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Supervised Machine Learning: definition & applications

Goal: predict a phenomenon from “explanatory variables”, given a set of
observations.

Bio-informatics

Input: DNA/RNA sequence,
Output: Disease predisposition /
Drug responsiveness

n→ 10 to 104

d (e.g., number of basis) → 106

Image classification

Input: Handwritten digits / Images,
Output: Digit

n→ up to 109

d (e.g., number of pixels) → 106

“Large scale” learning framework: both the number of examples n and the
number of explanatory variables d are large.
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Supervised Machine Learning: mathematical framework
Consider an input/output pair (X ,Y ) ∈ X × Y. (X ,Y ) ∼ ρ, unknown
distribution.

Y = R (regression) or {−1, 1} (classification).

Goal: find g : X → R, such that g(X ) is a good prediction for Y .

Measure accuracy with a loss function ` : Y × R→ R+: squared loss,
logistic loss...

Risk (generalization error):

R(g) := Eρ [`(Y , g(X ))] .

Parametric case: Prediction as a linear function gθ(X ) = 〈θ,Φ(X )〉 of
features Φ(X ) ∈ Rd . Notation: R(θ) := R(gθ).
Non-parametric case: Prediction as a function g ∈ H, for H
infinite-dimensional space.
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Empirical Risk minimization (I) - Parametric case

I Data: n observations (xi , yi ) ∈ X × Y, i = 1, . . . , n, i.i.d.

I Empirical risk (or training error):

R̂(θ) =
1

n

n∑
i=1

`(yi , 〈θ,Φ(xi )〉).

I First approach: Empirical risk minimization (regularized):

θ̂ := argmin
θ∈Rd

R̂(θ) + µΩ(θ).

data fitting term + regularizer
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Empirical Risk minimization (II) - Parametric case

I For example, least-squares regression:

min
θ∈Rd

1

2n

n∑
i=1

(
yi − 〈θ,Φ(xi )〉

)2
+ µΩ(θ),

I and logistic regression:

min
θ∈Rd

1

n

n∑
i=1

log
(
1 + exp(−yi 〈θ,Φ(xi )〉)

)
+ µΩ(θ).

I Two fundamental questions: (1) computing θ̂ and (2)
analyzing θ̂.

2 important insights for ML [Bottou and Bousquet, 2008]:

1. No need to optimize below statistical error,

2. True risk is more important than empirical risk.
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Stochastic Approximation

I Goal:
min
θ∈Rd

f (θ)

given unbiased gradient
estimates f ′n

I θ∗ := argminRd f (θ).

θ∗

I Key algorithm: Stochastic Gradient Descent (SGD) [Robbins
and Monro, 1951]:

θn = θn−1 − γn f ′n(θn−1)

I E[f ′n(θn−1)|Fn−1] = f ′(θn−1) for a filtration (Fn)n≥0, θn is Fn

measurable.
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Polyak Ruppert averaging

Introduced by Polyak and Juditsky
[1992] and Ruppert [1988]:

θ̄n =
1

n + 1

n∑
k=0

θk .

I off line averaging reduces the noise effect.
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Stochastic Approximation (SA) in Machine Learning

Loss for a single pair of observations, for any k ≤ n:

fk(θ) = `(yk , 〈θ,Φ(xk)〉).

SA for the true risk :

I For 0 ≤ k ≤ n, Fk = σ((xi , yi )1≤i≤k).

I At step 0 < k ≤ n, use a new point independent of θk−1:

R(θ) = E `(yk , 〈θ,Φ(xk)〉)
f ′k(θk−1) = `′(yk , 〈θk−1,Φ(xk)〉)

E[f ′k(θk−1)|Fk−1] = R′(θk−1)

Single pass through the data – “Automatic” regularization.

Central algorithm in the thesis.
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Outline

1. Introduction.

2. A warm up! Results in finite dimension, (d � n)
I Averaged stochastic descent: adaptivity
I Acceleration: two optimal rates
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4. Stochastic approximation as a Markov chain: extension to non
quadratic loss functions.
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Behavior of Stochastic Approximation in high dimension
Least-squares regression in finite dimension:

R(θ) = Eρ
[(
〈θ,Φ(X )〉 − Y

)2
]
.

