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Outline

I Introduction to Stochastic Approximation for Machine
Learning.

I Markov chain: a simple yet insightful point of view on
constant step size Stochastic Approximation.
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Supervised Machine Learning

I Consider an input/output pair (X ,Y ) ∈ X × Y,
following some unknown distribution ρ.

I Y = R (regression) or {−1, 1} (classification).

I We want to find a function θ : X → R, such that θ(X )
is a good prediction for Y .

I Prediction as a linear function 〈θ,Φ(X )〉 of features
Φ(X ) ∈ Rd .

I Consider a loss function ` : Y × R→ R+: squared loss,
logistic loss, 0-1 loss, etc.

I We define the risk (generalization error) as

R(θ) := Eρ [`(Y , 〈θ,Φ(X )〉)] .
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Empirical Risk minimization (I)

I Data: n observations (xi , yi ) ∈ X × Y, i = 1, . . . , n,
i.i.d.

I n very large, up to 109

I Computer vision: d = 104 to 106

I Empirical risk (or training error):

R̂(θ) =
1

n

n∑
i=1

`(yi , 〈θ,Φ(xi )〉).

I Empirical risk minimization (regularized): find θ̂ solution
of

min
θ∈Rd

1

n

n∑
i=1

`
(
yi , 〈θ,Φ(xi )〉

)
+ µΩ(θ).

convex data fitting term + regularizer
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Empirical Risk minimization (II)

I For example, least-squares regression:

min
θ∈Rd

1

2n

n∑
i=1

(
yi − 〈θ,Φ(xi )〉

)2
+ µΩ(θ),

I and logistic regression:

min
θ∈Rd

1

n

n∑
i=1

log
(
1 + exp(−yi 〈θ,Φ(xi )〉)

)
+ µΩ(θ).

I Two fundamental questions: (1) computing θ̂ and (2)
analyzing θ̂.

2 important insights for ML Bottou and Bousquet (2008):

1. No need to optimize below statistical error,

2. Testing error is more important than training error.
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Stochastic Approximation

I Goal:
min
θ∈Rd

f (θ)

given unbiased gradient
estimates f ′n

I θ∗ := argminRd f (θ).

θ∗

θ∗

θ0

θn

θ1

I Key algorithm: Stochastic Gradient Descent (SGD) (Robbins
and Monro, 1951):

θn = θn−1 − γn f ′n(θn−1)

I E[f ′n(θn−1)|Fn−1] = f ′(θn−1) for a filtration (Fn)n≥0, θn is Fn
measurable.
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Stochastic Approximation in Machine learning

Loss for a single pair of observations, for any k ≤ n:

fk(θ) = `(yk , 〈θ,Φ(xk)〉).

I Use one observation at each step !

I Complexity: O(d) per iteration.

I Can be used for both true risk and empirical risk.
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Stochastic Approximation in Machine learning

I For the empirical error R̂(θ) = 1
n

n∑
k=1

`(yk , 〈θ,Φ(xk)〉).

I At each step k ∈ N∗, sample Ik ∼ U{1, . . . n}.
I Fk = σ((xi , yi )1≤i≤n, (Ii )1≤i≤k).
I At step k ∈ N∗, use:

f ′Ik (θk−1) = `′(yIk , 〈θk−1,Φ(xIk )〉)

E[f ′IIk (θk−1)|Fk−1] = R̂′(θk−1)

I For the risk R(θ) = Efk(θ) = E `(yk , 〈θ,Φ(xk)〉):
I For 0 ≤ k ≤ n, Fk = σ((xi , yi )1≤i≤k).
I At step 0 < k ≤ n, use a new point independent of θk−1:

f ′k (θk−1) = `′(yk , 〈θk−1,Φ(xk)〉)

E[f ′k (θk−1)|Fk−1] = R′(θk−1)

I Single pass through the data, Running-time = O(nd),
I “Automatic” regularization.

