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Abstract. The main result of the paper shows that the regular n-gon is a local minimizer
for the first Dirichlet-Laplace eigenvalue among n-gons having fixed area for n ∈ {5, 6}. The
eigenvalue is seen as a function of the coordinates of the vertices in R2n. Relying on fine
regularity results of the first eigenfunction in a convex polygon, an explicit a priori estimate
is given for the eigenvalues of the Hessian matrix associated to the discrete problem, whose
coefficients involve the solutions of some Poisson equations with singular right hand sides. The
a priori estimates, in conjunction with certified finite element approximations of these singular
PDEs imply the local minimality for n ∈ {5, 6}. All computations, including the finite element
computations, are realized using interval arithmetic.
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1. Introduction

In the previous work [7] it is shown that a local minimality result for a classical discrete shape
optimization problem due to Polyà and Szegö, still unsolved today, depends on the positivity of
a number of constants. Theory alone is not able to answer this question, for now. Using explicit
finite element estimates for solutions of some singular partial differential equations together with
interval arithmetic in Intlab [41], controlling all roundoff errors in the computations, allows to
establish the local minimality results.

More precisely, for a bounded open set Ω ⊂ R2 let us consider the eigenvalue problem for the
Laplace operator with Dirichlet boundary conditions

(1)
{
−∆u = λu in Ω,

u = 0 on ∂Ω.

The spectrum consists only on eigenvalues, counted with corresponding multiplicity,

0 < λ1(Ω) ≤ λ2(Ω) ≤ · · · ≤ λk(Ω) . . .→ +∞.
Lord Rayleigh conjectured in 1877 that the first eigenvalue is minimal on the disc, among all
other planar domains of the same area. Faber and Krahn gave rigorous proofs in 1923 (see [12]
for a description of the history of the problem and [22, 21] for a survey of the topic).

Drawing a parallel with the isoperimetric inequality, it is natural to assert that the polygonal
shape with n sides and fixed area which minimizes the fundamental Dirichlet Laplace eigenvalue
is the regular polygon. This is also in accord with the intuition that a "rounder" shape takes
longer to cool down from any initial state, keeping in mind that λ1(Ω) is the dominant rate of
the vanishing exponential involved.

In their book of 1951, Pólya and Szegö conjecture a polygonal version of this inequality (see
[40, page 158]). Denoting by Pn the family of simple polygons with n sides in R2 and for every
n ≥ 3 consider the problem

(2) min
P∈Pn

λ1(P )|P |.

Formulation (2) is one of the multiple equivalent statements of this problem and has the
advantage of being scale invariant: λ1(tP ) = λ1(P )/t2 for any t > 0.

Pólya-Szegö Conjecture (1951). The unique solution to problem (2) is the regular polygon
with n sides.
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The conjecture holds true for n = 3 and n = 4: see [21, Chapter 3] where the Steiner
symmetrization principle is used. Steiner symmetrization does not work for the case n ≥ 5
since, the number of vertices could possibly increase after symmetrization. A new approach,
which applies only to triangles, was proposed by Fragalà and Velichkov in [15], establishing that
equilateral triangles are the only critical points for the first eigenvalue. Indrei finds in [25] a
manifold in which the regular polygon is optimal. Numerical simulations suggesting that the
Polyà-Szegö conjecture is true are given in [14], [2], [6].

In [7] the authors show that the proof of optimality of the regular n-gon for (2) can be reduced
to a finite number of validated numerical computations. This is achieved by the following results:

• computation of second order shape derivatives of simple Dirichlet-Laplacian eigenvalues
on Lipschitz domains (including polygons)
• computation of the Hessian matrix of λ1(P ) in terms of the coordinates of the vertices
of P . Taking into account the symmetry, the eigenvalues of the Hessian matrix for the
regular n-gon are characterized using solutions of three PDEs.
• Explicit a priori estimates for piece-wise affine finite elements approximation for these
three PDEs are given (eigenvalue equation and material derivatives for the eigenfunction
with respect to one vertex). Numerical computations justify, up to machine errors, that
for 5 ≤ n ≤ 8 the regular n-gon is a local minimizer in (2).
• Qualitative results are given concerning the stability of the Hessian eigenvalues under
vertex perturbations and bounds on geometric quantities of the optimal polygon are
given.

In [30] the local maximality of the Robin eigenvalue problem for the Laplacian is established
for quadrilaterals, using similar lines and exploiting the fact that in the case of the square, the
PDEs involved in the Hessian computation become more explicit.

In order to conclude with local minimality, the missing step in [7] was precisely the certification
of the machine errors, certification which could not be performed because of the complexity and
size of the required computations.

Proof strategies based on certified computations have already been used successfully in articles
related to spectral theory. In the paper [37], Schiffer’s conjecture is proved for the regular
pentagon: a Neumann eigenfunction that is positive on the boundary and not identically constant
is found numerically through certified computations. In [10] a counter example to a famous
conjecture of Payne is given through validated numerics: an example of two dimensional domain
with 6 holes is given for which the nodal line of the second Dirichlet eigenfunction is closed and
does not touch the boundary of the domain. In [17] a conjecture stated in [2] is settled, proving
that there exist triangles which are not isometric and for which the first, second and fourth
eigenvalues coincide.

The numerical framework chosen for performing the certified computations in this article
uses finite elements. Let us briefly justify this choice. There exist precise numerical methods
that compute eigenvalues and eigenfunctions for the Laplace operator on smooth domains or on
polygons. For example [11] uses particular solutions coupled with interval arithmetic to obtain
guaranteed enclosures for the Laplace eigenvalues which is then used in [10] to answer a question
of Payne regarding the nodal line of the first eigenfunction on a domain with holes. In [5] the
authors give tight inclusions for the Neumann eigenvalues and in [18] a fast numerical method is
used for solving Laplace problems. While the results in [18] are promising in singular contexts,
there are no explicit quantifiable error bounds that can be applied directly for some of the
problems of interest in this work. We also point out [3] and [4] for a numerical analysis of general
Poisson equations with distributional data.

Several non-trivial differences, with respect to the case of the Laplace operator treated in the
references above, occur in our case: the operator appearing in our PDEs is −∆ − λ1(Pn)I, it
acts on a strict subspace contained in H1

0 and the right-hand side is singular, so that solutions
are not globally in H2. Here is the first comment: the general approximation results for singular
data available in the literature do apply, but the (optimal) approximation order is too small
and, in view of the requirements of the a priori estimates, the linear systems are too large to
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be solved with interval arithmetic software like Intlab. A second comment concerns the use of
spectral methods. Because of the singularity of the right hand side, the solutions we deal with
have discontinuous normal derivatives across segments inside the regular polygon Pn. Adapting
the spectral methods enumerated above to this case is not straightforward. Piecewise affine finite
element methods, on the other hand, can capture singular behavior if the singularities themselves
are captured exactly by the underlying mesh. One main contribution of the paper is to quantify
precisely the corresponding error estimates in such singular contexts.

Numerical computations performed in [7] correspond to meshes having triangle sizes small
enough such that the a priori error estimates guarantee that all the non-zero Hessian eigenvalues
are positive. In order to turn a numerical computation in a mathematical proof, all computations
need to be certified, taking into account even the errors coming from floating point computations.
Many such proof techniques emerged recently, using specialized software like Intlab [41], which
replaces floating point variables with intervals. Operations performed with intervals guarantee
that the output interval associated to a particular mathematical operation contains the desired
result. All errors are taken into account, including roundoff errors present in floating point
arithmetic.

