Duality and Intertwining with Applications to discrete Moran Models and related Ones

Thierry Huillet
LPTM, CNRS-UMR 8089 et Université de Cergy-Pontoise ANR MANEGE, X, March 26.

March 25, 2010

1 Discrete-time BD and Moran model ${ }^{1}$

1.1 Generalities on BD processes with finite state-space

P a $(N+1)^{2}$ tridiagonal (Jacobi) irreducible stochastic matrix

$$
P=\left[\begin{array}{ccccc}
r_{0} & p_{0} & & & \\
q_{1} & r_{1} & p_{1} & & \\
& \ddots & \ddots & \ddots & \\
& & q_{N-1} & r_{N-1} & p_{N-1} \\
& & & q_{N} & r_{N}
\end{array}\right],
$$

with $p_{0}>0, q_{x}, p_{x}>0, x=1, . ., N-1$ and $q_{N}>0$, transition matrix of discrete-time Markov chain X_{n}. Invariant probability measure: $\pi^{\prime}:=$ $\left(\pi_{0}, \pi_{1}, . ., \pi_{N}\right): \boldsymbol{\pi}^{\prime}=\pi^{\prime} P . \pi_{y}=\pi_{0} \prod_{z=0}^{y-1} \frac{p_{z}}{q_{z+1}}>0, y=1, . ., N$, with π_{0} : $\sum_{y=0}^{N} \pi_{y}=1$.

[^0]P diagonally \sim to the symmetric matrix $\left[P=D_{\pi}^{-1 / 2} P_{S} D_{\pi}^{1 / 2}\right]$
\[

P_{S}=\left[$$
\begin{array}{ccccc}
r_{0} & \sqrt{p_{0} q_{1}} & & & \\
\sqrt{p_{0} q_{1}} & r_{1} & \sqrt{p_{1} q_{2}} & & \\
& \ddots & \ddots & \ddots & \\
& & \sqrt{p_{N-2} q_{N-1}} & r_{N-1} & \sqrt{p_{N-1} q_{N}} \\
& & & \sqrt{p_{N-1} q_{N}} & r_{N}
\end{array}
$$\right]
\]

so with real eigenvalues. $D_{\pi}:=\operatorname{diag}\left(\pi_{0}, . ., \pi_{N}\right)$. As a symmetric matrix, P_{S} is diagonalizable by an orthogonal transformation and so P is diagonalizable. Such NN RWs are reversible (detailed balance holds). $P=\overleftarrow{P}$ where \overleftarrow{P} is the transition matrix of the time reversed process, given by $\overleftarrow{P}^{\prime}=D_{\boldsymbol{\pi}} P D_{\pi}^{-1}$ (P^{\prime} transpose of P).

KMG spectral theory. RW polynomials $\left(\mathfrak{q}_{y}(t) ; y=0, . ., N\right), t \in[-1,1]$, determined by $\mathfrak{q}_{0}(t)=1$ and 3 -term recurrences:

$$
\begin{gathered}
t \mathfrak{q}_{0}(t)=p_{0} \mathfrak{q}_{1}(t)+r_{0} \mathfrak{q}_{0}(t) \\
t \mathfrak{q}_{y}(t)=p_{y} \mathfrak{q}_{y+1}(t)+r_{y} \mathfrak{q}_{y}(t)+q_{y} \mathfrak{q}_{y-1}(t), y \in\{1, N-1\} .
\end{gathered}
$$

SPECTRUM: $\left(t_{k}, k=0, . ., N\right)$ zeroes of polynomial of degree $N+1: t \rightarrow$ $P_{N+1}(t)=t \mathfrak{q}_{N}(t)-r_{N} \mathfrak{q}_{N}(t)-q_{N} \mathfrak{q}_{N-1}(t)$, namely:

$$
S:=\left\{t_{k}: P_{N+1}\left(t_{k}\right)=0\right\}
$$

with $1=t_{0}>t_{1}>. .>t_{N} \geq-1.1-t_{1}$ spectral gap.
$\mu(d t):=\sum_{k=0}^{N} \mu_{k} \delta_{t_{k}}$ spectral probability measure on $[-1,1]$ wr to which $\left(\mathfrak{q}_{y}(t), y \geq 1\right)$ orthogonal:

$$
\begin{equation*}
\gamma_{y} \int_{-1}^{1} \mathfrak{q}_{x}(t) \mathfrak{q}_{y}(t) \mu(d t)=\gamma_{y} \sum_{k=0}^{N} \mu_{k} \mathfrak{q}_{x}\left(t_{k}\right) \mathfrak{q}_{y}\left(t_{k}\right)=\delta_{x, y} \tag{1}
\end{equation*}
$$

where $\gamma_{y}:=\frac{\pi_{y}}{\pi_{0}}=1 / \int_{-1}^{1} \mathfrak{q}_{y}(t)^{2} \mu(d t)=\prod_{z=0}^{y-1} \frac{p_{z}}{q_{z+1}}, y \geq 0$ potential coefficients.
KMG spectral representation theorem [Karlin]

$$
\begin{equation*}
P^{n}(x, y):=\mathbb{P}_{x}\left(X_{n}=y\right)=\gamma_{y} \sum_{k=0}^{N} \mu_{k} t_{k}^{n} \mathfrak{q}_{x}\left(t_{k}\right) \mathfrak{q}_{y}\left(t_{k}\right) \tag{2}
\end{equation*}
$$

Ergodic theorem, if $t_{N}>-1, \forall x, P^{n}(x, y) \rightarrow \mu_{0} \gamma_{y}=\frac{\mu_{0}}{\pi_{0}} \pi_{y}=\pi_{y}$ as $n \uparrow \infty$.
Symmetric RW. Suppose $N=2 N_{0}$. RW X_{n} on $\left\{0, . ., 2 N_{0}\right\}$ given with

$$
P=\left[\begin{array}{ccccc}
0 & 1 & & & \\
q_{1} & 0 & p_{1} & & \\
& \ddots & \ddots & \ddots & \\
& & q_{2 N_{0}-1} & 0 & p_{2 N_{0}-1} \\
& & & 1 & 0
\end{array}\right],
$$

transition matrix of some symmetric RW reflected at the boundaries $\left\{0,2 N_{0}\right\}$. KMG theory of $P^{n}: \mu(d t):=\sum_{k=0}^{2 N_{0}} \mu_{k} \delta_{t_{k}}$ is the probability measure on $[-1,1]$ wr to which the polynomial $\left(\mathfrak{q}_{y}(t), y \geq 1\right)$ associated to P are orthogonal. Measure symmetric on $[-1,1]$. In particular, $t_{N_{0}}=0$ and $t_{2 N_{0}}=-1, t_{0}=1$ are eigenvalues of such $P \mathrm{~s}$.

EXAMPLE: Gambler RW $X_{n}: p_{x}=p, q_{x}=q, x=1, \ldots, N-1(p+q=1)$ with a pure reflection at the endpoints $\left(p_{0}=q_{N}=1\right)$. Invariant measure $\boldsymbol{\pi}$ is a truncated geometric distribution. [Feller], p. 438: $t_{k}=2 \sqrt{p q} \cos \left(\frac{k \pi}{N}\right)$, $k=1, ., N-1, t_{0}=1, t_{N}=-1$. Spectral gap $\rightarrow 1-2 \sqrt{p q} \neq 0$ as $N \uparrow \infty$ if $p \neq 1 / 2$. Mass of the spectral measure: $\mu_{N}=\mu_{0}=\pi_{0}=$ $(1-(p / q)) /\left[2\left(1-(p / q)^{N}\right)\right], \mu_{k}=\left(1-2 \mu_{0}\right) /(N-1), k=1, . ., N-1$ (with $\mu_{0}=1 /(2 N)$ when $\left.p=1 / 2\right)$. Boundary effects cause deviation from the uniform measure on $\{0, \ldots N\}$. Orthogonal polynomials involve two sine functions.

Special cases. Let

$$
S^{\prime}=\left[\begin{array}{ccccc}
\sqrt{p_{0}} & & & & \\
\sqrt{q_{1}} & \sqrt{p_{1}} & & & \\
& \ddots & \ddots & & \\
& & \sqrt{q_{N-1}} & \sqrt{p_{N-1}} & \\
& & & \sqrt{q_{N}} & \sqrt{p_{N}}
\end{array}\right]
$$

sub-diagonal matrix. With $D_{\mathrm{r}}:=\operatorname{diag}\left(r_{0}, . ., r_{N}\right)$

$$
\begin{aligned}
& S^{\prime} S=\left[\begin{array}{ccccc}
p_{0} & \sqrt{p_{0} q_{1}} & & & \\
\sqrt{p_{0} q_{1}} & p_{1}+q_{1} & \sqrt{p_{1} q_{2}} & & \\
& \ddots & \ddots & \ddots & \\
& & \sqrt{p_{N-2} q_{N-1}} & p_{N-1}+q_{N-1} & \sqrt{p_{N-1} q_{N}} \\
& & & \sqrt{p_{N-1} q_{N}} & p_{N}+q_{N}
\end{array}\right]= \\
& I-D_{\mathbf{r}}+\left[\begin{array}{ccccc}
0 & \sqrt{p_{0} q_{1}} & & & \\
\sqrt{p_{0} q_{1}} & 0 & \sqrt{p_{1} q_{2}} & & \\
& \ddots & \ddots & \ddots & \\
& & \sqrt{p_{N-2} q_{N-1}} & 0 & \sqrt{p_{N-1} q_{N}} \\
& & & \sqrt{p_{N-1} q_{N}} & 0
\end{array}\right] . \\
& \Rightarrow P_{S}=2 D_{\mathbf{r}}-I+S^{\prime} S
\end{aligned}
$$

is sum of a diag. matrix and a symmetric positive definite matrix \Rightarrow If holding probabilities $r_{x} \geq 1 / 2, \forall x=0, . ., N$, then $\forall \mathbf{z} \in \mathbb{R}^{N+1} \backslash\{0\}$,

$$
\begin{equation*}
\mathbf{z}^{\prime} P_{S} \mathbf{z}=\sum_{x=0}^{N}\left(2 r_{x}-1\right)\left|z_{x}\right|^{2}+|S \mathbf{z}|^{2}>0 \tag{3}
\end{equation*}
$$

and so P_{S} and then P is positive definite with real >0 eigenvalues. Jacobi matrix P has all its principal minors non-negative and is oscillatory (that is totally non-negative and such that P^{N} is totally positive) with all its minors non-negative, see [Gantmacher], p. 99. Oscillatory stochastic matrices have distinct positive eigenvalues, with: $1=t_{0}>t_{1}>. .>t_{N}>0 \Rightarrow r_{x} \geq 1 / 2$ simple sufficient condition for P to be oscillatory but not necessary; full condition is $\mathbf{z}^{\prime} P_{S} \mathbf{z}>0$ for all $\mathbf{z} \in \mathbb{R}^{N+1} \backslash\{\mathbf{0}\}$ or

$$
\begin{equation*}
\mathbf{z}^{\prime} P \mathbf{z}=\sum_{x=0}^{N} r_{x} z_{x}^{2}+\sum_{x=0}^{N-1}\left(p_{x}+q_{x+1}\right) z_{x} z_{x+1}>0 . \tag{4}
\end{equation*}
$$