Analysis: Key assumptions: smoothness and/or strong
convexity. 8



Mathematical framework: Smoothness

I A function g : Rd → R is L-smooth if and only if it is
twice differentiable and

∀θ ∈ Rd , eigenvalues
[
g ′′(θ)

]
6 L

For all θ ∈ Rd :

g(θ) ≤ g(θ′) + 〈g(θ′), θ − θ′〉+ L
∥∥θ − θ′∥∥2
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Mathematical framework: Strong Convexity

I A twice differentiable function g : Rd → R is µ-strongly
convex if and only if

∀θ ∈ Rd , eigenvalues
[
g ′′(θ)

]
> µ

For all θ ∈ Rd :

g(θ) ≥ g(θ′) + 〈g(θ′), θ − θ′〉+ µ
∥∥θ − θ′∥∥2
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Application to machine learning

I We consider an a.s. convex loss in θ. Thus R̂ and R
are convex.

I Hessian of R̂ (resp R) ≈ covariance matrix
1
n
∑n

i=1 Φ(xi )Φ(xi )
> or E[Φ(X )Φ(X )>].

R′′(θ) = E[`′′(〈θ,Φ(X )〉,Y )Φ(X )Φ(X )>]

I If ` is smooth, and E[‖Φ(X )‖2] ≤ r2 , R is smooth.

I If ` is µ-strongly convex, and data has an invertible
covariance matrix (low correlation/dimension), R is
strongly convex.
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Analysis: behaviour of (θn)n≥0

θn = θn−1 − γn f ′n(θn−1)

Importance of the learning rate (or sequence of step sizes)
(γn)n≥0. For smooth and strongly convex problem,
traditional analysis shows Fabian (1968); Robbins and
Siegmund (1985) that θn → θ∗ almost surely if

∞∑
n=1

γn =∞
∞∑

n=1

γ2
n <∞.

And asymptotic normality
√

n(θn − θ∗)
d→ N (0,V ), for

γn = γ0

n , γ0 ≥ 1
µ

.

I Limit variance scales as 1/µ2

I Very sensitive to ill-conditioned problems.

I µ generally unknown, so hard to choose the step size...
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Polyak Ruppert averaging

Introduced by Polyak and Juditsky
(1992) and Ruppert (1988):

θ̄n =
1

n + 1

n∑
k=0

θk .

θ∗

θ0
θ1

θn

θn

θ1

θ2

I off line averaging reduces the noise effect.

I on line computing: θ̄n+1 = 1
n+1θn+1 + n

n+1 θ̄n.

I one could also consider other averaging schemes (e.g.,
Lacoste-Julien et al. (2012)).
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Convex stochastic approximation: convergence
results

I Known global minimax rates of convergence for
non-smooth problems Nemirovsky and Yudin (1983);
Agarwal et al. (2012)

I Strongly convex: O((µn)−1)
Attained by averaged stochastic gradient descent with
γn ∝ (µn)−1

I Non-strongly convex: O(n−1/2)
Attained by averaged stochastic gradient descent with
γn ∝ n−1/2

I Smooth strongly convex problems
I All step sizes γn = Cn−α with α ∈ (1/2, 1), with

averaging, lead to O(n−1):
I asymptotic normality Polyak and Juditsky (1992), with

variance independent of µ!
I non asymptotic analysis Bach and Moulines (2011).

I Rate 1
µn for γn ∝ n−1/2: adapts to strong convexity.
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Stochastic Approximation: take home message

I Powerful algorithm:
I Simple to implement
I Cheap
I No regularization needed

I Convergence guarantees:
I γn = 1√

n good choice in most situations

Problems:

I Initial conditions can be forgotten slowly: could we use
even larger step sizes?
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Motivation 1/ 2. Large step sizes!

lo
g

1
0

( R(
θ̄

n
)
−
R

(θ
∗)
)

log10(n)

Logistic regression. Final iterate (dashed), and averaged
recursion (plain).
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Motivation 1/ 2. Large step sizes, real data

lo
g

1
0

( R(
θ̄

n
)
−
R

(θ
∗)
)

log10(n)
Logistic regression, Covertype dataset, n = 581012, d = 54.
Comparison between a constant learning rate and decaying

learning rate as 1√
n .
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Motivation 2/ 2. Difference between quadratic and
logistic loss

