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1 Discrete-time BD and Moran model1

1.1 Generalities on BD processes with finite state-space

P a (N + 1)2 tridiagonal (Jacobi) irreducible stochastic matrix

P =


r0 p0

q1 r1 p1

. . . . . . . . .

qN−1 rN−1 pN−1

qN rN

 ,

with p0 > 0, qx, px > 0, x = 1, .., N − 1 and qN > 0, transition matrix
of discrete-time Markov chain Xn. Invariant probability measure: π′ :=
(π0, π1, .., πN) : π′ = π′P . πy = π0

∏y−1
z=0

pz

qz+1
> 0, y = 1, .., N , with π0

:
∑N

y=0 πy = 1.

1based on a joint work with Servet Martinez
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P diagonally ∼ to the symmetric matrix [P = D
−1/2
π PSD

1/2
π ]

PS =


r0

√
p0q1√

p0q1 r1
√
p1q2

. . . . . . . . .√
pN−2qN−1 rN−1

√
pN−1qN√

pN−1qN rN

 ,
so with real eigenvalues. Dπ := diag(π0, .., πN) . As a symmetric matrix, PS

is diagonalizable by an orthogonal transformation and so P is diagonalizable.

Such NN RWs are reversible (detailed balance holds). P =
←−
P where

←−
P is

the transition matrix of the time reversed process, given by
←−
P ′ = DπPD

−1
π

(P ′ transpose of P ).

KMG spectral theory. RW polynomials (qy (t) ; y = 0, .., N) , t ∈ [−1, 1],
determined by q0 (t) = 1 and 3-term recurrences:

tq0 (t) = p0q1 (t) + r0q0 (t) ,

tqy (t) = pyqy+1 (t) + ryqy (t) + qyqy−1 (t) , y ∈ {1, N − 1} .

SPECTRUM: (tk, k = 0, .., N) zeroes of polynomial of degree N + 1 : t →
PN+1 (t) = tqN (t)− rNqN (t)− qNqN−1 (t), namely:

S := {tk : PN+1 (tk) = 0} ,

with 1 = t0 > t1 > .. > tN ≥ −1. 1− t1 spectral gap.

µ (dt) :=
∑N

k=0 µkδtk spectral probability measure on [−1, 1] wr to which
(qy (t) , y ≥ 1) orthogonal:

γy

∫ 1

−1

qx (t) qy (t)µ (dt) = γy

N∑
k=0

µkqx (tk) qy (tk) = δx,y, (1)

where γy := πy

π0
= 1/

∫ 1

−1
qy (t)2 µ (dt) =

∏y−1
z=0

pz

qz+1
, y ≥ 0 potential coeffi-

cients.

KMG spectral representation theorem [Karlin]

P n (x, y) := Px (Xn = y) = γy

N∑
k=0

µkt
n
kqx (tk) qy (tk) . (2)
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Ergodic theorem, if tN > −1, ∀x, P n (x, y)→ µ0γy = µ0

π0
πy = πy as n ↑ ∞.

Symmetric RW. Suppose N = 2N0. RW Xn on {0, .., 2N0} given with

P =


0 1
q1 0 p1

. . . . . . . . .

q2N0−1 0 p2N0−1

1 0

 ,

transition matrix of some symmetric RW reflected at the boundaries {0, 2N0}.
KMG theory of P n: µ (dt) :=

∑2N0

k=0 µkδtk is the probability measure on [−1, 1]
wr to which the polynomial (qy (t) , y ≥ 1) associated to P are orthogonal.
Measure symmetric on [−1, 1] . In particular, tN0 = 0 and t2N0 = −1, t0 = 1
are eigenvalues of such P s.

EXAMPLE: Gambler RW Xn : px = p, qx = q, x = 1, .., N − 1 (p + q = 1)
with a pure reflection at the endpoints (p0 = qN = 1). Invariant measure π is
a truncated geometric distribution. [Feller ], p. 438 : tk = 2

√
pq cos

(
kπ
N

)
,

k = 1, ., N − 1, t0 = 1, tN = −1. Spectral gap → 1 − 2
√
pq 6= 0 as

N ↑ ∞ if p 6= 1/2. Mass of the spectral measure: µN = µ0 = π0 =

(1− (p/q)) /
[
2
(
1− (p/q)N

)]
, µk = (1− 2µ0) / (N − 1), k = 1, .., N − 1

(with µ0 = 1/ (2N) when p = 1/2). Boundary effects cause deviation from
the uniform measure on {0, ..N}. Orthogonal polynomials involve two sine
functions.

Special cases. Let

S ′ =


√
p0√
q1
√
p1

. . . . . .√
qN−1

√
pN−1√
qN

√
pN


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sub-diagonal matrix. With Dr := diag(r0, .., rN)

S ′S =


p0

√
p0q1√

p0q1 p1 + q1
√
p1q2

. . . . . . . . .√
pN−2qN−1 pN−1 + qN−1

√
pN−1qN√

pN−1qN pN + qN

 =

I −Dr +


0

√
p0q1√

p0q1 0
√
p1q2

. . . . . . . . .√
pN−2qN−1 0

√
pN−1qN√

pN−1qN 0

 .
⇒ PS = 2Dr − I + S ′S

is sum of a diag. matrix and a symmetric positive definite matrix ⇒ If
holding probabilities rx ≥ 1/2, ∀ x = 0, .., N , then ∀ z ∈RN+1\ {0},

z′PSz =
N∑

x=0

(2rx − 1) |zx|2 + |Sz|2 > 0 (3)

and so PS and then P is positive definite with real > 0 eigenvalues. Jacobi
matrix P has all its principal minors non-negative and is oscillatory (that is
totally non-negative and such that PN is totally positive) with all its minors
non-negative, see [Gantmacher ], p. 99. Oscillatory stochastic matrices have
distinct positive eigenvalues, with: 1 = t0 > t1 > .. > tN > 0 ⇒ rx ≥ 1/2
simple sufficient condition for P to be oscillatory but not necessary; full
condition is z′PSz > 0 for all z ∈RN+1\ {0} or

z′Pz =
N∑

x=0

rxz
2
x +

N−1∑
x=0

(px + qx+1) zxzx+1 > 0. (4)