For a simple random walk X_{n} whose $(N+1)^{2}-\operatorname{transition}$ matrix P is spectrally non-negative (respectively spectrally positive), \exists a symmetric random walk Y_{m} on $\{0, . ., 2 N\}$ (respectively on $\{0, . ., 2 N+1\}$), reflected at the endpoints, started at an even integer $\{0,2,4, . .2 N\}$ (respectively odd integer $\{1,3, \ldots, 2 N+1\}$), such that $\left\{X_{n}\right\} \stackrel{d}{=}\left\{Y_{2 n} / 2\right\}$, (respectively $\left\{X_{n}\right\} \stackrel{d}{=}$
$\left.\left\{\left(Y_{2 n}-1\right) / 2\right\}\right)$. [Whitehurst, Th. 2.1 finite-dimensional case]. Spectral measure of RW Y_{m} is symmetric on $[-1,1]$ and by passing to X_{n}, the spectrum is being folded: If $\sum_{k=0}^{2 N} \mu_{k} \delta_{t_{k}}$ (respectively $\sum_{k=0}^{2 N+1} \mu_{k} \delta_{t_{k}}$) is the symmetric spectral measure of Y_{m} with $t_{N}=0$ (respectively $t_{N}>0$), then $2 \sum_{k=0}^{N} \mu_{k} \delta_{t_{k}^{2}}$ is the spectral measure of X_{n}. Let α_{y} and β_{y} be the $\uparrow \downarrow$ probabilities that $Y_{m} \rightarrow Y_{m+1}=Y_{m} \pm 1$ in one step given Y_{m} is in state y different from the endpoints, $\alpha_{y}+\beta_{y}=1$, then:

$$
q_{x}=\beta_{2 x} \beta_{2 x-1}, r_{x}=\beta_{2 x} \alpha_{2 x-1}+\alpha_{2 x} \beta_{2 x+1}, p_{x}=\alpha_{2 x} \alpha_{2 x+1} .
$$

This, together with $p_{0}=\alpha_{1}$ and $q_{N}=\beta_{2 N-1}$ (respectively $q_{N}=\beta_{2 N}$) allows to determine recursively the transition matrix of Y_{m} from the one of X_{n}.

Proposition 1 If a $B D$ chain X_{n} is spectrally non-negative, then it is stochastically monotone.

Proof: Under our hypothesis indeed,

$$
\begin{equation*}
p_{x}+q_{x+1}=\alpha_{2 x} \alpha_{2 x+1}+\beta_{2 x+2} \beta_{2 x+1}<\alpha_{2 x} \alpha_{2 x+1}+\beta_{2 x+1}<1 \tag{5}
\end{equation*}
$$

Condition $\Rightarrow X_{n}$ stoch. monot.: $\forall y \geq 0$ and $n \geq 0, \mathbb{P}_{x}\left(X_{n}>y\right) \uparrow x . \Delta$

CONCLUSION: easy to construct spectrally positive RWs by ‘squaring’ two symmetric random walks, but given a non-symmetric RW, may be difficult to decide whether it is or not spectrally positive because one needs conversely to check whether all the above α s are probabilities.

Scale function and excursion height. Height $H=h \in\{1, . ., N-1\}$ for some of excursion (sample paths of X_{n} between two consecutive visits to state 0). Event realized iff (i) downward paths started from h hit state 0 before hitting state $h+1$ and (ii) upward paths started at 0 first reach 1 (with probability p_{0}) and then, paths started at 1 hit h without returning to 0 again in the intervening time. Two events are $\perp . \tau_{x, y}$ first hitting time of y starting from x :

$$
\begin{equation*}
\mathbb{P}(H=h)=p_{0} \mathbb{P}\left(\tau_{1, h}<\tau_{1,0}\right) \mathbb{P}\left(\tau_{h, 0}<\tau_{h, h+1}\right) . \tag{6}
\end{equation*}
$$

Assume $X_{0}=x$. Let $X_{n \wedge \tau_{x, 0}}$ denote the random walk stopped when it first hits 0 . Scale function φ of this RW makes $M_{n}:=\varphi\left(X_{n \wedge \tau_{x, 0}}\right)$ a martingale.

Function φ important because $\forall x: 0<x<h \leq N$, with $\tau_{x}=\tau_{x, 0} \wedge \tau_{x, h}$ first hitting time of $\{0, h\}$ starting from x

$$
\begin{gather*}
\mathbb{P}\left(X_{\tau_{x}}=h\right)=\frac{\varphi(x)}{\varphi(h)} . \tag{7}\\
\mathbb{P}(H=h)=p_{0} \mathbb{P}\left(\tau_{1, h}<\tau_{1,0}\right) \mathbb{P}\left(\tau_{h, 0}<\tau_{h, h+1}\right)= \tag{8}\\
p_{0} \frac{\varphi(1)}{\varphi(h)}\left(1-\frac{\varphi(h)}{\varphi(h+1)}\right), h \in\{1, . ., N-1\} .
\end{gather*}
$$

Note $\mathbb{P}(H \geq h)=\frac{p_{0}}{\varphi(h)}$. The event $H=N$ may also occur.
$\mathbb{P}(H=N)=\frac{p_{0}}{\varphi(N)}:$ probability of a fixation between 2 consecutive extinction events. Compute φ ? We wish to have: $\mathbb{E}_{x}\left(M_{n+1} \mid M_{n}=y\right)=y$, leading to

$$
\varphi(x)=q_{x} \varphi(x-1)+r_{x} \varphi(x)+p_{x} \varphi(x+1) .
$$

$\varphi(x)=: 1+\sum_{y=1}^{x-1} \psi(y)$ where $\psi(y)$ satisfies: $q_{y} \psi(y-1)=p_{y} \psi(y)$, with $\psi(1):=1$. Thus $\psi(y)=\prod_{z=1}^{y} \frac{q_{z}}{p_{z}}$ and:

$$
\begin{equation*}
\varphi(x)=1+\sum_{y=1}^{x-1} \prod_{z=1}^{y} \frac{q_{z}}{p_{z}}, x \geq 1, \varphi(0):=0 . \tag{9}
\end{equation*}
$$

(8) and (9) characterize law of the excursion height of the RW $X_{n} . \varphi(x) \uparrow$ with x. (7) and (9): explicit expression of probability of the event $\tau_{x, h}<\tau_{x, 0}$:

$$
\mathbb{P}\left(\tau_{x, h}<\tau_{x, 0}\right)=\mathbb{P}\left(X_{\tau_{x}}=h\right)=\frac{\varphi(x)}{\varphi(h)}
$$

where $\tau_{x, h}$ is the first hitting time of h starting from x, with $0<x<h \leq N$. In particular, $h=N, \mathbb{P}\left(\tau_{x, N}<\tau_{x, 0}\right)=\frac{\varphi(x)}{\varphi(N)}$ fixation probability.

1.2 A BD example: the Moran Model

2-allele Moran model with BIAS mechanism p.

$$
\begin{equation*}
p(u): u \in[0,1] \rightarrow[0,1], \text { with } 0 \leq p(0) \text { and } p(1) \leq 1 \tag{10}
\end{equation*}
$$

continuous and $q(u):=1-p(u)$. Moran model X_{n} :
$q_{x}=\frac{x}{N} q\left(\frac{x}{N}\right), r_{x}=\frac{x}{N} p\left(\frac{x}{N}\right)+\left(1-\frac{x}{N}\right) q\left(\frac{x}{N}\right), p_{x}=\left(1-\frac{x}{N}\right) p\left(\frac{x}{N}\right)$.
$p_{0}=p(0)>0$ and $q_{N}=1-p(1)>0$ (mutations) \Rightarrow chain ergodic with invariant distribution $\frac{\pi_{y}}{\pi_{0}}=\prod_{x=1}^{y} \frac{p_{x-1}}{q_{x}}$. Neutral: $p(u)=u$.

Proposition 2 Let X_{n} be a Moran process with transition probabilities (11) for some bias p. Then, $\bar{X}_{n}:=N-X_{n}$ is again a Moran process with transition probabilities of the type (11) but with the new bias $\bar{p}(u)=1-p(1-u)$, namely, $\bar{q}_{x}=p_{N-x}=\frac{x}{N} \bar{q}\left(\frac{x}{N}\right), \bar{p}_{x}=q_{N-x}=\left(1-\frac{x}{N}\right) \bar{p}\left(\frac{x}{N}\right)$ where $\bar{q}(u):=$ $1-\bar{p}(u)$. The spectrum of the transition matrix \bar{P} of \bar{X}_{n} is the same as the one P of X_{n}. If the bias is such that $\bar{p}(u)=p(u)$, then the transition matrix of \bar{X}_{n} coincides with the one of X_{n}.