Let Σ = E
[
Φ(X )Φ(X )>

]
∈ Rd×d : for θ∗ the best linear predictor,

R(θ)−R(θ∗) =
∥∥∥Σ1/2(θ − θ∗)

∥∥∥2
.

Let R2 := E
[
‖Φ(X )‖2

]
, σ2 := E

[
(Y − 〈θ∗,Φ(X )〉)2

]
.

Consider stochastic gradient descent (a.k.a., Least-Mean-Squares)

Theorem
For any γ ≤ 1

4R2 , for any α > 1, for any r ≥ 0, for any n ∈ N,

ER
(
θ̄n
)
−R(θ∗) ≤

4σ2γ1/α tr(Σ1/α)

n1−1/α
+

4
∥∥Σ1/2−r (θ∗ − θ0)

∥∥2

γ2rnmin(2r ,2)
.
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Theorem 1†, consequences

Theorem
For any γ ≤ 1

4R2 , for any α > 1, for any r ≥ 0, for any n ∈ N,

ER
(
θ̄n
)
−R(θ∗) ≤

4σ2γ1/α tr(Σ1/α)

n1−1/α︸ ︷︷ ︸
Variance

+
4
∥∥Σ1/2−r (θ∗ − θ0)

∥∥2

γ2rnmin(2r ,2)︸ ︷︷ ︸
Bias

.

Variance term Bias term

γσ2 tr(Σ) σ2d
n

‖θ∗−θ0‖2

γn
‖Σ−1/2(θ∗−θ0)‖2

γ2n2

α = 1 α→∞ r = 1/2. r = 1.︸ ︷︷ ︸
Recovers

Bach and Moulines [2013]

︸ ︷︷ ︸
Improves

asymptotic Bias

†Dieuleveut and Bach [2015].
12
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Theorem 1, consequences

Theorem
For any γ ≤ 1

4R2 , for any n ∈ N,

ER
(
θ̄n
)
−R(θ∗) ≤ inf

α>1,r≥0

(
4σ2γ1/α tr(Σ1/α)

n1−1/α︸ ︷︷ ︸
Variance

+
4
∥∥Σ1/2−r (θ∗ − θ0)

∥∥2

γ2rnmin(2r ,2)︸ ︷︷ ︸
Bias

)
.

γ
1
/
α
tr

(Σ
1
/
α

)

n
1
−

1
/
α

α

Adaptivity
Upper bound on the variance

term as a function of α.
d � n.
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Limits to SA performance: two lower bounds

Stochastic Approximation in Supervised ML

Builds an estimator given n
observations.
# statistical lower bound:

σ2d

n

Approximates the minimum of an
(L−smooth) function in iterations,
using first order information.
# optimization lower bound:

L ‖θ0 − θ∗‖2

2
.

here, n = t.

Theorem 1, for Av-SGD, gives as upper bound:

σ2d

n
+ min

(
L ‖θ0 − θ∗‖2

n
;
L2
∥∥Σ−1/2(θ0 − θ∗)

∥∥2

n2

)
.

14



Limits to SA performance: two lower bounds

Stochastic Approximation in Supervised ML

Builds an estimator given n
observations.
# statistical lower bound:

σ2d

n

Approximates the minimum of an
(L−smooth) function in t
iterations, using first order
information.
# optimization lower bound:

L ‖θ0 − θ∗‖2

t2
.

here, n = t.

Theorem 1, for Av-SGD, gives as upper bound:

σ2d

n
+ min

(
L ‖θ0 − θ∗‖2

n
;
L2
∥∥Σ−1/2(θ0 − θ∗)

∥∥2

n2

)
.

