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Motivation

% Structured populations: individuals are characterized by variables that
affect their reproducing and survival capacities. Here: trait x € X ¢ R
and age a € R,

Continuous time discrete population, stochastic evolution based on
individual dynamics.
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Description
% Population carrying capacity in n € N* (n — +00) and fixed
resources: individuals biomass is in 1/n:

NP

dxda ZOXA

Heredity of the trait x unless a mutation happens with proba p € [0, 1]

Allometric demographies: lifetime and gestation length are
proportional to individual biomass. Thus, birth and death rates are of
order n, while preserving the demographic balance.

nr(x,a) + b(x, a)
nr(x,a)+ d(x,a) + / U((x, a), (y, @) X[ (dy, da)

X xRy

% the right scale to observe age-structure is of order 1/n. If the birth
timeis c: a=n(t —c)
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Short Bibliography

With trait, interaction, without age: Fournier-Méléard (2004),
Champagnat-Ferriere-Méléard (2006)

% With age, interaction but other rescaling: Oelschlager (1990), Tran
(2008). Plus trait: Méléard-Tran (2009), Ferriere-Tran (2009)

% With age, location but : Dynkin (1991), Bose-Kaj
(1995), Kaj-Sagitov (1998), Bose-Kaj (2000), Dawson et al. (2002).

The limit may not be a superprocess. Laplace techniques are used: no
generalization when interactions are added.

Difficulties:
» competition creates a dependence between age and trait-structure.
> Individualities are lost in the limit: how keep age 7
» Aging velocity is n — +00.



Generator

* For F € CL(R) and ¢ € Cp' (X x Ry), and for j1 € Mp(X x Ry), we
define F, (1) = F({1, ¢)) with:

{1, ) :/x . o(x, a)u(dx, da)



Generator
* For F € CL(R) and ¢ € Cp' (X x Ry), and for j1 € Mp(X x Ry), we
define F, (1) = F({1, ¢)) with:
()= [ el an(x.da)
X xRy

% The generator of X" is given for these functions by:
L"Fy (1) = n*(p, Datp(.)) Fo (1)

+n/XX]R+ {(nr(x,a) + d(x, a) + pU(x, a)) (F¢(u—%6(x,a)) - F,,(u))

+ (nr(x, a) + b(x, a)) /
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Generator

* For F € CL(R) and ¢ € Cp' (X x Ry), and for j1 € Mp(X x Ry), we
define F, (1) = F({1, ¢)) with:

{1, ) :/x . o(x, a)u(dx, da)

% The generator of X" is given for these functions by:

L"Fo(p) = n*{p, 0ap () Fp (1)
+n/X . {(nr(x,a) +d(x, a) +uU(x,a))(F¢(u—%6(X,a)) — Fv(u))

+ (nr(x,a) + b(x, a)) /

X

(Folis+ 30en) = o) K (. db)] o, ),

where

K"(x,dh) = p / S (dh)m"(x, W )dh + (1 — p) So(dh)

Rd

7"(x, h") is the Gaussian density with mean 0 and covariance X(x)/n.
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There exists a cadlag Markov process with generator L", solution of an
SDE for which trajectorial uniqueness holds.



Semi-martingale decomposition

There exists a cadlag Markov process with generator L", solution of an
SDE for which trajectorial uniqueness holds.

* Let ¢ € Co' (X x Ry) + moment assumptions on the initial
conditions.
Then the process:

t
M2 =(X{, @) = (X 0) =1 / (X 0ap(x, a)) ds

0
_/ / ((nr(x7 a) + b(x, a)) / o(x + h,0)K"(x, dh)
0 JXXR, R4
—(nr(x,a) + d(x,a) + X"U(x, a)) p(x, a))XS”(dX, dc) ds

is a square integrable martingale



Semi-martingale decomposition

There exists a cadlag Markov process with generator L", solution of an
SDE for which trajectorial uniqueness holds.