Certified computation of eigenvalues problems in the P1 finite elements context is described in
[33]. The same paper allows to handle the context corresponding to Homogeneous Dirichlet and
Neumann boundary conditions. For non-homogeneous Neumann boundary conditions the paper
[32] applies. In Section 3 an alternative formulation is proposed for a particular problem involv-
ing non-homogeneous Neumann boundary conditions, allowing the validation of transmission
problems, in particular. This framework should extend to other situations where the boundary
data implies the H2 regularity of solutions, following classical results in [20].

The results of this paper finalize the proof of the local minimality of the regular n-gon for
problem (2) for n ∈ {5, 6} by performing all computations (including the finite element com-
putations) using interval arithmetic in Intlab [41]. To achieve this goal, in order to make the
computation effort acessible, significant improvements over the a priori error estimates given in
[7] are done. They rely on the following theoretical issues:

• The regularity of the material derivatives of the first eigenfunction of the Dirichlet-Laplace
operator on the regular n-gon (see the next section), is characterized (and improved)
locally, on a suitable partition of the polygon. The piece-wise H2 regularity is established
and explicit error estimates for the piecewise affine finite elements are given. Because of
the localization procedure which isolates the singularities, the order of the estimates and
the constants are significantly improved compared with [7].
• The new error estimate allows meshes which have significantly fewer elements to be
considered for approximating the eigenvalues (1) and the material derivatives. The size
of the linear generalized eigenvalue problem and linear systems involved becomes small
enough such that Intlab [41] can be used to certify the corresponding computations.

Structure of the paper. Section 2 introduces preliminary results from [7] regarding shape
derivatives, polygonal perturbations and the Hessian matrix of the first eigenvalue on the regular
n-gon. Explicit a priori estimates regarding finite element approximations of the eigenvalues are
recalled.

Section 3 deals with explicit estimates for solutions to PDEs involving the Laplace operator
with a singular source term, namely a measure with density in H1/2 supported on a segment,
which gives rise to transmission conditions. These PDEs appear in the expression of the eigen-
values of the Hessian matrix described above. If the singularities are meshed exactly, the optimal
order of convergence O(h) can still be reached in the approximation process. The main tool is
proving that the solution is piece-wise H2, adapting results from [20, Chapter 4]. The method
proposed can extend to other cases where solutions are piecewise H2 and the the mesh captures
the singularities exactly.

Section 4 gives various results regarding error estimates related to linear algebra, which justify
the choices made in the validation process. Section 5 presents the validation strategy and the
corresponding results concerning the local minimality of the regular n-gon in the Polyà-Szegö
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conjecture for n ∈ {5, 6}. The validation strategy illustrates the potential sources of errors: error
between continuous problems and exact finite element solutions, errors in the discrete eigenvalue
problems and linear systems, roundoff errors appearing when working in floating point precision.

For the sake of completeness, developments related to particular aspects in the code, possibly
relevant for other applications, are detailed in the Appendices. Appendix A describes a possible
implementation for the assembly of Morley finite elements which helps computing tight certified
upper bounds for the interpolation constant for P1 finite elements, based on the method pro-
posed in [29]. Appendix B describes the main functions in the code allowing to verify the local
minimality. The corresponding code is provided at the repository:

https://github.com/bbogo/PolyaSzego
allowing to verify and reproduce the results proved in this paper. Appendix C details a slight
modification in the function verifyeig from Intlab (related to certification of discrete eigenvalue
problems), replacing a matrix inversion with validated linear systems. For sparse matrices of
large size this improves significantly the performance of the process of certifying solutions to
generalized eigenvalue problems.

2. Preliminaries

2.1. Dirichlet-Laplacian eigenvalues on polygons: first and second derivatives. Shape
derivatives are introduced to study the behavior of shape functionals with respect to boundary
variations. Given ξ ∈W 1,∞(R2,R2) Lipschitz vector fields the shape derivative verifies

J((I + ξ)(Ω)) = J(Ω) + J ′(Ω)(ξ) + o(‖ξ‖W 1,∞),

where ξ 7→ J ′(Ω)(ξ) is a linear form in ξ.
Shape derivatives for a simple Dirichlet-Laplace eigenvalue are well known in the literature

when the domain Ω is smooth ([23], [42], [13]). For a simple eigenvalue one has

(3) λ′(Ω)(ξ) = −
∫
∂Ω

(∂nu)2ξ · n,

where ∂n denotes the normal derivative, n is the outer normal to the domain Ω and u is an
L2 normalized eigenfunction associated to λ. The previous formula extends to all cases where
u ∈ H2(Ω). It can be noted that in this case the shape derivative depends only on ξ · n on the
boundary ∂Ω. This structure is verified in most cases where the functional and the domain are
smooth enough [23, Chapter 5].

In situations where the domain is less smooth, known results do not apply directly. In [7],
based on ideas developed in [31], the following volume form of the shape derivative is derived

(4) λ′(Ω)(ξ) =

∫
Ω
S1 : Dξ,

where

(5) S1 = (|∇u|2 − λu2) Id−2(∇u⊗∇u).

The matrix scalar product is denoted by :, the identity matrix by Id and Dξ is the Jacobian of
ξ. This formula applies whenever u ∈ H1(Ω), thus including less regular contexts. By analyzing
singularities of the eigenfunction u on polygons in [7] it is shown that (3) remains valid on
polygons.

An advantage of the volumic formulation (4) is that it can be further differentiated without
additional regularity assumptions. Thus, second order shape derivatives for simple Dirichlet-
Laplace eigenvalues are computed in [7] for all domains where u ∈ H1(Ω) and for all Lipschitz
perturbation fields. The polygonal framework is thus included. For brevity, the formula for the
second shape derivative is ommitted here, since all details can be found in [7]. In the following,
the polygonal case which is of interest in this work is detailed.
Polygons and polygonal perturbations. Suppose Ω is a n-gon and follow the strategy

described in [7], [31]. Starting from a perturbation of the vertices, the perturbation field ξ ∈
W 1,∞(R2) will be built as follows. Denote the vertices of the polygon by ai ∈ R2, i = 0, ..., n−1
and for each vertex consider the vector perturbation ξi ∈ R2, i = 0, ..., n−1. Whenever necessary,

https://github.com/bbogo/PolyaSzego
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Figure 1. Examples of admissible triangulations used for defining perturbations
on a polygon and graphical view of the function ϕ1.

we suppose that the indices are considered modulo n. Consider a triangulation T of Ω such that
the edges of the polygon are complete edges of some triangles in this triangulation. Moreover,
consider the following globally Lipschitz functions ϕi for 0 ≤ i ≤ n− 1 that are piecewise affine
on each triangle of T and satisfy

(6) ϕi(aj) = δij =

{
1 if i = j

0 if i 6= j
.

Several choices are possible, as the two examples of Figure 1 show, their extension outside the
polygon being irrelevant. Then, we build a global perturbation in R2 given by

(7) ξ =

n−1∑
i=0

ζiξi ∈W 1,∞(R2).

Plugging the polygonal perturbation field ξ given in (7) into the shape derivative (4) shows that
the gradient of a simple eigenvalue with respect to the vertex coordinates x = (a0,a1, ...an−1) is
given by

∇λ(x) =

(∫
Ω
S1∇ϕi

)n−1

i=0

,

where ϕi are the piecewise affine functions on the triangulation T verifying (6) and S1 is the
matrix defined in (5). For simplicity, ϕ0 which will appear often in the following is simply denoted
by ϕ.

The area of a polygon is explicit in terms of vertex coordinates and, assuming the vertices are
ordered in the anti-clockwise direction, it is given by:

A(x) =
1

2

n−1∑
i=0

(xiyi+1 − xi+1yi).

Consider the case of the regular n-gon Pn. In the following we use the notation θ = 2π/n. As-
sume that Pn is inscribed in the unit disk with a0 = (1, 0). Consider the symmetric triangulation
T illustrated in Figure 1 with an extra vertex at the center of Pn. Denote by Ti the triangles in
the triangulation T like in center image from Figure 1. The triangles T0 and Tn−1 will sometimes
be denoted by T+, T−, respectively and correspond to the support of the P1 function ϕ.

