Fast and slow scales in a superprocess limit for interacting age and trait-structured particle system

ANR MANEGE

TRAN Viet Chi Université Lille 1, France

collaboration with Sylvie Méléard (CMAP)

26th of March, 2010

Particle system and difficulties

Superprocess limit

Sketch of the proof of Step 2

Motivation

- \bigstar Structured populations: individuals are characterized by variables that affect their reproducing and survival capacities. Here: trait $x \in \mathcal{X} \subset \mathbb{R}^d$ and age $a \in \mathbb{R}_+$
- ★ Continuous time discrete population, stochastic evolution based on individual dynamics.

Description

★ Population carrying capacity in $n \in \mathbb{N}^*$ $(n \to +\infty)$ and fixed resources: individuals biomass is in 1/n:

$$X_t^n(dx, da) = \frac{1}{n} \sum_{i=1}^{N_t^n} \delta_{(X_i, A_i)}$$

- \bigstar Heredity of the trait x unless a mutation happens with proba $p \in [0,1]$
- \star Allometric demographies: lifetime and gestation length are proportional to individual biomass. Thus, birth and death rates are of order n, while preserving the demographic balance.

$$nr(x, a) + b(x, a)$$

 $nr(x, a) + d(x, a) + \int_{\mathcal{X} \times \mathbb{R}_+} U((x, a), (y, \alpha)) X_t^n(dy, d\alpha)$

★ the right scale to observe age-structure is of order 1/n. If the birth time is c: a = n(t - c)

Particle system and difficulties

Superprocess limit

Sketch of the proof of Step 2

Short Bibliography

- ★ With trait, interaction, without age: Fournier-Méléard (2004), Champagnat-Ferrière-Méléard (2006)
- ★ With age, interaction but other rescaling: Oelschläger (1990), Tran (2008). Plus trait: Méléard-Tran (2009), Ferrière-Tran (2009)
- ★ With age, location but without interaction: Dynkin (1991), Bose-Kaj (1995), Kaj-Sagitov (1998), Bose-Kaj (2000), Dawson et al. (2002).

The limit may not be a superprocess. Laplace techniques are used: no generalization when interactions are added.

Difficulties:

- competition creates a dependence between age and trait-structure.
- ▶ Individualities are lost in the limit: how keep age ?
- ▶ Aging velocity is $n \to +\infty$.

Generator

★ For $F \in \mathcal{C}_b^1(\mathbb{R})$ and $\varphi \in \mathcal{C}_b^{0,1}(\mathcal{X} \times \mathbb{R}_+)$, and for $\mu \in \mathcal{M}_F(\mathcal{X} \times \mathbb{R}_+)$, we define $F_{\varphi}(\mu) = F(\langle \mu, \varphi \rangle)$ with:

$$\langle \mu, \varphi \rangle = \int_{\mathcal{X} \times \mathbb{R}_+} \varphi(\mathsf{x}, \mathsf{a}) \mu(\mathsf{d}\mathsf{x}, \mathsf{d}\mathsf{a})$$

Generator

 \star For $F \in \mathcal{C}_b^1(\mathbb{R})$ and $\varphi \in \mathcal{C}_b^{0,1}(\mathcal{X} \times \mathbb{R}_+)$, and for $\mu \in \mathcal{M}_F(\mathcal{X} \times \mathbb{R}_+)$, we define $F_{\omega}(\mu) = F(\langle \mu, \varphi \rangle)$ with:

$$\langle \mu, arphi
angle = \int_{\mathcal{X} imes \mathbb{R}_+} arphi(\mathsf{x}, \mathsf{a}) \mu(\mathsf{d}\mathsf{x}, \mathsf{d}\mathsf{a})$$

