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Consider a continuous–time population model, where each individual
gives birth at rate λ, and dies at an exponential time with parameter
µ.

We superimpose a death rate due to interaction equal to f −(k) (resp.
a birth rate due to interaction equal to f +(k)) while the total
population size is k.

In fact since we want to couple the models for all possible initial
population sizes, we need to introduce a pecking order (e.g. from left
to right) on our ancestors at time 0, which is passed on to the
descendants, and so that any daughter is placed on the right of her
mother.

In all what follows, we assume that f ∈ C (R+;R), f (0) = 0 and for
some fixed a > 0, f (x + y)− f (x) ≤ ay , for all x , y ≥ 0.
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We want that the individual i interacts only with those individuals
who sit on the left of her. Let Li (t) denote the number of individual
alive at time t who sit on the left of i .

Then we decide that i gives birth at rate
λ+ [f (Li (t))− f (Li (t)− 1)]+, and dies at rate
µ+ [f (Li (t))− f (Li (t)− 1)]−.

Summing up, we conclude that the size of the population Xm
t ,

starting from Xm
0 = m, jumps

from k to

{
k + 1, at rate λk +

∑k
`=1[f (`)− f (`− 1)]+

k − 1, at rate µk +
∑k

`=1[f (`)− f (`− 1)]−

Note that we have defined {Xm
t , t ≥ 0} jointly for all m ≥ 1, i.e. we

have defined the two–parameter process {Xm
t , t ≥ 0, m ≥ 1}.
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In case f linear, we have a branching process, and for each t > 0,
{Xm

t , m ≥ 1} has independent increments.
In the general case, we don’t expect that for fixed t, {Xm

t , m ≥ 1} is
a Markov chain.
However, {Xm

t , t ≥ 0}m≥1 is a path–valued Markov chain. We can
specify the transitions as follows.
For 1 ≤ m < n, the law of {X n

t − Xm
t , t ≥ 0}, given

{X `
t , t ≥ 0, 1 ≤ ` ≤ m} and given that Xm

t = x(t), t ≥ 0, is that of
the time–inhomogeneous jump Markov process whose rate matrix
{Qk,`(t), k , ` ∈ Z+} satisfies

Q0,` = 0, ∀` ≥ 1 and for any k ≥ 1,

Qk,k+1(t) = λk +
k∑
`=1

[f (x(t) + `)− f (x(t) + `− 1)]+

Qk,k−1(t) = µk +
k∑
`=1

[f (x(t) + `)− f (x(t) + `− 1)]−

Qk,` = 0, if ` 6∈ {k − 1, k , k + 1}.
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Exploration process of the forest of genealogical trees

D

B
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Call {Hm
s , s ≥ 0} the zigzag curve in the above picture (with slope

±2), and define the local time accumulated by Hm at level t up to
time s by

Lm
s (t) = lim

ε→0

1

ε

∫ s

0
1t≤Hm

r <t+εdr .

Hm is piecewise linear, with slopes ±1. While the slope is 2, the rate
of appearance of a maximum is

µ+ [f (bLm
s (Hm

s )c+ 1)− f (bLm
s (Hm

s )c)]− ,

and the rate of appearance of a minimum while the slope is −2 is

λ+ [f (bLm
s (Hm

s )c+ 1)− f (bLm
s (Hm

s )c)]+ .

Let Sm = inf{s > 0, Lm
s (0) ≥ m} the time needed for Hm

s to explore
the genealogical trees of m ancestors. If we assume that the
population goes extinct in finite time, we have the Ray–Knight type
result (see next figure)

{Xm
t , t ≥ 0, m ≥ 1} ≡ {Lm

Sm(t), t ≥ 0,m ≥ 1}.
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How to recover Xm from Hm ?

