}^{(N)}(\boldsymbol{k})$: proportion of individuals of type $\boldsymbol{k} \in\{0,1\}^{n}$ at time t.
$Z_{t}^{(N)}:=\left\{Z_{t}^{(N)}(\boldsymbol{k}), \boldsymbol{k} \in\{0,1\}^{n}\right\}$ composition of the population at time t

- $\left(Z_{t}^{(N)}\right)_{t}$ is a Markov chain

Assume that $Z_{t}^{(N)}=z$.
In one step, one individual of type \boldsymbol{i} is removed and replaced by one individual of type $\boldsymbol{j} \neq \boldsymbol{i}$ with probability:
$\sum_{\boldsymbol{k}, \ell \in\{0,1\}^{n}} z(\boldsymbol{i}) \frac{\left(1+s_{N, d(i, \boldsymbol{k})}\right) z(\boldsymbol{k})}{1+\sum_{\boldsymbol{h}} s_{N, d(i, \boldsymbol{h})} z(\boldsymbol{h})} 2^{-d(\boldsymbol{i}, \boldsymbol{k})} \mathbf{1}_{\left\{\ell_{u} \in\left\{i_{u}, k_{u}\right\} \forall u\right\}} \mu_{N}^{d(\ell, j)}\left(1-\mu_{N}\right)^{n-d(\ell, j)}$.

Transition probabilities of the Markov chain $\left(Z_{t}^{(N)}\right)_{t}$

$Z_{t}^{(N)}(\boldsymbol{k})$: proportion of individuals of type $\boldsymbol{k} \in\{0,1\}^{n}$ at time t.
$Z_{t}^{(N)}:=\left\{Z_{t}^{(N)}(\boldsymbol{k}), \boldsymbol{k} \in\{0,1\}^{n}\right\}$ composition of the population at time t

- $\left(Z_{t}^{(N)}\right)_{t}$ is a Markov chain

Assume that $Z_{t}^{(N)}=z$.
In one step, one individual of type \boldsymbol{i} is removed and replaced by one individual of type $\boldsymbol{j} \neq \boldsymbol{i}$ with probability:
$\sum_{\boldsymbol{k}, \ell \in\{0,1\}^{n}} z(\boldsymbol{i}) \frac{\left(1+s_{N, d(i, k)}\right) z(\boldsymbol{k})}{1+\sum_{\boldsymbol{h}} s_{N, d(\boldsymbol{i}, \boldsymbol{h})} z(\boldsymbol{h})} 2^{-d(\boldsymbol{i}, \boldsymbol{k})} \mathbf{1}_{\left\{\ell_{u} \in\left\{i_{u}, k_{u}\right\} \forall u\right\}} \mu_{N}^{d(\ell, \boldsymbol{j})}\left(1-\mu_{N}\right)^{n-d(\ell, \boldsymbol{j})}$.

Transition probabilities of the Markov chain $\left(Z_{t}^{(N)}\right)_{t}$

$Z_{t}^{(N)}(\boldsymbol{k})$: proportion of individuals of type $\boldsymbol{k} \in\{0,1\}^{n}$ at time t.
$Z_{t}^{(N)}:=\left\{Z_{t}^{(N)}(\boldsymbol{k}), \boldsymbol{k} \in\{0,1\}^{n}\right\}$ composition of the population at time t

- $\left(Z_{t}^{(N)}\right)_{t}$ is a Markov chain

Assume that $Z_{t}^{(N)}=z$.
In one step, one individual of type \boldsymbol{i} is removed and replaced by one individual of type $\boldsymbol{j} \neq \boldsymbol{i}$ with probability:
$\sum_{\boldsymbol{k}, \ell \in\{0,1\}^{n}} z(\boldsymbol{i}) \frac{\left(1+s_{N, d(i, \boldsymbol{k})}\right) z(\boldsymbol{k})}{1+\sum_{\boldsymbol{h}} s_{N, d(i, \boldsymbol{h})} z(\boldsymbol{h})} 2^{-d(\boldsymbol{i}, \boldsymbol{k})} \mathbf{1}_{\left\{\ell_{u} \in\left\{i_{u}, k_{u}\right\} \forall u\right\}} \mu_{N}^{d(\ell, j)}\left(1-\mu_{N}\right)^{n-d(\ell, j)}$.

Transition probabilities of the Markov chain $\left(Z_{t}^{(N)}\right)_{t}$

$Z_{t}^{(N)}(\boldsymbol{k})$: proportion of individuals of type $\boldsymbol{k} \in\{0,1\}^{n}$ at time t.
$Z_{t}^{(N)}:=\left\{Z_{t}^{(N)}(\boldsymbol{k}), \boldsymbol{k} \in\{0,1\}^{n}\right\}$ composition of the population at time t

- $\left(Z_{t}^{(N)}\right)_{t}$ is a Markov chain

Assume that $Z_{t}^{(N)}=z$.
In one step, one individual of type \boldsymbol{i} is removed and replaced by one individual of type $\boldsymbol{j} \neq \boldsymbol{i}$ with probability:
$\sum_{\boldsymbol{k}, \ell \in\{0,1\}^{n}} z(\boldsymbol{i}) \frac{\left(1+s_{N, d(i, \boldsymbol{k})}\right) z(\boldsymbol{k})}{1+\sum_{\boldsymbol{h}} s_{N, d(i, \boldsymbol{h})} z(\boldsymbol{h})} 2^{-d(\boldsymbol{i}, \boldsymbol{k})} \mathbf{1}_{\left\{\ell_{u} \in\left\{i_{u}, k_{u}\right\} \forall u\right\}} \mu_{N}^{d(\ell, j)}\left(1-\mu_{N}\right)^{n-d(\ell, j)}$.

Diffusion approximation

Hyp: $\quad \mu_{N}=\frac{\mu}{N}$ and $s_{N, \ell}=\frac{s_{\ell}}{N} \forall \ell \in\{0, \ldots, n\}$

Diffusion approximation

Hyp: $\quad \mu_{N}=\frac{\mu}{N}$ and $s_{N, \ell}=\frac{s_{\ell}}{N} \forall \ell \in\{0, \ldots, n\}$
The one-locus case Let $Z_{t}^{(N)}$ be the proportion of individuals with 0 -allele at time $t \in \mathbb{N}$.

- $E_{z}\left(Z_{1}^{(N)}-z\right)=\frac{1}{N^{2}}\left((1-2 z) \mu+z(1-z)(1 / 2-z)\left(s_{1}-s_{0}\right)\right)+O\left(1 / N^{3}\right)$
- $E_{z}\left(\left(Z_{1}^{(N)}-z\right)^{2}\right)=\frac{1}{N^{2}} z(1-z)+O\left(1 / N^{3}\right)$
- $E_{z}\left(\left(Z_{1}^{(N)}-z\right)^{4}\right)=O\left(1 / N^{4}\right)$

Diffusion approximation
If $Z_{0}^{(N)} \Rightarrow Z_{0}$, then $\left(Z_{\left[N^{2} t\right]}^{(N)}\right)_{t}^{D_{[0,1]}([0, \infty))} Z$ diffusion with generator \mathcal{G}_{1} :
$\mathcal{G}_{1}=\frac{1}{2} x(1-x) \frac{d^{2}}{d x^{2}}+\left((1-2 x) \mu+\left(s_{1}-s_{0}\right)(1 / 2-x) x(1-x)\right) \frac{d}{d x}$ $\mathcal{D}\left(\mathcal{G}_{1}\right)=C^{2}([0,1])$.

Wright-Fisher diffusion with selection and mutation

$$
\begin{aligned}
& \mathcal{G}_{1}=\frac{1}{2} x(1-x) \frac{d^{2}}{d x^{2}}+\left((1-2 x) \mu+\left(s_{1}-s_{0}\right)(1 / 2-x) x(1-x)\right) \frac{d}{d x} \\
& \mathcal{D}\left(\mathcal{G}_{1}\right)=C^{2}([0,1]) .
\end{aligned}
$$

Another one-locus discrete model

- Diploid population of size N (identified as a $2 N$ haploid population)
- Wright-Fisher model with
- viability coefficients:

$$
w_{0,1}^{(N)}=w_{1,0}^{(N)}=1+\frac{s_{1}}{4 N} \quad \text { and } \quad w_{0,0}^{(N)}=w_{1,1}^{(N)}=1+\frac{s_{0}}{4 N} .
$$

- mutation probability: $\frac{\mu}{2 N}$.
- Approximation of the 0 -allele frequency at time $[2 \mathrm{Nt}]$ by a diffusion with generator \mathcal{G}_{1}.