For a simple random walk Xn whose (N + 1)2−transition matrix P is spec-
trally non-negative (respectively spectrally positive), ∃ a symmetric ran-
dom walk Ym on {0, .., 2N} (respectively on {0, .., 2N + 1}), reflected at the
endpoints, started at an even integer {0, 2, 4, .., 2N} (respectively odd in-

teger {1, 3, .., 2N + 1}), such that {Xn}
d
= {Y2n/2}, (respectively {Xn}

d
=
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{(Y2n − 1) /2}). [Whitehurst, Th. 2.1 finite-dimensional case]. Spectral mea-
sure of RW Ym is symmetric on [−1, 1] and by passing to Xn, the spectrum
is being folded: If

∑2N
k=0 µkδtk (respectively

∑2N+1
k=0 µkδtk) is the symmetric

spectral measure of Ym with tN = 0 (respectively tN > 0), then 2
∑N

k=0 µkδt2k
is the spectral measure of Xn. Let αy and βy be the ↑↓ probabilities that
Ym → Ym+1 = Ym ± 1 in one step given Ym is in state y different from the
endpoints, αy + βy = 1, then:

qx = β2xβ2x−1, rx = β2xα2x−1 + α2xβ2x+1, px = α2xα2x+1.

This, together with p0 = α1 and qN = β2N−1 (respectively qN = β2N) allows
to determine recursively the transition matrix of Ym from the one of Xn.

Proposition 1 If a BD chain Xn is spectrally non-negative, then it is stochas-
tically monotone.

Proof: Under our hypothesis indeed,

px + qx+1 = α2xα2x+1 + β2x+2β2x+1 < α2xα2x+1 + β2x+1 < 1. (5)

Condition ⇒ Xn stoch. monot.: ∀ y ≥ 0 and n ≥ 0, Px (Xn > y) ↑ x. M

CONCLUSION: easy to construct spectrally positive RWs by ‘squaring’ two
symmetric random walks, but given a non-symmetric RW, may be difficult to
decide whether it is or not spectrally positive because one needs conversely
to check whether all the above αs are probabilities.

Scale function and excursion height. Height H = h ∈ {1, .., N − 1}
for some of excursion (sample paths of Xn between two consecutive visits to
state 0). Event realized iff (i) downward paths started from h hit state 0
before hitting state h + 1 and (ii) upward paths started at 0 first reach 1
(with probability p0) and then, paths started at 1 hit h without returning to
0 again in the intervening time. Two events are ⊥. τx,y first hitting time of
y starting from x :

P (H = h) = p0P (τ 1,h < τ 1,0) P (τh,0 < τh,h+1) . (6)

Assume X0 = x. Let Xn∧τx,0
denote the random walk stopped when it first

hits 0. Scale function ϕ of this RW makes Mn := ϕ
(
Xn∧τx,0

)
a martingale.
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Function ϕ important because ∀x : 0 < x < h ≤ N, with τx = τx,0 ∧ τx,h

first hitting time of {0, h} starting from x

P (Xτx = h) =
ϕ (x)

ϕ (h)
. (7)

P (H = h) = p0P (τ 1,h < τ 1,0) P (τh,0 < τh,h+1) = (8)

p0
ϕ (1)

ϕ (h)

(
1− ϕ (h)

ϕ (h+ 1)

)
, h ∈ {1, .., N − 1} .

Note P (H ≥ h) = p0

ϕ(h)
. The event H = N may also occur.

P (H = N) = p0

ϕ(N)
: probability of a fixation between 2 consecutive extinction

events. Compute ϕ? We wish to have: Ex (Mn+1 |Mn = y) = y, leading to

ϕ (x) = qxϕ (x− 1) + rxϕ (x) + pxϕ (x+ 1) .

ϕ (x) =: 1 +
∑x−1

y=1 ψ (y) where ψ (y) satisfies: qyψ (y − 1) = pyψ (y), with
ψ (1) := 1. Thus ψ (y) =

∏y
z=1

qz

pz
and:

ϕ (x) = 1 +
x−1∑
y=1

y∏
z=1

qz
pz

, x ≥ 1, ϕ (0) := 0. (9)

(8) and (9) characterize law of the excursion height of the RW Xn. ϕ (x) ↑
with x. (7) and (9): explicit expression of probability of the event τx,h < τx,0 :

P (τx,h < τx,0) = P (Xτx = h) =
ϕ (x)

ϕ (h)

where τx,h is the first hitting time of h starting from x, with 0 < x < h ≤ N.

In particular, h = N , P (τx,N < τx,0) = ϕ(x)
ϕ(N)

fixation probability.

1.2 A BD example: the Moran Model

2-allele Moran model with BIAS mechanism p.

p (u) : u ∈ [0, 1]→ [0, 1] , with 0 ≤ p (0) and p (1) ≤ 1 (10)

continuous and q (u) := 1− p (u). Moran model Xn:

qx =
x

N
q
( x
N

)
, rx =

x

N
p
( x
N

)
+

(
1− x

N

)
q
( x
N

)
, px =

(
1− x

N

)
p
( x
N

)
.