 \star The generator of X^n is given for these functions by:

$$\begin{split} L^n F_{\varphi}(\mu) &= n^2 \langle \mu, \partial_a \varphi(.) \rangle F_{\varphi}'(\mu) \\ &+ n \int_{\mathcal{X} \times \mathbb{R}_+} \left[\left(nr(x, a) + d(x, a) + \mu U(x, a) \right) \left(F_{\varphi} \left(\mu - \frac{1}{n} \delta_{(x, a)} \right) - F_{\varphi}(\mu) \right) \right. \\ &+ \left. \left(nr(x, a) + b(x, a) \right) \int_{\mathcal{X}} \left(F_{\varphi} \left(\mu + \frac{1}{n} \delta_{(x+h, 0)} \right) - F_{\varphi}(\mu) \right) K^n(x, dh) \right] \mu(dx, da), \end{split}$$

Generator

★ For $F \in \mathcal{C}_b^1(\mathbb{R})$ and $\varphi \in \mathcal{C}_b^{0,1}(\mathcal{X} \times \mathbb{R}_+)$, and for $\mu \in \mathcal{M}_F(\mathcal{X} \times \mathbb{R}_+)$, we define $F_{\varphi}(\mu) = F(\langle \mu, \varphi \rangle)$ with:

$$\langle \mu, arphi
angle = \int_{\mathcal{X} imes \mathbb{R}_+} arphi(\mathsf{x}, \mathsf{a}) \mu(\mathsf{d}\mathsf{x}, \mathsf{d}\mathsf{a})$$

 \star The generator of X^n is given for these functions by:

$$\begin{split} L^n F_{\varphi}(\mu) &= n^2 \langle \mu, \partial_a \varphi(.) \rangle F_{\varphi}'(\mu) \\ &+ n \int_{\mathcal{X} \times \mathbb{R}_+} \left[\left(nr(x, a) + d(x, a) + \mu U(x, a) \right) \left(F_{\varphi} \left(\mu - \frac{1}{n} \delta_{(x, a)} \right) - F_{\varphi}(\mu) \right) \right. \\ &+ \left. \left(nr(x, a) + b(x, a) \right) \int_{\mathcal{X}} \left(F_{\varphi} \left(\mu + \frac{1}{n} \delta_{(x+h, 0)} \right) - F_{\varphi}(\mu) \right) K^n(x, dh) \right] \mu(dx, da), \end{split}$$

where

$$K^n(x,dh) = p \int_{\mathbb{R}^d} \delta_{h'}(dh) \pi^n(x,h') dh' + (1-p) \delta_0(dh)$$

 $\pi^n(x,h')$ is the Gaussian density with mean 0 and covariance $\Sigma(x)/n$.

Semi-martingale decomposition

 \star There exists a càdlàg Markov process with generator L^n , solution of an SDE for which trajectorial uniqueness holds.

Semi-martingale decomposition

 \star There exists a càdlàg Markov process with generator L^n , solution of an SDE for which trajectorial uniqueness holds.

★ Let $\varphi \in \mathcal{C}_b^{0,1}(\mathcal{X} \times \mathbb{R}_+)$ + moment assumptions on the initial conditions.

Then the process:

$$\begin{split} M_t^{n,\varphi} = & \langle X_t^n, \varphi \rangle - \langle X_0^n, \varphi \rangle - n \int_0^t \langle X_s^n, \partial_a \varphi(x, a) \rangle \, ds \\ & - \int_0^t \int_{\mathcal{X} \times \mathbb{R}_+} \left(\left(nr(x, a) + b(x, a) \right) \int_{\mathbb{R}^d} \varphi(x + h, 0) K^n(x, dh) \right. \\ & - \left(nr(x, a) + d(x, a) + X^n U(x, a) \right) \varphi(x, a) \right) X_s^n(dx, dc) \, ds \end{split}$$

is a square integrable martingale

Semi-martingale decomposition

 \star There exists a càdlàg Markov process with generator L^n , solution of an SDE for which trajectorial uniqueness holds.

★ Let $\varphi \in \mathcal{C}_b^{0,1}(\mathcal{X} \times \mathbb{R}_+)$ + moment assumptions on the initial conditions.