The gradient of λ(x) with respect to perturbations in the first vertex a0 of the regular polygon
Pn is ∫

Pn
S1∇ϕ0 =

(
−2λ1/n

0

)
.

Plugging polygonal perturbation fields into the second shape derivative formula obtained in
[7] gives an explicit formula for the Hessian matrix D2λ1(x) for λ1(x) on the regular n-gon. In
[7, Section 4] explicit formulas for the eigenvalues of the Hessian are given for the regular n-gon.
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Denote by a(u, v) the bilinear form

a(u, v) =

∫
Pn
∇u · ∇v − λ1(Pn)uv,

which is positive semi-definite on H1
0 (Pn). The only functions which cancel a(·, ·) are multiples

of the first eigenfunction u1.
First, the material derivatives corresponding to perturbations of the first vertex a0 of the

regular n-gon Pn are defined by U = (U1, U2) ∈ H1
0 (Pn)2 verifying:

a(U1, v) =

∫
Pn

(∇u · ∇ϕ)∂xv +

∫
Pn

(∇v · ∇ϕ)∂xu−
2λ1

n

∫
Pn
uv,∀v ∈ H1

0 (Pn)

a(U2, v) =

∫
Pn

(∇u · ∇ϕ)∂yv +

∫
Pn

(∇v · ∇ϕ)∂yu,∀v ∈ H1
0 (Pn)(8)

Since the equations for U1, U2 only characterize solutions up to the addition of a multiple of u1,
the orthogonality conditions

(9)
∫
Pn
U iu1 = 0

are considered, to fix unique solutions in (8). In [7] it is shown that the Hessian matrix D2λ1(x)
does not depend on the chosen normalization. Consider the following notations from [7, Prop.
4.10] for 0 ≤ k ≤ n− 1, recalling that θ = 2π/n:

Ak =
n−1∑
j=0

(cos(j + 1)kθ + cos jkθ)

∫
Tj

∇u1 · ∇U1

+

n−1∑
j=0

cos(j + 1)kθ − cos jkθ

sin θ

∫
Tj

(
− sin(2j + 1)θ cos(2j + 1)θ
cos(2j + 1)θ sin(2j + 1)θ

)
∇u1 · ∇U1

Bk =
cos θ

sin θ

n−1∑
j=0

(cos(j + 1)kθ − cos jkθ)

∫
Tj

∇u1 · ∇U2

+

n−1∑
j=0

cos(j + 1)kθ − cos jkθ

sin θ

∫
Tj

(
− cos(2j + 1)θ − sin(2j + 1)θ
− sin(2j + 1)θ cos(2j + 1)θ

)
∇u1 · ∇U2

Ck =
cos θ

sin θ

n−1∑
j=0

(sin(j + 1)kθ − sin jkθ)

∫
Tj

∇u1 · ∇U1

+

n−1∑
j=0

sin(j + 1)kθ − sin jkθ

sin θ

∫
Tj

(
− cos(2j + 1)θ − sin(2j + 1)θ
− sin(2j + 1)θ cos(2j + 1)θ

)
∇u1 · ∇U1

Dk =

n−1∑
j=0

(sin(j + 1)kθ + sin jkθ)

∫
Tj

∇u1 · ∇U2

+

n−1∑
j=0

sin(j + 1)kθ − sin jkθ

sin θ

∫
Tj

(
− sin(2j + 1)θ cos(2j + 1)θ
cos(2j + 1)θ sin(2j + 1)θ

)
∇u1 · ∇U2

Then, according to [7, Section 4], the eigenvalues of the Hessian matrix D2(λ1(x)A(x)) asso-
ciated to the scale invariant formulation (2) are given by the following result.
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Theorem 2.1. For 0 ≤ k ≤ n− 1, θ = 2π/n denote

αk =
2n(1− cos(kθ))

sin θ

∫
T0

(∂xu1)2 − 2|Pn|Ak

βk =
2n(1− cos(kθ))

sin θ

∫
T0

(∂yu1)2 − 2|Pn|Bk

γk = −2|Pn|Ck = 2|Pn|Dk

and

µ2k = 0.5(αk + βk −
√

(αk − βk)2 + 4γ2
k), µ2k+1 = 0.5(αk + βk +

√
(αk − βk)2 + 4γ2

k).

The eigenvalues of the Hessian matrix of λ1(x)A(x) given in are given by µj, j = 0, ..., 2n− 1.

Note that k = 0 trivially gives two zero eigenvalues in the formula above. Moreover, in [7,
Proposition 4.12] it is shown that the Hessian of λ(x)A(x) has two additional zero eigenvalues.
This is in agreement with the fact that λ(Ω)|Ω| is scale invariant: translations, rotations and
homotheties do not change the objective function. Proving that the regular n-gon is a local
minimum amounts to the following (see [7, Section 4]).

Objective. Given n ≥ 5 prove that 2n − 4 of the eigenvalues of the Hessian matrix of x 7→
λ1(x)A(x) are strictly positive.

Theorem 2.1 shows that eigenvalues of the Hessian matrix are explicit in terms of the following
quantities: ∫

T0

(∂xu1)2,

∫
T0

(∂yu1)2,∫
Tj

∂xu1∂xU
1,

∫
Tj

∂xu1∂yU
1,

∫
Tj

∂yu1∂xU
1,

∫
Tj

∂yu1∂yU
1, 0 ≤ j ≤ n− 1,∫

Tj

∂xu1∂xU
2,

∫
Tj

∂xu1∂yU
2,

∫
Tj

∂yu1∂xU
2,

∫
Tj

∂yu1∂yU
2, 0 ≤ j ≤ n− 1.

Since purely theoretical results allowing to prove the positivity of eigenvalues in Theorem 2.1 are
not available, numerical computations are used in the proof for n ∈ {5, 6}. Explicitly quantified
error estimates for fintie element computations together with interval arithmetic for controlling
floating point errors are used.

2.2. General approximation framework. a) Interpolation errors. Consider Ω a polygon
meshed exactly with a triangulation Th. Consider the P1 finite element space on Th consisting
of piece-wise affine functions on triangles in Th. The norms L2, H1, H2 are considered on the full
domain, unless specified otherwise.

In the following denote Π1,h the interpolation operator associated to the P1 Lagrange finite
element. More precisely, Π1,hw is the piecewise affine function in Vh such that w and Π1,hw have
the same values at the nodes of the mesh. Results of [33] show that whenever w ∈ H2(Ω) we
have

(10) ‖∇w −∇Π1,h(w)‖L2 ≤ C1h‖D2w‖L2 .

The above inequality becomes explicit when an upper bound for ‖D2w‖L2 is known. The constant
C1 is explicit, depending on the triangles of the mesh Th. We shortly recall of the results of [33,
Theorem 4.3].

In each triangle Ti ∈ Th, the ratio between the smallest edge and the middle one Li is denoted
αi and the angle between these two edges is τi. Then, we denote

C(Ti) := 0.493Li
1 + α2

i +
√

1 + 2α2
i cos(2τi) + α4

i√
2
(
1 + α2

i −
√

1 + 2α2
i cos(2τi) + α4

i

) .
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Following [33, Section 2], we introduce the constant

(11) C1 = sup
h

C(Ti)

h
,

where the parameter h dictating the size of the mesh is the size of the median edge. In the
applications concerning regular polygons it is useful to consider Th consisting of congruent tri-
angles each one similar to T0 in Figure 1. This renders the constant (11) completely explicit in
terms of θ and h.