(11)
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p0 = p (0) > 0 and qN = 1 − p (1) > 0 (mutations) ⇒ chain ergodic with
invariant distribution πy

π0
=

∏y
x=1

px−1

qx
. Neutral: p (u) = u.

Proposition 2 Let Xn be a Moran process with transition probabilities (11)
for some bias p. Then, Xn := N−Xn is again a Moran process with transition
probabilities of the type (11) but with the new bias p (u) = 1 − p (1− u) ,
namely, qx = pN−x = x

N
q
(

x
N

)
, px = qN−x =

(
1− x

N

)
p
(

x
N

)
where q (u) :=

1− p (u) . The spectrum of the transition matrix P of Xn is the same as the
one P of Xn. If the bias is such that p (u) = p (u), then the transition matrix
of Xn coincides with the one of Xn.

Moran model with mutations.

p (u) = (1− µ2)u+ µ1 (1− u) , (12)

(µ1, µ2) mutation probabilities in (0, 1] . µ; = µ1+µ2 ≤ 1⇒ p non-decreasing.

µ1 = µ2 = 1, heat-exchange Bernoulli-Laplace model [Feller ] as a borderline
example but p (u) = 1− u is strictly decreasing in this case.

µ1 = µ2 = 1/2 then p (u) = 1/2 → aperiodic model amenable (through a
suitable time substitution) to the Ehrenfest urn model (N even).

Moran model with mutations and selection (haploid).

p (u) =
µ1 + u ((1 + s) (1− µ2)− µ1)

1 + su
(13)

composition (fitness first) of selection bias mechanism (1+s)u
1+su

(s > −1) with
mutation mechanism (12).

Spectral measure associated to Moran model with general p as in (11) not
known in general.

Spectral representation of the Moran model with mutations. No-
table exception is the Moran model with positive mutation probabilities when
µ := µ1 + µ2 6= 1, [Karlin-McGregor ]. Orthogonal polynomials are the dual
Hahn polynomials. Eigenvalues [Ewens ]

tk = 1− k

N

(
µ+

k − 1

N
(1− µ)

)
(14)
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depend only on total mutation pressure µ. [NOTE: µ > 1 : not spectrally
> 0.]

Spectral gap: 1 − t1 = µ
N

. Invariant measure is generalized bivariate hyper-
geometric distribution: [αi = Nµi/ (1− µ)]

πx =

(−α1

x

)(−α2

N−x

)(−α1−α2

N

) , x = 0, .., N

with
(−α

x

)
= {−α}x /x!, {−α}x = −α (−α− 1) .. (−α− x+ 1) , falling fac-

torials of −α with {−α}x = (−1)x (α)x.

Spectral measure

µk =
2k + α1 + α2 − 1

k + α1 + α2 − 1

(
N

k

)
(α2)N

(k + α1 + α2)N

(α1)k

(α2)k

, k = 0, .., N (15)

When µ1 = µ2 = 1 (Bernoulli-Laplace), the transition probabilities read:

qx =
(

x
N

)2
, rx = 2 x

N

(
1− x

N

)
, px =

(
1− x

N

)2
. Here, πx =

(
N
x

)(
N

N−x

)
/
(
2N
N

)
(the standard hypergeometric distribution), µk = 2N+1−2k

2N+1−k

(
N
k

)
/
(
2N−k

N

)
and

tk = 1− k
N2 (2N + 1− k).

Critical line µ1 + µ2 = 1, p (u) = µ1 is constant ⇒ transition probabili-
ties are affine functions of state: qx = µ1

x
N
, rx = µ1 + (2µ1 − 1) x

N
, px =

µ1

(
1− x

N

)
, µ1 := 1 − µ1. Here, πx =

(
N
x

)
µx

1µ
N−x
1 , µk =

(
N
k

)
µk

1µ
N−k
1 are bi-

nomial bin(N,µ1)−distributed and self-dual and tk = 1− k
N

, independent of
µ1. Dual Hahn polynomials boil down to Krawtchouk polynomials. When
µ1 = 1/2 (the lazy Ehrenfest urn), the holding probabilities are rx = 1/2 and
both πx and µk are symmetric bin(N, 1/2) distributed.

Cases with positive eigenvalues. Conditions on p leading to rx ≥ 1
2

in
which case the RW is spectrally positive ?. Assume p (u) : u ∈ (0, 1)→ (0, 1)
is continuous and non–decreasing, with 0 < p (0) ≤ p (1) < 1.

Then, as can easily be checked: rx ≥ 1/2 for all x iff p (1/2) = 1/2 with
p (0) ≤ 1

2
≤ p (1) . Indeed, imposing rx ≥ 1/2 for all x leads to p (u) ≥ 1/2

if u ≥ 1/2 and p (u) ≤ 1/2 if u ≤ 1/2. So, if p is non–decreasing with
p (1/2) = 1/2, then rx ≥ 1

2
.

No NSC on the structure of bias p leading to spectrally-+ Moran.
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2 Detailed study of the Siegmund dual of BD

chains with application to Moran model

Definition 1 :[Liggett] Two discrete-time Markov processes
(
Xn, X̂n;n ≥ 0

)
,

state-spaces (X ,Y) , possibly with substochastic transition kernels, dual wr to
some non-singular duality kernel H ≥ 0 on product space X × Y if ∀x ∈ X ,
∀y ∈ Y , ∀n ∈ N :

ExH (Xn, y) = EyH
(
x, X̂n

)
. (16)

If (X ,Y) = {0, .., N}2 finite and identical, duality kernel is square-matrix

and transition matrix of dual process X̂, say P̂ obtained from P by:

P̂ ′ = H−1PH,

Note that if P̂ is an H−dual to P, then P is an H ′−dual to P̂ . If H = H ′,
P̂ is an H−dual to P but also P is an H−dual to P̂ .

