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> Introduction to Stochastic Approximation for Machine
Learning.

» Markov chain: a simple yet insightful point of view on
constant step size Stochastic Approximation.



Supervised Machine Learning

» Consider an input/output pair (X,Y) € X X ),
following some unknown distribution p.

» Y = R (regression) or {—1,1} (classification).

» We want to find a function 6 : X — R, such that 6(X)
is a good prediction for Y.

» Prediction as a linear function (6, ®(X)) of features
®(X) € RI.

» Consider a loss function £: Y X R — R : squared loss,
logistic loss, 0-1 loss, etc.

» We define the risk (generalization error) as

R(0) :=E, [£(Y, (8, ®(X)))] -



Empirical Risk minimization (1)

» Data: n observations (x;,y;) € X X Y, i=1,...,n,
i.i.d.
n very large, up to 10°
Computer vision: d = 10* to 10°

» Empirical risk (or training error):
1 n
R(O) = — > £(yis (6, ®(x)))-
i=1

» Empirical risk minimization (regularized): find 6 solution
of

: 1
min H;E(y;,w,‘b(xi))) +  pg(9).

convex data fitting term + regularizer



Empirical Risk minimization (Il)
» For example, least-squares regression:

. S i—000))° +  u0(0),

i=1

min —
0crRd  2n

» and logistic regression:

min, i;log (1 + exp(—yi(0, ®(x)))) + p(0).

» Two fundamental questions: (1) computing 6 and (2)
analyzing 6.
2 important insights for ML Bottou and Bousquet (2008):
1. No need to optimize below statistical error,

2. Testing error is more important than training error.



Stochastic Approximatic

» Goal:

in f(0
i 10

given unbiased gradient
estimates f/

> 6, := argmingqs f(60).




Stochastic Approximation in Machine learning

Loss for a single pair of observations, for any k < n:

fi(0) = £(y«, (0, ®(x«)))-

» Use one observation at each step !
» Complexity: O(d) per iteration.

» Can be used for both true risk and empirical risk.



Stochastic Approximation in Machine learning
» For the empirical error R(0) = % zn: L(yk, (0, P(xk))).
k=1

At each step k € N*, sample I, ~U{1,...n}.

Fi = o((xi, yi)i<i<ns (l)1<i<k)-
At step k € N*, use:

fir (O—1) = €' (y1,5 (Ok—1, ®(x1,)))

E[fy (0k-1)|Fk—1] = R'(6k—1)

> For the risk R(0) = Efi(0) = E £(y«k, (0, ®(x«))):
For 0 < k < n, Fi = o((xi, yi)1<i<k)-
At step 0 < k < n, use a new point independent of 6, _;:

£ (Ok—1) = € (yi, (Bk—1, ®(xx)))

E[f{(0k—1)|Fk—1] = R'(6k-1)

Single pass through the data, Running-time = O(nd),
“Automatic” regularization.

Analysis: Key assumptions: smoothness and/or strong
convexity.



Mathematical framework: Smoothness

» A function g : R? — R is L-smooth if and only if it is
twice differentiable and

VO € RY, eigenvalues[g”(0)] < L

smooth non-smooth

\J

\
For all 6 € RY:

g(0) < g(0') + (g(6'),0 — ') + Lo — 0|



Mathematical framework: Strong Convexity

» A twice differentiable function g : R — R is j-strongly
convex if and only if

VO € RY, eigenvalues[g”(0)] > p

strongly
convex convex

| >
For all 6 € RY:

g(0) > g(0') + (g(6'),0 — 0') + || — 0|2



Application to machine learning

» We consider an a.s. convex loss in 8. Thus R and R
are convex.

» Hessian of R (resp R) ~ covariance matrix
7 X1 ©()®(x) T or E[@(X)®(X)T].

R”(6) = E[£" ({6, (X)), Y)O(X)®(X) ]

> If £ is smooth, and E[||®(X)||*] < r?, R is smooth.

» If £ is p-strongly convex, and data has an invertible
covariance matrix (low correlation/dimension), R is
strongly convex.



Analysis: behaviour of (6,),>0

0n =0n_1—"n f,:(en—l)

Importance of the learning rate (or sequence of step sizes)
(Yn)n>0- For smooth and strongly convex problem,
traditional analysis shows Fabian (1968); Robbins and
Siegmund (1985) that 6, — 6. almost surely if

oo oo
> An=o0 > 72 < oo
n=1 n=1

And asymptotic normality +/n(6,, — 6.) LA N(0, V), for
'7n = %l ’70 Z %'

» Limit variance scales as 1/u?

» Very sensitive to ill-conditioned problems.

» o generally unknown, so hard to choose the step size...