Properties of the one-locus diffusion

$$
\mathcal{G}_{1}=\frac{1}{2} x(1-x) \frac{d^{2}}{d x^{2}}+\left((1-2 x) \mu+\left(s_{1}-s_{0}\right)(1 / 2-x) x(1-x)\right) \frac{d}{d x}
$$

- If $\mu>0$, the diffusion has a reversible measure with density

$$
g_{\mu, s}(x)=C_{\mu, s}(x(1-x))^{2 \mu-1} \exp \left(\left(s_{1}-s_{0}\right) x(1-x)\right)
$$

- If $0<\mu<1 / 2$ then 0 and 1 are regular boundaries,
- If $\mu \geq 1 / 2$ then 0 and 1 are entrance boundaries.

$\mu>1 / 2$: global maximum at $1 / 2$ iff $s_{1}-s_{0} \geq 4-8 \mu$.

$0<\mu<1 / 2$: global minimum at $1 / 2$ iff $s_{1}-s_{0} \leq 4-8 \mu$.

The linkage disequilibrium

Hyp: free recombination, $\mu_{N}=\frac{\mu}{N}$ and $s_{N, \ell}=\frac{s_{\ell}}{N} \forall \ell \in\{0, \ldots, n\}$.

- separation of timescales.

The linkage disequilibrium

Hyp: free recombination, $\mu_{N}=\frac{\mu}{N}$ and $s_{N, \ell}=\frac{s_{\ell}}{N} \forall \ell \in\{0, \ldots, n\}$.

- separation of timescales.

Example in the case of two loci:
If $Z_{t}^{(N)}=\left(\begin{array}{c}Z_{t}^{(N)}(00) \\ Z_{t}^{(N)}(10) \\ Z_{t}^{(N)}(01) \\ Z_{t}^{(N)}(11)\end{array}\right)$ then $E_{z}\left(Z_{1}^{(N)}-z\right)=\frac{1}{2 N} D(z)\left(\begin{array}{c}1 \\ -1 \\ -1 \\ 1\end{array}\right)+O\left(N^{-2}\right)$
where $D(z)=z(01) z(10)-z(11) z(00)$ (linkage disequilibrium)

The linkage disequilibrium

Hyp: free recombination, $\mu_{N}=\frac{\mu}{N}$ and $s_{N, \ell}=\frac{s_{\ell}}{N} \forall \ell \in\{0, \ldots, n\}$.

- separation of timescales.

Example in the case of two loci:
If $Z_{t}^{(N)}=\left(\begin{array}{l}Z_{t}^{(N)}(00) \\ Z_{t}^{(N)}(10) \\ Z_{t}^{(N)}(01) \\ Z_{t}^{(N)}(11)\end{array}\right)$ then $E_{z}\left(Z_{1}^{(N)}-z\right)=\frac{1}{2 N} D(z)\left(\begin{array}{c}1 \\ -1 \\ -1 \\ 1\end{array}\right)+O\left(N^{-2}\right)$
where $D(z)=z(01) z(10)-z(11) z(00)$ (linkage disequilibrium)
0 -allele frequencies at each locus:
$x(1)=z(00)+z(01)$ and $x(2)=z(00)+z(10)$

The linkage disequilibrium

Hyp: free recombination, $\mu_{N}=\frac{\mu}{N}$ and $s_{N, \ell}=\frac{s_{\ell}}{N} \forall \ell \in\{0, \ldots, n\}$.

- separation of timescales.

Example in the case of two loci:
If $Z_{t}^{(N)}=\left(\begin{array}{l}Z_{t}^{(N)}(00) \\ Z_{t}^{(N)}(10) \\ Z_{t}^{(N)}(01) \\ Z_{t}^{(N)}(11)\end{array}\right)$ then $E_{z}\left(Z_{1}^{(N)}-z\right)=\frac{1}{2 N} D(z)\left(\begin{array}{c}1 \\ -1 \\ -1 \\ 1\end{array}\right)+O\left(N^{-2}\right)$
where $D(z)=z(01) z(10)-z(11) z(00)$ (linkage disequilibrium)
0 -allele frequencies at each locus:
$x(1)=z(00)+z(01)$ and $x(2)=z(00)+z(10)$

- $D(z)=x(1) x(2)-z(00)$

The two-locus case

In first approximation, the motion is governed by:

$$
\frac{d}{d t} z(t)=\frac{1}{2} D(z(t))\left(\begin{array}{c}
1 \\
-1 \\
-1 \\
1
\end{array}\right)
$$

$-\frac{d}{d t} D(z(t))=-\frac{1}{2} D(z(t))$.

The two-locus case

In first approximation, the motion is governed by:

$$
\frac{d}{d t} z(t)=\frac{1}{2} D(z(t))\left(\begin{array}{c}
1 \\
-1 \\
-1 \\
1
\end{array}\right)
$$

- $\frac{d}{d t} D(z(t))=-\frac{1}{2} D(z(t))$.
- The genotypic frequencies rapidly converges to a product distribution.
- At a slower rate, the 0-allelic frequencies converge to a 2-dimensional diffusion.

The two-locus case

In first approximation, the motion is governed by:

$$
\frac{d}{d t} z(t)=\frac{1}{2} D(z(t))\left(\begin{array}{c}
1 \\
-1 \\
-1 \\
1
\end{array}\right)
$$

- $\frac{d}{d t} D(z(t))=-\frac{1}{2} D(z(t))$.
- The genotypic frequencies rapidly converges to a product distribution.
- At a slower rate, the 0-allelic frequencies converge to a 2-dimensional diffusion.

Proof: application of the diffusion approximation theorem stated by Ethier \& Nagylaki (Adv. Appl. Prob. 80) to:

$$
\left\{\begin{array}{l}
X_{t}^{(N)}(1)=Z_{t}^{(N)}(00)+Z_{t}^{(N)}(10) \\
X_{t}^{(N)}(2)=Z_{t}^{(N)}(00)+Z_{t}^{(N)}(01) \\
Y_{t}^{(N)}=X_{t}^{(N)}(1) X_{t}^{(N)}(2)-Z_{t}^{(N)}(00)
\end{array}\right.
$$

Convergence theorem in the two-locus case

New coordinates: $x(1)=z(00)+z(10), x(2)=z(00)+z(01)$ and $y=x(1) x(2)-z(00)$.

1. Conditions on $Y_{t}^{(N)}$: uniformly on z.

- $N E_{z}\left(Y_{1}^{(N)}-y\right)=c(x, y)+o(1)$,
- $N E_{z}\left(\left(Y_{1}^{(N)}-y\right)^{2}\right)=o(1)$,
where c is a C^{2} function, s. t. $c(x, 0)=0$ and the ODE

$$
\frac{d}{d t} u(t, x, y)=c(x, u(t, x, y)), \quad u(0, x, y)=y
$$

have a solution for every (t, x, y) that converges uniformly to 0 as $t \rightarrow+\infty$

Convergence theorem in the two-locus case

New coordinates: $x(1)=z(00)+z(10), x(2)=z(00)+z(01)$ and $y=x(1) x(2)-z(00)$.

1. Conditions on $Y_{t}^{(N)}$: uniformly on z.

- $N E_{z}\left(Y_{1}^{(N)}-y\right)=c(x, y)+o(1)$,
- $N E_{z}\left(\left(Y_{1}^{(N)}-y\right)^{2}\right)=o(1)$,
where c is a C^{2} function, s. t. $c(x, 0)=0$ and the ODE

$$
\frac{d}{d t} u(t, x, y)=c(x, u(t, x, y)), \quad u(0, x, y)=y
$$

have a solution for every (t, x, y) that converges uniformly to 0 as $t \rightarrow+\infty$
Here $c(x, y)=-1 / 2 y$

Convergence theorem in the two-locus case

New coordinates: $x(1)=z(00)+z(10), x(2)=z(00)+z(01)$ and $y=x(1) x(2)-z(00)$.

