Bridging the gap between Stochastic Approximation and Markov chains

Aymeric DIEULEVEUT

ENS Paris, INRIA

17 november 2017

Joint work with Francis Bach and Alain Durmus.

Informatics

Outline

- Introduction to Stochastic Approximation for Machine Learning.
- Markov chain: a simple yet insightful point of view on constant step size Stochastic Approximation.

Supervised Machine Learning

- Consider an input/output pair $(X, Y) \in \mathcal{X} \times \mathcal{Y}$, following some unknown distribution ρ .
- $\mathcal{Y} = \mathbb{R}$ (regression) or $\{-1, 1\}$ (classification).
- We want to find a function θ : X → ℝ, such that θ(X) is a good prediction for Y.
- ▶ Prediction as a linear function $\langle \theta, \Phi(X) \rangle$ of features $\Phi(X) \in \mathbb{R}^d$.
- ► Consider a loss function l : Y × R → R₊: squared loss, logistic loss, 0-1 loss, etc.
- We define the risk (generalization error) as

 $\mathcal{R}(\theta) := \mathbb{E}_{\rho}\left[\ell(\mathbf{Y}, \langle \theta, \Phi(\mathbf{X}) \rangle)\right].$

Empirical Risk minimization (I)

- ▶ Data: *n* observations $(x_i, y_i) \in \mathcal{X} \times \mathcal{Y}$, i = 1, ..., n, i.i.d.
 - *n* very large, up to 10⁹
 - Computer vision: $d = 10^4$ to 10^6
- Empirical risk (or training error):

$$\hat{\mathcal{R}}(\theta) = \frac{1}{n} \sum_{i=1}^{n} \ell(y_i, \langle \theta, \Phi(x_i) \rangle).$$

Empirical risk minimization (regularized): find $\hat{\theta}$ solution of

$$\min_{\boldsymbol{\in}\mathbb{R}^d} \quad \frac{1}{n}\sum_{i=1}^n \ell\big(\boldsymbol{y}_i, \langle \boldsymbol{\theta}, \boldsymbol{\Phi}(\boldsymbol{x}_i) \rangle\big) \quad + \quad \mu \Omega(\boldsymbol{\theta}).$$

convex data fitting term + regularizer

Empirical Risk minimization (II)

► For example, least-squares regression:

$$\min_{\theta \in \mathbb{R}^d} \quad \frac{1}{2n} \sum_{i=1}^n \left(y_i - \langle \theta, \Phi(x_i) \rangle \right)^2 \quad + \quad \mu \Omega(\theta),$$

► and logistic regression:

$$\min_{\theta \in \mathbb{R}^d} \quad \frac{1}{n} \sum_{i=1}^n \log \left(1 + \exp(-y_i \langle \theta, \Phi(x_i) \rangle) \right) + \mu \Omega(\theta).$$

► Two fundamental questions: (1) computing $\hat{\theta}$ and (2) analyzing $\hat{\theta}$.

2 important insights for ML Bottou and Bousquet (2008):

- 1. No need to optimize below statistical error,
- 2. Testing error is more important than training error.

Stochastic Approximatic

► Goal:

 $\min_{\theta \in \mathbb{R}^d} f(\theta)$

given unbiased gradient estimates f'_n

 $\blacktriangleright \ \theta_* := \operatorname{argmin}_{\mathbb{R}^d} f(\theta).$

Stochastic Approximation in Machine learning

Loss for a single pair of observations, for any $k \leq n$:

$$f_k(\theta) = \ell(y_k, \langle \theta, \Phi(x_k) \rangle).$$

- Use one observation at each step !
- Complexity: O(d) per iteration.
- Can be used for both true risk and empirical risk.

Stochastic Approximation in Machine learning

- ► For the empirical error $\hat{\mathcal{R}}(\theta) = \frac{1}{n} \sum_{k=1}^{n} \ell(y_k, \langle \theta, \Phi(x_k) \rangle).$
 - At each step $k \in \mathbb{N}^*$, sample $I_k \sim \mathcal{U}\{1, \dots n\}$.
 - $\mathcal{F}_{k} = \sigma((x_{i}, y_{i})_{1 \leq i \leq n}, (I_{i})_{1 \leq i \leq k}).$
 - At step $k \in \mathbb{N}^*$, use:

$$f_{l_k}'(\theta_{k-1}) = \ell'(y_{l_k}, \langle \theta_{k-1}, \Phi(x_{l_k}) \rangle)$$

$$\mathbb{E}[f_{l_k}'(\theta_{k-1})|\mathcal{F}_{k-1}] = \hat{\mathcal{R}}'(\theta_{k-1})$$