Moran model with mutations.

$$
\begin{equation*}
p(u)=\left(1-\mu_{2}\right) u+\mu_{1}(1-u) \tag{12}
\end{equation*}
$$

$\left(\mu_{1}, \mu_{2}\right)$ mutation probabilities in $(0,1] . \mu ;=\mu_{1}+\mu_{2} \leq 1 \Rightarrow p$ non-decreasing. $\mu_{1}=\mu_{2}=1$, heat-exchange Bernoulli-Laplace model [Feller] as a borderline example but $p(u)=1-u$ is strictly decreasing in this case.
$\mu_{1}=\mu_{2}=1 / 2$ then $p(u)=1 / 2 \rightarrow$ aperiodic model amenable (through a suitable time substitution) to the Ehrenfest urn model (N even).

Moran model with mutations and selection (haploid).

$$
\begin{equation*}
p(u)=\frac{\mu_{1}+u\left((1+s)\left(1-\mu_{2}\right)-\mu_{1}\right)}{1+s u} \tag{13}
\end{equation*}
$$

composition (fitness first) of selection bias mechanism $\frac{(1+s) u}{1+s u}(s>-1)$ with mutation mechanism (12).

Spectral measure associated to Moran model with general p as in (11) not known in general.

Spectral representation of the Moran model with mutations. Notable exception is the Moran model with positive mutation probabilities when $\mu:=\mu_{1}+\mu_{2} \neq 1,[$ Karlin-McGregor $]$. Orthogonal polynomials are the dual Hahn polynomials. Eigenvalues [Ewens]

$$
\begin{equation*}
t_{k}=1-\frac{k}{N}\left(\mu+\frac{k-1}{N}(1-\mu)\right) \tag{14}
\end{equation*}
$$

depend only on total mutation pressure μ. [NOTE: $\mu>1$: not spectrally >0.]
Spectral gap: $1-t_{1}=\frac{\mu}{N}$. Invariant measure is generalized bivariate hypergeometric distribution: $\left[\alpha_{i}=N \mu_{i} /(1-\mu)\right]$

$$
\pi_{x}=\frac{\binom{-\alpha_{1}}{x}\binom{-\alpha_{2}}{N-x}}{\binom{-\alpha_{1}-\alpha_{2}}{N}}, x=0, . ., N
$$

with $\binom{-\alpha}{x}=\{-\alpha\}_{x} / x!,\{-\alpha\}_{x}=-\alpha(-\alpha-1) . .(-\alpha-x+1)$, falling factorials of $-\alpha$ with $\{-\alpha\}_{x}=(-1)^{x}(\alpha)_{x}$.
Spectral measure

$$
\begin{equation*}
\mu_{k}=\frac{2 k+\alpha_{1}+\alpha_{2}-1}{k+\alpha_{1}+\alpha_{2}-1}\binom{N}{k} \frac{\left(\alpha_{2}\right)_{N}}{\left(k+\alpha_{1}+\alpha_{2}\right)_{N}} \frac{\left(\alpha_{1}\right)_{k}}{\left(\alpha_{2}\right)_{k}}, k=0, . ., N \tag{15}
\end{equation*}
$$

When $\mu_{1}=\mu_{2}=1$ (Bernoulli-Laplace), the transition probabilities read: $q_{x}=\left(\frac{x}{N}\right)^{2}, r_{x}=2 \frac{x}{N}\left(1-\frac{x}{N}\right), p_{x}=\left(1-\frac{x}{N}\right)^{2}$. Here, $\pi_{x}=\binom{N}{x}\binom{N}{N-x} /\binom{2 N}{N}$ (the standard hypergeometric distribution), $\mu_{k}=\frac{2 N+1-2 k}{2 N+1-k}\binom{N}{k} /\binom{2 N-k}{N}$ and $t_{k}=1-\frac{k}{N^{2}}(2 N+1-k)$.

Critical line $\mu_{1}+\mu_{2}=1, p(u)=\mu_{1}$ is constant \Rightarrow transition probabilities are affine functions of state: $q_{x}=\bar{\mu}_{1} \frac{x}{N}, r_{x}=\bar{\mu}_{1}+\left(2 \mu_{1}-1\right) \frac{x}{N}, p_{x}=$ $\mu_{1}\left(1-\frac{x}{N}\right), \bar{\mu}_{1}:=1-\mu_{1}$. Here, $\pi_{x}=\binom{N}{x} \mu_{1}^{x} \bar{\mu}_{1}^{N-x}, \mu_{k}=\binom{N}{k} \mu_{1}^{k} \bar{\mu}_{1}^{N-k}$ are binomial $\operatorname{bin}\left(N, \mu_{1}\right)$-distributed and self-dual and $t_{k}=1-\frac{k}{N}$, independent of μ_{1}. Dual Hahn polynomials boil down to Krawtchouk polynomials. When $\mu_{1}=1 / 2$ (the lazy Ehrenfest urn), the holding probabilities are $r_{x}=1 / 2$ and both π_{x} and μ_{k} are symmetric $\operatorname{bin}(N, 1 / 2)$ distributed.

Cases with positive eigenvalues. Conditions on p leading to $r_{x} \geq \frac{1}{2}$ in which case the RW is spectrally positive ?. Assume $p(u): u \in(0,1) \rightarrow(0,1)$ is continuous and non-decreasing, with $0<p(0) \leq p(1)<1$.
Then, as can easily be checked: $r_{x} \geq 1 / 2$ for all x iff $p(1 / 2)=1 / 2$ with $p(0) \leq \frac{1}{2} \leq p(1)$. Indeed, imposing $r_{x} \geq 1 / 2$ for all x leads to $p(u) \geq 1 / 2$ if $u \geq 1 / 2$ and $p(u) \leq 1 / 2$ if $u \leq 1 / 2$. So, if p is non-decreasing with $p(1 / 2)=1 / 2$, then $r_{x} \geq \frac{1}{2}$.
No NSC on the structure of bias p leading to spectrally-+ Moran.

2 Detailed study of the Siegmund dual of BD chains with application to Moran model

Definition 1 : [Liggett] Two discrete-time Markov processes $\left(X_{n}, \widehat{X}_{n} ; n \geq 0\right)$, state-spaces $(\mathcal{X}, \mathcal{Y})$, possibly with substochastic transition kernels, dual wr to some non-singular duality kernel $H \geq 0$ on product space $\mathcal{X} \times \mathcal{Y}$ if $\forall x \in \mathcal{X}$, $\forall y \in \mathcal{Y}, \forall n \in \mathbb{N}$:

$$
\begin{equation*}
\mathbb{E}_{x} H\left(X_{n}, y\right)=\mathbb{E}_{y} H\left(x, \widehat{X}_{n}\right) . \tag{16}
\end{equation*}
$$

If $(\mathcal{X}, \mathcal{Y})=\{0, . ., N\}^{2}$ finite and identical, duality kernel is square-matrix and transition matrix of dual process \widehat{X}, say \widehat{P} obtained from P by:

$$
\widehat{P}^{\prime}=H^{-1} P H,
$$

Note that if \widehat{P} is an H-dual to P, then P is an H^{\prime}-dual to \widehat{P}. If $H=H^{\prime}$, \widehat{P} is an H-dual to P but also P is an H-dual to \widehat{P}.
Siegmund example. Siegmund duality kernel SK: $H(x, y)=\mathbf{1}(x \leq y)$. If, for a given process X_{n} a process \widehat{X}_{n} exists satisfying the above condition, \widehat{X}_{n} is called the Siegmund dual of X_{n}. Clearly, in the BD case for X_{n} the condition is that X_{n} should be SM in that, for all $y \geq 0$ and $n \geq 0, \mathbb{P}_{x}\left(X_{n}>y\right)$ \uparrow with x.
For positive recurrent BD processes, and for SK, the transition matrix \widehat{P} of the dual process \widehat{X}_{n} :

$$
\widehat{P}=\left[\begin{array}{ccccc}
r_{0}-q_{1} & q_{1} & & & \\
p_{1} & \widehat{r}_{1} & q_{2} & & \\
& \ddots & \ddots & \ddots & \\
& & p_{N-1} & \widehat{r}_{N-1} & q_{N} \\
& & & 0 & 1
\end{array}\right]
$$

where $\widehat{r}_{y}:=1-\left(p_{y}+q_{y+1}\right), y \in\{1, \ldots, N-1\}$ (and $\widehat{q}_{y}=p_{y}, y=1, . ., N-1$, $\widehat{p}_{y}=q_{y+1}, y=0, \ldots, N-1$). Again the one of a BD process (but not of a

Moran BD process if P is a Moran transition matrix).

$$
H=\left[\begin{array}{ccccc}
1 & 1 & & & 1 \\
0 & 1 & 1 & & \\
& \ddots & \ddots & \ddots & \\
& & 0 & 1 & 1 \\
0 & & & 0 & 1
\end{array}\right], H^{-1}=\left[\begin{array}{ccccc}
1 & -1 & 0 & & 0 \\
0 & 1 & -1 & & \\
& \ddots & \ddots & \ddots & 0 \\
& & 0 & 1 & -1 \\
0 & & & 0 & 1
\end{array}\right]
$$

Dual to exist, ensure $p_{y}+q_{y+1} \leq 1$ for $y \in\{0, . ., N-1\}$ which is a NSC to guarantee the stochastic monotonicity of X_{n}. We already know that if P is a spectrally non-negative BD matrix, the chain is SM. Here is another sufficient condition relative to the specific ergodic Moran case:

Proposition 3 Moran model X_{n} with bias p. If $p(u)$ is non-decreasing, the condition $p_{x}+q_{x+1} \leq 1$ is fulfilled and so the Siegmund dual exists.