Logistic Regression Least-Squares Regression

ER(θ̄n)−R(θ∗) = O(γ2) ER(θ̄n)−R(θ∗) = O
(

1

n

)
with γ = 1/(2R2) with γ = 1/(2R2)
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Larger step sizes: Least-mean-square algorithm

I Least-squares: R(θ) = 1
2E
[
(Y − 〈Φ(X ), θ〉)2

]
with

θ ∈ Rd

I SGD = least-mean-square algorithm
I Usually studied without averaging and decreasing

step-sizes.

I New analysis for averaging and constant step-size
γ = 1/(4R2) Bach and Moulines (2013)

I Assume ‖Φ(xn)‖ 6 r and |yn − 〈Φ(xn), θ∗〉| 6 σ almost
surely

I No assumption regarding lowest eigenvalues of the
Hessian

I Main result:

ER(θ̄n)−R(θ∗) 6
4σ2d

n
+
‖θ0 − θ∗‖2

γn

I Matches statistical lower bound Tsybakov (2003).
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Related work in Sierra

Led to numerous (non trivial) extensions, at least in our lab !

I Beyond parametric models: Non Parametric Stochastic
Approximation with Large step sizes. Dieuleveut and
Bach (2015)

I Improved Sampling: Averaged least-mean-squares:
bias-variance trade-offs and optimal sampling
distributions. Défossez and Bach (2015)

I Acceleration: Harder, Better, Faster, Stronger
Convergence Rates for Least-Squares
Regression. Dieuleveut et al. (2016)

I Beyond smoothness and euclidean geometry: Stochastic
Composite Least-Squares Regression with convergence
rate O(1/n). Flammarion and Bach (2017)
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SGD: an homogeneous Markov chain

Consider a L−smooth and µ−strongly convex function R.

SGD with a step-size γ > 0 is an homogeneous Markov chain:

θγk+1 = θγk − γ
[
R′(θγk ) + εk+1(θγk )

]
,

I satisfies Markov property

I is homogeneous, for γ constant, (εk)k∈N i.i.d.

Also assume:

I R′k = R′ + εk+1 is almost surely L-co-coercive.

I Bounded moments

E[‖εk(θ∗)‖4] <∞.
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Stochastic gradient descent as a Markov Chain:
Analysis framework†

I Existence of a limit distribution πγ , and linear convergence to
this distribution:

θγn
d→ πγ.

I Convergence of second order moments of the chain,

θ̄γn
L2

−→
n→∞

θ̄γ := Eπγ [θ] .

I Behavior under the limit distribution (γ → 0): θ̄γ=θ∗ + ?.

# Provable convergence improvement with extrapolation tricks.

†Dieuleveut, Durmus, Bach [2017].
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Existence of a limit distribution γ → 0

Goal: (θγn )n≥0
d→ πγ .

Theorem
For any γ < (2L)−1, the chain (θγn )n≥0 admits a unique stationary
distribution πγ . In addition for all θ0 ∈ Rd , n ∈ N:

W 2
2 (θγn , πγ) ≤ (1− µγ)n

∫
Rd
‖θ0 − ϑ‖2 dπγ(ϑ) .

Wasserstein metric: distance between probability measures.
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Assumptions

A1: f is a µ-strongly convex function.

A2: f is C4 with bounded second to fourth derivative .
Especially, f is L-smooth.

A3: Filtration (Fk)k∈N. For all k ∈ N, for any θ ∈ Rd ,
εk+1(θ) is an Fk+1-measurable random variable and

E [εk+1(θ)|Fk ] = 0 .

We assume that the noise functions (εk)k∈N∗ are i.i.d. .

A4: f ′1 is almost surely L-co-coercive. Moreover, ε1(θ∗)
admits bounded moments up to the order p ≤ 4:

E1/p[‖ε1(θ∗)‖p] <∞.
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Transition kernel
Fundamental tool: Markov kernel Rγ , (for continuous spaces,
' transition matrix in finite state spaces).