- ► For the risk $\mathcal{R}(\theta) = \mathbb{E}f_k(\theta) = \mathbb{E}\ell(y_k, \langle \theta, \Phi(x_k) \rangle)$:
 - For $0 \leq k \leq n$, $\mathcal{F}_k = \sigma((x_i, y_i)_{1 \leq i \leq k})$.
 - At step $0 < k \leq n$, use a new point independent of θ_{k-1} :

$$f'_{k}(\theta_{k-1}) = \ell'(y_{k}, \langle \theta_{k-1}, \Phi(x_{k}) \rangle)$$

$$\mathbb{E}[f'_k(\theta_{k-1})|\mathcal{F}_{k-1}] = \mathcal{R}'(\theta_{k-1})$$

- Single pass through the data, Running-time = O(nd),
- "Automatic" regularization.

Analysis: Key assumptions: smoothness and/or strong convexity.

Mathematical framework: Smoothness

• A function $g : \mathbb{R}^d \to \mathbb{R}$ is *L*-smooth if and only if it is twice differentiable and

 $g(heta) \leq g(heta') + \langle g(heta'), heta - heta'
angle + L \left\| heta - heta'
ight\|^2$

Mathematical framework: Strong Convexity

• A twice differentiable function $g : \mathbb{R}^d \to \mathbb{R}$ is μ -strongly convex if and only if

 $egin{split} egin{split} eg$

Application to machine learning

- We consider an a.s. convex loss in θ . Thus $\hat{\mathcal{R}}$ and \mathcal{R} are convex.
- ▶ Hessian of $\hat{\mathcal{R}}$ (resp \mathcal{R}) ≈ covariance matrix $\frac{1}{n} \sum_{i=1}^{n} \Phi(x_i) \Phi(x_i)^{\top}$ or $\mathbb{E}[\Phi(X) \Phi(X)^{\top}]$.

 $\mathcal{R}''(\theta) = \mathbb{E}[\ell''(\langle \theta, \Phi(X) \rangle, Y)\Phi(X)\Phi(X)^{\top}]$

- ► If ℓ is smooth, and $\mathbb{E}[\|\Phi(X)\|^2] \leq r^2$, \mathcal{R} is smooth.
- If *l* is μ-strongly convex, and data has an invertible covariance matrix (low correlation/dimension), *R* is strongly convex.

Analysis: behaviour of $(\theta_n)_{n\geq 0}$

$$\theta_n = \theta_{n-1} - \gamma_n f'_n(\theta_{n-1})$$

Importance of the learning rate (or sequence of step sizes) $(\gamma_n)_{n\geq 0}$. For smooth and strongly convex problem, traditional analysis shows Fabian (1968); Robbins and Siegmund (1985) that $\theta_n \to \theta_*$ almost surely if

$$\sum_{n=1}^{\infty} \gamma_n = \infty \qquad \qquad \sum_{n=1}^{\infty} \gamma_n^2 < \infty.$$

And asymptotic normality $\sqrt{n}(\theta_n - \theta_*) \xrightarrow{d} \mathcal{N}(0, V)$, for $\gamma_n = \frac{\gamma_0}{n}$, $\gamma_0 \ge \frac{1}{\mu}$.

- Limit variance scales as $1/\mu^2$
- Very sensitive to ill-conditioned problems.
- μ generally unknown, so hard to choose the step size...

Polyak Ruppert averaging

Introduced by Polyak and Juditsky (1992) and Ruppert (1988):

$$\bar{\theta}_n = \frac{1}{n+1} \sum_{k=0}^n \theta_k.$$

- off line averaging reduces the noise effect.
- on line computing: $\bar{\theta}_{n+1} = \frac{1}{n+1}\theta_{n+1} + \frac{n}{n+1}\bar{\theta}_n$.
- ▶ one could also consider other averaging schemes (e.g.,

Convex stochastic approximation: convergence results

- Known global minimax rates of convergence for non-smooth problems Nemirovsky and Yudin (1983); Agarwal et al. (2012)
 - Strongly convex: $O((\mu n)^{-1})$ Attained by averaged stochastic gradient descent with $\gamma_n \propto (\mu n)^{-1}$
 - Non-strongly convex: $O(n^{-1/2})$ Attained by averaged stochastic gradient descent with $\gamma_n \propto n^{-1/2}$
- Smooth strongly convex problems
 - All step sizes $\gamma_n = Cn^{-\alpha}$ with $\alpha \in (1/2, 1)$, with averaging, lead to $O(n^{-1})$:
 - ▶ asymptotic normality Polyak and Juditsky (1992), with variance independent of μ !
 - ▶ non asymptotic analysis Bach and Moulines (2011).
 - ▶ Rate $\frac{1}{\mu n}$ for $\gamma_n \propto n^{-1/2}$: adapts to strong convexity.