Siegmund example. Siegmund duality kernel SK: H (x, y) = 1 (x ≤ y) . If,

for a given process Xn a process X̂n exists satisfying the above condition, X̂n

is called the Siegmund dual of Xn. Clearly, in the BD case for Xn the condi-
tion is that Xn should be SM in that, for all y ≥ 0 and n ≥ 0, Px (Xn > y)
↑ with x.

For positive recurrent BD processes, and for SK, the transition matrix P̂ of
the dual process X̂n :

P̂ =


r0 − q1 q1
p1 r̂1 q2

. . . . . . . . .

pN−1 r̂N−1 qN
0 1

 ,

where r̂y := 1− (py + qy+1), y ∈ {1, ..., N − 1} (and q̂y = py, y = 1, .., N − 1,
p̂y = qy+1, y = 0, ..., N − 1). Again the one of a BD process (but not of a
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Moran BD process if P is a Moran transition matrix).

H =


1 1 1
0 1 1

. . . . . . . . .

0 1 1
0 0 1

 , H−1 =


1 −1 0 0
0 1 −1

. . . . . . . . . 0
0 1 −1

0 0 1


Dual to exist, ensure py + qy+1 ≤ 1 for y ∈ {0, .., N − 1} which is a NSC
to guarantee the stochastic monotonicity of Xn. We already know that if
P is a spectrally non-negative BD matrix, the chain is SM. Here is another
sufficient condition relative to the specific ergodic Moran case:

Proposition 3 Moran model Xn with bias p. If p (u) is non-decreasing, the
condition px + qx+1 ≤ 1 is fulfilled and so the Siegmund dual exists.

Structure of P̂ : the dual process loses mass at y = 0 and is absorbed at
y = N. Add a coffin state ∂ := {−1} and let:

P̂∂ :=



1 0
1− r0 r0 − q1 q1

p1 r̂1 q2
. . . . . . . . .

pN−1 r̂N−1 qN
0 1


,

Corresponding proper BD chain, ∂X̂n, now has 2 absorbing states, one at
{−1}, one at {N} . ϕ̂ (y), y = −1, 0, 1, ..., N scale function of ∂X̂n, solving

P̂∂ϕ̂ = ϕ̂, forcing ϕ̂ (−1) = 0. We have:

ϕ̂ (−1) = 0, ϕ̂ (0) = 1, ϕ̂ (y) = γc
y :=

y∑
z=0

γz =
1

π0

y∑
z=0

πz. (17)

Scale function of ∂X̂n is the cum-distribution of the inv- measure of the
original process. τ̂ y := τ̂ y,−1 ∧ τ̂ y,N infimum of first hitting time of {−1} and
{N} starting from y ∈ {0, ..., N − 1}. We have:

Py

(
∂X̂τ̂y = N

)
=

ϕ̂ (y)

ϕ̂ (N)
=: φ̂ (y) =

γc
y

γc
N

= πc
y (18)
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where πc
y = π0γ

c
y is the cum- inv- probability distribution of πx.

Doob h−transform. New transition matrix P̃∂ by:

P̃∂ (x, y) =
πc

y

πc
x

P̂∂ (x, y) , x, y ∈ {−1, 0, ..., N}2 . (19)

P̃∂ =



1 0
0 r0 − q1 p0 + q1

πc
0

πc
1
p1 r̂1

πc
2

πc
1
q2

. . . . . . . . .
πc

N−2

πc
N−1

pN−1 r̂N−1
πc

N

πc
N−1

qN

0 1


,

state {−1} becomes isolated and disconnected. Deleting the line and row

{−1} of P̃∂, we get a stochastic matrix, call it P̃ , of a process X̃n on {0, ..., N}
which is ∂X̂n conditioned to first hit state {N} before state {−1} . State 0 of
this conditioned BD process now is partially reflecting whereas the remaining
absorbing state, say a, is a = {N}.

P̃ and P are intertwined through a stochastic link.

Proposition 4 (i) Matrices P̃ and P are similar (with the same eigenval-
ues)

P̃ = ΛPΛ−1. (20)

Link Λ is: Λ (x̃, x) = πx

πc
x̃
1 (x ≤ x̃) , [Λ = D−1

φ̂
H ′Dπ] , lower-triangular stochas-

tic matrix. For all n ≥ 0

Λ (x̃, x) = P
(
Xn = x | X̃n = x̃

)
(21)

and π′n = π̃′nΛ where πn = Pπ0
(Xn = ·) and π̃n = Pπ̃0

(
X̃n = ·

)
.

(ii) The link Λ satisfies

Λ (N, x) = πx, x = 0, .., N. (22)
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(iii) π̃′0 = π′0 = e′0 := (1, 0, ..., 0) are admissible initial distributions of the

chains X̃n and Xn, satisfying

π′0 = π̃′0Λ. (23)

(iv) P̃ is K-dual to P :

P̃ ′ = K−1PK (24)

where K (x, y) = 1
πc

y
1 (x ≤ y) .

Strong stationary time [Diaconis-Fill ]. The intertwining construction
shows that original +-recurrent BD chain Xn with transition matrix P may
also be viewed as the output (through the link Λ) of a dual hidden Markov

chain X̃n with transition matrix P̃ . Once X̃n hits its absorbing state {N},
the RW Xn is distributed like π, provided both Xn and X̃n were started at

0. There exists a bivariate Markov chain
(
X̃,X

)
with transition kernel:

P ((x̃, x) , (ỹ, y)) =
P (x, y) · P̃ (x̃, ỹ) · Λ (ỹ, y)

(ΛP ) (x̃, y)
1(ΛP )(x̃,y)>0 (25)

where x̃ ∈ {x, x± 1} , ỹ ∈ {y, y ± 1} . We have: (ΛP ) (x̃, y) > 0 iff y ≤ x̃+1.