0 1 2 3

tlevel t

exploration time s S1

H1
s

L1
S1(t)

�
�
�
�
�
�
�
�
�
�A
A
A
A
A�
�
�
�
�
�
�
�
��A
A
A
A�
�
�
�
�
�A
A
A
A
A
A
A
A
A
A
A
A
A
A�
�
��A
A
A
A
A
A

Etienne Pardoux (Aix-Marseille) MANEGE, 26 Nov 2013
collaborations avec Mamadou Ba, Vi Le, Anton Wakolbinger 10

/ 29



Renormalization

Let N ≥ 1. Suppose that for some x > 0, m = bNxc, λ = 2N,

µ = 2N, replace f by fN = Nf (·/N). We define ZN,x
t = N−1X

bNxc
t .

We have

Theorem

As N →∞,

{ZN,x
t , t ≥ 0, x ≥ 0} ⇒ {Z x

t , t ≥ 0, x ≥ 0}

in D([0,∞); D([0,∞);R+)) equipped with the Skorohod topology of the
space of càlàg functions of x, with values in the Polish space
D([0,∞);R+), equipped with the adequate metric.

{Z x
t , t ≥ 0, x ≥ 0} solves for each x > 0 the Dawson–Li type SDE

Z x
t = x +

∫ t

0
f (Z x

s )ds + 2

∫ t

0

∫ Z x
s

0
W (ds, du),

where W (ds, du) is a space–time white noise.
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How to check tightness ?

Our assumptions on f are pretty minimal. In order to check tightness
for x fixed, we establish the two bounds

sup
N≥1

sup
0≤t≤T

E
(

ZN,x
t

)2
<∞, sup

N≥1
sup

0≤t≤T
E
(
−
∫ t

0
ZN,x
s f (ZN,x

s )ds

)
<∞,

and exploit Aldous’ criterion.

Concerning the tightness “in the x direction”, we establish the
following bound : for any 0 ≤ x < y < z with y − x ≤ 1, z − y ≤ 1,

E

[
sup

0≤t≤T
|ZN,y

t − ZN,x
t |2 × sup

0≤t≤T
|ZN,z

t − ZN,y
t |2

]
≤ C |z − x |2.
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Continuous population models
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For each fixed x > 0, there exists a standard BM Bt such that

Z x
t = x +

∫ t

0
f (Z x

s )ds + 2

∫ t

0

√
Z x
s dBs .

However, B depends upon x in a non obvious way, and the good way
of coupling the evolution of Z x for various x ’s, which is compatible
with the above coupling in the discrete case, is to use the Dawson–Li
formulation

Z x
t = x +

∫ t

0
f (Z x

s )ds + 2

∫ t

0

∫ Z x
s

0
W (ds, du), ∀t ≥ 0, x ≥ 0.

It is easily seen that {Z x
t , t ≥ 0}x≥0 is a path–valued Markov

process. More on this below.
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Subcriticality

We will say that Z x is subcritical if

T x
0 = inf{t > 0; Z x

t = 0} <∞ a.s.

Let Λ(f ) =

∫ ∞
1

exp

(
−1

2

∫ u

1

f (r)

r
dr

)
du.

For any x ≥ 0, Z x is subcritical iff Λ(f ) =∞.
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A generalized Ray–Knight theorem

We assume now that f ∈ C 1(R+;R), and there exists a > 0 such that
f ′(x) ≤ a, for all x ≥ 0. Suppose that we are in the subcritical case.
We consider the SDE

Hs = Bs +
1

2

∫ s

0
f ′(Lz

r (Hr ))dr +
1

2
Ls(0),

where Ls(0) denotes the local time accumulated by the process H at
level 0 up to time s. We define Sx = inf{s > 0, Ls(0) > x}.
We have

Theorem

The laws of the two random fields {LSx (t); t ≥ 0, x ≥ 0} and
{Z x

t ; t ≥ 0, x ≥ 0} coincide.