Then the process:

$$\begin{split} M_t^{n,\varphi} = & \langle X_t^n, \varphi \rangle - \langle X_0^n, \varphi \rangle - n \int_0^t \langle X_s^n, \partial_a \varphi(x, a) \rangle \, ds \\ & - \int_0^t \int_{\mathcal{X} \times \mathbb{R}_+} \left(\left(nr(x, a) + b(x, a) \right) \int_{\mathbb{R}^d} \varphi(x + h, 0) K^n(x, dh) \right. \\ & - \left(nr(x, a) + d(x, a) + X^n U(x, a) \right) \varphi(x, a) \right) X_s^n(dx, dc) \, ds \end{split}$$

is a square integrable martingale started at 0 with quadratic variation:

$$\begin{split} \langle M^{n,\varphi} \rangle_t = & \frac{1}{n} \int_0^t \int_{\mathcal{X} \times \mathbb{R}_+} \left(\left(nr(x,a) + b(x,a) \right) \int_{\mathbb{R}} \varphi^2(x+h,0) K^n(x,dh) \right. \\ & + \left(nr(x,a) + d(x,a) + X_s^n U(x,a) \right) \varphi^2(x,a) \right) X_s^n(dy,dc) \, ds. \end{split}$$

Averaging phenomenon

 \star The age is a "fast" evolving component. Mutation rate is of order n but since mutation steps are small, the trait will be viewed as a "slow" component.

We expect that the age distribution stabilizes in an equilibrium that depends on the trait.

★ Slow-fast phenomena are known in the literature: Freidlin-Ventzell (1984-1993), Kurtz (1992), Ball-Kurtz-Popovic-Rempala (2006).

 \bigstar Here, our "slow-fast" components are distributions. We introduce the trait-marginal $\bar{X}_t^n(dx)$ of $X_t^n(dx,da)$: $\forall f(x) \in \mathcal{B}_b(\mathcal{X},\mathbb{R})$,

$$\int_{\mathcal{X}} f(x) \bar{X}_t^n(dx) = \int_{\mathcal{X} \times \mathbb{R}_+} f(x) X_t^n(dx, da).$$

Particle system and difficulties

Superprocess limit

Sketch of the proof of Step 2

Main result

Th: Under sufficient assumption for the initial condition, \bar{X}^n converge in distribution in $\mathbb{D}([0,T],\mathcal{M}_F(\mathcal{X}))$ to the unique continuous superprocess \bar{X} such that

$$\begin{aligned} M_t^f &= \langle \bar{X}_t, f \rangle - \langle \bar{X}_0, f \rangle - \int_0^t \int_{\mathcal{X}} \left(\widehat{r}(x) \frac{p}{2} \sum_{i,j=1}^d \Sigma_{ij}(x) \partial_{ij}^2 f(x) \right. \\ &+ \left[\widehat{b}(x) - \left(\widehat{d}(x) + \bar{X}_s \widehat{U}(x) \right) \right] f(x) \right) \bar{X}_s(dx) \, ds \end{aligned}$$

is a square integrable martingale with quadratic variation:

$$\langle M^f
angle_t = \int_0^t \int_{\mathcal{X}} 2 \widehat{r}(x) f^2(x) \bar{X}_s(dx) ds.$$

Main result

Th: Under sufficient assumption for the initial condition, \bar{X}^n converge in distribution in $\mathbb{D}([0,T],\mathcal{M}_F(\mathcal{X}))$ to the unique continuous superprocess \bar{X} such that

$$\begin{aligned} M_t^f &= \langle \bar{X}_t, f \rangle - \langle \bar{X}_0, f \rangle - \int_0^t \int_{\mathcal{X}} \left(\hat{r}(x) \frac{p}{2} \sum_{i,j=1}^d \Sigma_{ij}(x) \partial_{ij}^2 f(x) \right. \\ &+ \left[\hat{b}(x) - \left(\hat{d}(x) + \bar{X}_s \hat{U}(x) \right) \right] f(x) \right) \bar{X}_s(dx) \, ds \end{aligned}$$

is a square integrable martingale with quadratic variation:

$$\langle M^f \rangle_t = \int_0^t \int_{\mathcal{X}} 2\widehat{r}(x) f^2(x) \bar{X}_s(dx) ds.$$