Since the mesh used of the regular polygon used in the computations is constructed using
congruent triangles with angles (2π/n, π/2 − π/n, π/2 − π/n) more precise estimates for the
interpolation constant can be found through direct estimation. We use the technique described
in [29], which shows that discrete problems related to the Morley finite element gives explicit
bounds for the constant C1 in (10). A description of the procedure for obtaining certified upper
bounds for constant C1 defined in (10), giving better bounds than (11) for triangles of interest
in our case, is described in Appendix A. The constants used in the validation computations are
shown in Table 2.

b) General Poisson problems. For Ω a polygon in the plane, consider Γ ⊂ ∂Ω a subset of its
boundary and ΓN = ∂Ω \ Γ. Consider the problem

−∆w = f, ∂nw = 0 on ΓN , w = 0 on Ω \ ΓN

where f ∈ H−1(Ω). The associated variational formulation reads: w ∈ HΓ(Ω) := {v ∈ H1(Ω) :
v = 0 on Γ ⊂ ∂Ω},

(12)
∫

Ω
∇w · ∇v = (f, v)H−1,H1 , for every v ∈ HΓ(Ω).

Assume that the solution is H2 regular, for example if Ω is convex.
Suppose Ω is polygonal and triangulated, obtaining a mesh Th and an associated space of

piecewise affine functions vh ∈ Vh such that vh vanishes on nodes in Γ. Assume Vh ⊂ HΓ(Ω) and
consider ph the solution to the problem

(13) ph ∈ Vh :

∫
Ω
∇ph · ∇vh = (f, vh)H−1,H1 , for every vh ∈ Vh.

Then ph is the projection of u, solution of (12), on Vh. In particular, for every vh ∈ Vh we have

‖∇w −∇vh‖2L2 = ‖∇w −∇ph‖2L2 + ‖∇ph −∇vh‖2L2 ≥ ‖∇w −∇ph‖2L2

since
∫

Ω∇(w − ph) · ∇(ph − vh) = 0.
Taking vh = Π1,h(w) shows that if w ∈ H2(Ω) then

‖∇w −∇ph‖ ≤ C1h‖D2w‖L2 .

If one discretizes also the distribution f , i.e. consider the problem

(14) wh ∈ Vh :

∫
Ω
∇wh · ∇vh = (fh, vh)H−1,H1 , for every vh ∈ Vh.

then wh and vh verify the same equation with different right hand sides. It is immediate to
observe that

‖∇wh −∇vh‖L2 ≤ ‖f − fh‖H−1 .

Thus, we obtain
‖∇w −∇wh‖L2 ≤ ‖f − fh‖H−1 + C1h‖D2w‖L2 .

c) Dirichlet Laplacian eigenvalues and eigenfunctions. Assume the Dirhchlet boundary
conditions are applied on the whole boundary Γ = ∂Ω in the following. Given a triangulation Th
of the polygon Ω and Vh ⊂ H1

0 (Ω) the P1 finite elements space on Th, denote by λk,h, uk,h the
k-th eigenvalue of Ω and its associated eigenfunction approximated in Vh, solving

(15) uk,h ∈ Vh,
∫

Ω
∇uk,h · ∇vh = λk,h

∫
Ω
uk,hvh, ∀vh ∈ Vh.

This problem is a generalized eigenvalue problem.
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Results of [33, Theorem 4.3] show that for Ω = Pn

∀k ≥ 1, λk,h ≥ λk ≥
λk,h

1 + C2
1h

2λ2
k,h

,

since the associated eigenfunctions are in H2(Ω). Therefore the following completely explicit
estimate holds

(16) |λk − λk,h| ≤ λ3
k,hC

2
1/(1 + C2

1h
2λ2

k,h) h2,

with C1 verifying (10).
For bounds concerning the approximation of the eigenfunction u1 associated to the simple

eigenvalue λ1 on the regular polygon Pn, the results in [7, Section 5] are used. The key ingredients
are the following:

• Projection of u1 on Vh, defining

ph ∈ Vh,
∫
Pn
∇ph · ∇v = λ1

∫
Pn
u1v,∀v ∈ Vh.

Like in the estimate for the general Laplace problem it follows that ‖∇u1 − ∇ph‖L2 ≤
C1h‖D2u1‖L2(Pn) = C1λ1h, since ‖D2u1‖L2 = ‖∆u1‖L2 = λ1 [20, Chapter 4]. The
convexity of Pn and the Aubin-Nitsche lemma implies also that ‖u1 − ph‖ ≤ C2

1λ1h
2.

• Project ph on the orthogonal of u1,h in Vh: ph = αu1,h + ph with
∫

Ω phu1,h = 0. Without
loss of generality assume α > 0. This shows that

‖∇ph −∇u1,h‖L2 = ‖(α− 1)∇uh +∇ph‖L2 ≤ |α− 1|λ1/2
1,h + ‖∇ph‖L2 .

It follows that∫
Pn

(∇ph · ∇vh − λ1,hphvh) =

∫
Pn

(λ1u1 − λ1,hp)vh, ∀vh ∈ Vh.

Poincaré’s inequality in the orthogonal of u1,h in Vh gives

(17) λ
1/2
2,h ‖ph‖L2 ≤ ‖∇ph‖L2 ≤

λ
1
2
2,h

(λ2,h − λ1,h)

(
|λ1 − λ1,h|+ λ1,h‖u1 − ph‖L2

)
.

Moreover, since ‖ph‖2L2 = α2 + ‖ph‖2L2 it follows that

|1− α| ≤ |1− α2| ≤
∫
Pn
p2
h +

∫
Pn

(u2
1 − p2

h) ≤ ‖ph‖2L2 + ‖u1 − ph‖L2(2 + ‖u1 − ph‖L2).

Combining these estimates leads to

(18) ‖∇u1 −∇u1,h‖L2 ≤ C1λ1h+O(h2),

where the term O(h2) is explicit using the inequalities proved above. A similar estimate using
‖u1 − uh‖L2 ≤ ‖u1 − ph‖L2 + ‖ph − u1,h‖L2 gives

(19) ‖u1 − u1,h‖L2 ≤ C2
1λ1h

2 +O(h2),

where all terms are explicit.
The three estimates |λ1−λ1,h|, ‖∇u1−∇u1,h‖L2 , ‖u−uh‖L2 are linked through the following

relation

‖∇u1 −∇u1,h‖2L2 − λ1‖u1 − u1,h‖2L2 =

∫
Pn
|∇u1|2 − 2

∫
Pn
∇u1 · ∇u1,h +

∫
Pn
|∇u1,h|2

− λ1

∫
Pn
u2

1 + 2λ1

∫
Pn
u1u1,h − λ1

∫
Pn
u2

1,h

= λ1,h − λ1,(20)

where the weak formulations for u1, u1,h are used. Relation (20) is also stated in [8, Equation
(3.14)]. One may observe that the three error estimates are related: knowing two of them gives
the third one. Since the error estimates for ‖∇u1 −∇u1,h‖L2 and ‖u1 − u1,h‖L2 already contain
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|λ1,h−λ1|, the estimation procedure can be iterated, replacing a weaker estimate with a stronger
one.

It can be observed that even though the relation (20) is stated for the regular polygon Pn, it
remains valid for every polygon Ω, when meshed exactly. It is also verified for higher eigenpairs
since the only result used is the variational formulation for u1, u1,h.

3. Material derivative decomposition: piecewise H2 regularity and estimates

Similar estimates are needed for solutions of (8), but it turns out that U1, U2 do not belong
to H2(Pn). Indeed, the equations solved by U1, U2 have singular right hand sides which can be
written as distributions of the form

(f1,2, v)H−1,H1 =

∫
Pn
f1,2
regv +

N−1∑
i=0

∫
Si

giv,

where f1,2
reg ∈ L2(Pn), Si represent the rays connecting the origin to the vertices ai of Pn, gi ∈

H1/2(Si). This motivated the estimates in interpolated spaces from [7], based on the fact that
the eigenfunction u1 belongs to H2+s(Pn) for some s > 0, small.