Polyak Ruppert averaging

Introduced by Polyak and Juditsky
(1992) and Ruppert (1988):

_ 1 n
0, = 0.
n+1kz=%k

» off line averaging reduces the noise effect.
» on line computing: 0,1 = %HH,,H + "L_HO_,,.

» one could also consider other averaging schemes (e.g.,

" - a ae _ MY Y. Y- 20"



Convex stochastic approximation: convergence
results

» Known global minimax rates of convergence for
non-smooth problems Nemirovsky and Yudin (1983);
Agarwal et al. (2012)

Strongly convex: O((un)™1!)

Attained by averaged stochastic gradient descent with
Yo ¢ ()"

Non-strongly convex: O(n—1/2)

Attained by averaged stochastic gradient descent with
—1/2

» Smooth strongly convex problems
All step sizes v, = Cn~* with a € (1/2, 1), with
averaging, lead to O(n™!):
asymptotic normality Polyak and Juditsky (1992), with
variance independent of u!

non asymptotic analysis Bach and Moulines (2011).

Rate -L for v, o n—1/2: adapts to strong convexity.

un



Stochastic Approximation: take home message

» Powerful algorithm:

Simple to implement
Cheap
No regularization needed

» Convergence guarantees:
Yn = % good choice in most situations

Problems:

> Initial conditions can be forgotten slowly: could we use
even larger step sizes?



Motivation 1/ 2. Large step sizes!

Z «))

R(9n) — R(O

logyo (

logyo(n)

Logistic regression. Final iterate (dashed), and averaged
recursion (plain).



Motivation 1/ 2. Large step sizes, real data
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Logistic regression, Covertype dataset, n = 581012, d = 54.
Comparison between a constant learning rate and decaying
learning rate as \}_
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Motivation 2/ 2. Difference between quadratic and

logistic loss

-1.5
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45
Logistic Regression
ET\’,(O_,,) — R(6«) = 0('72)
with v = 1/(2R?)

Least-Squares Regression
- 1
ER(6,) — R(6.) = O <
n

with v = 1/(2R?)



Larger step sizes: Least-mean-square algorithm

> Least-squares: R(0) = 3E[(Y — (®(X),0))?] with
0 € RY
SGD = least-mean-square algorithm

Usually studied without averaging and decreasing
step-sizes.

» New analysis for averaging and constant step-size
~ = 1/(4R?) Bach and Moulines (2013)

Assume ||®(x,)|| < r and |y, — (®(xn), 0.)| < o almost
surely

No assumption regarding lowest eigenvalues of the
Hessian

Main result:

_ 4o2d 0y — 0.2
n

yn

» Matches statistical lower bound Tsybakov (2003).



Related work in Sierra

Led to numerous (non trivial) extensions, at least in our lab !

» Beyond parametric models: Non Parametric Stochastic
Approximation with Large step sizes. Dieuleveut and
Bach (2015)

» Improved Sampling: Averaged least-mean-squares:
bias-variance trade-offs and optimal sampling
distributions. Défossez and Bach (2015)

» Acceleration: Harder, Better, Faster, Stronger
Convergence Rates for Least-Squares
Regression. Dieuleveut et al. (2016)

» Beyond smoothness and euclidean geometry: Stochastic
Composite Least-Squares Regression with convergence
rate O(1/n). Flammarion and Bach (2017)



SGD: an homogeneous Markov chain

Consider a L—smooth and p—strongly convex function R.
SGD with a step-size v > 0 is an homogeneous Markov chain:

Oi1 =0k — 7 [R'(6)) + e (6))]

» satisfies Markov property

» is homogeneous, for v constant, (ex)ken i.i.d.
Also assume:

» R} = R’ + ek41 is almost surely L-co-coercive.
» Bounded moments

E[llex(8:)]1"] < oo.



Stochastic gradient descent as a Markov Chain:
Analysis framework'

» Existence of a limit distribution 7., and linear convergence to
this distribution:

d
Y
o) — m,.

» Convergence of second order moments of the chain,

— L2 —
QZ n:)o 07 = Eﬂ-,y [9] .

» Behavior under the limit distribution (v — 0): 0,=0, + 7.

% Provable convergence improvement with extrapolation tricks.

Dieuleveut, Durmus, Bach [2017].



Existence of a limit distribution v — 0

Goal: (0)nz0 > 7y

a I

Theorem
For any v < (2L)~!, the chain (6))n>0 admits a unique stationary
distribution 7. In addition for all §y € RY, n € N:

W3(03,m,) < (1= )" [ 160 = 9 dms (9)

- v

Wasserstein metric: distance between probability measures.