Notation: Here, any $\widehat{\psi}(x)$ is defined for a bounded function $\psi(x,a)$ by

$$\widehat{\psi}(x) = \int_{\mathbb{R}_+} \psi(x,a) \widehat{m}(x,a) da, \quad \text{with } \widehat{m}(x,a) = \frac{\exp\left(-\int_0^a r(x,\alpha) d\alpha\right)}{\int_0^{+\infty} \exp\left(-\int_0^a r(x,\alpha) d\alpha\right) da}$$

and

$$\bar{X}_t \widehat{U}(x) = \int_{\mathcal{X}} \left(\int_{\mathbb{R}_+} \int_{\mathbb{R}_+} U((x,a),(y,\alpha)) \widehat{m}(y,\alpha) d\alpha \ \widehat{m}(x,a) da \right) \bar{X}_t(dy).$$

Idea of the proof

Step 1: Uniform tightness of $(\bar{X}^n)_{n\in\mathbb{N}^*}$ **in** $\mathbb{D}([0,T],\mathcal{M}_F(\mathcal{X}))$

We use Aldous-Rebolledo criterion + moment estimates + Roelly-Méléard criterion with an argument due to Jourdain-Méléard.

Step 2: Averaging phenomenon

We consider a subsequence of $(\bar{X}^n)_{n\in\mathbb{N}^*}$ converging to \bar{X} . To identify the limiting values, we shall prove that for all $t\in[0,T]$, $(X^n_t(dx,da))_{n\in\mathbb{N}^*}$ converges in distribution to $\bar{X}_t(dx)\widehat{m}(x,a)da$.

Step 3: Identification of the limiting values

With Step 2 + moment estimates, we can characterize \bar{X} as the solution of the martingale problem given in the theorem.

Step 4: Uniqueness of the solution of the martingale problem

Dawson-Girsanov transform + computation of the Laplace transform:

$$\mathbb{E}\big(\exp(\langle \bar{X}_t, f \rangle)\big) = \mathbb{E}\big(\exp(\langle \bar{X}_0, U_t(f) \rangle)\big)$$

where $U_t(f)$ solves:

$$\frac{\partial u}{\partial t}(t,x) = Au(t,x) - \hat{r}(x)u^2(t,x).$$

Particle system and difficulties

Superprocess limit

Sketch of the proof of Step 2

1) For every t, $(X_t^n)_{n\in\mathbb{N}^*}$ is uniformly tight in $\mathcal{M}_F(\mathcal{X}\times\mathbb{R}_+)$

Assumption: $r(x) > \underline{r}$. The lifelengths of particles are stochastically dominated by i.i.d. exponential r.v. E_i of parameter $n\underline{r}$.

 \star For A > 0 and $n_0 \in \mathbb{N}^*$:

$$\sup_{n \geq n_0} \mathbb{P}(X_t^n((K \times [0, A])^c) > 2\varepsilon)$$

$$\leq \sup_{n \geq n_0} \mathbb{P}(\bar{X}_t^n(K^c) > \varepsilon) + \sup_{n \geq n_0} \mathbb{P}(\sum_{i=1}^{N_t^n} \mathbb{I}_{nA_i(t) > A}/n > \varepsilon)$$

$$\leq \varepsilon + \sup_{n \geq n_0} \mathbb{P}(\sum_{i=1}^{nN} \mathbb{I}_{E_i > A} > n\varepsilon) + \sup_{n \geq n_0} \mathbb{P}(N_t^n > nN)$$

with N so that term $3 < \varepsilon$, A such that $\exp(-\underline{r}A) < \varepsilon/2N$ and since:

