Les microsatellites codants,

« Y'en a pas un sur cent et pourtant ils existent ! »

E. Loire, M. Lapierre F. Praz, D. Higuet, P. Netter et G. Achaz

Systématique, Evolution, Adaptation (UMR 7138) - UPMC Atelier de Bio-Informatique - UPMC Stochastic Models for the Inference of Life Evolution – Collège de France

Whole genome mutation rates

(from Drake et al., 1998)

HIV-1:3.10⁻⁵

H. sapiens : 5.10⁻¹¹

Substitutions /base/replication

E. coli : 5.10⁻¹⁰

C. elegans : 2.10⁻¹⁰

Is the mutation rate itself subject to selection ?

Across eukaryote genomes

Chromosomal differences

• Autosomes vs. sexual chromosome

Local differences

- Hotspot of insertion for transposable elements
- Recombination rate
- GC-biased gene conversion
- ...

Site differences

- CpG methylation
- Microsatellites (SSRs)
- ...

SSRs in coding sequences

SSRs: tandem repepepepepepeats of small motifs (few bp)

"High" rate of slippage during replication

ATG_CTG_CAG_AAA_AAA_AAA_CGT_A... ATG_CTG_CAG_AAA_AAA_AAC_GTA_... WT ATG_CTG_CAG_AAA_AAA_ACG_TA... $\int -1$

Rate of slippage increases exponentially with the number of units

"Long enough" non-3-SSRs confer hypermutability

Mutability of a gene

Let's define for a given gene

Mutability as its rate of STOP mutations

From substitution

- $\sim 5\%$ of all mutations create a STOP
- ~ 10⁻⁹ non-sense subst. /kb /replication

From frameshift due to indels in SSRs

~ [10⁻³, 10⁻⁶] / replication

SSRs are likelily the MAJOR source of gene mutability

A threshold for SSR instability

(from Yogeshwar et al., 2007)

A threshold for mono-, di-, tetra-SSR : 8-, 5-, 4-units

Inferences from "The" Human Genome

Results from Loire et al., MBE, 2009

The Human Genome: Consortium, Nature, 2003; Venter et al., Science, 2003

How many genes with SSRs?

Mostly mono- and di-SSRs within genes

GO terms over-representation

Biological Process *cell-cyle* and *DNA maintenance*

Molecular Functions *ATPase, GTPase* and *Helicase*

Cellular Component *nucleus* and *intracell. non-mbr. bound organelle*

A cohesive restricted set of GO-terms

(see Moxon and Wills 1999; Chang et al. 2001; Kashi and King 2006).

Impact of gene structure

The probability of a long mono-SSR is altered by

sequence length nucleotide composition

Hypothesis

Genes length and/or composition explain the results ? <u>Test</u>

Do we <u>expect</u> more SSRs in the overrepresented GO. terms ?

Mono-SSRs a simple substitution model

In a random sequence with independent mono-nucleotides

• of length *L*

• of composition $\{P_{A'}, P_{C'}, P_{G'}, P_T\}$

The mean number of runs of nucleotide X of at least size *m* is:

$$E[m^+ | L, Px] = (L-m+1) \cdot (1-P_X) \cdot P_X^m$$

The probability of having at least 1 run of this type is:

```
P(m^+ | L, Px) = 1 - exp(-E[m+])
```

Expectations for the functions

We expect more long mono-SSR in the enriched functions

A neutrality test for coding SSRs

The model assumes that all substitutions can occur freely

a neutral model

m_{1/2}

Theoretical length $P(m+|L,P_x) = 0.5$

m_{obs}

Length of the longest mono-SSR

Do **50%** of genes have m_{obs} > m_{1/2} ?