Structure of \widehat{P} : the dual process loses mass at $y=0$ and is absorbed at $y=N$. Add a coffin state $\partial:=\{-1\}$ and let:

$$
\widehat{P}_{\partial}:=\left[\begin{array}{cccccc}
1 & 0 & & & & \\
1-r_{0} & r_{0}-q_{1} & q_{1} & & & \\
& p_{1} & \widehat{r}_{1} & q_{2} & & \\
& & \ddots & \ddots & \ddots & \\
& & & p_{N-1} & \widehat{r}_{N-1} & q_{N} \\
& & & & 0 & 1
\end{array}\right]
$$

Corresponding proper BD chain, ${ }_{\partial} \widehat{X}_{n}$, now has 2 absorbing states, one at $\{-1\}$, one at $\{N\} . \widehat{\varphi}(y), y=-1,0,1, \ldots, N$ scale function of ${ }_{\partial} \widehat{X}_{n}$, solving $\widehat{P}_{\partial} \widehat{\varphi}=\widehat{\varphi}$, forcing $\widehat{\varphi}(-1)=0$. We have:

$$
\begin{equation*}
\widehat{\varphi}(-1)=0, \widehat{\varphi}(0)=1, \widehat{\varphi}(y)=\gamma_{y}^{c}:=\sum_{z=0}^{y} \gamma_{z}=\frac{1}{\pi_{0}} \sum_{z=0}^{y} \pi_{z} . \tag{17}
\end{equation*}
$$

Scale function of ${ }_{\partial} \widehat{X}_{n}$ is the cum-distribution of the inv- measure of the original process. $\widehat{\tau}_{y}:=\widehat{\tau}_{y,-1} \wedge \widehat{\tau}_{y, N}$ infimum of first hitting time of $\{-1\}$ and $\{N\}$ starting from $y \in\{0, \ldots, N-1\}$. We have:

$$
\begin{equation*}
\mathbb{P}_{y}\left(\partial \widehat{X}_{\widehat{\tau}_{y}}=N\right)=\frac{\widehat{\varphi}(y)}{\widehat{\varphi}(N)}=: \widehat{\phi}(y)=\frac{\gamma_{y}^{c}}{\gamma_{N}^{c}}=\pi_{y}^{c} \tag{18}
\end{equation*}
$$

where $\pi_{y}^{c}=\pi_{0} \gamma_{y}^{c}$ is the cum- inv- probability distribution of π_{x}.
Doob h-transform. New transition matrix \widetilde{P}_{∂} by:

$$
\begin{gather*}
\widetilde{P}_{\partial}(x, y)=\frac{\pi_{y}^{c}}{\pi_{x}^{c}} \widehat{P}_{\partial}(x, y), x, y \in\{-1,0, \ldots, N\}^{2} . \tag{19}\\
\widetilde{P}_{\partial}=\left[\begin{array}{cccccc}
1 & 0 & & & & \\
0 & r_{0}-q_{1} & p_{0}+q_{1} & & & \\
& \frac{\pi_{0}^{c}}{\pi_{1}^{c}} p_{1} & \widehat{r}_{1} & \frac{\pi_{2}^{c}}{\pi_{1}^{c}} q_{2} & & \\
& & \ddots & \ddots & \ddots & \\
& & & \frac{\pi_{N-2}^{c}}{\pi_{N-1}^{c}} p_{N-1} & \widehat{r}_{N-1} & \frac{\pi_{N}^{c}}{\pi_{N-1}^{c}} q_{N} \\
& & & & 0 & 1
\end{array}\right],
\end{gather*}
$$

state $\{-1\}$ becomes isolated and disconnected. Deleting the line and row $\{-1\}$ of \widetilde{P}_{∂}, we get a stochastic matrix, call it \widetilde{P}, of a process \widetilde{X}_{n} on $\{0, \ldots, N\}$ which is ${ }_{\partial} \widehat{X}_{n}$ conditioned to first hit state $\{N\}$ before state $\{-1\}$. State 0 of this conditioned BD process now is partially reflecting whereas the remaining absorbing state, say a, is $a=\{N\}$.

$$
\widetilde{P} \text { and } P \text { are intertwined through a stochastic link. }
$$

Proposition 4 (i) Matrices \widetilde{P} and P are similar (with the same eigenvalues)

$$
\begin{equation*}
\widetilde{P}=\Lambda P \Lambda^{-1} . \tag{20}
\end{equation*}
$$

$\operatorname{Link} \Lambda$ is: $\Lambda(\widetilde{x}, x)=\frac{\pi_{x}}{\pi_{\tilde{x}}^{c}} \mathbf{1}(x \leq \widetilde{x}),\left[\Lambda=D_{\widehat{\phi}}^{-1} H^{\prime} D_{\pi}\right]$, lower-triangular stochastic matrix. For all $n \geq 0$

$$
\begin{equation*}
\Lambda(\widetilde{x}, x)=\mathbb{P}\left(X_{n}=x \mid \widetilde{X}_{n}=\widetilde{x}\right) \tag{21}
\end{equation*}
$$

and $\boldsymbol{\pi}_{n}^{\prime}=\widetilde{\boldsymbol{\pi}}_{n}^{\prime} \Lambda$ where $\boldsymbol{\pi}_{n}=\mathbb{P}_{\boldsymbol{\pi}_{0}}\left(X_{n}=\cdot\right)$ and $\widetilde{\boldsymbol{\pi}}_{n}=\mathbb{P}_{\tilde{\boldsymbol{\pi}}_{0}}\left(\widetilde{X}_{n}=\cdot\right)$.
(ii) The link Λ satisfies

$$
\begin{equation*}
\Lambda(N, x)=\pi_{x}, x=0, . ., N . \tag{22}
\end{equation*}
$$

(iii) $\widetilde{\boldsymbol{\pi}}_{0}^{\prime}=\tilde{\pi}_{0}^{\prime}=\mathbf{e}_{0}^{\prime}:=(1,0, \ldots, 0)$ are admissible initial distributions of the chains \widetilde{X}_{n} and X_{n}, satisfying

$$
\begin{equation*}
\pi_{0}^{\prime}=\widetilde{\pi}_{0}^{\prime} \Lambda \tag{23}
\end{equation*}
$$

(iv) \widetilde{P} is K-dual to P :

$$
\begin{equation*}
\widetilde{P}^{\prime}=K^{-1} P K \tag{24}
\end{equation*}
$$

where $K(x, y)=\frac{1}{\pi_{y}^{c}} \mathbf{1}(x \leq y)$.
Strong stationary time [Diaconis-Fill]. The intertwining construction shows that original +-recurrent BD chain X_{n} with transition matrix P may also be viewed as the output (through the link Λ) of a dual hidden Markov chain \widetilde{X}_{n} with transition matrix \widetilde{P}. Once \widetilde{X}_{n} hits its absorbing state $\{N\}$, the RW X_{n} is distributed like $\boldsymbol{\pi}$, provided both X_{n} and \widetilde{X}_{n} were started at 0 . There exists a bivariate Markov chain (\widetilde{X}, X) with transition kernel:

$$
\begin{equation*}
P((\widetilde{x}, x),(\widetilde{y}, y))=\frac{P(x, y) \cdot \widetilde{P}(\widetilde{x}, \widetilde{y}) \cdot \Lambda(\widetilde{y}, y)}{(\Lambda P)(\widetilde{x}, y)} \mathbf{1}_{(\Lambda P)(\widetilde{x}, y)>0} \tag{25}
\end{equation*}
$$

where $\widetilde{x} \in\{x, x \pm 1\}, \widetilde{y} \in\{y, y \pm 1\}$. We have: $(\Lambda P)(\widetilde{x}, y)>0$ iff $y \leq \widetilde{x}+1$. With $x \in\{0, \ldots, N-1\}$

$$
\begin{equation*}
\widetilde{\tau}_{\widetilde{x}_{0}, N}=\inf \left(n: \widetilde{X}_{n}=N \mid \widetilde{X}_{0}=\widetilde{x}_{0}\right) \tag{26}
\end{equation*}
$$

first hitting time of N of \widetilde{X}_{n}, starting from state $\widetilde{x}_{0} \in\{0, \ldots, N-1\} . \widetilde{\tau}_{0, N}$ \rightarrow information on the speed of convergence of the law of original process X_{n} to its inv- measure (is a SST in the sense of Diaconis and Fill). (20, $21,22,23) \Rightarrow \widetilde{\tau}_{0, N}$ is a SST of X_{n} in that $X_{\widetilde{\tau}_{0, N}} \stackrel{d}{\sim} \boldsymbol{\pi}$ and is \perp of $\widetilde{\tau}_{0, N}$ (see [Diaconis-Fill] Theorems 2.4 and 2.17 or [Fill] Theorem 2.1). Equivalently (see [Aldous-Diaconis], Prop. 3.2), it holds that:

$$
\begin{equation*}
\operatorname{sep}\left(\boldsymbol{\pi}_{n}, \boldsymbol{\pi}\right) \leq \mathbb{P}\left(\widetilde{\tau}_{0, N}>n\right) \leq \mathbb{E}\left(\widetilde{\tau}_{0, N}\right) / n \tag{27}
\end{equation*}
$$

where $\pi_{n}(\cdot)=P^{n}(0, \cdot)$ is the law of X_{n} started at $0, \boldsymbol{\pi}$ inv- measure. In (27), the separation discrepancy: $\operatorname{sep}\left(\boldsymbol{\pi}_{n}, \boldsymbol{\pi}\right):=\sup _{y}\left[1-\pi_{n}(y) / \pi_{y}\right]$. Satisfies $\operatorname{sep}\left(\boldsymbol{\pi}_{n}, \boldsymbol{\pi}\right) \geq\left\|\boldsymbol{\pi}_{n}-\boldsymbol{\pi}\right\|_{T V}$ where $\left\|\boldsymbol{\pi}_{n}-\boldsymbol{\pi}\right\|_{T V}=\frac{1}{2} \sum_{y}\left|\pi_{n}(y)-\pi_{y}\right|$ is the total variation distance between $\boldsymbol{\pi}_{n}$ and $\boldsymbol{\pi}$.