$$\mathbb{P}\Big(\sum_{i=1}^{nN} \mathbb{I}_{E_{i}>A} > n\varepsilon\Big) = \mathbb{P}\Big(\sum_{i=1}^{nN} (\mathbb{I}_{E_{i}>A} - e^{-\underline{t}A}) > n(\varepsilon - Ne^{-\underline{t}A})\Big)$$

$$\leq \mathbb{P}\Big(\sum_{i=1}^{nN} (\mathbb{I}_{E_{i}>A} - e^{-\underline{t}A}) > n\varepsilon/2\Big) \leq e^{-\frac{n\varepsilon^{2}}{8(Ne^{-\underline{t}A}(1 - e^{-\underline{t}A}) + \varepsilon/6)}} < \varepsilon$$

for n_0 large.

2) Kurtz' argument (1) - Occupation measure

 \star Generalizing Kurtz, we define $\Gamma \in \mathcal{M}_F(\mathbb{R}_+ \times \mathcal{X} \times \mathbb{R}_+)$ for $B \subset \mathcal{X} \times \mathbb{R}_+$ and $t \in \mathbb{R}_+$ by:

$$\Gamma^n([0,t]\times B)=\int_0^t\int_{\mathcal{X}\times\mathbb{R}_+}\mathbb{I}_B(x,a)X_s^n(dx,da)\,ds$$

 \star A sufficient condition for the uniform tightness of $(\Gamma^n)_{n\in\mathbb{N}^*}$ is that

$$\sup_{n\in\mathbb{N}^*}\mathbb{E}\Big(\Gamma^n([0,t]\times (K\times [0,A])^c)\Big)=\sup_{n\in\mathbb{N}^*}\int_0^t\mathbb{E}\Big(X^n_s((K\times [0,A])^c)\Big)ds\leq C(t)\varepsilon.$$

★ And:

$$\begin{split} &\mathbb{E}\Big(X^n_s\big((K\times[0,A])^c\big)\Big)\\ &= &2\varepsilon\mathbb{P}\Big(X^n_s\big((K\times[0,A])^c\big) \leq 2\varepsilon\Big) + \mathbb{E}\Big(\langle X^n_s,1\rangle\mathbb{I}_{X^n_s\big((K\times[0,A])^c\big)>2\varepsilon}\Big)\\ &\leq &2\varepsilon + \sqrt{\mathbb{E}\Big(\langle X^n_s,1\rangle^2\Big)}\sqrt{\mathbb{P}\Big(X^n_s\big((K\times[0,A])^c\big)>2\varepsilon\Big)} = C(s)(\varepsilon+\sqrt{\varepsilon}). \end{split}$$

Kurtz' argument (2) - Consequences

- \star From the definition, the marginal measure of $\Gamma^n(ds, dx, da)$ on $\mathcal{M}_F(\mathcal{X}) \times \mathbb{R}_+$ is $\bar{X}_s^n(dx)ds$
- \star The sequence $(\Gamma^n(ds, dx, da), \bar{X}_s^n(dx)ds)$ is uniformly tight and there is a subsequence converging to $(\Gamma(ds, dx, da), \bar{X}_s(dx)ds)$.
- $\star \bar{X}_s(dx)ds$ is the marginal measure of $\Gamma(dx, ds, da)$.
- \star There exists a (random) probability-valued process $\gamma_{s,x}(da)$, predictable in (ω, s) such that:

$$\Gamma(ds, dx, da) = \gamma_{s,x}(da)\bar{X}_s(dx)ds.$$

3) Averaging (1)

★ The following process is a martingale:

$$\begin{split} \frac{M_t^{n,\varphi}}{n} &= \frac{\langle X_t^n, \varphi \rangle - \langle X_0^n, \varphi \rangle}{n} - \int_0^t \int_{\mathbb{D} \times \mathbb{R}_+} \left[\partial_a \varphi(x, a) \right. \\ &+ \left(r(x, a) + \frac{b(x, a)}{n} \right) \int_{\mathbb{R}} \varphi(x, 0) K^n(x, dh) \\ &- \left(r(x, a) + \frac{d(x, a) + X_s^n U(x, a)}{n} \right) \varphi(x, a) \right] \Gamma^n(ds, dx, da) \end{split}$$