The main observation is that the solutions of (21) are piece-wise H2 on every triangle Ti,
i = 0, ..., n− 1 defined in Figure 1 and the H2 norms on these triangles can be controlled. This
significantly improves the convergence rate and the constants involved, as shown in the remaining
of this section.

Consider the context in [7, Section 5]. We propose to give a notably better estimate than the
one in Lemma 5.1 of [7], taking into account the particular structure of the problem.

Using the notations from [7], we have for U = U0

(21) a(U, v) = (freg, v) + (fsing, v), for every v ∈ H1
0 (Pn)

with a(u, v) =
∫
Pn (∇u · ∇v − λ1uv), the equality in (21) being understood in a vectorial sense.

Integrating by parts in the right hand side of (21), the regular part has the form

(22) (freg, v) =

(
−2
∫
T+∪T−(∇ϕ · ∇(∂xu1))v − 2λ1

n

∫
Pn u1v

−2
∫
T+∪T−(∇ϕ · ∇(∂yu1))v

)
.

Denoting by ∂ru1 the derivative of u1 in the radial direction. The singular part is given by

(23) (fsing, v) =

(
−
∫
S+

1
tan θ∂ru1v −

∫
S−

1
tan θ∂ru1v +

∫
S0

2
tan θ∂ru1v

−
∫
S+
∂ru1v +

∫
S−
∂ru1v

)
,

where θ = 2π/n. It is straightforward to see that since u1 ∈ H2(Pn), the distribution freg can be
identified with an element in L2(Pn). Moreover, a straightforward computation using integration
by parts shows that (freg, u1) = 0.

The regular part of the distribution, being orthogonal on u1, there exists a unique solution for

(24) Ureg ∈ H1
0 (Pn)2, a(Ureg, v) = (freg, v),∀v ∈ H1

0 (Pn),

∫
Pn

Uregu1 = 0.

Consider now the solution of

(25) a(US0 , v) =

∫
S0

∂ru1v − 2c0

∫
Pn
u1v,∀v ∈ H1

0 (Pn),

∫
Pn
US0u1 = 0.

where 2c0 =
∫
S0
∂ru1u1 ensures that the right hand side in (25) is orthogonal on u1. A simple

integration by parts shows that c0 = u1(0)2/4. In a similar way one can define US− and US+

with the right hand side as integrals on the segments S− and S+. Then by linearity we have

U = Ureg +

(
− 1

tan θUS+ − 1
tan θUS− + 2

tan θUS0

−US+ + US−

)
.

The singular behavior of the functions (U1, U2) is underlined in the illustrations given in Figure
2. Normal derivatives of U1,2 across certain segments inside Pn are discontinuous. Nevertheless,
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U1 U2

Figure 2. Graphical representation of finite element solutions for problems (21).
Discontinuities of normal derivatives are visible across certains rays connecting
the center of the regular n-gon to the vertices.

the numerical computation suggests that piecewise H2 regularity holds on triangles defined by
the symmetric triangulation shown in Figure 1.

Using results in [20, Chapter 2] it is classical that since Pn is convex, Ureg ∈ H2(Pn). Following
[20, Lemma 4.3.1.3] we know that

‖D2Ureg‖L2 = ‖∆Ureg‖L2 ,

allowing us to obtain an a priori error bound for the associated finite element problem. The key
idea is that for functions v, w ∈ H1(Pn) such that (v, w) is orthogonal to a fixed vector for every
side of Pn, it is possible to interchange derivatives in the integration:∫

Pn
∂xv∂yw =

∫
Pn
∂yv∂xw.

Since Ureg is zero on the boundary of Pn, its tangential gradient vanishes and applying the
previous equality to v = ∂yUreg, w = ∂xUreg gives the H2(Pn) identity stated above.

For the singular part the estimate is more involved. The functions US0 , US− , US+ defined by
(25) do not belong to H2(Pn) as their gradients are discontinuous on the segments S0, S−, S+,
respectively. More precisely, the tangential gradients are continuous accross these segments,
while the normal components have jumps. One can notice that US+ and US− are rotations of
US0 with an angle equal to ±2π/n. Therefore, initially, it is enough to concentrate the analysis
on US0 . First, note that US0 is even with respect to the y variable, in view of the symmetry
of the domain Pn, the orthogonality constraint and the fact that S0 lies on the horizontal axis,
which is a symmetry line of Pn.

Even though US0 is not in H2(Pn), it is H2 regular on both sides of the symmetry axis. Let
us denote P+ the part of Pn contained in the upper half plane {y > 0}. Following results in [20]
summarized in [36, Theorem 2.1] it is immediate that US0 |P+ is indeed H2(P+), when restricted
to P+.

In order to be more precise, consider the problem on half the polygon. The restriction of US0

on P+, denoted by US0 verifies the equation∫
P+

∇US0∇v − λ1

∫
P+

US0v =
1

2

∫
S0

∂ru1v − c0

∫
P+

u1v,(26)

∀v ∈ H1(Pn), v = 0 on ∂Pn ∩ P+,

∫
P+

US0u1 = 0.(27)

Note that on P+, considering Neumann boundary condition on the symmetry axis, λ1 is still
an eigenvalue with the same eigenfunction u1 (keeping the same notations for restrictions).
Moreover, λ2(Pn) is also the second eigenvalue of P+ with the Dirichlet-Neumann conditions
described above, corresponding to a symmetric eigenfunction for λ2(Pn) with respect to y.

Indeed, this can be justified as follows: take a second eigenfunction for the mixed Dirichlet-
Neumann problem on P+. By reflection across the horizontal axis, we build an eigenfunction
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on the full polygon Pn, changing sign. This means that λ2(P+) is not smaller than the sec-
ond eigenvalue of the polygon Pn. On the other hand, take a second eigenfunction u2 for the
Dirichlet problem of the polygon Pn. For convenience, we see u2 in polar coordinates (ρ, θ).
Then ũ2(ρ, θ) := u2(ρ,−θ) is also a second eigenfunction of the polygon. If u2 + ũ2 6≡ 0, we
have build a new second eigenfunction having 0 normal derivative on the horizontal line. So
the second eigenvalue of the polygon is also an eigenvalue for the mixed problem on P+, of
index higher than 1 since it has to change sign, hence we conclude. If u2 + ũ2 ≡ 0, then u2

is a second eigenfunction of the polygon vanishing on the horizontal line. Let us consider the
function u2(ρ, θ) = u2(ρ, θ + 2π

n ). This is another second eigenfunction which cannot vanish on
the horizontal line, otherwise it would have more than two nodal domains. So we can reproduce
the first argument.

Notice the following:
• US0 = 0 on ∂Pn ∩ {y ≥ 0}
• ∂nUS0 = 0 on ∂P+ ∩ {(x, 0) : x ≤ 0}
• ∂nUS0 = ∂yUS0 = 1

2∂xu1 on ∂P+ ∩ {(x, 0) : x ≥ 0}.
Since ∂xu1(0, 0) = ∂xu1(1, 0) = 0 and u1 ∈ H2(P+) it follows that ∂xu1 ∈ H1/2(∂P+ ∩ {y = 0}).
It follows that ∂nUS0 ∈ H1/2(P+ ∩ {y = 0}). Therefore US0 ∈ H2(P+). As a direct consequence,
the solution U = (U1, U2) of (21) is locally in H2 when restricted to T+, T− or Pn \ (T+ ∪ T−).

As a first step, let us get an a priori estimate on ‖D2US0‖L2(P+). The more problematic term
is the mixed term involving mixed derivatives of the form ∂xy. Below, an approach similar to
[20, Lemma 4.3.1.3] is used.