14



Limits to SA performance: two lower bounds

Stochastic Approximation in Supervised ML

Builds an estimator given n
observations.
# statistical lower bound:

σ2d

n

Approximates the minimum of an
(L−smooth) function in t
iterations, using first order
information.
# optimization lower bound:

L ‖θ0 − θ∗‖2

t2
.

here, n = t.

Theorem 1, for Av-SGD, gives as upper bound:

σ2d

n
+ min

(
L ‖θ0 − θ∗‖2

n
;
L2
∥∥Σ−1/2(θ0 − θ∗)

∥∥2

n2

)
.

14



Limits to SA performance: two lower bounds

Stochastic Approximation in Supervised ML

Builds an estimator given n
observations.
# statistical lower bound:

σ2d

n

Approximates the minimum of an
(L−smooth) function in t
iterations, using first order
information.
# optimization lower bound:

L ‖θ0 − θ∗‖2

t2
.

here, n = t.

Theorem 1, for Av-SGD, gives as upper bound:

σ2d

n
+ min

(
L ‖θ0 − θ∗‖2

n
;
L2
∥∥Σ−1/2(θ0 − θ∗)

∥∥2

n2

)
.

14



Limits to SA performance: two lower bounds

Stochastic Approximation in Supervised ML

Builds an estimator given n
observations.
# statistical lower bound:

σ2d

n

Approximates the minimum of an
(L−smooth) function in n
iterations, using first order
information.
# optimization lower bound:

L ‖θ0 − θ∗‖2

n2
.

here, n = t.

Theorem 1, for Av-SGD, gives as upper bound:

σ2d

n
+ min

(
L ‖θ0 − θ∗‖2

n
;
L2
∥∥Σ−1/2(θ0 − θ∗)

∥∥2

n2

)
.

14



Limits to SA performance: two lower bounds

Stochastic Approximation in Supervised ML

Builds an estimator given n
observations.
# statistical lower bound:

σ2d

n

Approximates the minimum of an
(L−smooth) function in n
iterations, using first order
information.
# optimization lower bound:

L ‖θ0 − θ∗‖2

n2
.

here, n = t.

Theorem 1, for Av-SGD, gives as upper bound:

σ2d

n
+ min

(
L ‖θ0 − θ∗‖2

n
;
L2
∥∥Σ−1/2(θ0 − θ∗)

∥∥2

n2

)
.

14



Acceleration†

Optimal rate (for deterministic
optimization), is achieved by
accelerated gradient descent:{
θn = ηn−1 − γnf ′(ηn−1)
ηn = θn + δn(θn − θn−1) .

Problem: acceleration is sensitive to noise [d’Aspremont, 2008].

Combining SGD, acceleration and averaging,

I using extra regularization,

I and for “additive” noise model only,

we achieve both of the optimal rates.
Caveat: LMS recursion does not provide an additive noise oracle.
Different recursion with Σ known.

†Dieuleveut, Flammarion, Bach [2016]
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Acceleration and averaging

More precisely we consider:

θn = νn−1 − γR′n(νn−1)− γλ(νn−1 − θ0)

νn = θn + δ
(
θn − θn−1

)
,

Theorem
For any γ ≤ 1/2R2, for δ = 1, and λ = 0,

E
[
R(θ̄n)

]
−R(θ∗) ≤ 8

σ2d

n + 1
+ 36

‖θ0 − θ∗‖2

γ(n + 1)2
.

Optimal rate from both statistical and optimization point of
view.
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Outline

1. Introduction.

2. A warm up! Results in finite dimension, (d � n)

3. Non-parametric stochastic approximation
I Averaged stochastic descent: statistical rate of convergence
I Acceleration: improving convergence in ill-conditioned regimes

4. Stochastic approximation as a Markov chain: extension to non
quadratic loss functions.

17



Non-parametric Random Design Least Squares Regression
Goal:

min
g
R(g) = Eρ

[
(Y − g(X ))2

]

I ρX marginal distribution of X in X ,
I L2

ρX
set of squared integrable functions w.r.t. ρX .

Bayes predictor minimizes the quadratic risk over L2
ρX

:

gρ(X ) = E [Y |X ] .