With x ∈ {0, ..., N − 1}

τ̃ x̃0,N = inf
(
n : X̃n = N | X̃0 = x̃0

)
(26)

first hitting time of N of X̃n, starting from state x̃0 ∈ {0, ..., N − 1} . τ̃ 0,N

→ information on the speed of convergence of the law of original process
Xn to its inv- measure (is a SST in the sense of Diaconis and Fill). (20,

21, 22, 23) ⇒ τ̃ 0,N is a SST of Xn in that Xτ̃0,N

d∼ π and is ⊥ of τ̃ 0,N (see
[Diaconis-Fill ] Theorems 2.4 and 2.17 or [Fill ] Theorem 2.1). Equivalently
(see [Aldous-Diaconis ], Prop. 3.2), it holds that:

sep (πn,π) ≤ P (τ̃ 0,N > n) ≤ E (τ̃ 0,N) /n (27)

where πn (·) = P n (0, ·) is the law of Xn started at 0, π inv- measure. In
(27), the separation discrepancy: sep(πn,π) := supy [1− πn (y) /πy] . Satis-
fies sep(πn,π) ≥ ‖πn − π‖TV where ‖πn − π‖TV = 1

2

∑
y |πn (y)− πy| is the

total variation distance between πn and π.
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From (20, 23), there is a unique ‘witness’ state say d = N such that either
π̃n (N) = 0 or π̃n (N) > 0 ⇒ πn (d) = π̃n (N)πd > 0 showing that this ran-
dom time is stochastically the smallest since the first inequality in (27) turns
out to be an equality (see Remark 2.39 of [Diaconis-Fill ] and Proposition 13
below).

BD chains absorbed at N : pgf of τ̃ 0,N ≥ N is [Keilson and Fill ]:

E
(
uτ̃0,N

)
=

N∏
k=1

(1− tk)u
1− tku

, u ∈ [0, 1] (28)

where −1 < tk < +1, k = 1, ..., N are the N 6= eigenvalues of both P̃ and P ,
avoiding t0 = 1.

P (τ̃ 0,N > n) =
N∑

l=1

∏
k 6=l

1− tk
tl − tk

tnl , n ≥ N − 1. (29)

Thus, t−n
1 P (τ̃ 0,N > n)→n↑∞

∏N
k=2

1−tk
t1−tk

; τ̃ 0,N has geometric tails with expo-
nent t1.

E (τ̃ 0,N) =
N∑

k=1

(1− tk)−1 and (30)

σ2 (τ̃ 0,N) =
N∑

k=1

(1− tk)−2 −
N∑

k=1

(1− tk)−1 . (31)

Note since t1 is the dominant eigenvalue

σ2 (τ̃ 0,N) ≤ E (τ̃ 0,N)

1− t1
. (32)

If eigenvalues tk are ≥ 0, then τ̃ 0,N
d
=

∑N
k=1 τ k where the τ ks are independent

with τ k
d∼ geom(1− tk) on {1, 2, ...} . When the eigenvalues tk are not all

positive, not obvious that the above expression (28) of E
(
uτ̃0,N

)
is indeed a

pgf but it is. Assuming tN < ... < tl+1 < 0 ≤ tl < ... < t1 < t0 = 1, (28)
interprets as:

τ̃ 0,N −
N∑

k=l+1

bk
d
=

l∑
k=1

τ k,

where bk
d∼ bernoulli(1/ (1− tk)) , τ k

d∼ geom(1− tk) and τ̃ 0,N are all mutu-
ally ⊥ .

13



Proposition 5 (A-F) Suppose a Siegmund dual exists for a finite state-

space ergodic BD chain Xn. Then there exists a Markov chain X̃n, in-
tertwined with Xn, with {N} as an absorbing state and fully described in
Proposition 4. The random time τ̃ 0,N is a fastest strong stationary time for
Xn whose law is characterized either by (28) or (29) involving the spectrum

of either P or P̃ , the transition matrices governing the 2 processes.

Computing the mean and variance of τ̃ 0,N . If tk are known explicitly.
In this case, compute E (τ̃ 0,N) and σ2 (τ̃ 0,N) and find conditions under which

E (τ̃ 0,N)→∞ and σ2

(
τ̃ 0,N

E (τ̃ 0,N)

)
→ 0 as N ↑ ∞. (33)

If this is the case, then
τ̃0,N

E(τ̃0,N)
→ 1 in probability and bE (τ̃ 0,N) /2c is ex-

pected to be a cutoff time for Xn started at 0 [AD ].

Example: Moran model with mutations, with µ := µ1 + µ2, µ := 1 − µ,
because the eigenvalues tk are known leading to: 1− tk = k

N

(
µ+ µk−1

N

)
.

µN ∼ N

∫ 1

0

dx

(x+ 1/N) (µ+ µx)
=

N2

Nµ− µ

(∫ 1

0

dx

x+ 1/N
− µ

∫ 1

0

dx

µ+ µx

)
,

we easily get

µN ∼
N

µ
(logN + log µ) and σ2 (τ̃ 0,N) ∼

(
N

µ

)2

showing that σ2 (τ̃ 0,N/E (τ̃ 0,N)) ∼ (logN)−2 → 0. Gumbel weak limit law:

τ̃ 0,N − N
µ

logN
N
µ

d→ X
d∼ e−(x+e−x), x ∈ R.

[Diaconis, Shahshahani ] With nN (θ) =
⌊

N
2µ

(logN + θ)
⌋
, then∥∥P nN (θ) (0, ·)− π

∥∥
TV
→

N↑∞
c (θ)

where c (θ)→θ↑∞ 0 and c (θ)→θ↑−∞ 1.