Lemma 3.1. We have:∫
P+

∂xxUS0∂yyUS0 −
∫
P+

∂xyUS0∂xyUS0 =
1

2
〈∂τ w̃, ṽ〉H−1/2(R),H1/2(R)

where w̃ is the extension by 0 of ∂xu1|S0 on R\S0 and ṽ is any extension in H
1
2

+δ(R) of ∂xUS0 |S0.

Proof: Following [20, Section 4.3], when Ω is a convex polygon a0, ...,am−1 with edges Γi =
[ai,ai+1], 0 ≤ i ≤ m−1 (indices considered modulo n when necessary), considering an orientation
of ∂Ω in the trigonometric sense, for σ > 1 define the space

Gσ(Ω) = {(v, w) ∈ Hσ(Ω)×Hσ(Ω) : (ηi, µi)·(v, w) = 0 on Γj , 0 ≤ j ≤ m−2, w(a0) = w(am−1) = 0},

where η2
i + µ2

i 6= 0, 0 ≤ i ≤ m− 2. Assume furthermore that µ0µm−2 6= 0. Note that compared
with [20, Section 4.3], one side is omitted in the definition above and pointwise values are imposed
for w at a0 and am−1. Note that the definition of Gσ is meaningful, since pointwise values can
be defined for Hσ, when σ > 1.

Consider (v, w) ∈ G2(Ω) and apply Green’s formula:

(28)
∫

Ω
∂xv∂yw −

∫
Ω
∂yv∂xw =

∫
∂Ω
v∂τw,

where ∂τ indicates the tangential derivative. On sides Γi where µi 6= 0 we have w = − ηi
µi
v which

implies

(29)
∫

Γi

v∂τw = − ηi
µi

∫
Γi

v∂τv = − ηi
2µi

(v2(ai+1)− v2(ai)).

Note that this identity is meaningful for v ∈ H2(Ω), since v ∈ C(Ω). If µi = 0 then by
definition we have v = 0 on Γi, and by continuity v(ai) = v(ai+1) = 0. Therefore when summing
contributions (29) only vertices a0,am−1 and those for which the neighboring segments Γi−1,Γi
have the coefficients µi−1, µi different from zero remain. It is immediate to notice that∫

∂Ω
v∂τw =

∫
Γm−1

v∂τw +
1

2

∑
µiµi−1 6=0

(
ηi
µi
− ηi−1

µi−1

)
v2(ai) +

η0

µ0
v2(a0)− ηm−1

µm−1
v2(am−1).
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Note that if
(
ηi
µi
− ηi−1

µi−1

)
6= 0 then (v, w) is orthogonal to two non-colinear vectors at ai, giving

v(ai) = 0. Therefore

(30)
∫

Ω
∂xv∂yw −

∫
Ω
∂yv∂xw =

∫
Γm−1

v∂τw +
η0

µ0
v2(a0)− ηm−1

µm−1
v2(am−1)

Let now δ > 0 (and small) and consider (v, w) ∈ G1+δ(Ω). Since H1+δ(Ω) ⊂ C(Ω) continu-
ously, a variant of (30) can be written, as follows. From the proof in [20, Lemma 4.3.1.3] it follows
that G2(Ω) is dense in G1+δ(Ω). Consequently, we can approach (v, w) strongly in H1+δ(Ω) by
sequences of functions (vε, wε)ε ⊆ G2(Ω) and hence write (30) for (vε, wε). We also have∫

Ω
∂xvε∂ywε −

∫
Ω
∂yvε∂xwε →

∫
Ω
∂xv∂yw −

∫
Ω
∂yv∂xw,

η0

µ0
v2
ε(a0)− ηm−1

µm−1
v2
ε(am−1)→ η0

µ0
v2(a0)− ηm−1

µm−1
v2(am−1).

In order to pass to the limit the term
∫

Γm−1
vε∂τwε, some observations are in order. Since

wε vanishes at a0,am−1, integration by parts gives
∫

Γm−1
vε∂τwε = −

∫
Γm−1

∂τvεwε. Moreover,
denoting w̃ε ∈ H1(R) the extension by 0 of wε on R \ Γm−1 (here we assume Γm−1 ⊆ R × {0}
and identify R× {0} with R) and ṽε any extension in H1(R) of vε, we get

−
∫

Γm−1

∂τvεwε = −
∫
R
∂τ ṽεw̃ε =

∫
R
ṽε∂̃τwε = 〈∂τ w̃ε, ṽε〉H−1/2(R),H1/2(R).

For instance, we shall take for ṽε any H2 extension of vε outside Ω which is uniformly bounded in
H1+δ(R2). Then we have that ṽε → ṽ and w̃ε → w̃ strongly in H

1
2

+δ(R), where ṽ is an extension
on R \ Γm−1 of v and w̃ is the extension by 0 of w on R \ Γm−1. Consequently,

〈∂τ w̃ε, ṽε〉H−1/2(R),H1/2(R) → 〈∂τ w̃, ṽ〉H−1/2(R),H1/2(R),

hence

(31)
∫

Ω
∂xv∂yw −

∫
Ω
∂yv∂xw = 〈∂τ w̃, ṽ〉H−1/2(R),H1/2(R) +

η0

µ0
v2(a0)− ηm−1

µm−1
v2(am−1)

Apply (31) for Ω = P+. Let k = bn/2c and denote b = ak if n is even or the midpoint of
[ak−1,ak] if n is odd. Then the vertices of P+ are a0, ...,ak−1, b and the origin o.

Furthermore, Γm−1 = [oa0] and taking v = ∂xUS0 ∈ H1+δ(P+), w = ∂yUS0 ∈ H1+δ(P+). On
the segment Γm−1 we have w = 1

2∂xu1, therefore w(o) = w(a0) = 0. Note that w = ∂yUS0

verifies w = 0 on Γm−2, i.e. (0, 1) ·(v, w) = 0. On Γ0 the function US0 verifies Dirichlet boundary
conditions US0 = 0 thus ∇US0 ·

−−→a0a1 = 0. Moreover, we have ∂yUS0(a0) = ∂xu1(a0) = 0.
Therefore (31) holds with v(a0) = 0 and ηm−1 = 0 and the result follows. �

Lemma 3.2 (Extension operator with computed norm). Let Pn be the regular polygon with n
sides and circumcircle of unit radius. There exists a linear extension operator

E : H1(Pn)→ H1(R2)

such that ‖E‖ ≤ Cn, where C5 = 4 and for n ≥ 6

Cn =

[
4 + 24 cos2 2π

n

]1/2

.

Remark 3.3. Note that if such an extension operator exists then the same upper bound Cn can
be used for an extension operator on the half plane R+.

Proof: Given a function in H1(Pn), an extension to H1(R2) having controlled norm is con-
structed using reflections and a cutoff function.
Reflection. A distinction needs to be made between the case of the pentagon and n ≥ 6.



14 BENIAMIN BOGOSEL, DORIN BUCUR

o

a1

an−1

a0

b1

bn−1

c1

x0

x1

xn−1

o

a1

an−1

a0

b1

bn−1

c1

x0

Figure 3. Reflection procedure: for the pentagon at least four reflections are
needed (left), for n ≥ 6 three reflections suffice (right). The thresholds for the
application of the cutoff function are also illustrated with dashed lines. The cutoff
function equals 1 inside the small disk, zero outside the big disk and is affine in
the radial direction in-between.

Consider the regular pentagon inscribed in the unit circle with center o, denoted P5 =
a0a1a2a3a4. Consider b1 the reflection of o across the line a0a1 and bn−1 the reflection of o
across the line a0an−1. The region in the angle ∠b1a0bn−1 needs to be covered with additional
copies of the current figure.