Moreover, for any function g in L2
ρX

, the excess risk is:

R(g)−R(gρ) = ‖g − gρ‖2
L2
ρX

.

H a space of functions: there exists gH ∈ H̄L2
ρX such that

R(gH) = inf
g∈H
R(g).

18



Non-parametric Random Design Least Squares Regression
Goal:

min
g
R(g) = Eρ

[
(Y − g(X ))2

]
I ρX marginal distribution of X in X ,
I L2

ρX
set of squared integrable functions w.r.t. ρX .

Bayes predictor minimizes the quadratic risk over L2
ρX

:

gρ(X ) = E [Y |X ] .

Moreover, for any function g in L2
ρX

, the excess risk is:

R(g)−R(gρ) = ‖g − gρ‖2
L2
ρX

.

H a space of functions: there exists gH ∈ H̄L2
ρX such that

R(gH) = inf
g∈H
R(g).

18



Non-parametric Random Design Least Squares Regression
Goal:

min
g
R(g) = Eρ

[
(Y − g(X ))2

]
I ρX marginal distribution of X in X ,
I L2

ρX
set of squared integrable functions w.r.t. ρX .

Bayes predictor minimizes the quadratic risk over L2
ρX

:

gρ(X ) = E [Y |X ] .

Moreover, for any function g in L2
ρX

, the excess risk is:

R(g)−R(gρ) = ‖g − gρ‖2
L2
ρX

.

H a space of functions: there exists gH ∈ H̄L2
ρX such that

R(gH) = inf
g∈H
R(g).

18



Non-parametric Random Design Least Squares Regression
Goal:

min
g
R(g) = Eρ

[
(Y − g(X ))2

]
I ρX marginal distribution of X in X ,
I L2

ρX
set of squared integrable functions w.r.t. ρX .

Bayes predictor minimizes the quadratic risk over L2
ρX

:

gρ(X ) = E [Y |X ] .

Moreover, for any function g in L2
ρX

, the excess risk is:

R(g)−R(gρ) = ‖g − gρ‖2
L2
ρX

.

H a space of functions: there exists gH ∈ H̄L2
ρX such that

R(gH) = inf
g∈H
R(g).

18



Non-parametric Random Design Least Squares Regression
Goal:

min
g
R(g) = Eρ

[
(Y − g(X ))2

]
I ρX marginal distribution of X in X ,
I L2

ρX
set of squared integrable functions w.r.t. ρX .

Bayes predictor minimizes the quadratic risk over L2
ρX

:

gρ(X ) = E [Y |X ] .

Moreover, for any function g in L2
ρX

, the excess risk is:

R(g)−R(gρ) = ‖g − gρ‖2
L2
ρX

.

H a space of functions: there exists gH ∈ H̄L2
ρX such that

R(gH) = inf
g∈H
R(g).

18



Reproducing Kernel Hilbert Space

Definition
A Reproducing Kernel Hilbert Space (RKHS) H is a space of
functions from X into R, such that there exists a reproducing
kernel K : X × X → R, satisfying:

I For any x ∈ X , H contains the function Kx , defined by:

Kx : X → R
z 7→ K (x , z).

I For any x ∈ X and f ∈ H, the reproducing property holds:

〈Kx , f 〉H = f (x).

19
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Why are RKHS so nice?
I Computation:

I Linear spaces of functions.
I Existence of gradients (Hilbert).
I Possible to compute inner products thanks to the reproducing

property.
I Only deal with functions in the set span{Kxi , i = 1 . . . n}

(representer theorem).

# the algebraic framework is preserved !

I Approximation: many kernels satisfy H̄L2
ρX = L2

ρX
, there is no

approximation error !
I Representation: Feature map,

X → H
x 7→ Kx

maps points from any set into
a linear space to apply a linear
method.
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Stochastic approximation in the RKHS.
As R(g) = E

[
(〈g ,KX 〉H − Y )2

]
, for each pair of observations

(〈g ,Kxn〉H − yn)Kxn = (g(xn)− yn)Kxn

is an unbiased stochastic gradient of R at g .