14



Expected mixing time is µN ∼ N
µ

logN whereas spectral gap is 1 − t1 = µ
N
,

the product of the 2 of which tends to ∞. Recalling σ2 (τ̃ 0,N) ≤ µN

1−t1
,

σ2 (τ̃ 0,N/µN) = µ−2
N σ2 (τ̃ 0,N) ≤ 1/ ((1− t1)µN), the condition (1− t1)µN →

∞ is a sufficient condition for σ2 (τ̃ 0,N/µN) → 0. If this holds, the contri-

bution of
∑N

k=2 (1− tk)−1 to µN dominates the lead term (1− t1)−1 . (see
[Diaconis-Saloff-Coste] ).

However, in general, the tk are not known. How to compute differently
E (τ̃ 0,N) and σ2 (τ̃ 0,N)?. Use representation of the Green function in terms of
the scale function of the RW.

3 Some extensions

ChainXn ergodic. Previous construction extends to a wider class of problems
than the birth and death (Moran or not) model associated with the Siegmund
kernel. In the context of population genetics, the first model one may think
of is the Wright-Fisher model with bias p (u) for which

P (x, y) =

(
N

y

)
p
( x
N

)y (
1− p

( x
N

))N−y

. (34)

Model with binomial transition probabilities not reversible, nor is it in the
BD class.

However: The matrix P is TP [Karlin] in the sense that for all xq ≡ (x1, .., xq)
with 1 ≤ x1 < .. < xq ≤ N − 1 and yq ≡ (y1, .., yq) with 1 ≤ y1 < .. < yq ≤
N − 1, it has all its minors > 0:

det [P (xq,yq)] > 0.

P (x, y) may be written as: P (x, y) = φ (x)W (x, y)ψ (y) with φ (x) , ψ (y) >
0 and W (x, y) a TP kernel:

P (x, y) =
(
1− p

(x
n

))N
[

p
(

x
N

)
1− p

(
x
N

)]y (
N

y

)

where kernel W (x, y) =

[
p( x

n)
1−p( x

n)

]y

≡ eyτ(x) is TP because x → τ (x) is ↑

since u→ p (u) is ↑. Therefore, under this assumption, P is spectrally > 0.
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π invariant measure associated to P :

πx =
(I − P )x,x∑N

x=0 (I − P )x,x

, x = 0, .., N

where (I − P )x,x is cofactor of the (x, x)−entry of the matrix I − P
Fix up how intertwining operates in this more general setting, extending the
main steps of the Siegmund dual construction for birth and death chains.

State-spaces: (X ,Y) = {0, ..., N}2 . Consider G ≥ 0 on (X ,Y) non-singular.
Assume a single state a ∈ Y such that G (x, a) = Constant, for all x ∈ X .
Define H by H (x, y) = G (x, y) /maxxG (x, y) . Then, H ≥ 0 and H (x, a) =

1, for all x ∈ X and H (x, y) ∈ [0, 1], for all (x, y). ea =
(
0, .., 0,

a

1, 0, ..0
)′

:

Hea = 1.

P stochastic transition matrix of some ergodic Markov chain Xn on X with
invariant probability measure π > 0.

Time reversal.
←−
P stochastic transition matrix of backward (reversed in

time) Markov chain
←−
P ′ = DπPD

−1
π . (35)

If chain reversible (as in the Moran nearest-neighbor RW model), this step

is not necessary because
←−
P = P.

Lemma 6
←−
P is dual to P with respect to the diagonal duality kernel D−1

π .

When
←−
P = P , we have self-duality (reversibility).

H−dual. With H defined as above, suppose the duality relation

P̂ ′ = H−1←−P H (36)

defines a substochastic matrix P̂ ≥ 0, which is then H−dual to
←−
P .

Remark: This is a key-point: for given P decide for which H, P̂ behaves well.
Also, for each specific case study, identify the states which are mass-defective
for P̂ in terms of the structure of H.

a absorb:
(
P̂1

)
a

= e′aP̂1 = 1′P̂ ′ea = 1′H−1←−P Hea = 1′ea =1 and
(
P̂1

)
x
<

1 for at least one x 6= a. Duality

ExH
(←−
X n, y

)
= EyH

(
x, X̂n

)
,
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so that H is within the dual space of
←−
P . If such P̂ exists, then :

Proposition 7 It holds that

P̂ = SPS−1, (37)

where S = H ′Dπ. P is S−similar to P̂ (with the same eigenvalues). S1 is a

right eigenvector to P̂ associated to the unit eigenvalue. We have S1 = H ′π
so that (S1)a = 1 and (S1)x < 1 when x 6= a. In particular S is substochastic.

Thus, if the H−dual P̂ of
←−
P is substochastic, P is similar to P̂ the similarity

transform being itself substochastic. We have

e′aP̂ = e′aSPS
−1 = (Hea)

′DπPS
−1 = π′PD−1

π H−1′ =
(
H−11

)′
= e′a

and so {a} is absorbing for P̂ .

Coffin state and scale function. Enlarged stochastic matrix

P̂∂ =

[
1 0′

1−P̂1 P̂

]
,

by adding an extra coffin state, say ∂ := {−1} . P̂∂ transition matrix of a
proper Markov chain ∂Xn on {∂ = −1, 0, 1, .., N} now with the 2 absorbing
states {∂, a} .
Let ϕ̂ (y), y = −1, 0, 1, ..., N be a scale function of ∂X̂n, solving P̂∂ϕ̂ = ϕ̂,

and imposing ϕ̂ (∂) = 0. Note P̂ φ̂ = φ̂ where φ̂ is the restriction of ϕ̂ to

{0, 1, .., N} and a solution is, up to a constant, φ̂ = S1 = H ′π > 0 (because

P̂S = SP , P is stochastic and π > 0). Then, φ̂ is maximal at y = a and

φ̂ (a) = 1.