To this end construct the isosceles trapeze T = oa0ca1 with c1 ⊂ [a1b1]. Then place two
copies of T, b1a0x0x1 and bn−1a0x0x1, in the angle b1obn−1 such that the side congruent to a0o
in T aligns with a0b1 and a0bn−1. See Figure 3 for the illustration. This reflection is repeated
for every vertex of the pentagon. The first stage of the reflection produces a copy of any point in
Pn and the second stage produces at most 4 extra copies. Thus, globally, the reflection process
produces at most 6 extra copies of any point in P5.

For n ≥ 6 a general extension procedure producing at most 4 extra copies of any point in Pn is
available. Consider a0, ...,an−1 the vertices of Pn and construct b1,bn−1 reflections of the origin
o across a0a1 and a0an−1, respectively.

Since oa1 ≥ a0a1 there exists c1 on oa1 such that the triangle T = oa0c1 is isosceles. Consider
two copies of T, denoted b1a0x0, bn−1a0x0, covering the angle ∠b1a0bn−1 such that the side
a0o of T overlaps with a0b1, a0bn−1, respectively. This reflection contains at most four copies
of any point in Pn. See Figure 3 for an illustration.
Cutoff. Consider now for any function u ∈ H1(Pn) the reflected function u following the
procedure above and extended arbitrarily afterwards in H1(R2). Consider a cutoff function Φn

verifying:

Φn =


1 |x| ≤ 1

0 |x| ≥ 1 + `n

(`n + 1− |x|)/ln |x| ∈ [1, 1 + `n],

where `n is chosen maximal such that the ball of radius 1+`n is included in the polygon obtained
from Pn after the reflection process described in the first step.

With these considerations, an explicit extension operator is defined for any Pn by

E(u) = Φnu.

Let us evaluate the H1(R2) norm of E(u) and compare it with the norm of u in H1(Pn). Let kn
be the minimum number of copies for points in Pn involved in the construction of the reflected
polygon. Then ∫

R2

E(u)2 =

∫
R2

(Φnu)2 ≤
∫
B(0,1+`n)

u2 ≤ kn
∫
Pn
u2.
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The similar estimation for the gradient gives∫
R2

|∇E(u)|2 =

∫
R2

|∇Φnu+∇uΦn|2

≤ 2

∫
R2

|∇ϕ|2u2 + 2

∫
R2

|∇u|2Φ2
n

≤ 2

`2n

∫
B(0,1+`n)\B(0,1)

u2 + 2

∫
B(0,1+`n)

|∇u|2

≤ 2kn

∫
Pn
|∇u|2 +

2(kn − 1)

`2n

∫
Pn
u2.

Combining the two estimates gives

‖E(u)‖2H1(R2) ≤ max

{
2kn,

2(kn − 1)

`2n
+ kn

}
.

For the pentagon we have kn = 6, `n = 1 giving C5 = 4. For n ≥ 6 we have kn = 4,
`n = 1

2 cos 2π
n

, giving

Cn =

√
4 + 24 cos2

2π

n
.

�
Combining the previous results we may now find an explicit estimate for ‖D2US0‖L2(P+).

Theorem 3.4. There exists an explicit upper bound for ‖D2US0‖L2 in terms of λ1, u1 and the
geometry of P+.

The explicit finite element error estimate ‖∇US0−∇Π1,hUS0‖ ≤ C1h
√

2‖D2US0‖ holds for the
symmetrized US0, provided the segment S0 is meshed exactly.

Proof: Consider δ > 0, S = [0, 1] × {0} and f, g ∈ H1/2+δ(S) such that f(0) = f(1) = 0.
Consequently, we can extend f by 0 on R\(0, 1) to get that f ∈ H1/2+δ(R) and so f ′ ∈ H−

1
2

+δ(R).
To simplify notations, assume g is an arbitrary extension of g to H1/2+δ(R) we have

(32) |〈f ′, g〉H−1/2(R),H1/2(R)| ≤ ‖f‖H1/2(R)‖g‖H1/2(R).

Indeed, taking the Fourier transform and noting that f extends with zero from S to R we have

〈f ′, g〉H−1/2(R),H1/2(R) =

∫
R
f̂ ĝ′ =

∫
R
ixf̂ ĝ.

Therefore

|〈f ′, g̃〉H−1/2(R),H1/2(R)| ≤
∫
R

(1 + |x|2)1/4|f̂ |(1 + |x|2)1/4|ĝ|

≤
[∫

R
(1 + |x|2)1/2|f̂ |2

]1/2 [∫
R

(1 + |x|2)1/2|ĝ|2
]1/2

= ‖f‖H1/2(R)‖g‖H1/2(R).

Next, according to [39, Equation (2.3)] we have

(33) ‖u‖2
H1/2(R)

≤ C1,1‖u‖2H1(R2)

with C1,1 = Γ(1/2)

(4π)1/2Γ(1)
= 1

2 .
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Turning to the estimation regarding D2US0 , since −∆US0 = −λ1US0 − c0u1 we have, using
Lemma 3.1 (and its notations for the extensions of ∂xu1, ∂xUS0 ) that

‖D2US0‖2L2(P+) =

∫
P+

((∂xxUS0)2 + (∂yyUS0)2 + 2∂xyUS0∂xyUS0)

=

∫
P+

((∂xxUS0)2 + (∂yy)
2US0 + 2∂xxUS0∂yyUS0)− 〈∂τ w̃, ṽ〉H−1/2(R),H1/2(R)

= ‖∆US0‖2L2(P+) − 〈∂τ w̃, ṽ〉H−1/2(R),H1/2(R)

= ‖λ1US0 + c0u1‖2L2(P+) − 〈∂τ w̃, ṽ〉H−1/2(R),H1/2(R).(34)

To estimate the first term above start from

‖λ1US0 + c0u1‖2L2(P+) = λ2
1

∫
P+

US0

2
+
c2

0

2
.

Using US0 as test function in the variational formulation for US0 gives∫
P+

|∇US0 |2 − λ1

∫
Ω
US0

2
=

∫
S0

∂ru1US0 .

and the trace theorem implies ∫
S
US0

2 ≤ ‖∇US0‖2L2(P+).

The inequality above is valid for any function U which is zero on ∂Pn through direct application
of the mean value theorem on vertical slices. The constant in the trace theorem can be taken
equal to 1 since the polygon Pn is included in the band {|y| ≤ 1}.

Therefore ∫
S0

∂ru1US0 ≤ ‖∇US0‖L2(P+)‖∂ru1‖L2(S0).

Poincaré’s inequality on the orthogonal of u1 in H1(P+) ∩H1
0 (Pn) gives(

1− λ1

λ2

)
‖∇US0‖2L2(P+) ≤ ‖∇US0‖L2(P+)‖∂ru1‖L2(S).

Therefore, again using Poincaré’s inequality√
λ2‖US0‖L2(P+) ≤ ‖∇US0‖L2(P+) ≤

λ2

λ2 − λ1
‖∂ru1‖L2(S),

giving the a proiri bound

‖US0‖2L2(P+) ≤
λ2

(λ2 − λ1)2
‖∂ru1‖2L2(S).

For the second term in (34), using estimate (32) gives

|〈∂τ w̃, ṽ〉H−1/2(R),H1/2(R)| ≤ ‖∂xu1‖H1/2(R)‖∂xUS0‖H1/2(R),

where ∂xu1 is extended with zero and ∂xUS0 is extended arbitrarily from P+ ∩ {y = 0} to R.
Using the same extension operator defined in Lemma 3.2 and (33) gives

|〈∂τ w̃, ṽ〉H−1/2(R),H1/2(R)| ≤
C2
n

2
‖∂xu‖H1(P+

n )‖∂xUS0‖H1(P+
n ) ≤

≤ C2
n

2

√
(λ2

1 + λ1)/2
√
‖D2US0‖2L2(P+)

+ ‖∇US0‖2L2(P+)
,

where the equality ‖D2u1‖2L2(Pn) = ‖∆u‖2L2(Pn) = λ2
1 was used.