Definition
For all initial distributions ν0 on B(Rd ) and k ∈ N, ν0Rk

γ

denotes the law of θγk starting at θ0 ∼ ν0.

If θ0 is deterministic, θγk ∼ δθ0R
k
γ .

Definition
For any function h : Rd → R, ∀θ ∈ Rd , k ≥ 1:

Rk
γh(θ) = Eθ0=θ[h(θγk )] =

∫
Rd

h(ϑ)
{
δθRk

γ

}
(dϑ)

notation: for a measure π, function h: π(h) =
∫

h(θ)dπ(θ).
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Existence of a limit distribution γ → 0
Goal: (θγk )k≥0

d→ πγ i.e. (ν0Rk
γ )k≥0 → πγ .

Definition
Wasserstein metric: ν and λ probability measures on Rd

W2(λ, ν) := inf
ξ∈Π(λ,ν)

( ∫
‖x − y‖2ξ(dx, dy)

)1/2

Π(λ, ν) is the set of probability measure ξ s.t. A ∈ B(Rd ),
ξ(A× Rd ) = λ(A), ξ(Rd × A) = ν(A).

Theorem
Assume A1:A4, for γ < L−1, the chain (θγk )k≥0 admits a unique
stationary distribution πγ and for all θ ∈ Rd , n ∈ N:

W 2
2 (δθRn

γ , πγ) ≤ (1− 2µγ(1− γL))n
∫
Rd
‖θ − ϑ‖2 dπγ(ϑ) .
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Existence of a limit distribution: proof I /III

I Coupling: θ1, θ2 be independent and distributed

according to λ1, λ2 respectively, and (θ
(1)
k,γ)≥0,(θ

(2)
k,γ)k≥0

SGD iterates:{
θ

(1)
k+1,γ = θ

(1)
k,γ − γ

[
f ′(θ(1)

k,γ) + εk+1(θ
(1)
k,γ)

]
θ

(2)
k+1,γ = θ

(2)
k,γ − γ

[
f ′(θ(2)

k,γ) + εk+1(θ
(2)
k,γ)

]
.

I for all k ≥ 0, the distribution of (θ
(1)
k,γ, θ

(2)
k,γ) is in

Π(λ1Rk
γ , λ2Rk

γ )
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Existence of a limit distribution: proof II/III

W 2
2 (λ1Rγ, λ2Rγ) ≤ E

[
‖θ(1)

1,γ − θ
(2)
1,γ‖

2
]

≤ E
[
‖θ1 − γf ′1 (θ1)− (θ2 − γf ′1 (θ2)))‖2

]
A3
≤ E

[∥∥∥θ1 − θ2
∥∥∥2
− 2γ

〈
f ′(θ1)− f ′(θ2), θ1 − θ2

〉]
+γ2E

[∥∥∥f ′1 (θ1)− f ′1 (θ2)
∥∥∥2
]

A4
≤ E

[∥∥∥θ1 − θ2
∥∥∥2
]

−2γ(1− γL)
〈
f ′(θ1)− f ′(θ2), θ1 − θ2

〉
A1
≤ (1− 2µγ(1− γL))E

[∥∥∥θ1 − θ2
∥∥∥2
]
,

define ρ = (1− 2µγ(1− γL)).
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Existence of a limit distribution: proof III/III

By induction:

W 2
2 (λ1Rn

γ , λ2Rn
γ) ≤ E

[
‖θ(1)

n,γ − θ
(2)
n,γ‖

2
]
≤ ρn

∫
x,y
‖x − y‖2 dλ1(x)dλ2(y),

I Thus W2(δxRn
γ , δyR

n
γ)≤(1− 2µγ(1− γL))n ‖x − y‖2 .

I { prob. measures with second order moment }: Polish
space.

I Picard fixed point theorem, (λ1Rn
γ)n≥0 is a Cauchy

sequence and converges to a limit πλ1
γ .