Assumptions

Al:
A2:

A3:

A4:

f is a p-strongly convex function.

f is C* with bounded second to fourth derivative .
Especially, f is L-smooth.

Filtration (Fy)ken- For all k € N, for any 6 € R,
ek+1(0) is an Fy,1-measurable random variable and

E [€k+1(0)|~7:k] =0.

We assume that the noise functions (ex)ken+ are i.i.d. .

f/ is almost surely L-co-coercive. Moreover, £1(6.)
admits bounded moments up to the order p < 4:

EY/P[[le1(8.)[|P] < oo



Transition kernel

Fundamental tool: Markov kernel R., (for continuous spaces,
~ transition matrix in finite state spaces).

Definition
For all initial distributions v on B(RY) and k € N, 1R
denotes the law of 6] starting at 0y ~ vy.

If 6y is deterministic, 6] ~ Jg, Ri; .

a I
Definition
For any function h: RY - R, VO € RY , k > 1:

RENO) = Eo—olh(@D)] = [ h(2) {3)RE} (a9)

\_ s
notation: for a measure , function h: w(h) = [ h(6)dn(6).




Existence of a limit distribution v — 0
d .
Goal: (92)1(20 — Ty 1.€. (VQR,I;)kZO — Ty
4 R
Definition
Wasserstein metric: v and X\ probability measures on RY

) ) 1/2
wan, ) = _int ([ llx = yIPe(dx. dy))

M(\, v) is the set of probability measure ¢ s.t. A € B(RY),
E(A x RY) = A(A), £(RY x A) = v(A).
> /
d I
Theorem
Assume Al:A4, for v < L1, the chain (67) k>0 admits a unique
stationary distribution 7, and for all 6 € RY, n € N:

W3(30R].m,) < (1= 2u9(1 = 41))" | 16— 0] drmy(9)

\ %




Existence of a limit distribution: proof | /IlI

» Coupling: 01,62 be independent and distributed
according to A1, A2 respectively, and (05(1’27)20,(0,((2),(20
SGD iterates:

1 1 1
{eanﬂ = ) 27 00) + e )]

2 2
02, =02 —~[F(6L) +era(62)] .

> for all k > 0, the distribution of (85 ,0()) is in
N(A1RE, A2RY)



Existence of a limit distribution: proof I1/11l

WZ(ARy, 22R,) < E |65 — 0212
< E[|6" = v£(6") — (6> - vF ()]
2 E _Hel - 02Hz - 27<f’(91) — f(6%),6' — 6
4 [HGEAGI
2 e[ o]

—24(1 — ~yL)<f’(01) — £1(6?), 6! — 02>
< -2 -0 ot - o] |

define p = (1 — 2~ (1 — ~L)).



Existence of a limit distribution: proof I11/11l

By induction:

WERE MR < B[l — 02 IP] < o7 [ flx -yl da(x)e
X,y

v

Thus Wa(8,R?, 6,RT)<(1 — 2uy(1 — L))" [Ix — y||*.

{ prob. measures with second order moment }: Polish
space.

\4

v

Picard fixed point theorem, ()qu/’),,ZO is a Cauchy
sequence and converges to a limit 7'r_>y‘1

» Uniqueness, invariance, and Theorem follow:

W3(30R],m,) < (1-2py(1=))" | 116 = 9] drmy(9)



Consequence: solutions to the Poisson equation.

In the following, we will need to introduce, for any ¢
sufficiently regular (say Lg-Lipshitz) a function 14 s.t., for
0 € RY:

oo

PYu(0) = > (Egp=0 [¢(6])] — Exr, (6(0)))

k=0

As | Egyo [6(6])] — Er,(6(8)) | < LyWa(86R¥, ), the
sum absolutely converges for all 8. Moreover, 1) is also
Lipshitz, and satisfies:

(I = R'y)¢ =¢— Wv((b)'

Which is the “Poisson Equation”.



Behavior under limit distribution.
Ergodic theorem: 6, — E,_[6] =: 6. Where is 0., ?

If g ~ 7, then 61 ~ ..
67 = 63 —~[R'(63) +1(67)] -
Er, [R'(0)] =0

In the quadratic case (linear gradients) XE._ [0 — 6.] = O:
0, = 6,!



Constant learning rate SGD: convergence in the
guadratic case
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Behavior under limit distribution.
Ergodic theorem: 8, — Er [0] =: 0. Where is 0., ?

If 69 ~ 7, then 61 ~ m,.

0] =65 —v[R'(67) + €1(67)] -

E., [R'(8)] =0

In the quadratic case (linear gradients) XE,_ [0 — 6,] = 0:
0, =6,

In the general case, Taylor expansion of R, and same
reasoning on higher moments of the chain leads to

0, — 0, ~ 'y’R"(O*)_lR”’(O*)([’R"(O*) ® 1418 R"(6.)] _IEE[E(O*)®2])

Overall, 57 — 0, =~vA+ O('yz).