Gene-by-gene data vs theory

	Exons	
mono-SSR	$m_{obs} < m_{1/2}$	$m_{obs} > m_{1/2}$
A	20271	1947
Т	20279	1939
G	21660	558
С	21342	876
# expected	11109	11109

(Mono-)SSRs are targeted by purifying selection

(see also de Wachter 1981; Metzgar et al. 2000; Ackermann and Chao 2006)

Inferences from 4 Primate Genomes

Results from Loire et al., GBE, 2013

Chimpanzee: Consortium, Nature, 2005; Macaca: Zhan et al., Science, 2007 Orang-Utan: Consortium, Nature, 2011

5,015 orthologs from Apes

Multiple alignment (progessive), Filtering (conserved blocks), Phylogenetic reconstruction (ML) and Ancestral states reconstruction (max posterior probabilities)

Definition of an SSR locus

P troglodytes H sapiens P pygmaeus M mulatta

SSR locus = at least one SSR in one species

What kind of mutations ?

Sequence type	# Sites	Indels (% of sites)	Substitutions (% of non-indels)
mono-, di-,tri, penta- SSRs	7,312	130 (1.8%)	557 (7.7%)
tri-, hexa-SSRs	8,499	1,680 (19.8%)	373 (5.5%)
Rest of coding	8,185,286	31,720 (0.4%)	316,408 (3.9%)

Only tri- and hexa-SSRs expand and contract

Evolutionary distances

SSRs evolve twice faster than rest of coding sequence

Gains and losses of coding SSRs

A dynamic equilibrium: Gains ~ Losses

Mono-SSRs (toward a simple 2-alleles model)

$$(\mu = 10^{-8}; a = 1/3; d = X)$$

S/P alleles at equilibrium

The mutation-only model

It only fits for small (stable) SSRs

Single genome "Population genetics"

Model 1 (infinite population)

Mutation-selection equilibrium

(textbook population genetics)

Model 2 (finite population)

Mutation-selection-drift equilibrium

(following Bulmer 1991)

Estimation of selective coefficient

Effective selection coefficient (2N_es)

Model 1, infinite size $N_e = 10000$

Model 2, finite size direct estimation

Results for mono-SSRs of 8 units

Model 2	Model 1	h
0,2	0,0008	1
2	0,006	0,1
?	0,03	0

Estimation of selective coefficient

(fix h=0.5)

The longer, the nastier

Comparative genomics

Rate of evolution

Twice faster than the rest of coding sequence

Gains ~ Losses Coding SSRs are at equilibrium

Selective coefficient

Infinite size model : very small $N_e s << 1$ Finite size model : small $N_e s \sim 1$

Inferences from 1,000 Human Genomes

Results from M. Lapierre (work in progress)

1,092 human genomes: Consortium, Nature, 2010; Consortium, Nature, 2012

1,000 human genomes

1,092 genomes > ~2,200 haploid genomes

No ascertainment bias > No need for ad-hoc corrections

Orienting mutation using the Chimpanzee genome > Ancestral and Derived states

SNPs in coding SSRs

Sequence Type	# SNPs	Density (/bp)
Rest of Coding sequence	179,893	0.5%
mono-, di-, tri-, tetra-, penta-SSRs	324	1.5%
Tri-, hexa-SSRs	109	0.5%

Why some SSRs have more mutations?

Counting mutations back and forth

Rest of coding sequence few mutation (many sites)

Distances in SSRs are overestimated by a factor 2!

Frequencies of SNPs

Mono-, di-, tetra-, penta-SSRs

Tri-, hexa-SSRs

The selection-mutation balance model is right out !

Gains vs Losses

SSRs	Gains	Losses	Ratio
mono-, di-, tri-, tetra-, penta-SSRs	128	110	1.16
Tri-, hexa-SSRs	30	104	0.29

Stable *vs* unstable SSRs

SNPs in dynamic SSRs

Loss substitution

Gain Substitutions = Loss Substitutions

Estimating the selective coefficient

Gain/Loss SNPs depends on the fixation probability

Ratio = $P_{fix}(S)/P_{fix}(P)$

Estimate $2N_es$ for mono-SSRs of 8 units

2,200 genomes	1 genome	h
0,05	0,2	1
0.5	2	0,1
?	?	0

Concluding thought

« Y'en a pas un sur cent et pourtant ils existent ! »