Stochastic Approximation: take home message

- Powerful algorithm:
 - Simple to implement
 - Cheap
 - No regularization needed
- Convergence guarantees:

•
$$\gamma_n = \frac{1}{\sqrt{n}}$$
 good choice in most situations

Problems:

Initial conditions can be forgotten slowly: could we use even larger step sizes?

Motivation 1/2. Large step sizes!

 $\log_{10}(n)$

Logistic regression. Final iterate (dashed), and averaged recursion (plain).

Motivation 1/2. Large step sizes, real data

 $\log_{10}(n)$ Logistic regression, Covertype dataset, n = 581012, d = 54. Comparison between a constant learning rate and decaying learning rate as $\frac{1}{\sqrt{n}}$.

Motivation 2/2. Difference between quadratic and logistic loss

Logistic Regression $\mathbb{E}\mathcal{R}(ar{ heta}_n) - \mathcal{R}(heta_*) = O(\gamma^2)$ with $\gamma = 1/(2R^2)$

Least-Squares Regression $\mathbb{E}\mathcal{R}(\bar{\theta}_n) - \mathcal{R}(\theta_*) = O\left(\frac{1}{n}\right)$ with $\gamma = 1/(2R^2)$

Larger step sizes: Least-mean-square algorithm

- Least-squares: $\mathcal{R}(\theta) = \frac{1}{2}\mathbb{E}[(Y \langle \Phi(X), \theta \rangle)^2]$ with $\theta \in \mathbb{R}^d$
 - SGD = least-mean-square algorithm
 - Usually studied without averaging and decreasing step-sizes.
- ► New analysis for averaging and constant step-size
 - $\gamma = 1/(4R^2)$ Bach and Moulines (2013)
 - ► Assume $\|\Phi(x_n)\| \leq r$ and $|y_n \langle \Phi(x_n), \theta_* \rangle| \leq \sigma$ almost surely
 - No assumption regarding lowest eigenvalues of the Hessian
 - Main result:

$$\mathbb{E}\mathcal{R}(\bar{\theta}_n) - \mathcal{R}(\theta_*) \leqslant \frac{4\sigma^2 d}{n} + \frac{\|\theta_0 - \theta_*\|^2}{\gamma n}$$

Matches statistical lower bound Tsybakov (2003).

Related work in Sierra

Led to numerous (non trivial) extensions, at least in our lab !

- Beyond parametric models: Non Parametric Stochastic Approximation with Large step sizes. Dieuleveut and Bach (2015)
- Improved Sampling: Averaged least-mean-squares: bias-variance trade-offs and optimal sampling distributions. Défossez and Bach (2015)
- Acceleration: Harder, Better, Faster, Stronger Convergence Rates for Least-Squares Regression. Dieuleveut et al. (2016)
- Beyond smoothness and euclidean geometry: Stochastic Composite Least-Squares Regression with convergence rate O(1/n). Flammarion and Bach (2017)

SGD: an homogeneous Markov chain

Consider a *L*-smooth and μ -strongly convex function \mathcal{R} .

SGD with a step-size $\gamma > 0$ is an homogeneous Markov chain:

$$\theta_{k+1}^{\gamma} = \theta_k^{\gamma} - \gamma \left[\mathcal{R}'(\theta_k^{\gamma}) + \varepsilon_{k+1}(\theta_k^{\gamma}) \right] \,,$$

satisfies Markov property

▶ is homogeneous, for γ constant, $(\varepsilon_k)_{k \in \mathbb{N}}$ i.i.d.

Also assume:

- ▶ $\mathcal{R}'_k = \mathcal{R}' + \varepsilon_{k+1}$ is almost surely *L*-co-coercive.
- Bounded moments

$$\mathbb{E}[\|arepsilon_k(heta_*)\|^4] < \infty.$$

Stochastic gradient descent as a Markov Chain: Analysis framework^{\dagger}

Existence of a limit distribution π_{γ} , and linear convergence to this distribution:

$$\theta_{\mathbf{n}}^{\gamma} \stackrel{d}{\to} \pi_{\gamma}.$$

Convergence of second order moments of the chain,

$$\bar{\theta}_{n}^{\gamma} \xrightarrow[n \to \infty]{L^{2}} \bar{\theta}_{\gamma} := \mathbb{E}_{\pi_{\gamma}} \left[\theta \right].$$

▶ Behavior under the limit distribution $(\gamma \rightarrow 0)$: $\bar{\theta}_{\gamma} = \theta_* + ?$.