From (20, 23), there is a unique 'witness' state say $d=N$ such that either $\widetilde{\pi}_{n}(N)=0$ or $\widetilde{\pi}_{n}(N)>0 \Rightarrow \pi_{n}(d)=\widetilde{\pi}_{n}(N) \pi_{d}>0$ showing that this random time is stochastically the smallest since the first inequality in (27) turns out to be an equality (see Remark 2.39 of [Diaconis-Fill] and Proposition 13 below).
BD chains absorbed at N : pgf of $\widetilde{\tau}_{0, N} \geq N$ is [Keilson and Fill]:

$$
\begin{equation*}
\mathbb{E}\left(u^{\tilde{\tau}_{0, N}}\right)=\prod_{k=1}^{N} \frac{\left(1-t_{k}\right) u}{1-t_{k} u}, u \in[0,1] \tag{28}
\end{equation*}
$$

where $-1<t_{k}<+1, k=1, \ldots, N$ are the $N \neq$ eigenvalues of both \widetilde{P} and P, avoiding $t_{0}=1$.

$$
\begin{equation*}
\mathbb{P}\left(\widetilde{\tau}_{0, N}>n\right)=\sum_{l=1}^{N} \prod_{k \neq l} \frac{1-t_{k}}{t_{l}-t_{k}} t_{l}^{n}, n \geq N-1 \tag{29}
\end{equation*}
$$

Thus, $t_{1}^{-n} \mathbb{P}\left(\widetilde{\tau}_{0, N}>n\right) \rightarrow_{n \uparrow \infty} \prod_{k=2}^{N} \frac{1-t_{k}}{t_{1}-t_{k}} ; \widetilde{\tau}_{0, N}$ has geometric tails with exponent t_{1}.

$$
\begin{gather*}
\mathbb{E}\left(\widetilde{\tau}_{0, N}\right)=\sum_{k=1}^{N}\left(1-t_{k}\right)^{-1} \text { and } \tag{30}\\
\sigma^{2}\left(\widetilde{\tau}_{0, N}\right)=\sum_{k=1}^{N}\left(1-t_{k}\right)^{-2}-\sum_{k=1}^{N}\left(1-t_{k}\right)^{-1} \tag{31}
\end{gather*}
$$

Note since t_{1} is the dominant eigenvalue

$$
\begin{equation*}
\sigma^{2}\left(\widetilde{\tau}_{0, N}\right) \leq \frac{\mathbb{E}\left(\widetilde{\tau}_{0, N}\right)}{1-t_{1}} \tag{32}
\end{equation*}
$$

If eigenvalues t_{k} are ≥ 0, then $\widetilde{\tau}_{0, N} \stackrel{d}{=} \sum_{k=1}^{N} \tau_{k}$ where the τ_{k} S are independent with $\tau_{k} \stackrel{d}{\sim} \operatorname{geom}\left(1-t_{k}\right)$ on $\{1,2, \ldots\}$. When the eigenvalues t_{k} are not all positive, not obvious that the above expression (28) of $\mathbb{E}\left(u^{\widetilde{\tau}_{0, N}}\right)$ is indeed a pgf but it is. Assuming $t_{N}<\ldots<t_{l+1}<0 \leq t_{l}<\ldots<t_{1}<t_{0}=1$, (28) interprets as:

$$
\widetilde{\tau}_{0, N}-\sum_{k=l+1}^{N} b_{k} \stackrel{d}{=} \sum_{k=1}^{l} \tau_{k},
$$

where $b_{k} \stackrel{d}{\sim}$ bernoulli $\left(1 /\left(1-t_{k}\right)\right), \tau_{k} \stackrel{d}{\sim} \operatorname{geom}\left(1-t_{k}\right)$ and $\widetilde{\tau}_{0, N}$ are all mutually \perp.

Proposition $5(\boldsymbol{A}-\boldsymbol{F})$ Suppose a Siegmund dual exists for a finite statespace ergodic $B D$ chain X_{n}. Then there exists a Markov chain \widetilde{X}_{n}, intertwined with X_{n}, with $\{N\}$ as an absorbing state and fully described in Proposition 4. The random time $\widetilde{\tau}_{0, N}$ is a fastest strong stationary time for X_{n} whose law is characterized either by (28) or (29) involving the spectrum of either P or \widetilde{P}, the transition matrices governing the 2 processes.

Computing the mean and variance of $\widetilde{\tau}_{0, N}$. If t_{k} are known explicitly. In this case, compute $\mathbb{E}\left(\widetilde{\tau}_{0, N}\right)$ and $\sigma^{2}\left(\widetilde{\tau}_{0, N}\right)$ and find conditions under which

$$
\begin{equation*}
\mathbb{E}\left(\widetilde{\tau}_{0, N}\right) \rightarrow \infty \text { and } \sigma^{2}\left(\frac{\widetilde{\tau}_{0, N}}{\mathbb{E}\left(\widetilde{\tau}_{0, N}\right)}\right) \rightarrow 0 \text { as } N \uparrow \infty \tag{33}
\end{equation*}
$$

If this is the case, then $\frac{\widetilde{\tau}_{0, N}}{\mathbb{E}\left(\tilde{\tau}_{0, N}\right)} \rightarrow 1$ in probability and $\left\lfloor\mathbb{E}\left(\widetilde{\tau}_{0, N}\right) / 2\right\rfloor$ is expected to be a cutoff time for X_{n} started at $0[A D]$.
Example: Moran model with mutations, with $\mu:=\mu_{1}+\mu_{2}, \bar{\mu}:=1-\mu$, because the eigenvalues t_{k} are known leading to: $1-t_{k}=\frac{k}{N}\left(\mu+\bar{\mu} \frac{k-1}{N}\right)$.
$\mu_{N} \sim N \int_{0}^{1} \frac{d x}{(x+1 / N)(\mu+\bar{\mu} x)}=\frac{N^{2}}{N \mu-\bar{\mu}}\left(\int_{0}^{1} \frac{d x}{x+1 / N}-\bar{\mu} \int_{0}^{1} \frac{d x}{\mu+\bar{\mu} x}\right)$,
we easily get

$$
\mu_{N} \sim \frac{N}{\mu}(\log N+\log \mu) \text { and } \sigma^{2}\left(\widetilde{\tau}_{0, N}\right) \sim\left(\frac{N}{\mu}\right)^{2}
$$

showing that $\sigma^{2}\left(\widetilde{\tau}_{0, N} / \mathbb{E}\left(\widetilde{\tau}_{0, N}\right)\right) \sim(\log N)^{-2} \rightarrow 0$. Gumbel weak limit law:

$$
\frac{\widetilde{\tau}_{0, N}-\frac{N}{\mu} \log N}{\frac{N}{\mu}} \stackrel{d}{\rightarrow} X \stackrel{d}{\sim} e^{-\left(x+e^{-x}\right)}, x \in \mathbb{R} .
$$

[Diaconis, Shahshahani] With $n_{N}(\theta)=\left\lfloor\frac{N}{2 \mu}(\log N+\theta)\right\rfloor$, then

$$
\left\|P^{n_{N}(\theta)}(0, \cdot)-\boldsymbol{\pi}\right\|_{T V} \underset{N \uparrow \infty}{ } c(\theta)
$$

where $c(\theta) \rightarrow_{\theta \uparrow \infty} 0$ and $c(\theta) \rightarrow_{\theta \uparrow-\infty} 1$.

Expected mixing time is $\mu_{N} \sim \frac{N}{\mu} \log N$ whereas spectral gap is $1-t_{1}=\frac{\mu}{N}$, the product of the 2 of which tends to ∞. Recalling $\sigma^{2}\left(\widetilde{\tau}_{0, N}\right) \leq \frac{\mu_{N}}{1-t_{1}}$, $\sigma^{2}\left(\widetilde{\tau}_{0, N} / \mu_{N}\right)=\mu_{N}^{-2} \sigma^{2}\left(\widetilde{\tau}_{0, N}\right) \leq 1 /\left(\left(1-t_{1}\right) \mu_{N}\right)$, the condition $\left(1-t_{1}\right) \mu_{N} \rightarrow$ ∞ is a sufficient condition for $\sigma^{2}\left(\widetilde{\tau}_{0, N} / \mu_{N}\right) \rightarrow 0$. If this holds, the contribution of $\sum_{k=2}^{N}\left(1-t_{k}\right)^{-1}$ to μ_{N} dominates the lead term $\left(1-t_{1}\right)^{-1}$. (see [Diaconis-Saloff-Coste]).

However, in general, the t_{k} are not known. How to compute differently $\mathbb{E}\left(\widetilde{\tau}_{0, N}\right)$ and $\sigma^{2}\left(\widetilde{\tau}_{0, N}\right)$?. Use representation of the Green function in terms of the scale function of the RW.