* Let ¢ € Co' (X x Ry) + moment assumptions on the initial
conditions.
Then the process:

t
ME? =(X0) = 0G.0) = n [ (X0, Dup(x.2) s
t
_/ / ((nr(x7 a) + b(x, a)) / o(x + h,0)K"(x, dh)
0 JXXR, R

—(nr(x,a) + d(x,a) + X"U(x, a)) p(x, a))XS”(dX, dc) ds

is a square integrable martingale started at 0 with quadratic variation:
(M™%#), / / (nr(x.a) + b(x, a))/ (x + h,0)K"(x, dh)
X><]RJr

+(nr(x. a) + d(x,a) + X7 U(x, a)) ¥ (x, a))Xs”(dy, dc) ds.



Averaging phenomenon

The age is a "fast” evolving component. Mutation rate is of order n
but since mutation steps are small, the trait will be viewed as a "slow”
component.

We expect that the age distribution stabilizes in an equilibrium that
depends on the trait.

Slow-fast phenomena are known in the literature: Freidlin-Ventzell
(1984-1993), Kurtz (1992), Ball-Kurtz-Popovic-Rempala (2006).

% Here, our ”sl_ow—fast” components are distributions. We introduce the
trait-marginal X{(dx) of X/ (dx, da): Vf(x) € Bp(X,R),

/Xf(x)_t"(dx):/ F(x)X"(dx, da).

X xRy



Superprocess limit
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Main result

Th: Under sufficient assumption for the initial condition, X" converge in
distribution in ([0, T], Mg(X)) to the unique continuous superprocess
X such that

M{ = (X, f) = (Xo, ) / / ,-,-(x)ag.f(x)

+[b(x) — (d(x )+x U(x)] F(x )))_(s(dx) ds

is a square integrable martingale with quadratic variation:

t—//2r )F2(x) Xs(dx) ds.
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Main result

Th: Under sufficient assumption for the initial condition, X" converge in
distribution in ([0, T], Mg(X)) to the unique continuous superprocess
X such that

M{ = (X, f) = (Xo, ) / / ,-,-(x)ag.f(x)

+[b(x) — (d(x )+x U(x)] F(x )))_(s(dx) ds

is a square integrable martingale with quadratic variation:

t—//2r )F2(x) Xs(dx) ds.

Notation: Here, any ¢(x) is defined for a bounded function 1(x, a) by

exp (— [y r(x,a)da)
(];OC exp (— [y r(x,a)da)da
and

U x) = /X (/R+ /R+ U((x, a), (y,a))m(y, a)da m(x, a)da> X:(dy). .

O(x) = [ ¥(x,a)m(x,a)da, with m(x,a) =
Ry



Idea of the proof
Step 1: Uniform tightness of (X"),cn- in D([0, T], Mp(X))
We use Aldous-Rebolledo criterion + moment estimates +
Roelly-Méléard criterion with an argument due to Jourdain-Méléard.

Step 2: Averaging phenomenon

We consider a subsequence of (X"),cn- converging to X. To identify the
limiting values, we shall prove that for all t € [0, T], (X{(dx, da))nen-
converges in distribution to X:(dx)m(x, a)da.

Step 3: ldentification of the limiting values

With Step 2 + moment estimates, we can characterize X as the solution
of the martingale problem given in the theorem.

Step 4: Uniqueness of the solution of the martingale problem
Dawson-Girsanov transform + computation of the Laplace transform:

E(exp((X:, 1)) = E(exp((Xo, Ue(f))))
where U, (f) solves:

ou

E(t, x) = Au(t, x) — F(x)u?(t, x).
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Sketch of the proof of Step 2
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1) For every t, (X[)nen- is uniformly tight in Mg(X x Ry)

Y Assumption: r(x) > r. The lifelengths of particles are stochastically

dominated by i.i.d. exponential r.v. E; of parameter nr.
For A > 0 and ng € N*:

sup ]P’(X"((K x [0, A])€) > 2¢)

v
< sup ]P’(X (K°) > E) + sup P(ZH,,A(t)>A/n > 5)

n>ng n>ng i—1

<e + sup IP’(ZHE>A > na) + sup P(N{ > nN)

n>ng n>ng

with N so that term 3< ¢, A such that exp(—rA) < /2N and since:
nN

nN
P(ZHEI'>A > ”5) = IED(Z(HE;>A —e ™) > n(e - Ne_fA))
i=1 i=1

nN

l752
gP(Z(HE»A —e ) > ”5/2) Se dTFa—Hic/o < ¢
i=1

for ng large.
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2) Kurtz' argument (1) - Occupation measure