 \hookrightarrow Provable convergence improvement with extrapolation tricks.

[†]Dieuleveut, Durmus, Bach [2017].

Existence of a limit distribution $\gamma ightarrow 0$

Goal:

$$(heta_n^\gamma)_{n\geq 0} \stackrel{d}{
ightarrow} \pi_\gamma$$
 .

Theorem For any $\gamma < (2L)^{-1}$, the chain $(\theta_n^{\gamma})_{n \ge 0}$ admits a unique stationary distribution π_{γ} . In addition for all $\theta_0 \in \mathbb{R}^d$, $n \in \mathbb{N}$: $W_2^2(\theta_n^{\gamma}, \pi_{\gamma}) \le (1 - \mu\gamma)^n \int_{\mathbb{R}^d} \|\theta_0 - \vartheta\|^2 \,\mathrm{d}\pi_{\gamma}(\vartheta) .$

Wasserstein metric: distance between probability measures.

Assumptions

A1: f is a μ -strongly convex function.

- A2: f is C^4 with bounded second to fourth derivative . Especially, f is *L*-smooth.
- A3: Filtration $(\mathcal{F}_k)_{k \in \mathbb{N}}$. For all $k \in \mathbb{N}$, for any $\theta \in \mathbb{R}^d$, $\varepsilon_{k+1}(\theta)$ is an \mathcal{F}_{k+1} -measurable random variable and

$$\mathbb{E}\left[\varepsilon_{k+1}(\theta)|\mathcal{F}_k\right] = 0 \; .$$

We assume that the noise functions $(\varepsilon_k)_{k\in\mathbb{N}^*}$ are i.i.d. . A4: f'_1 is almost surely *L*-co-coercive. Moreover, $\varepsilon_1(\theta_*)$ admits bounded moments up to the order $p \leq 4$:

$$\mathbb{E}^{1/\rho}[\|\varepsilon_1(\theta_*)\|^{\rho}] < \infty.$$

Transition kernel

Fundamental tool: Markov kernel R_{γ} , (for continuous spaces, \simeq transition matrix in finite state spaces).

Definition For all initial distributions ν_0 on $\mathcal{B}(\mathbb{R}^d)$ and $k \in \mathbb{N}$, $\nu_0 R_{\gamma}^k$ denotes the law of θ_k^{γ} starting at $\theta_0 \sim \nu_0$.

If $heta_0$ is deterministic, $heta_k^\gamma \sim \delta_{ heta_0} R_\gamma^k$.

Definition For any function $h : \mathbb{R}^d \to \mathbb{R}$, $\forall \theta \in \mathbb{R}^d$, $k \ge 1$: $R^k_{\gamma} h(\theta) = \mathbb{E}_{\theta_0 = \theta} [h(\theta^{\gamma}_k)] = \int_{\mathbb{R}^d} h(\vartheta) \left\{ \delta_{\theta} R^k_{\gamma} \right\} (\mathrm{d}\vartheta)$

notation: for a measure π , function h: $\pi(h) = \int h(\theta) d\pi(\theta)$.

Existence of a limit distribution $\gamma \to 0$ Goal: $(\theta_k^{\gamma})_{k\geq 0} \stackrel{d}{\to} \pi_{\gamma}$ i.e. $(\nu_0 R_{\gamma}^k)_{k\geq 0} \to \pi_{\gamma}$.

Definition Wasserstein metric: ν and λ probability measures on \mathbb{R}^d

$$W_2(\lambda,\nu) := \inf_{\xi \in \Pi(\lambda,\nu)} \left(\int \|x-y\|^2 \xi(dx,dy) \right)^{1/2}$$

 $\Pi(\lambda, \nu)$ is the set of probability measure ξ s.t. $A \in \mathcal{B}(\mathbb{R}^d)$, $\xi(A \times \mathbb{R}^d) = \lambda(A)$, $\xi(\mathbb{R}^d \times A) = \nu(A)$.