1. Conditions on $Y_{t}^{(N)}$: ok
2. Conditions on $X_{t}^{(N)}=\left(X_{t}^{(N)}(1), X_{t}^{(N)}(2)\right)$: uniformly on z, for $i, j \in\{1,2\}$

- $N^{2} E_{z}\left(X_{1}^{(N)}(i)-x(i)\right)=b_{i}(x, y)+o(1)$,
- $N^{2} E_{z}\left(\left(X_{1}^{(N)}(i)-x(i)\right)\left(X_{1}^{(N)}(j)-x(j)\right)\right)=a_{i, j}(x, y)+o(1)$,
- $N^{4} E_{z}\left(\left(X_{1}^{(N)}(i)-x(i)\right)^{4}\right)=o(1)$.
where b_{i} and $a_{i, j}$ are continuous functions.

Convergence theorem in the two-locus case

New coordinates: $x(1)=z(00)+z(10), x(2)=z(00)+z(01)$ and $y=x(1) x(2)-z(00)$.

1. Conditions on $Y_{t}^{(N)}$: ok
2. Conditions on $X_{t}^{(N)}=\left(X_{t}^{(N)}(1), X_{t}^{(N)}(2)\right)$: uniformly on z, for $i, j \in\{1,2\}$

- $N^{2} E_{z}\left(X_{1}^{(N)}(i)-x(i)\right)=b_{i}(x, y)+o(1)$,
- $N^{2} E_{z}\left(\left(X_{1}^{(N)}(i)-x(i)\right)\left(X_{1}^{(N)}(j)-x(j)\right)\right)=a_{i, j}(x, y)+o(1)$,
- $N^{4} E_{z}\left(\left(X_{1}^{(N)}(i)-x(i)\right)^{4}\right)=o(1)$.
where b_{i} and $a_{i, j}$ are continuous functions.

3. Condition on the generator:

$$
\mathcal{L}=\frac{1}{2} \sum_{i, j=1}^{n} a_{i, j}(x, 0) \frac{\partial^{2}}{\partial_{x_{i}} \partial_{x_{j}}}+\sum_{i=1}^{n} b_{i}(x, 0) \frac{\partial}{\partial_{x_{i}}}, \quad \mathcal{D}(\mathcal{L})=C^{2}\left([0,1]^{2}\right)
$$

generates a strongly continuous semigroup on $C\left([0,1]^{2}\right)$ corresponding to a diffusion process X.

Convergence theorem in the two-locus case

New coordinates: $x(1)=z(00)+z(10), x(2)=z(00)+z(01)$ and $y=x(1) x(2)-z(00)$.

1. Conditions on $Y_{t}^{(N)}$: ok
2. Conditions on $X_{t}^{(N)}=\left(X_{t}^{(N)}(1), X_{t}^{(N)}(2)\right)$: ok
3. Condition on the generator:

$$
\mathcal{L}=\frac{1}{2} \sum_{i, j=1}^{n} a_{i, j}(x, 0) \frac{\partial^{2}}{\partial_{x_{i}} \partial_{x_{j}}}+\sum_{i=1}^{n} b_{i}(x, 0) \frac{\partial}{\partial_{x_{i}}}, \quad \mathcal{D}(\mathcal{L})=C^{2}\left([0,1]^{2}\right)
$$

generates a strongly continuous semigroup on $C\left([0,1]^{2}\right)$ corresponding to a diffusion process X.

- application of a result of Cerrai \& Clément (Bull.Sc. Math., 2004)

Convergence theorem in the two-locus case

New coordinates: $x(1)=z(00)+z(10), x(2)=z(00)+z(01)$ and $y=x(1) x(2)-z(00)$.

1. Conditions on $Y_{t}^{(N)}$: ok
2. Conditions on $X_{t}^{(N)}=\left(X_{t}^{(N)}(1), X_{t}^{(N)}(2)\right)$: ok
3. Condition on the generator: ok

$$
\mathcal{L}=\frac{1}{2} \sum_{i, j=1}^{n} a_{i, j}(x, 0) \frac{\partial^{2}}{\partial_{x_{i}} \partial_{x_{j}}}+\sum_{i=1}^{n} b_{i}(x, 0) \frac{\partial}{\partial_{x_{i}}}, \quad \mathcal{D}(\mathcal{L})=C^{2}\left([0,1]^{2}\right),
$$

generates a strongly continuous semigroup on $C\left([0,1]^{2}\right)$ corresponding to a diffusion process X.
Convergence results:
(i) If $\left(t_{N}\right)_{N} \rightarrow+\infty, Y_{\left[N t_{N}\right]}^{(N)} \Rightarrow 0$.
(ii) If $X_{0}^{(N)} \Rightarrow X_{0}$ then $\left\{X_{\left[N^{2} t\right]}^{(N)}, t \geq 0\right\} \stackrel{D}{\Longrightarrow} X$,

General case of n loci

Notations: for a nonempty set L of $\llbracket 1, n \rrbracket$,

- $X_{t}^{(N)}(L)=\sum_{j \in\{0,1\}^{n}, \boldsymbol{j}_{L} \equiv 0} Z_{t}^{(N)}(j)$: frequency of individuals having the allele 0 on each locus $i \in L$ at time t,
- $Y_{t}^{(N)}(L)=\prod_{i \in L} X_{t}^{(N)}(\{i\})-X_{t}^{(N)}(L)$: linkage disequilibrium for the set of loci L at time t.
$Z_{t}^{(N)}$ is a product distribution iff $Y_{t}^{(N)}(L)=0 \forall L \subset \llbracket 1, n \rrbracket$ s. t. $|L| \geq 2$

General case of n loci

Notations: for a nonempty set L of $\llbracket 1, n \rrbracket$,

- $X_{t}^{(N)}(L)=\sum_{j \in\{0,1\}^{n}, \boldsymbol{j}_{L} \equiv 0} Z_{t}^{(N)}(\boldsymbol{j})$: frequency of individuals having the allele 0 on each locus $i \in L$ at time t,
- $Y_{t}^{(N)}(L)=\prod_{i \in L} X_{t}^{(N)}(\{i\})-X_{t}^{(N)}(L)$: linkage disequilibrium for the set of loci L at time t.

Results

- If $\left(t_{N}\right)_{N} \rightarrow+\infty$ then $\left\{Y_{\left[N t_{N}\right]}^{(N)}(L),|L| \geq 2\right\} \Rightarrow 0$
- Let $X_{t}^{(N)}=\left(X_{t}^{(N)}(\{1\}), \ldots, X_{t}^{(N)}(\{n\})\right)$.