3 Some extensions

Chain X_{n} ergodic. Previous construction extends to a wider class of problems than the birth and death (Moran or not) model associated with the Siegmund kernel. In the context of population genetics, the first model one may think of is the Wright-Fisher model with bias $p(u)$ for which

$$
\begin{equation*}
P(x, y)=\binom{N}{y} p\left(\frac{x}{N}\right)^{y}\left(1-p\left(\frac{x}{N}\right)\right)^{N-y} . \tag{34}
\end{equation*}
$$

Model with binomial transition probabilities not reversible, nor is it in the BD class.
However: The matrix P is TP [Karlin] in the sense that for all $\mathbf{x}_{q} \equiv\left(x_{1}, . ., x_{q}\right)$ with $1 \leq x_{1}<. .<x_{q} \leq N-1$ and $\mathbf{y}_{q} \equiv\left(y_{1}, . ., y_{q}\right)$ with $1 \leq y_{1}<. .<y_{q} \leq$ $N-1$, it has all its minors >0 :

$$
\operatorname{det}\left[P\left(\mathbf{x}_{q}, \mathbf{y}_{q}\right)\right]>0 .
$$

$P(x, y)$ may be written as: $P(x, y)=\phi(x) W(x, y) \psi(y)$ with $\phi(x), \psi(y)>$ 0 and $W(x, y)$ a TP kernel:

$$
P(x, y)=\left(1-p\left(\frac{x}{n}\right)\right)^{N}\left[\frac{p\left(\frac{x}{N}\right)}{1-p\left(\frac{x}{N}\right)}\right]^{y}\binom{N}{y}
$$

where kernel $W(x, y)=\left[\frac{p\left(\frac{x}{n}\right)}{1-p\left(\frac{x}{n}\right)}\right]^{y} \equiv e^{y \tau(x)}$ is TP because $x \rightarrow \tau(x)$ is \uparrow since $u \rightarrow p(u)$ is \uparrow. Therefore, under this assumption, P is spectrally >0.
$\boldsymbol{\pi}$ invariant measure associated to P :

$$
\pi_{x}=\frac{(I-P)_{x, x}}{\sum_{x=0}^{N}(I-P)_{x, x}}, x=0, . ., N
$$

where $(I-P)_{x, x}$ is cofactor of the (x, x)-entry of the matrix $I-P$
Fix up how intertwining operates in this more general setting, extending the main steps of the Siegmund dual construction for birth and death chains.
State-spaces: $(\mathcal{X}, \mathcal{Y})=\{0, \ldots, N\}^{2}$. Consider $G \geq 0$ on $(\mathcal{X}, \mathcal{Y})$ non-singular. Assume a single state $a \in \mathcal{Y}$ such that $G(x, a)=$ Constant, for all $x \in \mathcal{X}$. Define H by $H(x, y)=G(x, y) / \max _{x} G(x, y)$. Then, $H \geq 0$ and $H(x, a)=$ 1 , for all $x \in \mathcal{X}$ and $H(x, y) \in[0,1]$, for all $(x, y) . \mathbf{e}_{a}=\left(0, . ., 0,{ }_{1}^{a}, 0, . .0\right)^{\prime}$: $H \mathbf{e}_{a}=1$.
P stochastic transition matrix of some ergodic Markov chain X_{n} on \mathcal{X} with invariant probability measure $\boldsymbol{\pi}>0$.
Time reversal. \overleftarrow{P} stochastic transition matrix of backward (reversed in time) Markov chain

$$
\begin{equation*}
\overleftarrow{P}^{\prime}=D_{\pi} P D_{\pi}^{-1} \tag{35}
\end{equation*}
$$

If chain reversible (as in the Moran nearest-neighbor RW model), this step is not necessary because $\overleftarrow{P}=P$.
Lemma $6 \overleftarrow{P}$ is dual to P with respect to the diagonal duality kernel D_{π}^{-1}
When $\overleftarrow{P}=P$, we have self-duality (reversibility)
H-dual. With H defined as above, suppose the duality relation

$$
\begin{equation*}
\widehat{P}^{\prime}=H^{-1} \overleftarrow{P} H \tag{36}
\end{equation*}
$$

defines a substochastic matrix $\widehat{P} \geq 0$, which is then H-dual to \overleftarrow{P}.
Remark: This is a key-point: for given P decide for which H, \widehat{P} behaves well. Also, for each specific case study, identify the states which are mass-defective for \widehat{P} in terms of the structure of H.
a absorb: $(\widehat{P} \mathbf{1})_{a}=\mathbf{e}_{a}^{\prime} \widehat{P} \mathbf{1}=\mathbf{1}^{\prime} \widehat{P}^{\prime} \mathbf{e}_{a}=\mathbf{1}^{\prime} H^{-1} \overleftarrow{P} H \mathbf{e}_{a}=\mathbf{1}^{\prime} \mathbf{e}_{a}=1$ and $(\widehat{P} \mathbf{1})_{x}<$ 1 for at least one $x \neq a$. Duality

$$
\mathbb{E}_{x} H\left(\overleftarrow{X}_{n}, y\right)=\mathbb{E}_{y} H\left(x, \widehat{X}_{n}\right)
$$

so that H is within the dual space of \overleftarrow{P}. If such \widehat{P} exists, then :
Proposition 7 It holds that

$$
\begin{equation*}
\widehat{P}=S P S^{-1}, \tag{37}
\end{equation*}
$$

where $S=H^{\prime} D_{\boldsymbol{\pi}} . P$ is S-similar to \widehat{P} (with the same eigenvalues). $S \mathbf{1}$ is a right eigenvector to \widehat{P} associated to the unit eigenvalue. We have $S \mathbf{1}=H^{\prime} \boldsymbol{\pi}$ so that $(S \mathbf{1})_{a}=1$ and $(S \mathbf{1})_{x}<1$ when $x \neq a$. In particular S is substochastic.

Thus, if the H-dual \widehat{P} of \overleftarrow{P} is substochastic, P is similar to \widehat{P} the similarity transform being itself substochastic. We have

$$
\mathbf{e}_{a}^{\prime} \widehat{P}=\mathbf{e}_{a}^{\prime} S P S^{-1}=\left(H \mathbf{e}_{a}\right)^{\prime} D_{\boldsymbol{\pi}} P S^{-1}=\boldsymbol{\pi}^{\prime} P D_{\boldsymbol{\pi}}^{-1} H^{-1 \prime}=\left(H^{-1} 1\right)^{\prime}=\mathbf{e}_{a}^{\prime}
$$

and so $\{a\}$ is absorbing for \widehat{P}.

Coffin state and scale function. Enlarged stochastic matrix

$$
\widehat{P}_{\partial}=\left[\begin{array}{cc}
1 & \mathbf{0}^{\prime} \\
\mathbf{1}-\widehat{P} \mathbf{1} & \widehat{P}
\end{array}\right],
$$

by adding an extra coffin state, say $\partial:=\{-1\} . \widehat{P}_{\partial}$ transition matrix of a proper Markov chain ${ }_{\partial} X_{n}$ on $\{\partial=-1,0,1, . ., N\}$ now with the 2 absorbing states $\{\partial, a\}$.
Let $\widehat{\varphi}(y), y=-1,0,1, \ldots, N$ be a scale function of ${ }_{\partial} \widehat{X}_{n}$, solving $\widehat{P}_{\partial} \widehat{\boldsymbol{\varphi}}=\widehat{\boldsymbol{\varphi}}$, and imposing $\widehat{\varphi}(\partial)=0$. Note $\widehat{P} \widehat{\phi}=\widehat{\phi}$ where $\widehat{\phi}$ is the restriction of $\widehat{\varphi}$ to $\{0,1, . ., N\}$ and a solution is, up to a constant, $\widehat{\boldsymbol{\phi}}=S \mathbf{1}=H^{\prime} \boldsymbol{\pi}>\mathbf{0}$ (because $\widehat{P} S=S P, P$ is stochastic and $\boldsymbol{\pi}>\mathbf{0})$. Then, $\widehat{\boldsymbol{\phi}}$ is maximal at $y=a$ and $\widehat{\phi}(a)=1$.
Let $\widehat{\tau}_{x}:=\widehat{\tau}_{x, \lambda} \wedge \widehat{\tau}_{x, a}$ infimum of the first hitting times of $\partial=\{-1\}$ and $\{a\}$ starting from $x \in\{0, \ldots, N\} \backslash\{a\}$. $\widehat{\varphi}$ scale function for ${ }_{\partial} X_{n}[$ Dynkin]:

$$
\begin{equation*}
\mathbb{P}\left({ }_{\partial} \widehat{X}_{\widehat{\tau}_{x}}=a\right)=\frac{\widehat{\varphi}(x)}{\widehat{\varphi}(a)}=: \widehat{\phi}(x) . \tag{38}
\end{equation*}
$$

$\widehat{\phi}(x)$ interprets as the prob. that ${ }_{\partial} X_{n}$ gets absorbed at $\{a\}$ before $\{\partial\}$ when started at x.

Doob transform and conditioning. Define new transition matrix \widetilde{P}_{∂} by:

$$
\begin{equation*}
\widetilde{P}_{\partial}=D_{\widehat{\varphi}}^{-1} \widehat{P}_{\partial} D_{\widehat{\varphi}} . \tag{39}
\end{equation*}
$$

$\widetilde{P}_{\partial} \mathbf{1}=\mathbf{1}$ and \widetilde{P}_{∂} stochastic. State $\{\underset{\widetilde{P}}{-1}\}$ becomes isolated and disconnected. Deleting the line and row $\{-1\}$ of \widetilde{P}_{∂}, we get a stochastic matrix, call it \widetilde{P}, of a process \widetilde{X}_{n} on $\{0, \ldots, N\}$ which corresponds to ${ }_{\partial} \widehat{X}_{n}$ conditioned to first hit the state $\{a\}$ before the state $\{\partial\}$. The state $\{a\}$ remains the single absorbing state of the reduced RW \widetilde{X}_{n}.