Theorem

Assume A1:A4, for $\gamma < L^{-1}$, the chain $(\theta_k^{\gamma})_{k\geq 0}$ admits a unique stationary distribution π_{γ} and for all $\theta \in \mathbb{R}^d$, $n \in \mathbb{N}$:

$$W_2^2(\delta_{ heta} R_\gamma^n, \pi_\gamma) \leq (1-2\mu\gamma(1-\gamma \mathcal{L}))^n \int_{\mathbb{R}^d} \| heta - artheta\|^2 \,\mathrm{d}\pi_\gamma(artheta) \;.$$

Existence of a limit distribution: proof I /III

► Coupling: θ^1 , θ^2 be independent and distributed according to λ_1 , λ_2 respectively, and $(\theta_{k,\gamma}^{(1)})_{\geq 0}$, $(\theta_{k,\gamma}^{(2)})_{k\geq 0}$ SGD iterates:

$$\begin{cases} \theta_{k+1,\gamma}^{(1)} &= \theta_{k,\gamma}^{(1)} - \gamma \big[f'(\theta_{k,\gamma}^{(1)}) + \varepsilon_{k+1}(\theta_{k,\gamma}^{(1)}) \big] \\ \theta_{k+1,\gamma}^{(2)} &= \theta_{k,\gamma}^{(2)} - \gamma \big[f'(\theta_{k,\gamma}^{(2)}) + \varepsilon_{k+1}(\theta_{k,\gamma}^{(2)}) \big] \ . \end{cases}$$

▶ for all $k \ge 0$, the distribution of $(\theta_{k,\gamma}^{(1)}, \theta_{k,\gamma}^{(2)})$ is in $\Pi(\lambda_1 R_{\gamma}^k, \lambda_2 R_{\gamma}^k)$

Existence of a limit distribution: proof II/III

$$\begin{split} W_{2}^{2}(\lambda_{1}R_{\gamma},\lambda_{2}R_{\gamma}) &\leq \mathbb{E}\left[\|\theta_{1,\gamma}^{(1)}-\theta_{1,\gamma}^{(2)}\|^{2}\right] \\ &\leq \mathbb{E}\left[\|\theta^{1}-\gamma f_{1}'(\theta^{1})-(\theta^{2}-\gamma f_{1}'(\theta^{2})))\|^{2}\right] \\ &\stackrel{\textbf{A3}}{\leq} \mathbb{E}\left[\left\|\theta^{1}-\theta^{2}\right\|^{2}-2\gamma\left\langle f'(\theta^{1})-f'(\theta^{2}),\theta^{1}-\theta^{2}\right. \right. \\ &\left.+\gamma^{2}\mathbb{E}\left[\left\|f_{1}'(\theta^{1})-f_{1}'(\theta^{2})\right\|^{2}\right] \\ &\stackrel{\textbf{A4}}{\leq} \mathbb{E}\left[\left\|\theta^{1}-\theta^{2}\right\|^{2}\right] \\ &\left.-2\gamma(1-\gamma L)\left\langle f'(\theta^{1})-f'(\theta^{2}),\theta^{1}-\theta^{2}\right\rangle \\ &\stackrel{\textbf{A1}}{\leq} (1-2\mu\gamma(1-\gamma L))\mathbb{E}\left[\left\|\theta^{1}-\theta^{2}\right\|^{2}\right], \end{split}$$

define $\rho = (1 - 2\mu\gamma(1 - \gamma L)).$

Existence of a limit distribution: proof III/III

By induction:

$$W_2^2(\lambda_1 R_\gamma^n,\lambda_2 R_\gamma^n) \leq \mathbb{E}\left[\| heta_{n,\gamma}^{(1)} - heta_{n,\gamma}^{(2)}\|^2
ight] \leq
ho^n \int_{x,y} \|x-y\|^2 \,\mathrm{d}\lambda_1(x) \mathrm{d}x$$

- ► Thus $W_2(\delta_x R_\gamma^n, \delta_y R_\gamma^n) \leq (1 2\mu\gamma(1 \gamma L))^n ||x y||^2$.
- { prob. measures with second order moment }: Polish space.
- Picard fixed point theorem, (λ₁Rⁿ_γ)_{n≥0} is a Cauchy sequence and converges to a limit π^{λ₁}_γ.
- Uniqueness, invariance, and Theorem follow:

$$\mathsf{W}_2^2(\delta_ heta \mathsf{R}^{\pmb{n}}_\gamma,\pi_\gamma) \leq (1{-}2\mu\gamma(1{-}\gamma {\it L}))^{\pmb{n}}\int_{\mathbb{R}^d} \| heta-artheta\|^2\,\mathrm{d}\pi_\gamma(artheta)\;.$$

Consequence: solutions to the Poisson equation.