If $X_{0}^{(N)} \Rightarrow X_{0}$ then $\left\{X_{\left[N^{2} t\right]}^{(N)}, t \geq 0\right\} \xrightarrow{D} X$ where X is a diffusion on $[0,1]^{n}$ with generator

$$
\mathcal{G}_{n}=\frac{1}{2} \sum_{i=1}^{n} x_{i}\left(1-x_{i}\right) \frac{\partial^{2}}{\partial_{x_{i}}^{2}}+\sum_{i=1}^{n} b_{i}(x) \frac{\partial}{\partial_{x_{i}}}, \quad \mathcal{D}\left(\mathcal{G}_{n}\right)=C^{2}\left([0,1]^{n}\right)
$$

Generator of the n-locus diffusion

$$
\mathcal{G}_{n}=\frac{1}{2} \sum_{i=1}^{n} x_{i}\left(1-x_{i}\right) \frac{\partial^{2}}{\partial_{x_{i}, x_{i}}^{2}}+\sum_{i=1}^{n} b_{i}(x) \frac{\partial}{\partial_{x_{i}}}, \quad \mathcal{D}\left(\mathcal{G}_{n}\right)=C^{2}\left([0,1]^{n}\right),
$$

with $b_{i}(x)=\left(1-2 x_{i}\right) \mu+\left(1 / 2-x_{i}\right) x_{i}\left(1-x_{i}\right) P_{i, s}(x)$ and

$$
P_{i, s}(x)=\sum_{k=0}^{n-1}\left(s_{k+1}-s_{k}\right) \sum_{\substack{A \subset \llbracket 1, n] \backslash\{i\},|A|=k}} \prod_{j \in A}\left(2 x_{j}\left(1-x_{j}\right)\right) \prod_{\ell \in \llbracket 1, n \rrbracket \backslash\{A \cup\{i\}\}}\left(1-2 x_{\ell}\left(1-x_{\ell}\right)\right) .
$$

Generator of the n-locus diffusion

$$
\mathcal{G}_{n}=\frac{1}{2} \sum_{i=1}^{n} x_{i}\left(1-x_{i}\right) \frac{\partial^{2}}{\partial_{x_{i}, x_{i}}^{2}}+\sum_{i=1}^{n} b_{i}(x) \frac{\partial}{\partial_{x_{i}}}, \quad \mathcal{D}\left(\mathcal{G}_{n}\right)=C^{2}\left([0,1]^{n}\right),
$$

with $b_{i}(x)=\left(1-2 x_{i}\right) \mu+\left(1 / 2-x_{i}\right) x_{i}\left(1-x_{i}\right) P_{i, s}(x)$ and

$$
P_{i, s}(x)=\sum_{k=0}^{n-1}\left(s_{k+1}-s_{k}\right) \sum_{\substack{A \subset \llbracket, n \rrbracket \backslash\{i\} \\|A|=k}} \prod_{,}\left(2 x_{j}\left(1-x_{j}\right)\right) \prod_{\ell \in \llbracket 1, n \rrbracket \backslash\{A \cup\{i\}\}}\left(1-2 x_{\ell}\left(1-x_{\ell}\right)\right) .
$$

Behaviour at the boundaries
$0<\mu<1 / 2: 0$ and 1 are attainable for each coordinate of the diffusion.

$$
\mathbb{P}\left[\exists t>0, X_{t}(i)=0\right]>0 \text { and } \mathbb{P}\left[\exists t>0, X_{t}(i)=1\right]>0 \quad \forall i \in \llbracket 1, n \rrbracket .
$$

$\mu \geq 1 / 2: 0$ and 1 are inaccessible for each coordinate of the diffusion.

$$
\mathbb{P}\left[\exists t>0, X_{t}(i) \in\{0,1\}\right]=0 \text { and } \mathbb{P}\left[\lim _{t \rightarrow+\infty} X_{t}(i) \in\{0,1\}\right]=0 \quad \forall i \in \llbracket 1, n \rrbracket .
$$

Generator of the n-locus diffusion

$$
\mathcal{G}_{n}=\frac{1}{2} \sum_{i=1}^{n} x_{i}\left(1-x_{i}\right) \frac{\partial^{2}}{\partial_{x_{i}, x_{i}}^{2}}+\sum_{i=1}^{n} b_{i}(x) \frac{\partial}{\partial_{x_{i}}}, \quad \mathcal{D}\left(\mathcal{G}_{n}\right)=C^{2}\left([0,1]^{n}\right),
$$

with $b_{i}(x)=\left(1-2 x_{i}\right) \mu+\left(1 / 2-x_{i}\right) x_{i}\left(1-x_{i}\right) P_{i, s}(x)$ and
$P_{i, s}(x)=\sum_{k=0}^{n-1}\left(s_{k+1}-s_{k}\right) \sum_{\substack{A \subset \llbracket, n \rrbracket \backslash\{i\} \\|A|=k}} \prod_{,}\left(2 x_{j}\left(1-x_{j}\right)\right) \prod_{\ell \in \llbracket 1, n \rrbracket \backslash\{A \cup\{i\}\}}\left(1-2 x_{\ell}\left(1-x_{\ell}\right)\right)$.

Properties

- $P_{i, s}(x)$ is a symmetric polynomial function of the $n-1$ variables $\rho_{j}=x_{j}\left(1-x_{j}\right)$ for $j \neq i$.
- $P_{i, s}(x)$ is an increasing function of $s_{k+1}-s_{k}$.
- The n coordinates of the diffusion evolve as n independent one-locus diffusions $\Leftrightarrow s_{\ell+1}-s_{\ell}=s_{1}-s_{0} \forall \ell$.

Genetic distance in the independent case

Hyp: $s_{\ell+1}-s_{\ell}=s_{1}-s_{0} \quad \forall \ell \in \llbracket 1, n \rrbracket$

Genetic distance in the independent case

Hyp: $s_{\ell+1}-s_{\ell}=s_{1}-s_{0} \quad \forall \ell \in \llbracket 1, n \rrbracket$

- In the independent case, under the stationary measure, the Hamming distance D_{n} between two individuals randomly chosen follows the binomial distribution $\mathcal{B}\left(n, h\left(s_{1}-s_{0}\right)\right)$ where h is an increasing function and $h(0)=\frac{2 \mu}{1+4 \mu}$.

Reversible measure of the n-locus diffusion

If $\mu>0$, the diffusion has a reversible measure with density:

$$
\begin{gathered}
g_{n, \mu, s}(x)=C \exp \left((2 \mu-1) \sum_{i=1}^{n} \ln \left(x_{i}\left(1-x_{i}\right)\right)+H_{n}(x)\right) \\
\text { with } H_{n}(x)=1 / 2 \sum_{\ell=1}^{n}\left(s_{\ell}-s_{0}\right) \sum_{\substack{L \in \llbracket 1, n \rrbracket] \\
|L| \mid=\ell}} \prod_{j \in L}\left(2 x_{j}\left(1-x_{j}\right)\right) \prod_{k \notin L}\left(1-2 x_{k}\left(1-x_{k}\right)\right) .
\end{gathered}
$$

Reversible measure of the n-locus diffusion

If $\mu>0$, the diffusion has a reversible measure with density:

$$
g_{n, \mu, s}(x)=C \exp \left((2 \mu-1) \sum_{i=1}^{n} \ln \left(x_{i}\left(1-x_{i}\right)\right)+H_{n}(x)\right)
$$

with $H_{n}(x)=1 / 2 \sum_{\ell=1}^{n}\left(s_{\ell}-s_{0}\right) \sum_{\substack{L \subset[1, n], n] \\|L|=\ell}} \prod_{j \in L}\left(2 x_{j}\left(1-x_{j}\right)\right) \prod_{k \notin L}\left(1-2 x_{k}\left(1-x_{k}\right)\right)$.
Typical graphs of the density in the one-locus case depending on the sign of $s_{1}-s_{0}+8 \mu-4$

Typical Graphs of the stationary density when $\mu>1 / 2$

Density in the two-locus case 2 when $\mu=0.6, s_{1}-s_{0}=-0.4$ and $s_{2}-s_{1}=-0.6$.

- Typical graph when $s_{\ell+1}-s_{\ell} \geq-(8 \mu-4) \forall \ell$.

Density in the two-locus case 2 when $\mu=0.6, s_{1}-s_{0}=-2$ and $s_{2}-s_{1}=-6$.

Typical Graphs of the stationary density when $\mu>1 / 2$

Density in the two-locus case 2 when $\mu=0.6, s_{1}-s_{0}=-0.4$ and $s_{2}-s_{1}=-0.6$.

- Typical graph when $s_{\ell+1}-s_{\ell} \geq-(8 \mu-4) \forall \ell$.

Density in the two-locus case 2 when $\mu=0.6, s_{1}-s_{0}=-2$ and $s_{2}-s_{1}=-6$.

- Typical graph if $2^{-(n-1)} \sum_{k=0}^{n-1}\binom{n-1}{k}\left(s_{k+1}-s_{k}\right)<4-8 \mu$,
$s_{n}-s_{n-1} \leq s_{n-1}-s_{n-2} \leq \cdots \leq s_{1}-s_{0} \leq 0$ and $s_{n-1}-s_{n-2}<0$.