I Uniqueness, invariance, and Theorem follow:

W 2
2 (δθRn

γ , πγ) ≤ (1−2µγ(1−γL))n
∫
Rd
‖θ − ϑ‖2 dπγ(ϑ) .
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Consequence: solutions to the Poisson equation.

In the following, we will need to introduce, for any φ
sufficiently regular (say Lφ-Lipshitz) a function ψφ s.t., for
θ ∈ Rd :

ψφ(θ) =
∞∑

k=0

(
Eθ0=θ

[
φ(θγk )

]
− Eπγ (φ(θ))

)
As
∣∣Eθ0=θ

[
φ(θγk )

]
− Eπγ (φ(θ))

∣∣ ≤ LφW2(δθRk
γ , πγ), the

sum absolutely converges for all θ. Moreover, ψ is also
Lipshitz, and satisfies:

(I − Rγ)ψ = φ− πγ(φ).

Which is the “Poisson Equation”.
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Behavior under limit distribution.
Ergodic theorem: θ̄n → Eπγ [θ] =: θ̄γ . Where is θ̄γ ?

If θ0 ∼ πγ , then θ1 ∼ πγ .

θγ1 = θγ0 − γ
[
R′(θγ0 ) + ε1(θγ0 )

]
.

Eπγ
[
R′(θ)

]
= 0

In the quadratic case (linear gradients) ΣEπγ [θ − θ∗] = 0:
θ̄γ = θ∗!

In the general case, using Eπγ
[
‖θ − θ∗‖4

]
≤ Cγ2, and

expand the Taylor expansion of R: And iterating this
reasoning on higher moments of the chain:

θ̄γ − θ∗ = γR′′(θ∗)−1R′′′(θ∗)
([
R′′(θ∗)⊗ I + I ⊗R′′(θ∗)

]−1Eπγ [ε(θ)⊗2]
)

+ O(γ2)

Overall, θ̄γ − θ∗ = γ∆ + O(γ2).
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Constant learning rate SGD: convergence in the
quadratic case
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θ0

θ1

θn
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θn

32



Constant learning rate SGD: convergence in the
quadratic case

θ0

θ1

θn
θ1

θ2

θn

θ∗

32



Behavior under limit distribution.
Ergodic theorem: θ̄n → Eπγ [θ] =: θ̄γ . Where is θ̄γ ?

If θ0 ∼ πγ , then θ1 ∼ πγ .

θγ1 = θγ0 − γ
[
R′(θγ0 ) + ε1(θγ0 )

]
.

Eπγ
[
R′(θ)

]
= 0

In the quadratic case (linear gradients) ΣEπγ [θ − θ∗] = 0:
θ̄γ = θ∗!

In the general case, Taylor expansion of R, and same
reasoning on higher moments of the chain leads to

θ̄γ − θ∗ ' γR′′(θ∗)−1R′′′(θ∗)
([
R′′(θ∗)⊗ I + I ⊗R′′(θ∗)

]−1Eε[ε(θ∗)
⊗2]
)

Overall, θ̄γ − θ∗ = γ∆ + O(γ2).
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Constant learning rate SGD: convergence in the
non-quadratic case

θ∗

θ0
θ1

θn

θn

θ1

θ2
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Constant learning rate SGD: convergence in the
non-quadratic case

θ∗

θ0 θ1

θn

θ1

θ2

θγ
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Convergence of second order moments, γ > 0,
n → +∞.
Non asymptotic bound for the convergence θ̄γn − θ∗:

Proposition (Convergence of the Markov chain)
Let γ ∈]0, 1/(2L)[ and assume A1-A4. With ρ := (1− γµ)1/2:

Eθ̄γk − θ̄γ =
1

k

∫
Rd
ψγ(θ)dν0(θ) + O(ρk) ,

E
[(
θ̄γk − θ̄γ

)⊗2
]

=
1

k

∫
Rd

[
ψγ(θ)ψγ(θ)> − (ψγ − ϕ)(θ)(ψγ − ϕ)(θ)>

]
dπγ(θ)

+
1

k2

∫
Rd

[
ψγ(θ)ψγ(θ)> + χ1

γ(θ)− χ2
γ(θ)

]
dν0(θ) + O(ρk) .