In the following, we will need to introduce, for any ϕ sufficiently regular (say L_{ϕ} -Lipshitz) a function ψ_{ϕ} s.t., for $\theta \in \mathbb{R}^d$:

$$\psi_{\phi}(\theta) = \sum_{k=0}^{\infty} \left(\mathbb{E}_{\theta_0=\theta} \left[\phi(\theta_k^{\gamma}) \right] - \mathbb{E}_{\pi_{\gamma}}(\phi(\theta)) \right)$$

As $|\mathbb{E}_{\theta_0=\theta} \left[\phi(\theta_k^{\gamma})\right] - \mathbb{E}_{\pi_{\gamma}}(\phi(\theta))| \leq L_{\phi}W_2(\delta_{\theta}R_{\gamma}^k, \pi_{\gamma})$, the sum absolutely converges for all θ . Moreover, ψ is also Lipshitz, and satisfies:

$$(I - R_{\gamma})\psi = \phi - \pi_{\gamma}(\phi).$$

Which is the "Poisson Equation".

Behavior under limit distribution.

Ergodic theorem: $\bar{\theta}_n \to \mathbb{E}_{\pi_{\gamma}}[\theta] =: \bar{\theta_{\gamma}}$. Where is $\bar{\theta_{\gamma}}$?

If
$$heta_0 \sim \pi_\gamma$$
, then $heta_1 \sim \pi_\gamma$. $heta_1^\gamma = heta_0^\gamma - \gamma [\mathcal{R}'(heta_0^\gamma) + arepsilon_1(heta_0^\gamma)] \ .$ $\mathbb{E}_{\pi} \ [\mathcal{R}'(heta)] = \mathbf{0}$

In the quadratic case (linear gradients) $\Sigma \mathbb{E}_{\pi_{\gamma}} \left[\theta - \theta_* \right] = 0$: $\bar{\theta}_{\gamma} = \theta_*!$

Behavior under limit distribution.

Ergodic theorem: $\bar{\theta}_n \to \mathbb{E}_{\pi_{\gamma}}[\theta] =: \bar{\theta_{\gamma}}$. Where is $\bar{\theta_{\gamma}}$?

If $\theta_0 \sim \pi_\gamma$, then $\theta_1 \sim \pi_\gamma$.

$$heta_1^\gamma = heta_0^\gamma - \gamma ig[\mathcal{R}'(heta_0^\gamma) + arepsilon_1(heta_0^\gamma) ig] \; .$$

 $\mathbb{E}_{\pi_{\gamma}}\left[\mathcal{R}'(\theta)\right]=0$

In the quadratic case (linear gradients) $\Sigma \mathbb{E}_{\pi_{\gamma}} \left[\theta - \theta_* \right] = 0$: $\bar{\theta}_{\gamma} = \theta_*!$

In the general case, Taylor expansion of \mathcal{R} , and same reasoning on higher moments of the chain leads to

 $ar{ heta}_{\gamma} - heta_* \simeq \gamma \mathcal{R}''(heta_*)^{-1} \mathcal{R}'''(heta_*) ig([\mathcal{R}''(heta_*) \otimes I + I \otimes \mathcal{R}''(heta_*)]^{-1} \mathbb{E}_{arepsilon}[arepsilon(heta_*)^{\otimes 2}] ig)$ Overall, $ar{ heta}_{\gamma} - heta_* = \gamma \Delta + O(\gamma^2).$

Convergence of second order moments, $\gamma > 0$, $n \rightarrow +\infty$.

Non asymptotic bound for the convergence $\bar{\theta}_n^{\gamma} - \theta_*$:

Proposition (Convergence of the Markov chain) Let $\gamma \in]0, 1/(2L)[$ and assume A1-A4. With $\rho := (1 - \gamma \mu)^{1/2}$:

$$egin{aligned} \mathbb{E}ar{ heta}_k^\gamma &-ar{ heta}_\gamma &=& rac{1}{k}\int_{\mathbb{R}^d}\psi_\gamma(heta)\mathrm{d}
u_0(heta)+O(
ho^k)\ ,\ \mathbb{E}\left[ig(ar{ heta}_k^\gamma-ar{ heta}_\gammaig)^{\otimes 2}
ight] &=& rac{1}{k}\int_{\mathbb{R}^d}\left[\psi_\gamma(heta)\psi_\gamma(heta)^ op-(\psi_\gamma-arphi)(heta)(\psi_\gamma-arphi)(heta)^ op
ight]\mathrm{d}\pi_\gamma(heta)\ &+& rac{1}{k^2}\int_{\mathbb{R}^d}\left[\psi_\gamma(heta)\psi_\gamma(heta)^ op+\chi_\gamma^1(heta)-\chi_\gamma^2(heta)
ight]\mathrm{d}
u_0(heta)+O(
ho^k)\ . \end{aligned}$$