A continuum of critical points

Density of the stationary
measure in the 2-locus case
when

- $\mu=0.6$,
- $s_{1}-s_{0}=0$ et

$$
s_{2}-s_{1}=-12
$$

Description of the stationary density

Hyp : $\mu>1 / 2$ and $s_{n}-s_{n-1} \leq \cdots \leq s_{1}-s_{0}$ strongly negative.
The critical points of the density $g_{n, \mu, s}$ in $\left.] 0,1 / 2\right]^{n}$:

- global maximum at $\left(\xi_{0}, \ldots, \xi_{0}\right)$ with $\xi_{0}<1 / 2$,
- saddle points of index $n-k$ at points having k coordinates equal to $1 / 2$ and $n-k$ coordinates equal to $\xi_{k}<1 / 2$,
- local mimimum at $(1 / 2, \ldots, 1 / 2)$

Description of the stationary density

Hyp : $\mu>1 / 2$ and $s_{n}-s_{n-1} \leq \cdots \leq s_{1}-s_{0}$ strongly negative.
The critical points of the density $g_{n, \mu, s}$ in $\left.] 0,1 / 2\right]^{n}$:

- global maximum at $\left(\xi_{0}, \ldots, \xi_{0}\right)$ with $\xi_{0}<1 / 2$,
- saddle points of index $n-k$ at points having k coordinates equal to $1 / 2$ and $n-k$ coordinates equal to $\xi_{k}<1 / 2$,
- local mimimum at $(1 / 2, \ldots, 1 / 2)$

Values of the log-density at the critical points

Description of the stationary density

Hyp : $\mu>1 / 2$ and $s_{n}-s_{n-1} \leq \cdots \leq s_{1}-s_{0}$ strongly negative.
The critical points of the density $g_{n, \mu, s}$ in $\left.] 0,1 / 2\right]^{n}$:

- global maximum at $\left(\xi_{0}, \ldots, \xi_{0}\right)$ with $\xi_{0}<1 / 2$,
- saddle points of index $n-k$ at points having k coordinates equal to $1 / 2$ and $n-k$ coordinates equal to $\xi_{k}<1 / 2$,
- local mimimum at $(1 / 2, \ldots, 1 / 2)$

Values of the log-density at the critical points

Ex: $s_{k}=-\left(b k+c k^{2}\right)$ with $c>0, b+c>0$
$b+c+4 c(n-1)>8 \mu-4$

- $\xi_{0} \sim C_{3} n^{-1 / 2}$

Examples of trajectories in the 3-locus case

Population of size $N=1000$, initialy of type ($0,0,0$).
Evolution between iterations N^{2} and $33 N^{2}$ by step of N, change of color after $0.5 \mathrm{~N}^{2}$ iterations

$\mu=1, s_{1}-s_{0}=-20$,
$s_{2}-s_{1}=-40, s_{3}-s_{2}=-60$

$\mu=1, s_{1}-s_{0}=-30$,
$s_{2}-s_{1}=-60, s_{3}-s_{2}=-90$

Extension of the model

$$
\mathcal{G}_{n}=\frac{1}{2} \sum_{i=1}^{n} x_{i}\left(1-x_{i}\right) \frac{\partial^{2}}{\partial_{x_{i}}^{2}}+\sum_{i=1}^{n} b_{i}(x) \frac{\partial}{\partial_{x_{i}}}, \quad \mathcal{D}\left(\mathcal{G}_{n}\right)=C^{2}\left([0,1]^{n}\right),
$$

with drift

$$
b_{i}(x)=\mu\left(1-2 x_{i}\right)+\left(1 / 2-x_{i}\right) x_{i}\left(1-x_{i}\right) P_{i, s}(x)
$$

Extension of the model

$$
\mathcal{G}_{n}=\frac{1}{2} \sum_{i=1}^{n} x_{i}\left(1-x_{i}\right) \frac{\partial^{2}}{\partial_{x_{i}}^{2}}+\sum_{i=1}^{n} b_{i}(x) \frac{\partial}{\partial_{x_{i}}}, \quad \mathcal{D}\left(\mathcal{G}_{n}\right)=C^{2}\left([0,1]^{n}\right),
$$

with drift

$$
b_{i}(x)=\mu\left(1-2 x_{i}\right)+\left(1 / 2-x_{i}\right) x_{i}\left(1-x_{i}\right) P_{i, s}(x)
$$

- Proba. of mutation: allele $0 \xrightarrow{\frac{\mu_{0}}{N}}$ allele 1 , allele $1 \xrightarrow{\frac{\mu_{1}}{N}}$ allele 0.

Extension of the model

$$
\mathcal{G}_{n}=\frac{1}{2} \sum_{i=1}^{n} x_{i}\left(1-x_{i}\right) \frac{\partial^{2}}{\partial_{x_{i}}^{2}}+\sum_{i=1}^{n} b_{i}(x) \frac{\partial}{\partial_{x_{i}}}, \quad \mathcal{D}\left(\mathcal{G}_{n}\right)=C^{2}\left([0,1]^{n}\right),
$$

with drift

$$
b_{i}(x)=\mu_{1}\left(1-x_{i}\right)-\mu_{0} x_{i}+\left(1 / 2-x_{i}\right) x_{i}\left(1-x_{i}\right) P_{i, s}(x)
$$

- Proba. of mutation: allele $0 \stackrel{\frac{\mu_{0}}{N}}{\longrightarrow}$ allele 1 , allele $1 \xrightarrow{\frac{\mu_{1}}{N}}$ allele 0.

Extension of the model

$$
\begin{gathered}
\mathcal{G}_{n}=\frac{1}{2} \sum_{i=1}^{n} x_{i}\left(1-x_{i}\right) \frac{\partial^{2}}{\partial_{x_{i}}^{2}}+\sum_{i=1}^{n} b_{i}(x) \frac{\partial}{\partial x_{i}}, \quad \mathcal{D}\left(\mathcal{G}_{n}\right)=C^{2}\left([0,1]^{n}\right), \\
b_{i}(x)=\mu_{1}\left(1-x_{i}\right)+\mu_{0} x_{i}-\left(1 / 2-x_{i}\right) x_{i}\left(1-x_{i}\right) P_{i, s}(x)
\end{gathered}
$$

- Proba. of mutation: allele $0 \stackrel{\frac{\mu_{0}}{N}}{\longrightarrow}$ allele 1 , allele $1 \xrightarrow{\frac{\mu_{1}}{N}}$ allele 0 .
- recombination law: for $L \subset \llbracket 1, n \rrbracket$, let r_{L} be the probab. that the offspring inherits the genes of the 1 st parent at loci $\ell \in L$ and the genes of the 2nd parent at loci $\ell \notin L$.

Extension of the model

$$
\begin{gathered}
\mathcal{G}_{n}=\frac{1}{2} \sum_{i=1}^{n} x_{i}\left(1-x_{i}\right) \frac{\partial^{2}}{\partial_{x_{i}}^{2}}+\sum_{i=1}^{n} b_{i}(x) \frac{\partial}{\partial_{x_{i}}}, \quad \mathcal{D}\left(\mathcal{G}_{n}\right)=C^{2}\left([0,1]^{n}\right), \\
b_{i}(x)=\mu_{1}\left(1-x_{i}\right)+\mu_{0} x_{i}-\left(1 / 2-x_{i}\right) x_{i}\left(1-x_{i}\right) P_{i, s}(x)
\end{gathered}
$$

- Proba. of mutation: allele $0 \stackrel{\frac{\mu_{0}}{N}}{\longrightarrow}$ allele 1 , allele $1 \xrightarrow{\frac{\mu_{1}}{N}}$ allele 0 .
- recombination law: for $L \subset \llbracket 1, n \rrbracket$, let r_{L} be the probab. that the offspring inherits the genes of the 1 st parent at loci $\ell \in L$ and the genes of the 2nd parent at loci $\ell \notin L$.
Hyp: (i) $r_{L}=r_{\llbracket 1, n \rrbracket \backslash L}, \forall L \subset \llbracket 1, n \rrbracket$
(ii) recombination between any pair of loci occurs with a positive probability (loose linkage)