Let τ̂x := τ̂x,∂ ∧ τ̂x,a infimum of the first hitting times of ∂ = {−1} and {a}
starting from x ∈ {0, ..., N} \ {a}. ϕ̂ scale function for ∂Xn [Dynkin]:

P
(

∂X̂τ̂x = a
)

=
ϕ̂ (x)

ϕ̂ (a)
=: φ̂ (x) . (38)

φ̂ (x) interprets as the prob. that ∂Xn gets absorbed at {a} before {∂} when
started at x.
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Doob transform and conditioning. Define new transition matrix P̃∂ by:

P̃∂ = D−1
ϕ̂ P̂∂Dϕ̂. (39)

P̃∂1 = 1 and P̃∂ stochastic. State {−1} becomes isolated and disconnected.

Deleting the line and row {−1} of P̃∂, we get a stochastic matrix, call it

P̃ , of a process X̃n on {0, ..., N} which corresponds to ∂X̂n conditioned to
first hit the state {a} before the state {∂} . The state {a} remains the single

absorbing state of the reduced RW X̃n.

Proposition 8 We have

P̃ = D−1

φ̂
P̂Dφ̂ = ΛPΛ−1 (40)

where Λ is the stochastic link:

Λ = D−1

φ̂
S = D−1

φ̂
H ′Dπ, (41)

satisfying Λ1 = D−1

φ̂
H ′π = D−1

H′πH
′π = 1. So X̃n and Xn are Λ−intertwined

if in addition π′0 = π̃′0Λ. Note that

Λ (a, x) = e′aΛex = (Hea)
′Dπex = 1′Dπex = πx, (42)

so the row Λ (a, ·) coincides with π′.

P and P̃ share the same eigenvalues.

Proposition 9 P̃ and
←−
P are K−duals with

P̃ ′ = K−1←−P K, and K = HD−1

φ̂
, (43)

but P̃ and P are not duals in general (they are Λ−intertwined), unless P =
←−
P , i.e. when detailed balance holds for the reversible chain Xn.

Let (Un) be a iid uniform sequence generating X̃n. As a Markov chain with

transition matrix P̃ , the dynamics of X̃n is given by X̃n+1 = f
(
X̃n, Un+1

)
with:

X̃n+1 =
N∑

y=0

y1
(
Un+1 ∈

[
P̃c

(
X̃n, y − 1

)
, P̃c

(
X̃n, y

)])
,
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where P̃c (x, y) =
∑y

z=0 P̃ (x, z). Given X̃n = x, X̃n+1 = y with probability

P̃c (x, y)− P̃c (x, y − 1) = P̃ (x, y) .

If intertwining holds, then ∃ sequence (Vn) of iid uniform random variables,

⊥ of (Un) generating X̃n, and a measurable function h such that, for each n,

Xn = h
(
X̃n, Vn

)
:

Xn =
N∑

x=0

x1
(
Vn ∈

[
Λc

(
X̃n, x− 1

)
,Λc

(
X̃n, x

)])
where Λc (x̃, x) =

∑x
y=0 Λ (x̃, y) is the cum- Λ−kernel. Given X̃n = x̃, Xn = x

with probability Λc (x̃, x)−Λc (x̃, x− 1) = Λ (x̃, x) . With π′n and π̃′n the row

probabilities of Xn and X̃n, for each n ≥ 0, we thus have π′n = π̃′nΛ. In

particular, if X̃0
d∼ π̃0, then X0

d∼ π0 where π′0 = π̃′0Λ.

REMARK: Not necessary for intertwining construction to hold that P̂ is a
substochastic matrix. P̂ ≥ 0 is enough. [H-Martinez ].

COUPLING: For each n, joint stochastic transition matrix:

P
((
X̃n+1 = ỹ, Xn+1 = y

)
|
(
X̃n = x̃, Xn = x

))
=

P (x, y) · P̃ (x̃, ỹ) · Λ (ỹ, y)

(ΛP ) (x̃, y)
1 ((ΛP ) (x̃, y) > 0) .

If intertwining: original ergodic Markov chain Xn, governed by P , may be
viewed as a random output of the Markov process X̃n governed by P̃ =
ΛPΛ−1 and absorbed at a single state {a} . Setup reminiscent of filtering

theory with X̃n the hidden process and Xn the observable. Peculiarity of
intertwining construction: Xn is a Markov output which is itself Markov.
Interpret X̃n?

Sharpness. Consider two processes X̃n and Xn intertwined through a

stochastic link Λ. Interpretation of the link Λ (x̃, x) = P
(
Xn = x | X̃n = x̃

)
for all n ≥ 0 and so: π′n = π̃′nΛ, n ≥ 0. Sharpness result alluded to in
Remark 2.39 of [D-F ] p. 1495.

Proposition 10 Suppose there is a state d of Xn such that Λed = πdea.

Then X̃n is a sharp dual to Xn in that, given X̃0
d∼ π̃0 and X0

d∼ π0 where
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π′0 = π̃′0Λ, with πn = P n (X0, ·) , then: sep(πn,π) = P
(
τ̃ X̃0,a > n

)
< 1 ,

n > n+ for some entrance time n+ ≥ 0 in the absorbing state a.