Consider the stochastic gradient recursion, starting from g0 ∈ H:

gn = gn−1 − γ
[
〈gn−1,Kxn〉H − yn

]
Kxn ,

where γ is the step-size. Thus

gn =
n∑

i=1

aiKxi ,

with (an)n>1, an = −γn(gn−1(xn)− yn). With averaging,

gn =
1

n + 1

n∑
k=0

gk

Total complexity: O(n2)
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Kernel regression: Analysis

Assume E [K (X ,X )] and E
[
Y 2
]

are finite. Define the covariance
operator.

Σ = E
[
KXK

>
X

]
.

We make two assumptions:

I Capacity condition: eigenvalue decay of Σ.

I Source condition: position of gH w.r.t. the kernel space H.

Σ is a trace-class operator, that can be decomposed over its
eigen-spaces. Its power: Στ , τ > 0. are thus well defined.
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Capacity condition (CC)

CC(α): for some α > 1, we assume that tr(Σ1/α) <∞.

If we denote (µi )i∈I the sequence of non-zero eigenvalues of the
operator Σ, in decreasing order, then µi = O (i−α).

Sobolev first order kernel Gaussian kernel

lo
g

1
0
(µ

i)

Eigenvalue decay of the
covariance operator.

log10(i) log10(i)

Left: min kernel, ρX = U [0; 1], −→ CC (α = 2).
Right: Gaussian kernel, ρX = U [−1; 1]. −→ CC (α),∀ α ≥ 1.
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Source condition (SC)

Concerning the optimal function gH, we assume:

SC(r): for some r > 0, gH ∈ Σr
(
L2
ρX

)
Thus ‖Σ−r (gH)‖L2

ρX
<∞.

r < 0.5 r = 0.5 r > 0.5

24



NPSA with large step sizes

Theorem
Assume CC(α) and SC(r). Then for any γ ≤ 1

4R2 ,

ER (ḡn)−R(gH) ≤ 4σ2γ1/α tr(Σ1/α)

n1−1/α
+ 4
‖Σ−r (gH − g0)‖2

L2
ρX

γ2rnmin(2r ,2)
.

for γ = γ0n
−2αr−1+α

2αr+1 , for α−1
2α ≤ r ≤ 1

ER (ḡn)−R(gH) ≤ n
−2αr
2αr+1

(
4σ2 tr(Σ1/α) + 4

∥∥Σ−r (gH − g0)
∥∥2

L2
ρX

)
.

I Statistically optimal rate. [Caponnetto and De Vito, 2007].

I Beyond: online, minimal assumptions...
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ER (ḡn)−R(gH) ≤ n
−2αr
2αr+1

(
4σ2 tr(Σ1/α) + 4

∥∥Σ−r (gH − g0)
∥∥2

L2
ρX

)
.

I Statistically optimal rate. [Caponnetto and De Vito, 2007].

I Beyond: online, minimal assumptions...

25



Optimality regions

2

1

3

4

5

r = 1=2 r = 1

Saturationα

r = α−1

2α

B>V

r

r = 0.5 r > 0.5

r < 0.5 r � 0.5

Optimal rate in RKHS can be achieved via large step size and
averaging in many situations.
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Acceleration: Reproducing kernel Hilbert space setting
We consider the RKHS setting presented before.

Theorem
Assume CC(α) and SC(r). Then for γ = γ0n

− 4rα+2−α
2rα+1 , for

λ = 1
γn2 , for r ≥ α−2

2α ,

ER (ḡn)−R(gH) ≤ Cθ0,θ∗,Σ n
−2αr
2αr+1 .

2

1

3

4

5

r = 1=2 r = 1

Saturationα

r = α−2

2α

r = α−1

2α

B>V

r
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Least squares: some conclusions

I Provide optimal rate of convergence under two assumptions
for non-parametric regression in Hilbert spaces: large step
sizes and averaging.