Constant learning rate SGD: convergence in the
non-quadratic case

1}
)

-




Constant learning rate SGD: convergence in the
non-quadratic case




Constant learning rate SGD: convergence in the
non-quadratic case




Constant learning rate SGD: convergence in the
non-quadratic case




Convergence of second order moments, v > 0,
n — 4o0.

Non asymptotic bound for the convergence 0_:,/ — O,

Proposition (Convergence of the Markov chain)
Let v €]0,1/(2L)[ and assume A1-A4. With p := (1 — yu)/?:

B8 =0y = 1 [ 4a(0)an(®) + 0(")

B[6-8)%] = [, [#©@u07 - (- DO, - 9] dr (@)
b [, [2(00020)7 +x(0) = 3 (0)] () + 0(5") -

> ¢(0) = 0 — 6.. ¢, Poisson solution associated to ¢,
> x,ly Poisson solution associated to ¢¢ ',

> X,z7 Poisson solution associated to (v, — ¢)(¢y — ¢) 7.

Bias - Variance decompaosition.



Convergence of second order moments, proof.

» Algebraic calculation (R, encodes a linear relationship
between the distributions of 6))

» For the first result:
_ ) R
Y] -0, = Y (Rie)(60)
i=0

1
= Ty +  ¥(00) + Ry (60)

using R,’;ﬂ',y(cp) = Ty, and R,I;I/)fy(eo) = 0(p*)



Recovering Least mean squares

If £(8) = 1E,[(Y — (®(X), 6))?], then we can compute the
Poisson solutions: recovers Défossez and Bach (2015).

Corollary (Convergence in the quadratic case)
Consider LMS with vL < 1/2, and denoting £ the additive
part of the noise*, one has:

1
k2~2

7%2*1912 RI+1Q% —~T] 'Ee®?| =7 4 0(p")

E [(52 - 9*)®2} Q0 — 0.)®2E 7 + %):*1[@6@@2}271

withQ:= (EQ I+ —7EQE)ERI+/®E —~T)"?, and
T:A—EJ[(x" Ax)xx"].

1

kw}:—l(eo —0.)%x 7+ %z—l [Ee®* =" 4+ 0(p*) .

| —

Variance

R [(éz - 0*)®2} ~

Bias

£(0) = (P(xa)®(xa) T — )(0 — 0.) + (04, ®(xa)) — ya) P (xn)



Take home message
» Convergence in distribution of the MC (Wasserstein metric).

» Allows to prove and analyze convergence of the moments of the
chain to 0 (can be generalized to any function).

\{

We provide second order development as v — 0 :

0, = 0. + vA1 +¥2 D2 + o(7?).

v

Error decomposition as a sum of three terms :
- Bias Var ~?
FON) —FO)< 5 +— +
Yyentp n u
» As a consequence, we can recover the rate, for v = 1/4/n:

F(B) — £(6,) = O <nl“> .

v

Beyond: comparison to the continuous gradient flow for a more
general approach.



Richardson extrapolation

= 0 — éw - O[)( UZ)
p(”fl/Z)

— 0, +9A

Recovering convergence closer to 6, by Richardson
extrapolation 207 — 627



Richardson extrapolation

= 0 — éw - O[)( UZ)
p(”fl/Z)

57@ 0* + ’)’A

Recovering convergence closer to 6, by Richardson
extrapolation 207 — 627
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Richardson extrapolation

Recovering convergence closer to 6, by Richardson
extrapolation 207 — 627



Richardson extrapolation

Recovering convergence closer to 6, by Richardson
extrapolation 207 — 627



Richardson extrapolation

Recovering convergence closer to 6, by Richardson
extrapolation



Experiments

S L
®
I
—_— '3 [
S
& I
= 4 —1/R?
) —1/2R?
2 5 _1/2R%/n
—Richardson

-6 f|—Online-Newton

0 2 4 6
log1o(n)

Synthetic data, logistic regression, n = 8.10°



Experiments: Double Richardson

—1/R?
—1/2R?
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-6 - —Online-Newton

logyg [R(6) — R(6+)]
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Synthetic data, logistic regression, n = 8.10°

“Richardson 3~": estimator built using Richardson on 3
different sequences: 03 = 307 — 2627 + 194



Real data
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log10(n)
Logistic regression, Covertype dataset. n = 581012,



Directions

Open directions:
» Extending proofs to self-concordant setting.

> Does this three term decomposition extend to decaying
steps.

> Understand the convex case more precisely.
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