Proof: Minimum of πn(x)
πx

attained at x = d with minx
πn(x)

πx
= π̃n (a) ⇒

sep(πn,π) = 1 − π̃n (a) = P
(
τ̃ X̃0,a > n

)
holds for n > n+ with n+ =

inf (n : π̃n (a) > 0) , the first entrance time of X̃n within state a . Before

time n+, π̃n (a) = 0 and so sep(πn,π) = P
(
τ̃ X̃0,a > n

)
= 1. M

Non-zero entries of Λ are the ones of H ′ : [recall Λ = D−1

φ̂
S = D−1

φ̂
H ′Dπ]

Λ =



0
0

π0 π1 · · · πd πN

0
...

0


Initial conditions. If e′bΛ = e′c for some singleton states (b, c) ⇒ X̃0

d∼ δb

and X0
d∼ δc is an admissible atomic distribution for the initial conditions.

Further examples of kernels of potential interest. Duality kernels for
which H (x, a) = 1, ∀ x ∈ X = {0, ..., N} and for some a. Inverses H−1

known explicitly : useful to decide whether for given P , the H−dual P̂ of←−
P defines a substochastic matrix. If true, problem of interpreting the chain
with transition matrix P̃ remains challenging and open problem.

- Siegmund kernels. G (x, y) = H (x, y) = 1 (x ≤ y). a = {N} and d = {N} .
G (x, y) = H (x, y) = 1 (x ≥ y). a = {0} and d = {0} .

- Pascal kernel. G (x, y) =
(

x+y
y

)
, H (x, y) =

(
x+y

y

)
/
(

N+y
y

)
. We have G = LL′

where L is defined by L (x, y) =
(

x
y

)
, x ≥ y. The Pascal matrix has no zero

entries: no expected sharpness.
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- Hypergeometric kernel. G (x, y) =
(

N−x
y

)
, H (x, y) =

(
N−x

y

)
/
(

N
y

)
satisfying

H = H ′. a = {0} and d = {N} . [Also H (x, y) =
(

x
y

)
/
(

N
y

)
].

EXAMPLE (WF): (P,π) reversible ergodic Moran model with mechanism
p, H (x, y) =

(
N−x

y

)
/
(

N
y

)
, we can interpret the H−dual in terms of a multi-

sex backward process [H-Moehle], provided p : [0, 1] → [0, 1] is such that
q = 1 − p is CM [(−1)k q(k) (u) ≥ 0]. In [H-Moehle] for the Moran model

with CM mechanism:
(
P̂1

)
a=0

= 1 and 0 <
(
P̂1

)
x

= 1 − x
N
p (0) < 1 for

all x 6= 0 if p (0) ∈ (0, 1). When p (0) 6= 0, all states but a = 0 of P̂ are
mass-defective.

P̃ , as a normalized version of P̂ , transition matrix of skip-free to the left RW
that can be described from [H-M ]. Note : H (x,N) = 0 for all x 6= 0 so that
e′NΛ = e′0. ΛeN = πNe0 (a = 0 and d = N) ⇒ τ̃N,0 > 0 stochast. smallest

time at which Xτ̃N,0

d∼ π given X0 = 0 and X̃0 = N.

Time τ̃N,0 to reach 0 starting from N of the skip-free to the left RW P̃ (with

same spectrum as P )
d
= τ̃ 0,N to reach N starting from 0 of the Siegmund dual

RW of same Moran model, namely like (28). In accordance with Theorem
1.2 of [Fill ]: for a skip-free to the right Markov chain absorbed at N , the law
of the time it takes to hit N starting from 0 is given by K-F (28).

- Vandermonde kernel. G (x, y) = xy, H (x, y) = (x/N)y . We have G = LU
where L (x, y) =

(
x
y

)
, x ≥ y and U (x, y) = x!Sy,x , Sy,x, 2nd kind Stirling

numbers. No sharpness.

RK: Ergodic chain governed by P not reversible. Start defining the H−dual

of P , without appealing first to
←−
P , miss the idea of a link between P̃ and

P . However, get a similar link between P̃ and
←−
P : with H defined as above,

suppose
P̂ ′ = H−1PH (44)

defines directly a substochastic matrix P̂ ≥ 0, which is H−dual to P, so with(
P̂1

)
a

= 1 and
(
P̂1

)
x
< 1 for at least one x 6= a. Using

←−
P ′ = DπPD

−1
π ,

we get

P̂ = S
←−
P S−1, (45)
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where S = H ′Dπ. Define the new φ̂ by: P̂ φ̂ = φ̂ for this new P̂ . Applying
the same Doob transform, this P̂ leads to

P̃ = D−1

φ̂
P̂Dφ̂ = Λ

←−
P Λ−1, (46)

expressing a stochastic link Λ = D−1

φ̂
H ′Dπ now between P̃ and

←−
P or between

the hidden process X̃n and the observable
←−
X n which now is the time-reversed

of Xn.

EXAMPLES: (i) assume the bias p (u) appearing in the Wright-Fisher matrix
P (34) is such that q is CM, with p (0) > 0. Then, using again the hyper-
geometric duality kernel H (x, y) =

(
N−x

y

)
/
(

N
y

)
, it was shown in [H ] that the

H−dual P̂ to P in (44) defines a substochastic matrix ⇒ Corresponding P̃

is Λ−linked to
←−
P .

(ii) If p (u) in (34) does not contain mutation effects⇒ chain governed by P
transient with 2 absorbing states {0, N} → substochastic matrix Q obtained
from P by deleting its first/last lines and columns. New WF chain has state-
space {1, .., N − 1} . Consider ergodic Q−process conditioned to never hit
boundaries in remote future, governed by

P = ρ−1D−1
ψ QDψ

where Qψ = ρψ, ψ > 0, ρ =Spectral radius of Q. Apply duality-intertwining
theory to this new matrix P , using (?) hypergeometric DK H (x, y) =(

x−1
y−1

)
/
(

N−2
y−1

)
, 1 ≤ y ≤ x ≤ N − 1. M
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