 \star For each t, the process:

$$\widetilde{M}_t^{n,\phi} := \int_0^t \int_{\mathcal{X} \times \mathbb{R}_+} \Big[\partial_a \varphi(x,a) + r(x,a) \Big(\varphi(x,0) - \varphi(x,a) \Big) \Big] \Gamma^n(ds,dx,da)$$

converges in distribution to:

$$\int_0^t \int_{\mathcal{X} \times \mathbb{R}_+} \left[\partial_a \varphi(x,a) + r(x,a) \big(\varphi(x,0) - \varphi(x,a) \big) \right] \gamma_{s,x}(da) \bar{X}_s(dx) ds$$

which is a martingale since $\lim_{n \to +\infty} \mathbb{E} \Big(\Big| \frac{M_t^{n,\phi}}{n} - \widetilde{M}_t^{n,\phi} \Big| \Big) = 0.$

As it is also continuous and of bounded variation, it must hence be zero

Averaging (2)

★ Thus, dt-almost everywhere

$$\int_{\mathbb{D}\times\mathbb{R}_+} \left[\partial_a \varphi(x,a) + r(x,a) \big(\varphi(x,0) - \varphi(x,a) \big) \right] \gamma_{t,x}(da) \bar{X}_t(dx) = 0.$$

For $\varphi(x,a)=\phi(x)\psi(a)$, we have that a.s. and $\bar{X}_t(dx)$ -almost everywhere,

$$\int_{\mathbb{R}_+} \left[\partial_a \psi(a) + r(x,a) \big(\psi(0) - \psi(a) \big) \right] \gamma_{t,x}(da) = 0$$

★ There exists a unique probability solution to this equation, which has a $\widehat{m}(x,a)$ density w.r.t. the Lebesgue measure For $\psi(a) = f(0) + \int_0^a f(\alpha) d\alpha$, where $f \in \mathcal{C}^1(\mathbb{R}_+, \mathbb{R}_+)$ is positive:

$$\int_{\mathbb{R}_{+}} f(a)\gamma_{t,x}(da) = \int_{\mathbb{R}_{+}} \left[\left(f(0) + \int_{0}^{+\infty} \mathbb{I}_{\alpha < a} f(\alpha) d\alpha \right) - f(0) \right] r(x,a)\gamma_{t,x}(da)$$

$$= \int_{\mathbb{R}_{+}} f(\alpha) \int_{0}^{+\infty} r(x,a)\gamma_{t,x}(da) d\alpha. \tag{1}$$

This entails that $\gamma_{t,x}(da)$ is absolutely continuous with respect to the Lebesgue measure with density $\widehat{m}(x,a) = \int_a^{+\infty} r(x,\alpha) \widehat{m}(x,\alpha) d\alpha$ (of class \mathcal{C}^{∞}).

Averaging (3)

★ By an integration by part formula:

$$-\psi(0)\widehat{m}(x,0)-\int_{\mathbb{R}_+}\psi(a)\partial_a\widehat{m}(x,a)da=\int_{\mathbb{R}_+}\big(\psi(a)-\psi(0)\big)r(x,a)\widehat{m}(x,a)da.$$

By identification, $\widehat{m}(x, a)$ is a solution of:

$$\partial_a \widehat{m}(x, a) = -r(x, a) \widehat{m}(x, a)$$

 $\widehat{m}(x, 0) = \int_{\mathbb{R}_+} r(x, a) \widehat{m}(x, a) da.$

which is solved by:

$$\widehat{m}(x,a) = \widehat{m}(x,0)e^{-\int_0^a r(x,\alpha)d\alpha} = \frac{e^{-\int_0^a r(x,\alpha)d\alpha}}{\int_0^{+\infty} e^{-\int_0^a r(x,\alpha)d\alpha}da}$$

since $\gamma_{t,x}(da)$ is a probability measure.