Extension of the model

$$
\begin{gathered}
\mathcal{G}_{n}=\frac{1}{2} \sum_{i=1}^{n} x_{i}\left(1-x_{i}\right) \frac{\partial^{2}}{\partial_{x_{i}}^{2}}+\sum_{i=1}^{n} b_{i}(x) \frac{\partial}{\partial_{x_{i}}}, \quad \mathcal{D}\left(\mathcal{G}_{n}\right)=C^{2}\left([0,1]^{n}\right), \\
b_{i}(x)=\mu_{1}\left(1-x_{i}\right)-\mu_{0} x_{i}+\left(1 / 2-x_{i}\right) x_{i}\left(1-x_{i}\right) P_{i, s}(x) \text { with } \\
P_{i, s}(x)=\sum_{k=0}^{n-1}\left(s_{k+1}-s_{k}\right) \sum_{\substack{A \subset \llbracket 1, n \backslash \backslash\{i, j\} \\
|A|=k}} \prod_{j \in A}\left(2 x_{j}\left(1-x_{j}\right)\right) \prod_{\ell \in \llbracket 1, n] \backslash\{A \cup\{i\}\}}\left(1-2 x_{\ell}\left(1-x_{\ell}\right)\right) .
\end{gathered}
$$

Extension of the model

$$
\begin{gathered}
\mathcal{G}_{n}=\frac{1}{2} \sum_{i=1}^{n} x_{i}\left(1-x_{i}\right) \frac{\partial^{2}}{\partial_{x_{i}}^{2}}+\sum_{i=1}^{n} b_{i}(x) \frac{\partial}{\partial_{x_{i}}}, \quad \mathcal{D}\left(\mathcal{G}_{n}\right)=C^{2}\left([0,1]^{n}\right), \\
b_{i}(x)=\mu_{1}\left(1-x_{i}\right)-\mu_{0} x_{i}+\left(1 / 2-x_{i}\right) x_{i}\left(1-x_{i}\right) P_{i, s}(x) \text { with } \\
P_{i, s}(x)=\sum_{k=0}^{n-1}\left(s_{k+1}-s_{k}\right) \sum_{A \subset \llbracket 1, n] \backslash i(i\},} \prod_{j \in A}\left(2 x_{j}\left(1-x_{j}\right)\right) \prod_{\ell \in[1, n \rrbracket \backslash \backslash A \cup\{i\}\}}\left(1-2 x_{\ell}\left(1-x_{\ell}\right)\right) .
\end{gathered}
$$

Assortment coeff.: $s_{i, j}$ if \boldsymbol{i} and \boldsymbol{j} are the type of the 1st parent and the 2nd parent resp.
Hyp: $s_{i, j}=s_{j, i}$;
$s_{i, j}$ depends only on the loci at which \boldsymbol{i} and \boldsymbol{j} differ.

Extension of the model

$$
\begin{gathered}
\mathcal{G}_{n}=\frac{1}{2} \sum_{i=1}^{n} x_{i}\left(1-x_{i}\right) \frac{\partial^{2}}{\partial_{x_{i}}^{2}}+\sum_{i=1}^{n} b_{i}(x) \frac{\partial}{\partial_{x_{i}}}, \quad \mathcal{D}\left(\mathcal{G}_{n}\right)=C^{2}\left([0,1]^{n}\right), \\
b_{i}(x)=\mu_{1}\left(1-x_{i}\right)-\mu_{0} x_{i}+\left(1 / 2-x_{i}\right) x_{i}\left(1-x_{i}\right) P_{i, s}(x) \text { with } \\
P_{i, s}(x)=\sum_{k=0}^{n-1}\left(s_{k+1}-s_{k}\right) \sum_{\substack{A \subset \llbracket 1, n \backslash \backslash\{i\} \\
|A|=k}} \prod_{j \in A}\left(2 x_{j}\left(1-x_{j}\right)\right) \prod_{\ell \in \llbracket 1, n] \backslash\{A \cup\{i\}\}}\left(1-2 x_{\ell}\left(1-x_{\ell}\right)\right) .
\end{gathered}
$$

Assortment coeff.: $s_{i, j}$ if \boldsymbol{i} and \boldsymbol{j} are the type of the 1 st parent and the 2 nd parent resp.

$$
\text { Hyp : } \quad s_{i, j}=s_{j, i} ;
$$

$s_{i, j}$ depends only on the loci at which \boldsymbol{i} and \boldsymbol{j} differ.

- 5 parameters in the 2-locus case: $s_{i, i}=s_{00,00} \forall i \in\{0,1\}^{2}$,

$$
\begin{aligned}
& s_{10,00}=s_{11,01}=s_{00,10}=s_{01,11} \text { and } s_{01,00}=s_{11,10}=s_{00,01}=s_{10,11}, \\
& s_{01,10}=s_{10,01} \text { et } s_{11,00}=s_{00,11}
\end{aligned}
$$

Extension of the model

$$
\begin{gathered}
\mathcal{G}_{n}=\frac{1}{2} \sum_{i=1}^{n} x_{i}\left(1-x_{i}\right) \frac{\partial^{2}}{\partial_{x_{i}}^{2}}+\sum_{i=1}^{n} b_{i}(x) \frac{\partial}{\partial_{x_{i}}}, \quad \mathcal{D}\left(\mathcal{G}_{n}\right)=C^{2}\left([0,1]^{n}\right), \\
b_{i}(x)=\mu_{1}\left(1-x_{i}\right)-\mu_{0} x_{i}+\left(1 / 2-x_{i}\right) x_{i}\left(1-x_{i}\right) P_{i, s}(x) \text { with } \\
P_{i, s}(x)=\sum_{k=0}^{n-1}\left(s_{k+1}-s_{k}\right) \sum_{A \subset \llbracket 1, n] \backslash i(i\},} \prod_{j \in A} \prod_{i A=k}\left(2 x_{j}\left(1-x_{j}\right)\right) \prod_{\ell \in \llbracket 1, n \rrbracket \backslash\{A \cup\{i\}\}}\left(1-2 x_{\ell}\left(1-x_{\ell}\right)\right) .
\end{gathered}
$$

Assortment coeff.: $s_{i, j}$ if \boldsymbol{i} and \boldsymbol{j} are the type of the 1st parent and the 2nd parent resp.
Hyp: $\quad s_{i, j}=s_{j, i}$;
$s_{i, j}$ depends only on the loci at which \boldsymbol{i} and \boldsymbol{j} differ.

- 5 parameters in the 2-locus case: $s_{i, i}=s_{00,00} \forall i \in\{0,1\}^{2}$,
$s_{10,00}=s_{11,01}=s_{00,10}=s_{01,11}$ and $s_{01,00}=s_{11,10}=s_{00,01}=s_{10,11}$,
$s_{01,10}=s_{10,01}$ et $s_{11,00}=s_{00,11}$
$m_{A}(s)$: mean of $s_{i, j}$ for types \boldsymbol{i} and \boldsymbol{j} that differ on the loci in A and are equal elsewhere.