I Sheds some light on FD case.

I Possible to attain simultaneously optimal rate from the
statistical and optimization point of view.
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Outline

1. Introduction.

2. Non-parametric stochastic approximation

3. Faster rates with acceleration

4. Stochastic approximation as a Markov chain: extension to non
quadratic loss functions.

I Motivation
I Assumptions
I Convergence in Wasserstein distance.

29



Motivation 1/ 2. Large step sizes!

lo
g

1
0

( R(θ̄
n
)
−
R

(θ
∗)
)

log10(n)

Logistic regression. Final iterate (dashed), and averaged recursion
(plain).
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Motivation 2/ 2. Difference between quadratic and logistic
loss

Logistic Regression Least-Squares Regression

ER(θ̄n)−R(θ∗) = O(γ2) ER(θ̄n)−R(θ∗) = O

(
1

n

)
with γ = 1/(4R2) with γ = 1/(4R2)
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SGD: an homogeneous Markov chain

Consider a L−smooth and µ−strongly convex function R.

SGD with a step-size γ > 0 is an homogeneous Markov chain:

θγk+1 = θγk − γ
[
R′(θγk ) + εk+1(θγk )

]
,

I satisfies Markov property

I is homogeneous, for γ constant, (εk)k∈N i.i.d.

Also assume:

I R′k = R′ + εk+1 is almost surely L-co-coercive.

I Bounded moments
E[‖εk(θ∗)‖4] <∞.
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Stochastic gradient descent as a Markov Chain: Analysis
framework†

I Existence of a limit distribution πγ , and linear convergence to
this distribution:

θγn
d→ πγ .

I Convergence of second order moments of the chain,

θ̄n,γ
L2

−→
n→∞

θ̄γ := Eπγ [θ] .

I Behavior under the limit distribution (γ → 0): θ̄γ=θ∗ + ?.

# Provable convergence improvement with extrapolation tricks.

†Dieuleveut, Durmus, Bach [2017].
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Existence of a limit distribution γ → 0

Goal: (θγn)n≥0
d→ πγ .

Theorem
For any γ < L−1, the chain (θγn)n≥0 admits a unique stationary
distribution πγ . In addition for all θ0 ∈ Rd , n ∈ N:

W 2
2 (θγn , πγ) ≤ (1− 2µγ(1− γL))n

∫
Rd

‖θ0 − ϑ‖2 dπγ(ϑ) .

Wasserstein metric: distance between probability measures.
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Behavior under limit distribution.
Ergodic theorem: θ̄n → Eπγ [θ] =: θ̄γ . Where is θ̄γ ?

If θ0 ∼ πγ , then θ1 ∼ πγ .

θγ1 = θγ0 − γ
[
R′(θγ0 ) + ε1(θγ0 )

]
.

Eπγ
[
R′(θ)

]
= 0

In the quadratic case (linear gradients) ΣEπγ [θ − θ∗] = 0: θ̄γ = θ∗!

In the general case, using Eπγ
[
‖θ − θ∗‖4

]
≤ Cγ2, and expand the

Taylor expansion of R: And iterating this reasoning on higher
moments of the chain:

θ̄γ − θ∗ = γR′′(θ∗)−1R′′′(θ∗)
([
R′′(θ∗)⊗ I + I ⊗R′′(θ∗)

]−1Eπγ [ε(θ)⊗2]
)

+ O(γ2)

Overall, θ̄γ − θ∗ = γ∆ + O(γ2).

35



Behavior under limit distribution.
Ergodic theorem: θ̄n → Eπγ [θ] =: θ̄γ . Where is θ̄γ ?

If θ0 ∼ πγ , then θ1 ∼ πγ .

θγ1 = θγ0 − γ
[
R′(θγ0 ) + ε1(θγ0 )

]
.

Eπγ
[
R′(θ)

]
= 0

In the quadratic case (linear gradients) ΣEπγ [θ − θ∗] = 0: θ̄γ = θ∗!