The proof exploits ideas from Norris, Rogers, Williams (1987) who
prove the other Ray–Knight theorem in a similar context.
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Effect of the competition on the height and length of the
forest of genealogical trees
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The finite population case

We assume again that f ∈ C (R+;R), f (0) = 0 and for some fixed
a > 0, f (x + y)− f (x) ≤ ay , for all x , y ≥ 0. We assume in addition
that for some b > 0, f (x) < 0 for all x ≥ b. Define

Hm = inf{t > 0, Xm
t = 0}, Lm =

∫ Hm

0 Xm
t dt.

We have

Theorem

1 If
∫∞
b
|f (x)|−1dx =∞, then supm Hm =∞ a.s.

2 If
∫∞
b
|f (x)|−1dx <∞, then supm E(ecHm

) <∞ for some c > 0.

We have

Theorem

Assume in addition that g(x) = f (x)/x satisfies g(x + y)− g(x) ≤ ay.

1 If
∫∞
b
|f (x)|−1xdx =∞, then supm Lm =∞ a.s.

2 If
∫∞
b
|f (x)|−1xdx <∞, then supm E(ecLm

) <∞ for some c > 0.
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The case of continuous state space

Same assumptions as in the discrete case. We define
T x = inf{t > 0, Z x

t = 0}, Sx =
∫ T x

0 Z x
s ds.

We have

Theorem

1 If
∫∞
b
|f (x)|−1dx =∞, then supx>0 T x =∞ a.s.

2 If
∫∞
b
|f (x)|−1dx <∞, then supx>0 E(ecT x

) <∞ for some c > 0.

We have

Theorem

Assume in addition that g(x) = f (x)/x satisfies g(x + y)− g(x) ≤ ay.

1 If
∫∞
b
|f (x)|−1xdx =∞, then supx Sx =∞ a.s.
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Intuitive idea

The reason why the above works is essentially because, if
g : R+ → R+ satifies ∫ ∞

0

1

g(x)
dx <∞

then the solution of the ODE

ẋ(t) = g(x), x(0) = x > 0

explodes in finite time.

Similarly the ODE

ẋ(t) = −g(x), x(0) = +∞

has a solution which lives in C (R+;R+).

And the same is true for certain SDEs.
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ẋ(t) = g(x), x(0) = x > 0

explodes in finite time.

Similarly the ODE
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The path–valued Markov process
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Restriction of our general model

For the rest of this talk, we restrict ourselves to the case
f (x) = −γx2, with γ > 0. We will only consider the continuous
state–space case.

This means that we consider the solution Z x
t of the SDE

Z x
t = x − γ

∫ t

0
(Z x

s )2ds + 2

∫ t

0

∫ Z x
s

0
W (ds, du).

Let us associate to this the solution of the same SDE with γ = 0,
that is the critical Feller branching diffusion

Y x
t = x + 2

∫ t

0

∫ Y x
s

0
W (ds, du).

If we consider those two SDEs with the same W , we obtain a
coupling of Y and Z which satisfies Z x

t ≤ Y x
t a.s. for all t ≥ 0, x ≥ 0.
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A better coupling

For each k, n ≥ 1, let xk
n = k2−n, and Y n,k

t = Y
xkn
t . For each n ≥ 1,

we now define recursively {Zn,k
t , t ≥ 0} for k = 1, 2, . . ..

We set Zn,0
t ≡ 0 and define Zn,1

t to be the solution of the SDE

Zn,1
t = 2−n + θ

∫ t

0
Zn,1
s ds − γ

∫ t

0
(Zn,1

s )2ds + 2

∫ t

0

∫ Zn,1
s

0
W (ds, du).

And for k ≥ 2, we let Zn,k
t = Zn,1

t + V n,2
t + · · ·+ V n,k

t , where

V n,k
t = 2−n + θ

∫ t

0
V n,k
s ds − γ

∫ t

0

[
2Zn,k−1

s V n,k
s + (V n,k

s )2
]

ds

+ 2

∫ t

0

∫ Y n,k−1
s +V n,k

s

Y n,k−1
s

W (ds, du).
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It is plain that for all k ≥ 1,

Zn,k
t − Zn,k−1

t = V n,k
t ≤ Y n,k

t − Y n,k−1
t a.s. for all t ≥ 0,

and that the law of {Zn,k
t , k ≥ 1, t ≥ 0} is the right one.