Proposition 8 We have

$$
\begin{equation*}
\widetilde{P}=D_{\hat{\phi}}^{-1} \widehat{P} D_{\widehat{\phi}}=\Lambda P \Lambda^{-1} \tag{40}
\end{equation*}
$$

where Λ is the stochastic link:

$$
\begin{equation*}
\Lambda=D_{\hat{\phi}}^{-1} S=D_{\hat{\phi}}^{-1} H^{\prime} D_{\pi} \tag{41}
\end{equation*}
$$

satisfying $\Lambda \mathbf{1}=D_{\widehat{\boldsymbol{\phi}}}^{-1} H^{\prime} \boldsymbol{\pi}=D_{H^{\prime} \boldsymbol{\pi}}^{-1} H^{\prime} \boldsymbol{\pi}=\mathbf{1}$. So \widetilde{X}_{n} and X_{n} are Λ-intertwined if in addition $\pi_{0}^{\prime}=\widetilde{\pi}_{0}^{\prime} \Lambda$. Note that

$$
\begin{equation*}
\Lambda(a, x)=\mathbf{e}_{a}^{\prime} \Lambda \mathbf{e}_{x}=\left(H \mathbf{e}_{a}\right)^{\prime} D_{\boldsymbol{\pi}} \mathbf{e}_{x}=\mathbf{1}^{\prime} D_{\boldsymbol{\pi}} \mathbf{e}_{x}=\pi_{x} \tag{42}
\end{equation*}
$$

so the row $\Lambda(a, \cdot)$ coincides with $\boldsymbol{\pi}^{\prime}$.
P and \widetilde{P} share the same eigenvalues.
Proposition $9 \widetilde{P}$ and \overleftarrow{P} are K-duals with

$$
\begin{equation*}
\widetilde{P}^{\prime}=K^{-1} \overleftarrow{P} K, \text { and } K=H D_{\widehat{\phi}}^{-1} \tag{43}
\end{equation*}
$$

$\stackrel{\text { but }}{ } \widetilde{P}$ and P are not duals in general (they are Λ-intertwined), unless $P=$ \overleftarrow{P}, i.e. when detailed balance holds for the reversible chain X_{n}.

Let $\left(U_{n}\right)$ be a iid uniform sequence generating \widetilde{X}_{n}. As a Markov chain with transition matrix \widetilde{P}, the dynamics of \widetilde{X}_{n} is given by $\widetilde{X}_{n+1}=f\left(\widetilde{X}_{n}, U_{n+1}\right)$ with:

$$
\widetilde{X}_{n+1}=\sum_{y=0}^{N} y \mathbf{1}\left(U_{n+1} \in\left[\widetilde{P}_{c}\left(\widetilde{X}_{n}, y-1\right), \widetilde{P}_{c}\left(\widetilde{X}_{n}, y\right)\right]\right)
$$

where $\widetilde{P}_{c}(x, y)=\sum_{z=0}^{y} \widetilde{P}(x, z)$. Given $\widetilde{X}_{n}=x, \widetilde{X}_{n+1}=y$ with probability $\widetilde{P}_{c}(x, y)-\widetilde{P}_{c}(x, y-1)=\widetilde{P}(x, y)$.
If intertwining holds, then \exists sequence $\left(V_{n}\right)$ of iid uniform random variables, \perp of $\left(U_{n}\right)$ generating \widetilde{X}_{n}, and a measurable function h such that, for each n, $X_{n}=h\left(\widetilde{X}_{n}, V_{n}\right):$

$$
X_{n}=\sum_{x=0}^{N} x \mathbf{1}\left(V_{n} \in\left[\Lambda_{c}\left(\widetilde{X}_{n}, x-1\right), \Lambda_{c}\left(\widetilde{X}_{n}, x\right)\right]\right)
$$

where $\Lambda_{c}(\widetilde{x}, x)=\sum_{y=0}^{x} \Lambda(\widetilde{x}, y)$ is the cum- Λ-kernel. Given $\widetilde{X}_{n}=\widetilde{x}, X_{n}=x$ with probability $\Lambda_{c}(\widetilde{x}, x)-\Lambda_{c}(\widetilde{x}, x-1)=\Lambda(\widetilde{x}, x)$. With $\boldsymbol{\pi}_{n}^{\prime}$ and $\widetilde{\boldsymbol{\pi}}_{n}^{\prime}$ the row probabilities of X_{n} and \widetilde{X}_{n}, for each $n \geq 0$, we thus have $\boldsymbol{\pi}_{n}^{\prime}=\widetilde{\boldsymbol{\pi}}_{n}^{\prime} \Lambda$. In particular, if $\widetilde{X}_{0} \stackrel{d}{\sim} \widetilde{\pi}_{0}$, then $X_{0} \stackrel{d}{\sim} \pi_{0}$ where $\pi_{0}^{\prime}=\widetilde{\pi}_{0}^{\prime} \Lambda$.
REMARK: Not necessary for intertwining construction to hold that \widehat{P} is a substochastic matrix. $\widehat{P} \geq 0$ is enough. [H-Martinez].
COUPLING: For each n, joint stochastic transition matrix:

$$
\begin{gathered}
P\left(\left(\widetilde{X}_{n+1}=\widetilde{y}, X_{n+1}=y\right) \mid\left(\widetilde{X}_{n}=\widetilde{x}, X_{n}=x\right)\right)= \\
\quad \frac{P(x, y) \cdot \widetilde{P}(\widetilde{x}, \widetilde{y}) \cdot \Lambda(\widetilde{y}, y)}{(\Lambda P)(\widetilde{x}, y)} \mathbf{1}((\Lambda P)(\widetilde{x}, y)>0) .
\end{gathered}
$$

If intertwining: original ergodic Markov chain X_{n}, governed by P, may be viewed as a random output of the Markov process \widetilde{X}_{n} governed by $\widetilde{P}=$ $\Lambda P \Lambda^{-1}$ and absorbed at a single state $\{a\}$. Setup reminiscent of filtering theory with \widetilde{X}_{n} the hidden process and X_{n} the observable. Peculiarity of intertwining construction: X_{n} is a Markov output which is itself Markov. Interpret \widetilde{X}_{n} ?

Sharpness. Consider two processes \widetilde{X}_{n} and X_{n} intertwined through a stochastic link Λ. Interpretation of the link $\Lambda(\widetilde{x}, x)=\mathbb{P}\left(X_{n}=x \mid \widetilde{X}_{n}=\widetilde{x}\right)$ for all $n \geq 0$ and so: $\pi_{n}^{\prime}=\widetilde{\boldsymbol{\pi}}_{n}^{\prime} \Lambda, n \geq 0$. Sharpness result alluded to in Remark 2.39 of $[D-F]$ p. 1495.

Proposition 10 Suppose there is a state d of X_{n} such that $\Lambda \mathbf{e}_{d}=\pi_{d} \mathbf{e}_{a}$. Then \widetilde{X}_{n} is a sharp dual to X_{n} in that, given $\widetilde{X}_{0} \stackrel{d}{\sim} \widetilde{\pi}_{0}$ and $X_{0} \stackrel{d}{\sim} \pi_{0}$ where
$\pi_{0}^{\prime}=\widetilde{\pi}_{0}^{\prime} \Lambda$, with $\boldsymbol{\pi}_{n}=P^{n}\left(X_{0}, \cdot\right)$, then: $\operatorname{sep}\left(\boldsymbol{\pi}_{n}, \boldsymbol{\pi}\right)=\mathbb{P}\left(\widetilde{\tau}_{\tilde{X}_{0}, a}>n\right)<1$, $n>n_{+}$for some entrance time $n_{+} \geq 0$ in the absorbing state a.

Proof: Minimum of $\frac{\pi_{n}(x)}{\pi_{x}}$ attained at $x=d$ with $\min _{x} \frac{\pi_{n}(x)}{\pi_{x}}=\widetilde{\pi}_{n}(a) \Rightarrow$ $\operatorname{sep}\left(\boldsymbol{\pi}_{n}, \boldsymbol{\pi}\right)=1-\widetilde{\pi}_{n}(a)=\mathbb{P}\left(\widetilde{\tau}_{\widetilde{X}_{0}, a}>n\right)$ holds for $n>n_{+}$with $n_{+}=$ $\inf \left(n: \widetilde{\pi}_{n}(a)>0\right)$, the first entrance time of \widetilde{X}_{n} within state a. Before time $n_{+}, \widetilde{\pi}_{n}(a)=0$ and so $\operatorname{sep}\left(\boldsymbol{\pi}_{n}, \boldsymbol{\pi}\right)=\mathbb{P}\left(\widetilde{\tau}_{\tilde{X}_{0}, a}>n\right)=1 . \Delta$

Non-zero entries of Λ are the ones of $H^{\prime}:\left[\right.$ recall $\left.\Lambda=D_{\hat{\boldsymbol{\phi}}}^{-1} S=D_{\hat{\phi}}^{-1} H^{\prime} D_{\boldsymbol{\pi}}\right]$

$$
\Lambda=\left[\begin{array}{llllll}
& & & 0 & \\
& & & 0 & \\
\pi_{0} & \pi_{1} & \cdots & \pi_{d} & \pi_{N} \\
& & & 0 & \\
& & & \vdots & \\
& & & & \\
& & & 0 &
\end{array}\right]
$$

Initial conditions. If $\mathbf{e}_{b}^{\prime} \Lambda=\mathbf{e}_{c}^{\prime}$ for some singleton states $(b, c) \Rightarrow \widetilde{X}_{0} \stackrel{d}{\sim} \delta_{b}$ and $X_{0} \stackrel{d}{\sim} \delta_{c}$ is an admissible atomic distribution for the initial conditions.

Further examples of kernels of potential interest. Duality kernels for which $H(x, a)=1, \forall x \in \mathcal{X}=\{0, \ldots, N\}$ and for some a. Inverses H^{-1} known explicitly : useful to decide whether for given P, the H-dual \widehat{P} of \overleftarrow{P} defines a substochastic matrix. If true, problem of interpreting the chain with transition matrix \widetilde{P} remains challenging and open problem.

- Siegmund kernels. $G(x, y)=H(x, y)=\mathbf{1}(x \leq y) . a=\{N\}$ and $d=\{N\}$. $G(x, y)=H(x, y)=\mathbf{1}(x \geq y) . a=\{0\}$ and $d=\{0\}$.
- Pascal kernel. $G(x, y)=\binom{x+y}{y}, H(x, y)=\binom{x+y}{y} /\binom{N+y}{y}$. We have $G=L L^{\prime}$ where L is defined by $L(x, y)=\binom{x}{y}, x \geq y$. The Pascal matrix has no zero entries: no expected sharpness.
- Hypergeometric kernel. $G(x, y)=\binom{N-x}{y}, H(x, y)=\binom{N-x}{y} /\binom{N}{y}$ satisfying $H=H^{\prime} . a=\{0\}$ and $d=\{N\}$. [Also $\left.H(x, y)=\binom{x}{y} /\binom{N}{y}\right]$.