In the general case, using Eπγ
[
‖θ − θ∗‖4

]
≤ Cγ2, and expand the

Taylor expansion of R: And iterating this reasoning on higher
moments of the chain:

θ̄γ − θ∗ = γR′′(θ∗)−1R′′′(θ∗)
([
R′′(θ∗)⊗ I + I ⊗R′′(θ∗)

]−1Eπγ [ε(θ)⊗2]
)

+ O(γ2)

Overall, θ̄γ − θ∗ = γ∆ + O(γ2).

35



Behavior under limit distribution.
Ergodic theorem: θ̄n → Eπγ [θ] =: θ̄γ . Where is θ̄γ ?

If θ0 ∼ πγ , then θ1 ∼ πγ .

θγ1 = θγ0 − γ
[
R′(θγ0 ) + ε1(θγ0 )

]
.

Eπγ
[
R′(θ)

]
= 0

In the quadratic case (linear gradients) ΣEπγ [θ − θ∗] = 0: θ̄γ = θ∗!

In the general case, using Eπγ
[
‖θ − θ∗‖4

]
≤ Cγ2, and expand the

Taylor expansion of R: And iterating this reasoning on higher
moments of the chain:

θ̄γ − θ∗ = γR′′(θ∗)−1R′′′(θ∗)
([
R′′(θ∗)⊗ I + I ⊗R′′(θ∗)

]−1Eπγ [ε(θ)⊗2]
)

+ O(γ2)

Overall, θ̄γ − θ∗ = γ∆ + O(γ2).
35



Constant learning rate SGD: convergence in the quadratic
case
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Behavior under limit distribution.

Ergodic theorem: θ̄n → Eπγ [θ] =: θ̄γ . Where is θ̄γ ?

If θ0 ∼ πγ , then θ1 ∼ πγ .

θγ1 = θγ0 − γ
[
R′(θγ0 ) + ε1(θγ0 )

]
.

Eπγ
[
R′(θ)

]
= 0

In the quadratic case (linear gradients) ΣEπγ [θ − θ∗] = 0: θ̄γ = θ∗!

In the general case, Taylor expansion of R, and same reasoning on
higher moments of the chain leads to

θ̄γ − θ∗ = γR′′(θ∗)−1R′′′(θ∗)
([
R′′(θ∗)⊗ I + I ⊗R′′(θ∗)

]−1Eπγ ,ε[ε(θ)⊗2]
)

+ O(γ2)

Overall, θ̄γ − θ∗ = γ∆ + O(γ2).
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Constant learning rate SGD: convergence in the
non-quadratic case
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Richardson extrapolation

θ∗

¯θγn −
¯θγ = Op(n

−1=2)
¯θ1

θn θγ

θn

θ0

θγn −
¯θγ = Op(γ

1=2)

θ∗ − ¯θγ = O(γ)

Recovering convergence closer to θ∗ by Richardson extrapolation
2θ̄n,γ − θ̄n,2γ
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Experiments: smaller dimension

lo
g

1
0

[R
(θ

)
−
R

(θ
∗)

]

log10(n)

Synthetic data, logistic regression, n = 8.106
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Experiments: Double Richardson

lo
g

1
0

[R
(θ

)
−
R

(θ
∗)

]

log10(n)

Synthetic data, logistic regression, n = 8.106

“Richardson 3γ”: estimator built using Richardson on 3 different
sequences: θ̃3

n = 8
3 θ̄n,γ − 2θ̄n,2γ + 1

3 θ̄n,4γ 41



Conclusion MC

Take home message:

I Precise description of the convergence in terms of Wasserstein
distance.

I Decomposition as three sources of error: variance, initial
conditions, and “drift”

I Detailed analysis of the position of the limit point: the
direction does not depend on γ at first order.

I Extrapolation tricks can help.

I Beyond: new error decomposition (link with diffusions), ...

42



Open directions

I Markov chain, beyond strong convexity

I Adaptivity for non-parametric regression

I Complexity of non-parametric regression. Stochastic gradient
descent and random features.

I Density estimation.
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