• $\phi(\theta) = \theta - \theta_*$. ψ_{γ} Poisson solution associated to ϕ ,

• χ^1_{γ} Poisson solution associated to $\phi\phi^{ op}$,

• χ^2_{γ} Poisson solution associated to $(\psi_{\gamma} - \phi)(\psi_{\gamma} - \phi)^{\top}$.

Bias - Variance decomposition.

Convergence of second order moments, proof.

- ► Algebraic calculation (R_{γ} encodes a linear relationship between the distributions of θ_k^{γ})
- ► For the first result:

$$\mathbb{E}\left[\bar{\theta}_{k}^{\gamma}\right] - \theta_{*} = \frac{1}{k} \sum_{i=0}^{k-1} (R_{\gamma}^{i} \varphi)(\theta_{0})$$
$$= \pi_{\gamma} \varphi + \frac{1}{k} \psi_{\gamma}(\theta_{0}) + R_{\gamma}^{k} \psi_{\gamma}(\theta_{0})$$

using $R^i_{\gamma}\pi_{\gamma}(\varphi) = \pi_{\gamma}\varphi$, and $R^k_{\gamma}\psi_{\gamma}(\overline{\theta}_0) = O(\rho^k)$

Recovering Least mean squares

If $f(\theta) = \frac{1}{2}\mathbb{E}_{\rho}[(Y - \langle \Phi(X), \theta \rangle)^2]$, then we can compute the Poisson solutions: recovers Défossez and Bach (2015).

Corollary (Convergence in the quadratic case) Consider LMS with $\gamma L \leq 1/2$, and denoting ξ the additive part of the noise^{*}, one has:

$$\mathbb{E}\left[(\bar{\theta}_{k}^{\gamma}-\theta_{*})^{\otimes 2}\right] = \frac{1}{k^{2}\gamma^{2}}\boldsymbol{\Sigma}^{-1}\boldsymbol{\Omega}(\theta_{0}-\theta_{*})^{\otimes 2}\boldsymbol{\Sigma}^{-1} + \frac{1}{k}\boldsymbol{\Sigma}^{-1}[\mathbb{E}\boldsymbol{\varepsilon}^{\otimes 2}]\boldsymbol{\Sigma}^{-1} \\ -\frac{1}{k^{2}\gamma}\boldsymbol{\Sigma}^{-1}\boldsymbol{\Omega}[\boldsymbol{\Sigma}\otimes\boldsymbol{I}+\boldsymbol{I}\otimes\boldsymbol{\Sigma}-\gamma\boldsymbol{T}]^{-1}[\mathbb{E}\boldsymbol{\xi}^{\otimes 2}]\boldsymbol{\Sigma}^{-1} + O(\boldsymbol{\rho}^{k})$$

with $\Omega := (\Sigma \otimes I + I \otimes \Sigma - \gamma \Sigma \otimes \Sigma) (\Sigma \otimes I + I \otimes \Sigma - \gamma T)^{-1}$, and $T : A \mapsto \mathbb{E} [(x^{\top}Ax)xx^{\top}].$

$$\mathbb{E}\left[(\bar{\theta}_k^{\gamma}-\theta_*)^{\otimes 2}\right] \simeq \underbrace{\frac{1}{\underline{k^2\gamma^2}}\Sigma^{-1}(\theta_0-\theta_*)^{\otimes 2}\Sigma^{-1}}_{\text{Bias}} + \underbrace{\frac{1}{\underline{k}}\Sigma^{-1}[\mathbb{E}\varepsilon^{\otimes 2}]\Sigma^{-1}}_{\text{Variance}} + O(\rho^k) \cdot \underbrace{\frac{1}{\underline{k}}\Sigma^{-1}}_{\text{Variance}} + O(\rho^k) \cdot \underbrace{\frac{1}{\underline{k}}\Sigma^{-1}}_{\text{Varian$$

 ${}^*f_n'(\theta) = (\Phi(x_n)\Phi(x_n)^{\top} - \Sigma)(\theta - \theta_*) + (\langle \theta_*, \Phi(x_n) \rangle - y_n)\Phi(x_n)$