Extension of the model: assortment

$$
\begin{aligned}
& \mathcal{G}_{n}=\frac{1}{2} \sum_{i=1}^{n} x_{i}\left(1-x_{i}\right) \frac{\partial^{2}}{\partial_{x_{i}}^{2}}+\sum_{i=1}^{n} b_{i}(x) \frac{\partial}{\partial_{x_{i}}}, \quad \mathcal{D}\left(\mathcal{G}_{n}\right)=C^{2}\left([0,1]^{n}\right), \\
& b_{i}(x)=\mu_{1}\left(1-x_{i}\right)-\mu_{0} x_{i}+\left(1 / 2-x_{i}\right) x_{i}\left(1-x_{i}\right) P_{i, s}(x) \text { with } \\
& P_{i, s}(x)=\sum_{k=0}^{n-1}\left(s_{k+1}-s_{k}\right) \sum_{A \subset \llbracket 1, n] \backslash\{i\}} \prod_{j \in A}\left(2 x_{j}\left(1-x_{j}\right)\right) \prod_{\ell \in \llbracket 1, n \rrbracket \backslash\{A \cup\{i\}\}}\left(1-2 x_{\ell}\left(1-x_{\ell}\right)\right) . \\
& \Delta P_{i, s}(x)=\sum_{A \subset \llbracket 1, n \rrbracket \backslash\{i\}}\left(m_{A \cup\{i\}}(s)-m_{A}(s)\right) \prod_{j \in A}\left(2 x_{j}\left(1-x_{j}\right)\right) \prod_{\ell \in \llbracket 1, n \rrbracket \backslash\{A \cup\{i\}\}}\left(1-2 x_{\ell}\left(1-x_{\ell}\right)\right)
\end{aligned}
$$

Assortment coeff.: $s_{i, j}$ if \boldsymbol{i} and \boldsymbol{j} are the type of the 1 st parent and the 2nd parent resp.

$$
\begin{aligned}
\text { Hyp }: & s_{i, j}=s_{j, i} \\
& s_{i, j} \text { depends only on the loci at which } \boldsymbol{i} \text { and } \boldsymbol{j} \text { differ. }
\end{aligned}
$$

$m_{A}(s)$: mean of $s_{i, j}$ for types \boldsymbol{i} and \boldsymbol{j} that differ on the loci in A and are equal elsewhere.

Properties of the diffusion in the general model

$$
\begin{aligned}
\mathcal{G}_{n}=\frac{1}{2} \sum_{i=1}^{n} x_{i}\left(1-x_{i}\right) \frac{\partial^{2}}{\partial_{x_{i}}^{2}}+\sum_{i=1}^{n} b_{i}(x) \frac{\partial}{\partial_{x_{i}}}, \quad \mathcal{D}\left(\mathcal{G}_{n}\right)=C^{2}\left([0,1]^{n}\right), \\
b_{i}(x)=\mu_{1}\left(1-x_{i}\right)-\mu_{0} x_{i}+\left(1 / 2-x_{i}\right) x_{i}\left(1-x_{i}\right) P_{i, s}(x)
\end{aligned}
$$

with

$$
\begin{aligned}
P_{i, s}(x) & =\sum_{A \subset \llbracket 1, n \rrbracket \backslash\{i\}}\left(m_{A \cup\{i\}}(s)-m_{A}(s)\right) \prod_{j \in A}\left(2 x_{j}\left(1-x_{j}\right)\right) \prod_{\ell \in \llbracket 1, n \rrbracket \backslash\{A \cup\{i\}\}}\left(1-2 x_{\ell}\left(1-x_{\ell}\right)\right) \\
m_{A}(s) & =\frac{1}{2^{n}} \sum_{(i, j) \in F_{A}} s_{i, j} \text { where } F_{A}=\left\{(\boldsymbol{i}, \boldsymbol{j}), \boldsymbol{i}_{u} \neq \boldsymbol{j}_{u} \text { iff } u \in A\right\} .
\end{aligned}
$$

Properties

- $P_{i, s}(x)$ is a polynome in $\rho_{j}=x_{j}\left(1-x_{j}\right), j \neq i$,

Properties of the diffusion in the general model

$$
\begin{array}{r}
\mathcal{G}_{n}=\frac{1}{2} \sum_{i=1}^{n} x_{i}\left(1-x_{i}\right) \frac{\partial^{2}}{\partial_{x_{i}}^{2}}+\sum_{i=1}^{n} b_{i}(x) \frac{\partial}{\partial_{x_{i}}}, \quad \mathcal{D}\left(\mathcal{G}_{n}\right)=C^{2}\left([0,1]^{n}\right), \\
b_{i}(x)=\mu_{1}\left(1-x_{i}\right)-\mu_{0} x_{i}+\left(1 / 2-x_{i}\right) x_{i}\left(1-x_{i}\right) P_{i, s}(x)
\end{array}
$$

with

$$
P_{i, s}(x)=\sum_{A \subset \llbracket 1, n \rrbracket \backslash\{i\}}\left(m_{A \cup\{i\}}(s)-m_{A}(s)\right) \prod_{j \in A}\left(2 x_{j}\left(1-x_{j}\right)\right) \prod_{\ell \in \llbracket 1, n \rrbracket \backslash A \cup\{i\}\}}\left(1-2 x_{\ell}\left(1-x_{\ell}\right)\right)
$$

$$
m_{A}(s)=\frac{1}{2^{n}} \sum_{(i, j) \in F_{A}} s_{i, j} \text { where } F_{A}=\left\{(\boldsymbol{i}, \boldsymbol{j}), \boldsymbol{i}_{u} \neq \boldsymbol{j}_{u} \text { iff } u \in A\right\} .
$$

Properties

- $P_{i, s}(x)$ is a polynome in $\rho_{j}=x_{j}\left(1-x_{j}\right), j \neq i$,
- $P_{i, s}(x)$ is an increasing function of $m_{A \cup\{i\}}(s)-m_{A}(s), \forall A \nexists i$,

Properties of the diffusion in the general model

$$
\begin{array}{r}
\mathcal{G}_{n}=\frac{1}{2} \sum_{i=1}^{n} x_{i}\left(1-x_{i}\right) \frac{\partial^{2}}{\partial_{x_{i}}^{2}}+\sum_{i=1}^{n} b_{i}(x) \frac{\partial}{\partial_{x_{i}}}, \quad \mathcal{D}\left(\mathcal{G}_{n}\right)=C^{2}\left([0,1]^{n}\right), \\
b_{i}(x)=\mu_{1}\left(1-x_{i}\right)-\mu_{0} x_{i}+\left(1 / 2-x_{i}\right) x_{i}\left(1-x_{i}\right) P_{i, s}(x)
\end{array}
$$

with

$$
\begin{aligned}
& P_{i, s}(x)=\sum_{A \subset \llbracket 1, n \rrbracket \backslash\{i\}}\left(m_{A \cup\{i\}}(s)-m_{A}(s)\right) \prod_{j \in A}\left(2 x_{j}\left(1-x_{j}\right)\right) \prod_{\ell \in \llbracket 1, n \rrbracket \backslash\{A \cup\{i\}\}}\left(1-2 x_{\ell}\left(1-x_{\ell}\right)\right) \\
& m_{A}(s)=\frac{1}{2^{n}} \sum_{(i, j) \in F_{A}} s_{i, j} \text { where } F_{A}=\left\{(\boldsymbol{i}, \boldsymbol{j}), \boldsymbol{i}_{u} \neq \boldsymbol{j}_{u} \text { iff } u \in A\right\} .
\end{aligned}
$$

Properties

- $P_{i, s}(x)$ is a polynome in $\rho_{j}=x_{j}\left(1-x_{j}\right), j \neq i$,
- $P_{i, s}(x)$ is an increasing function of $m_{A \cup\{i\}}(s)-m_{A}(s), \forall A \nexists i$,
- the n coordinates are independent iff $m_{A \cup\{i\}}(s)-m_{A}(s)$ does not depend on A.