Recall that for each t > 0, x → Y x
t has finitely many jumps on any

compact interval, and is constant between its jumps, and if 0 < s < t,

{x , Y x
t 6= Y x−

t } ⊂ {x , Y x
s 6= Y x−

s }.

The above construction allows to show that the same is true for a
properly defined {Z x

t , t ≥ 0, x > 0}, and moreover for all t > 0,

{x , Z x
t 6= Z x−

t } ⊂ {x , Y x
t 6= Y x−

t }.

Consequently, as Y x , Z x is a sum of jumps.
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More precisely, we can write Y x as the solution of the SDE (E stands for
the space of excursions away from 0)

Y x
· =

∫
[0,x]×E

uN(dy , du),

where N is a Poisson random measure on R+ × E with mean measure
dy ×Q(du), where Q is the excursion measure of the Feller diffusion.
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We have similarly that x → Z x is a sum of excursions. Call N(dy , du)
the corresponding point process, which is such that for all x > 0,

Z x =

∫
[0,x]×E

uN(dy , du).

The predictable intensity of N is

L(Z y , u)Q(du)dy ,

where (with ζ = inf{t, Ut = 0} the lifetime of U)

L(Z ,U) = exp

(
−γ

4

∫ ζ

0
(2Zt + Ut)dUt −

γ2

8

∫ ζ

0
(2Zt + Ut)

2Utdt

)
.

This follows readily from the statement

Z x =

∫
[0,x]×E

L(Z y , u)uQ(du)dy + Mx ,

where Mx is an E –valued Fx–martingale.
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The last identity is proved as follows. We want to establish that for
any t > 0,

Z x(t) =

∫
[0,x]×E

Lγ(Z y , u)u(t)Q(du)dy + Mx(t).

Clearly if x is a dyadic number, then for n large enough

Z x(t) =
x2n∑
k=1

2−nE
(

Z xk+1 − Z xk
∣∣∣Z xk

)
+ Mx

n (t),

where {Mx
n (t), x > 0} is a martingale.

Now

E
(

Z x+y (t)− Z x(t)
∣∣∣Z x
)

= E
(

Lγ(Z x ,Uy )Uy
t

∣∣∣Z x
)
,

where

Uy
t = y + 2

∫ t

0

√
UsdBs .
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The last identity is proved as follows. We want to establish that for
any t > 0,

Z x(t) =

∫
[0,x]×E

Lγ(Z y , u)u(t)Q(du)dy + Mx(t).

Clearly if x is a dyadic number, then for n large enough

Z x(t) =
x2n∑
k=1

2−nE
(

Z xk+1 − Z xk
∣∣∣Z xk

)
+ Mx

n (t),

where {Mx
n (t), x > 0} is a martingale.

Now

E
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∣∣∣Z x
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∣∣∣Z x
)
,

where

Uy
t = y + 2

∫ t

0

√
UsdBs .

Etienne Pardoux (Aix-Marseille) MANEGE, 26 Nov 2013
collaborations avec Mamadou Ba, Vi Le, Anton Wakolbinger 27

/ 29



But

y−1E
(

Lγ(Z x ,Uy )Uy
t

∣∣∣Z x
)

= EQy,t

(
Lγ(Z x ,Uy )

∣∣∣Z x
)
,

where under Qy ,t

Ur = y + 4t ∧ r + 2

∫ t

0

√
UsdBs .

Finally we can take the limit as y → 0 in the last identity, yielding

y−1E
(

Lγ(Z x ,Uy )Uy
t

∣∣∣Z x
)
→ EQ0,t

(
Lγ(Z x ,U)

∣∣∣Z x
)
.

It just remain to verify that

EQ0,t

(
Lγ(Z x ,U)

∣∣∣Z x
)

=

∫
E

Lγ(Z x , u)u(t)Q(du),

where Q is the above excursion measure.
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