I φ(θ) = θ − θ∗. ψγ Poisson solution associated to φ,

I χ1
γ Poisson solution associated to φφ>,

I χ2
γ Poisson solution associated to (ψγ − φ)(ψγ − φ)>.

Bias - Variance decomposition.
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Convergence of second order moments, proof.

I Algebraic calculation (Rγ encodes a linear relationship
between the distributions of θγk )

I For the first result:

E
[
θ̄γk
]
− θ∗ =

1

k

k−1∑
i=0

(R i
γϕ)(θ0)

= πγϕ +
1

k
ψγ(θ0) + Rk

γψγ(θ0)

using R i
γπγ(ϕ) = πγϕ, and Rk

γψγ(θ0) = O(ρk)
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Recovering Least mean squares

If f (θ) = 1
2Eρ

[
(Y − 〈Φ(X ), θ〉)2

]
, then we can compute the

Poisson solutions: recovers Défossez and Bach (2015).

Corollary (Convergence in the quadratic case)
Consider LMS with γL ≤ 1/2, and denoting ξ the additive
part of the noise∗, one has:

E
[
(θ̄γk − θ∗)

⊗2
]

=
1

k2γ2
Σ−1Ω(θ0 − θ∗)⊗2Σ−1 +

1

k
Σ−1[Eε⊗2]Σ−1

− 1

k2γ
Σ−1Ω

[
Σ⊗ I + I ⊗ Σ− γT

]−1[Eξ⊗2]Σ−1 + O(ρk) ,

with Ω := (Σ⊗ I + I ⊗ Σ− γΣ⊗ Σ)(Σ⊗ I + I ⊗ Σ− γT )−1, and
T : A 7→ E

[
(x>Ax)xx>

]
.

E
[
(θ̄γk − θ∗)

⊗2
]
' 1

k2γ2
Σ−1(θ0 − θ∗)⊗2Σ−1︸ ︷︷ ︸

Bias

+
1

k
Σ−1[Eε⊗2]Σ−1︸ ︷︷ ︸

Variance

+ O(ρk) .

∗f ′n (θ) = (Φ(xn)Φ(xn)> − Σ)(θ − θ∗) + (〈θ∗,Φ(xn)〉 − yn)Φ(xn)
37



Take home message
I Convergence in distribution of the MC (Wasserstein metric).

I Allows to prove and analyze convergence of the moments of the
chain to 0 (can be generalized to any function).

I We provide second order development as γ → 0 :

θ̄γ = θ∗ + γ∆1 + γ2∆2 + o(γ2).

I Error decomposition as a sum of three terms :

f (θ̄γn )− f (θ∗) ≤
Bias
γ2n2µ

+
Var
n

+
γ2

µ
,

I As a consequence, we can recover the rate, for γ = 1/
√

n:

f (θ̄γn )− f (θ∗) = O
(

1

nµ

)
.

I Beyond: comparison to the continuous gradient flow for a more
general approach. 38



Richardson extrapolation

θ∗

¯θγn −
¯θγ = Op(n

−1=2)
¯θ1

θn θγ

θn

θ0

θγn −
¯θγ = Op(γ

1=2)

θ∗ − ¯θγ = O(γ)

Recovering convergence closer to θ∗ by Richardson
extrapolation 2θ̄γn − θ̄2γ

n
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Experiments
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Experiments: Double Richardson
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Real data

lo
g

1
0

( R
(θ̄

n
)
−

R
(θ
∗)
)

log10(n)

Figure 1: Logistic regression, Covertype dataset. n = 581012,
d = 54.
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Directions

Open directions:

I Extending proofs to self-concordant setting.

I Does this three term decomposition extend to decaying
steps.

I Understand the convex case more precisely.
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