Properties of the diffusion in the general model

$$
\begin{aligned}
& \quad \mathcal{G}_{n}=\frac{1}{2} \sum_{i=1}^{n} x_{i}\left(1-x_{i}\right) \frac{\partial^{2}}{\partial_{x_{i}}^{2}}+\sum_{i=1}^{n} b_{i}(x) \frac{\partial}{\partial_{x_{i}}}, \quad \mathcal{D}\left(\mathcal{G}_{n}\right)=C^{2}\left([0,1]^{n}\right), \\
& b_{i}(x)=\mu_{1}\left(1-x_{i}\right)-\mu_{0} x_{i}+\left(1 / 2-x_{i}\right) x_{i}\left(1-x_{i}\right) P_{i, s}(x) \\
& \text { with } \\
& P_{i, s}(x)=\sum_{A \subset \llbracket 1, n \rrbracket \backslash\{i\}}\left(m_{A \cup\{i\}}(s)-m_{A}(s)\right) \prod_{j \in A}\left(2 x_{j}\left(1-x_{j}\right)\right) \prod_{\ell \in \llbracket 1, n \rrbracket \backslash\{A \cup\{i\}\}}\left(1-2 x_{\ell}\left(1-x_{\ell}\right)\right)
\end{aligned}
$$

$$
m_{A}(s)=\frac{1}{2^{n}} \sum_{(i, j) \in F_{A}} s_{i, j} \text { where } F_{A}=\left\{(\boldsymbol{i}, \boldsymbol{j}), \boldsymbol{i}_{u} \neq \boldsymbol{j}_{u} \text { iff } u \in A\right\} .
$$

Properties

- $P_{i, s}(x)$ is a polynome in $\rho_{j}=x_{j}\left(1-x_{j}\right), j \neq i$,
- $P_{i, s}(x)$ is an increasing function of $m_{A \cup\{i\}}(s)-m_{A}(s), \forall A \nexists i$,
- the n coordinates are independent iff $m_{A \cup\{i\}}(s)-m_{A}(s)$ does not depend on A.
- if $\mu_{0}>0$ and $\mu_{1}>0$, the diffusion has a reversible measure.

Applications of the diffusion in the general model

$$
\begin{aligned}
& \mathcal{G}_{n}=\frac{1}{2} \sum_{i=1}^{n} x_{i}\left(1-x_{i}\right) \frac{\partial^{2}}{\partial_{x_{i}}^{2}}+\sum_{i=1}^{n} b_{i}(x) \frac{\partial}{\partial_{x_{i}}}, \quad \mathcal{D}\left(\mathcal{G}_{n}\right)=C^{2}\left([0,1]^{n}\right), \\
& b_{i}(x)=\mu_{1}\left(1-x_{i}\right)-\mu_{0} x_{i}+\left(1 / 2-x_{i}\right) x_{i}\left(1-x_{i}\right) P_{i, s}(x)
\end{aligned}
$$

with

$$
P_{i, s}(x)=\sum_{A \subset \llbracket 1, n \rrbracket \backslash\{i\}}\left(m_{A \cup\{i\}}(s)-m_{A}(s)\right) \prod_{j \in A}\left(2 x_{j}\left(1-x_{j}\right)\right) \prod_{\ell \in \llbracket 1, n \rrbracket \backslash A \cup\{i\}\}}\left(1-2 x_{\ell}\left(1-x_{\ell}\right)\right)
$$

$$
m_{A}(s)=\frac{1}{2^{n}} \sum_{(i, j) \in F_{A}} s_{i, j} \text { where } F_{A}=\left\{(\boldsymbol{i}, \boldsymbol{j}), \boldsymbol{i}_{u} \neq \boldsymbol{j}_{u} \text { iff } u \in A\right\} .
$$

Applications

- Assortment based on a phenotypic trait which is determined by n genes whose effects are similar and additive,

Applications of the diffusion in the general model

$$
\begin{aligned}
& \quad \mathcal{G}_{n}=\frac{1}{2} \sum_{i=1}^{n} x_{i}\left(1-x_{i}\right) \frac{\partial^{2}}{\partial_{x_{i}}^{2}}+\sum_{i=1}^{n} b_{i}(x) \frac{\partial}{\partial_{x_{i}}}, \quad \mathcal{D}\left(\mathcal{G}_{n}\right)=C^{2}\left([0,1]^{n}\right), \\
& b_{i}(x)=\mu_{1}\left(1-x_{i}\right)-\mu_{0} x_{i}+\left(1 / 2-x_{i}\right) x_{i}\left(1-x_{i}\right) P_{i, s}(x) \\
& \text { with } \\
& P_{i, s}(x)=\sum_{A \subset \llbracket 1, n \rrbracket \backslash\{i\}}\left(m_{A \cup\{i\}}(s)-m_{A}(s)\right) \prod_{j \in A}\left(2 x_{j}\left(1-x_{j}\right)\right) \prod_{\ell \in \llbracket 1, n \rrbracket \backslash\{A \cup\{i\}\}}\left(1-2 x_{\ell}\left(1-x_{\ell}\right)\right) \\
& m_{A}(s)=\frac{1}{2^{n}} \sum_{(i, j) \in F_{A}} s_{i, j} \text { where } F_{A}=\left\{(\boldsymbol{i}, \boldsymbol{j}), \boldsymbol{i}_{u} \neq \boldsymbol{j}_{u} \text { iff } u \in A\right\} .
\end{aligned}
$$

Applications

- Assortment based on a phenotypic trait which is determined by n genes whose effects are similar and additive,
- Situation in which some loci have a greater influence on the mating choice than others.

Diffusion approximation for other discrete models

Assortating mating / viability selection:

- (Ethier \& Nagylaki, 89) Two-locus Wright-Fisher model in a diploid population of size N with
- viability selection (coeff. $1+\frac{s_{i, j}}{4 N}$ for a pair of gametes (i, j));
- low mutation rates (coeff. $\frac{\mu_{0}}{2 N}$ and $\frac{\mu_{1}}{2 N}$);
- loose recombination (recombination fraction $c_{N} \rightarrow c$ s.t.

$$
\left.N c_{N} \rightarrow+\infty\right)
$$

- same limiting diffusion

Diffusion approximation for other discrete models

Assortating mating / viability selection:

- (Ethier \& Nagylaki, 89) Two-locus Wright-Fisher model in a diploid population of size N with
- viability selection (coeff. $1+\frac{s_{i, j}}{4 N}$ for a pair of gametes $(\boldsymbol{i}, \boldsymbol{j})$);
- low mutation rates (coeff. $\frac{\mu_{0}}{2 N}$ and $\frac{\mu_{1}}{2 N}$);
- loose recombination (recombination fraction $c_{N} \rightarrow c$ s.t.

$$
\left.N c_{N} \rightarrow+\infty\right)
$$

- same limiting diffusion
- A Moran model with selection, loose recombination and low mutation in the n-locus case:
- in each time step, a pair of gametes is chosen so that their genotypes have a probability proportional to ($1+\frac{s_{i, j}, j}{N}$) of being ($\boldsymbol{i}, \boldsymbol{j}$).
- They produce a gamete which displaces a randomly chosen gamete in the population.
- same limiting diffusion

Remarks

- The multilocus Moran model allowed to identify a class of diffusions for allelic frequencies:

$$
\begin{aligned}
& \frac{1}{2} \sum_{i=1}^{n} x_{i}\left(1-x_{i}\right) \partial_{i, i}^{2}+ \\
& \sum_{i=1}^{n}\left\{\mu_{1}\left(1-x_{i}\right)-\mu_{0} x_{i}+\left(1 / 2-x_{i}\right) x_{i}\left(1-x_{i}\right) \sum_{L \subset \llbracket 1, n \rrbracket \backslash\{i\}} \alpha_{L \cup\{i\}} \prod_{j \in L} x_{j}\left(1-x_{j}\right)\right\} \partial_{i}
\end{aligned}
$$

- Diffusion approximations are generally insensitive to the detailed dynamics of the underlying individual-based model.
- It is possible to add new features to the multilocus Moran model as survival selection and spatial constraint to the pairing.
S. Cerrai and P. Clément.

Well-posedness of the martingale problem for some degenerate diffusion processes occuring in dynamics of populations.
Bull. Sci. Math., 128:355-389, 2004.
M. de Aguiar, M. Baranger, E. Baptestini, and Y. Bar-Yam.

Global patterns of speciation and diversity.
Nature, 460:384-387, 2009.S. N. Ethier and T. Nagylaki.

Diffusion approximations of Markov chains with two time scales and applications to population genetics.
Adv. Appl. Prob., 12:14-49, 1980.S. N. Ethier and T. Nagylaki.

Diffusion approximations of the two-locus Wright-Fisher model.
J. Math Biol., 27:17-28, 1989.
\square P. Higgs and B. Derrida.

Genetic distance and species formation in evolving populations.
J. Mol. Evol., 35:454-465, 1992.

M. Serva and L. Peliti.

A statistical model of an evolving population with sexual reproduction.
J. Phys. A: Math. Gen., 24, 1991.