EXAMPLE (WF): $(P, \boldsymbol{\pi})$ reversible ergodic Moran model with mechanism p, $H(x, y)=\binom{N-x}{y} /\binom{N}{y}$, we can interpret the H-dual in terms of a multisex backward process [H-Moehle], provided $p:[0,1] \rightarrow[0,1]$ is such that $q=1-p$ is $\mathrm{CM}\left[(-1)^{k} q^{(k)}(u) \geq 0\right]$. In $[H$-Moehle $]$ for the Moran model with CM mechanism: $(\widehat{P} \mathbf{1})_{a=0}=1$ and $0<(\widehat{P} \mathbf{1})_{x}=1-\frac{x}{N} p(0)<1$ for all $x \neq 0$ if $p(0) \in(0,1)$. When $p(0) \neq 0$, all states but $a=0$ of \widehat{P} are mass-defective.
\widetilde{P}, as a normalized version of \widehat{P}, transition matrix of skip-free to the left RW that can be described from $[H-M]$. Note : $H(x, N)=0$ for all $x \neq 0$ so that $\mathbf{e}_{N}^{\prime} \Lambda=\mathbf{e}_{0}^{\prime} . \Lambda \mathbf{e}_{N}=\pi_{N} \mathbf{e}_{0}(a=0$ and $d=N) \Rightarrow \widetilde{\tau}_{N, 0}>0$ stochast. smallest time at which $X_{\widetilde{\tau}_{N, 0}} \stackrel{d}{\sim} \boldsymbol{\pi}$ given $X_{0}=0$ and $\widetilde{X}_{0}=N$.
Time $\widetilde{\tau}_{N, 0}$ to reach 0 starting from N of the skip-free to the left RW \widetilde{P} (with same spectrum as $P) \stackrel{d}{=} \widetilde{\tau}_{0, N}$ to reach N starting from 0 of the Siegmund dual RW of same Moran model, namely like (28). In accordance with Theorem 1.2 of [Fill]: for a skip-free to the right Markov chain absorbed at N, the law of the time it takes to hit N starting from 0 is given by $K-F$ (28).

- Vandermonde kernel. $G(x, y)=x^{y}, H(x, y)=(x / N)^{y}$. We have $G=L U$ where $L(x, y)=\binom{x}{y}, x \geq y$ and $U(x, y)=x!S_{y, x}, S_{y, x}$, 2nd kind Stirling numbers. No sharpness.

RK: Ergodic chain governed by P not reversible. Start defining the H-dual of P, without appealing first to \overleftarrow{P}, miss the idea of a link between \widetilde{P} and P. However, get a similar link between \widetilde{P} and \overleftarrow{P} : with H defined as above, suppose

$$
\begin{equation*}
\widehat{P}^{\prime}=H^{-1} P H \tag{44}
\end{equation*}
$$

defines directly a substochastic matrix $\widehat{P} \geq 0$, which is H-dual to P, so with $(\widehat{P} \mathbf{1})_{a}=1$ and $(\widehat{P} \mathbf{1})_{x}<1$ for at least one $x \neq a$. Using $\overleftarrow{P}^{\prime}=D_{\boldsymbol{\pi}} P D_{\boldsymbol{\pi}}^{-1}$ we get

$$
\begin{equation*}
\widehat{P}=S \overleftarrow{P} S^{-1} \tag{45}
\end{equation*}
$$

where $S=H^{\prime} D_{\pi}$. Define the new $\widehat{\phi}$ by: $\widehat{P} \widehat{\phi}=\widehat{\phi}$ for this new \widehat{P}. Applying the same Doob transform, this \widehat{P} leads to

$$
\begin{equation*}
\widetilde{P}=D_{\widehat{\phi}}^{-1} \widehat{P} D_{\widehat{\phi}}=\Lambda \overleftarrow{P} \Lambda^{-1} \tag{46}
\end{equation*}
$$

expressing a stochastic link $\Lambda=D_{\widehat{\phi}}^{-1} H^{\prime} D_{\pi}$ now between \widetilde{P} and \overleftarrow{P} or between the hidden process \widetilde{X}_{n} and the observable \overleftarrow{X}_{n} which now is the time-reversed of X_{n}.

EXAMPLES: (i) assume the bias $p(u)$ appearing in the Wright-Fisher matrix $P(34)$ is such that q is CM, with $p(0)>0$. Then, using again the hypergeometric duality kernel $H(x, y)=\binom{N-x}{y} /\binom{N}{y}$, it was shown in $[H]$ that the H-dual \widehat{P} to P in (44) defines a substochastic matrix \Rightarrow Corresponding \widetilde{P} is Λ-linked to \overleftarrow{P}.
(ii) If $p(u)$ in (34) does not contain mutation effects \Rightarrow chain governed by P transient with 2 absorbing states $\{0, N\} \rightarrow$ substochastic matrix Q obtained from P by deleting its first/last lines and columns. New WF chain has statespace $\{1, . ., N-1\}$. Consider ergodic Q-process conditioned to never hit boundaries in remote future, governed by

$$
\mathcal{P}=\rho^{-1} D_{\psi}^{-1} Q D_{\psi}
$$

where $Q \boldsymbol{\psi}=\rho \boldsymbol{\psi}, \boldsymbol{\psi}>\mathbf{0}, \rho=$ Spectral radius of Q. Apply duality-intertwining theory to this new matrix \mathcal{P}, using (?) hypergeometric DK $H(x, y)=$ $\binom{x-1}{y-1} /\binom{N-2}{y-1}, 1 \leq y \leq x \leq N-1 . \Delta$

References

[1] Aldous, D.; Diaconis, P. Strong uniform times and finite random walks. Adv. in Appl. Math. 8, no. 1, 69-97, (1987).
[2] Diaconis, P.; Fill, J. A. Strong stationary times via a new form of duality. Ann. Probab. 18, no. 4, 1483-1522, (1990).
[3] Diaconis, P.; Saloff-Coste, L. Separation cut-offs for birth and death chains. Ann. Appl. Probab. 16 (2006), no. 4, 2098-2122.
[4] Diaconis, P.; Shahshahani, M. Time to reach stationarity in the Bernoulli-Laplace diffusion model. SIAM J. Math. Anal. 18 (1987), no. 1, 208-218.
[5] Dynkin, E. B. Markov processes. Vols. I, II. Translated with the authorization and assistance of the author by J. Fabius, V. Greenberg, A. Maitra, G. Majone. Die Grundlehren der Mathematischen Wissenschaften, Bände 121, 122 Academic Press Inc., Publishers, New York; Springer-Verlag, Berlin-Göttingen-Heidelberg 1965.
[6] Ewens, W. J. Mathematical population genetics. I. Theoretical introduction. Second edition. Interdisciplinary Applied Mathematics, 27. Springer-Verlag, New York, 2004.
[7] Feller, W. An introduction to probability theory and its applications, Vol. 1. John Wiley and Sons, Third Edition, New York, 1968.
[8] Fill, J. A. The passage time distribution for a birth-and-death chain: Strong stationary duality gives a first stochastic proof. arxiv.org/abs/0707.4042. Journal of Theoretical Probability, Volume 22, Number 3, 543-557, 2009.
[9] Fill, J. A. On hitting times and fastest strong stationary times for skipfree chains. Journal of Theoretical Probability, Volume 22, Number 3, 587-600, 2009.
[10] Gantmacher, F. R. Théorie des matrices. Tome 2: Questions spéciales et applications. (French) Traduit du Russe par Ch. Sarthou. Collection Universitaire de Mathématiques, No. 19 Dunod, Paris 1966.
[11] Gillespie, J. H. The Causes of Molecular Evolution. New York and Oxford: Oxford University Press, 1991.
[12] Gladstien, K. The characteristic values and vectors for a class of stochastic matrices arising in genetics. SIAM J. Appl. Math. 34, no. 4, 630-642, (1978).
[13] Huillet, T. A Duality Approach to the Genealogies of Discrete NonNeutral Wright-Fisher Models. Journal of Probability and Statistics, vol. 2009, Article ID 714701, 22 pages, (2009).
[14] Huillet, T., Moehle, M. Duality and asymptotics for a class of nonneutral discrete Moran models. Journal of Applied Probability 46(3), 866-893, hal-00356083, (2010).
[15] Huillet, T., Martinez, S. Duality and Intertwining for discrete Markov kernels: a relation and examples. preprint: hal-00401732, (2009).
[16] Karlin, S.; McGregor, J. Random walks. Illinois J. Math. 3, 66-81, (1959).
[17] Karlin, S.; McGregor, J. On a genetics model of Moran. Proc. Cambridge Philos. Soc. 58, 299-311, (1962).
[18] Keilson, J. Markov chain models - rarity and exponentiality. Applied Mathematical Sciences, 28. Springer-Verlag, New York-Berlin, 1979.
[19] Liggett, T. M. Interacting particle systems. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 276. Springer-Verlag, New York, 1985.
[20] Maruyama, T. Stochastic problems in population genetics. Lecture Notes in Biomathematics, 17. Springer-Verlag, Berlin-New York, 1977.
[21] Nagylaki, T. Anecdotal, historical and critical commentaries on Genetics. Gustave Malécot and the transition from classical to modern population genetics. Edited by James F. Crow and William F. Dove, Genetics, 122, 253-268, (1989).
[22] Whitehurst, T. An application of orthogonal polynomials to random walks. Pacific J. Math. 99, no. 1, 205-213, (1982).

[^0]: ${ }^{1}$ based on a joint work with Servet Martinez