Take home message

- Convergence in distribution of the MC (Wasserstein metric).
- Allows to prove and analyze convergence of the moments of the chain to 0 (can be generalized to any function).
- ▶ We provide second order development as $\gamma
 ightarrow 0$:

$$\bar{\theta}_{\gamma} = \theta_* + \gamma \Delta_1 + \gamma^2 \Delta_2 + o(\gamma^2).$$

Error decomposition as a sum of three terms :

$$f(\bar{ heta}_n^{\gamma}) - f(heta_*) \leq rac{Bias}{\gamma^2 n^2 \mu} + rac{Var}{n} + rac{\gamma^2}{\mu},$$

• As a consequence, we can recover the rate, for $\gamma = 1/\sqrt{n}$:

$$f(\bar{\theta}_n^{\gamma}) - f(\theta_*) = O\left(\frac{1}{n\mu}\right).$$

Beyond: comparison to the continuous gradient flow for a more general approach.

Experiments

Synthetic data, logistic regression, $n = 8.10^6$

Experiments: Double Richardson

Synthetic data, logistic regression, $n = 8.10^6$ "Richardson 3γ ": estimator built using Richardson on 3 different sequences: $\tilde{\theta_n^3} = \frac{8}{3}\bar{\theta_n^{\gamma}} - 2\bar{\theta_n^{2\gamma}} + \frac{1}{3}\bar{\theta_n^{4\gamma}}$

Real data

Figure 1: Logistic regression, Covertype dataset. n = 581012, d = 54.

Directions

Open directions:

- Extending proofs to self-concordant setting.
- Does this three term decomposition extend to decaying steps.
- Understand the convex case more precisely.

- Agarwal, A., Negahban, S., and Wainwright, M. J. (2012). Fast global convergence of gradient methods for high-dimensional statistical recovery. Ann. Statist., 40(5):2452–2482.
- Bach, F. and Moulines, E. (2011). Non-asymptotic Analysis of Stochastic Approximation Algorithms for Machine Learning. In Proceedings of the 24th International Conference on Neural Information Processing Systems, NIPS'11, pages 451–459, USA. Curran Associates Inc.
- Bach, F. and Moulines, E. (2013). Non-strongly-convex smooth stochastic approximation with convergence rate O(1/n). Advances in Neural Information Processing Systems (NIPS).
- Bottou, L. and Bousquet, O. (2008). The tradeoffs of large scale learning. In Adv. NIPS.
- Défossez, A. and Bach, F. (2015). Averaged least-mean-squares: bias-variance trade-offs and optimal sampling distributions. In Proceedings of the International Conference on Artificial Intelligence and Statistics, (AISTATS).
- Dieuleveut, A. and Bach, F. (2015). Non-parametric stochastic approximation with large step sizes. Annals of Statistics.
- Dieuleveut, A., Flammarion, N., and Bach, F. (2016). Harder, Better, Faster, Stronger Convergence Rates for Least-Squares Regression. ArXiv e-prints.
- Fabian, V. (1968). On asymptotic normality in stochastic approximation. The Annals of Mathematical Statistics, pages 1327–1332.
- Flammarion, N. and Bach, F. (2017). Stochastic composite least-squares regression with convergence rate o (1/n).
- Jones, G. L. (2004). On the Markov chain central limit theorem. Probability Surveys, 1:299–320.

- Lacoste-Julien, S., Schmidt, M., and Bach, F. (2012). A simpler approach to obtaining an O(1/t) rate for the stochastic projected subgradient method. ArXiv e-prints 1212.2002.
- Nemirovsky, A. S. and Yudin, D. B. (1983). Problem complexity and method efficiency in optimization. A Wiley-Interscience Publication. John Wiley & Sons, Inc., New York. Translated from the Russian and with a preface by E. R. Dawson, Wiley-Interscience Series in Discrete Mathematics.
- Polyak, B. T. and Juditsky, A. B. (1992). Acceleration of stochastic approximation by averaging. SIAM J. Control Optim., 30(4):838–855.
- Robbins, H. and Monro, S. (1951). A stochastic approxiation method. The Annals of mathematical Statistics, 22(3):400–407.
- Robbins, H. and Siegmund, D. (1985). A convergence theorem for non negative almost supermartingales and some applications. In Herbert Robbins Selected Papers, pages 111–135. Springer.
- Ruppert, D. (1988). Efficient estimations from a slowly convergent Robbins-Monro process. Technical report, Cornell University Operations Research and Industrial Engineering.
- Tsybakov, A. B. (2003). Optimal rates of aggregation. In Proceedings of the Annual Conference on Computational Learning Theory.