Y Generalizing Kurtz, we define ' € Mg(Ry x X x R,) for
BCX xRy andteR, by:

t
r"([o, t] x B) = / / Ig(x,a) X! (dx, da) ds
0 JAXR,
* A sufficient condition for the uniform tightness of (I'"),en~ is that

sup ]E(I'”([O, t] x (K x [O,A])C)> = sup /OtIEI(Xs"((K X [O,A])C)) ds< C(t)e.

neN* neEN*

% And:

E(XZ((K x [0,A4])7))

:25]P’<Xs”((K x [0, A])¢) < 25) + E(<Xs”, 1>HX;((KX[O,A])C)>2E)

<e \/E(<XS", 1)2) \/]P’(XS"((K x [0, A)¢) > 25) = C(s)(e + V2.

15



Kurtz' argument (2) - Consequences

% From the definition, the marginal measure of "(ds, dx, da) on
MEe(X) x Ry is X!(dx)ds

% The sequence (I"(ds, dx, da), X7 (dx)ds) is uniformly tight and there
is a subsequence converging to (I(ds, dx, da), Xs(dx)ds).

% Xs(dx)ds is the marginal measure of ['(dx, ds, da).

% There exists a (random) probability-valued process s «(da),
predictable in (w, s) such that:

[(ds, dx, da) = s x(da)Xs(dx)ds.
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3) Averaging (1)

% The following process is a martingale:

M:7¢:<tha<p>_<x(51v<p>_/t/ [8(,0(X 8)
0 JDxR4 ? 7

—I-(r(x,a) + @) /RQD(X,O)K"(X, dh)
B ("(X7 3) + d(X7 a) + XSnU(X7 a)

n
% For each t, the process:

)<,0(X7 a)} r"(ds, dx, da)

/\N/]t"v¢ — /Ot/XX]R+ {8a<p(x7a)—i—r(x,a)((p(x,O)—np(X, a))}r"(ds, dx, da)

converges in distribution to:

/O.t /XXR {aago(x, a) + r(x, a)(¢(x,0) — ¢(x, 3))}’>/s,x(da))_<s(dx)ds

e i) <o,

which is a martingale since Iim,,_>+OOIE< L

As it is also continuous and of bounded variation, it must hence be zero.



Averaging (2)

% Thus, dt-almost everywhere
[ [ouetxia) ) (0(x.0) il 2) () Xe( ) = 0.
DxR4
For (x,a) = #(x)1p(a), we have that a.s. and X;(dx)-almost everywhere,
/ [020(2) + r(x.2) (1(0) — (a)) e x(da) = 0
Ry
There exists a unique probability solution to this equation, which has a

m(x, a) denS|ty w.r.t. the Lebesgue measure
For ¢(a) —|—f0 a)da, where f € CY(R,,R,) is positive:

/]R () = /R + [(F0)+ /0+°° Locsf(0)da) — F(0)]r(x, 2)re.(d2)
too
:/]R+ f(oz)/{Y r(x, a)ye.x(da) de. ()

This entails that +; «(da) is absolutely continuous with respect to the
Lebesgue measure with density m(x, a) = f;oo r(x, a)m(x, a)da (of

18
class C*).



Averaging (3)

By an integration by part formula:
—p(0)m(x,0) — [ ¢(a)d,m(x,a)da = / (¥(a) — ¥(0))r(x, a)m(x, a)da.
R R
By identification, m(x, a) is a solution of:
0.m(x,a) = —r(x,a)m(x, a)

/ r(x,a)m(x, a)da.

which is solved by:

e [ r(x,a)da

fo+oo e~ o rixa)da g,

f/ﬁ(X, 3) = I/ﬁ(X’ O)ef foa r(x,a)da —

since ¢ x(da) is a probability measure.
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