Combining the previous estimates we obtain

‖D2US0‖2L2(P+) ≤λ
2
1‖US0‖2L2(P+) +

c2
0

2
+
C2
n

2

√
λ2

1 + λ1

2

√
‖D2US0‖2L2(P+)

+ ‖∇US0‖2L2(P+)
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Denoting X = ‖D2US0‖L2(P+) and adding an upper bound for ‖∇US0‖2L2(P+) to the previous
inequality leads to a quadratic inequality of the form

X2 + C ≤ B +A
√
X2 + C,

which leads to X2 ≤
(
A+
√
A2+4B
2

)2
− C, where:

• A is an upper bound for C2
n

2

√
λ21+λ1

2

• B is an upper bound for λ2
1‖US0‖2L2(P+)+

c20
2 +‖∇US0‖2L2(P+), c0 = u1(0)2/4 = ‖u1‖2L∞/4 <

λ1/4 (see Grebenkov [19, Formula (6.22)])
• C is an upper bound for ‖∇US0‖2L2(P+)

This leads to an explicit upper bound for ‖D2US0‖L2(P+). The fact that such an upper bound
can be found also shows implicitly that US0 is indeed in H2(P+).

The second part of the statement of the theorem follows at once observing that ‖D2US0‖L2(Pn) =√
2‖D2US0‖L2(P+) and applying the interpolation estimate (10). The H2 norm of the sym-

metrized US0 is understood in a piece-wise sense, considering a crack on the segment S0. �

General singular distribution on rays. Let the singular distribution be given by

(35) (f, v) =
n−1∑
i=0

qi

(∫
Si

∂ru1v

)
with

∑n−1
i=0 qi = 0. Then any solution of

(36) U ∈ H1
0 (Pn), a(U, v) = (f, v)H−1,H1 ,

∫
Pn
Uu1 = 0

is a linear combination of rotations of the singular solution US0 . Considering the analogue
equation for the Laplace operator, an improved estimate compared to Lemma 5.1 from [7] is
found.

Lemma 3.5. Let U ∈ H1
0 (Pn) be the solution of

−∆U = f in H1
0 (Pn)

with f of the form (35). Consider Ph(U) ∈ Vh ⊂ H1
0 (Pn) the discrete solution corresponding to

the same right hand side
−∆Ph(U) = f in Vh.

Then denoting C(q) =
∑n−1

i=0 |qi|C1

√
2‖D2US0‖L2(P+) gives

(37) ‖∇U −∇Ph(U)‖L2 ≤ C(q)h

and

(38) ‖U − Ph(U)‖L2 ≤ C1C(q)h2.

Proof. Simply use the estimates above and the Aubin-Nitsche lemma [9, p.136]. �

This gives rise to the following estimate for solutions of problems similar to those involving
the material derivatives.

Theorem 3.6. Let U ∈ H1
0 (Pn) be the solution of

(39)


−∆U − λ1U = f in Pn

U = 0 on ∂Pn∫
Pn u1Udx = 0

where (f, u1)H−1,H1
0

= 0, f = freg+fsing with freg ∈ L2(Pn) and fsing given by (35). Assume fh is
a numerical approximation in H−1(Pn) of f which satisfies (fh, u1,h)H−1,H1

0
= 0 and (u1,h, λ1,h)

a numerical approximation of (u1, λ1) in H1
0 (Pn)× R. Denote Uh the finite element solution in
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Vh ⊂ H1
0 (Pn) for

∀v ∈ Vh,
∫
Pn

(∇Uh · ∇v − λ1,hUhv) dx = (fh, v)H−1×H1
0

(40)

together with the normalization

(41)
∫
Pn
u1,hUh dx = 0,

Then, denoting by V the solution of −∆V = λ1U + f in Vh, we have

‖∇U −∇Uh‖L2 ≤ C1h‖λ1U + freg‖L2 + C(q)h

+ λ
1
2
1,h

(
(C1h)2‖λ1U + freg‖L2 + C1C(q)h2) + ‖V ‖L2‖u1,h − u‖L2

)
+

λ
1
2
2,h

λ2,h − λ1,h

(
|λ1,h − λ1|‖U‖L2 + λ1,hC1C(q)h2 + (1 + λ2,h)

1
2 ‖f − fh‖H−1

)
.

The analogue L2 estimate follows

‖U − Uh‖L2 ≤ C1h(C1h‖λ1U + freg‖L2 + C(q)h)

+
(

(C1h)2‖λ1U + freg‖L2 + C1C(q)h2) + ‖V ‖L2‖u1,h − u‖L2

)
+

1

λ2,h − λ1,h

(
|λ1,h − λ1|‖U‖L2 + λ1,hC1C(q)h2 + (1 + λ2,h)

1
2 ‖f − fh‖H−1

)
.

Proof. The proof follows the general estimate strategy: project onto Vh using discrete problems
with continuous right hand side, then consider discrete problems with different right hand sides.
A slight complication arises from the normalization conditions.
a) Interpolation error. We denote Ureg, Using the solutions of

Ureg ∈ H1
0 (Pn), −∆Ureg = λ1U + freg, Using ∈ H1

0 (Pn), −∆Using = fsing,

so that U = Ureg + Using. We introduce the auxiliary functions Vreg, Vsing ∈ Vh, Vreg, Vsing the
finite element solutions of

Vreg ∈ Vh, −∆Vreg = λ1U + freg Vsing ∈ Vh, −∆Vsing = fsing.

For Vsing, the estimate (37) from Lemma 3.5 holds, and gives

‖∇Using −∇Vsing‖L2 ≤ C(q)h,

while for Vreg the classical estimate gives

‖∇Ureg −∇Vreg‖L2 ≤ C1h‖λ1U + freg‖L2 .

b) Normalization error. Let us denote V = Vreg +Vsing and define Ṽ = V −(
∫
Pn V u1,hdx)u1,h.

Then we have

(42) ‖∇Ṽ −∇V ‖L2 = λ
1
2
1,h

∣∣∣∣∫
Pn

(V u1,h − Uu1)

∣∣∣∣ ≤ λ 1
2
1,h(‖U − V ‖L2 + ‖V ‖L2‖u1,h − u‖L2).

The Aubin-Nitsche lemma gives ‖U − V ‖L2 ≤ C1h‖∇U −∇V ‖L2 .
c) Discrete problems with different right hand sides. We have that Ṽ is the finite element
solution of

Ṽ ∈ Vh, −∆Ṽ − λ1,hṼ = λ1U + f − λ1,hV,

which gives∫
Pn
|∇Ṽ −∇Uh|2dx− λ1,h

∫
Pn
|Ṽ − Uh|2dx = (λ1U + f − λ1,hV − fh, Ṽ − Uh)H−1×H1

0
.

By the Poincaré inequality in the orthogonal of u1,h in Vh we get(
1−

λ1,h

λ2,h

)∫
Pn
|∇Ṽ −∇Uh|2dx ≤ ‖λ1U − λ1,hV ‖L2‖Ṽ − Uh‖L2 + ‖f − fh‖H−1‖Ṽ − Uh‖H1
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≤ ‖λ1U − λ1,hV ‖L2λ
− 1

2
2,h ‖∇Ṽ −∇Uh‖L2 + ‖f − fh‖H−1

(
1 +

1

λ2,h

) 1
2

‖∇Ṽ −∇Uh‖L2 .

Finally,

(43) ‖∇Ṽ −∇Uh‖L2(Pn)

≤
λ

1
2
2,h

λ2,h − λ1,h

(
|λ1,h − λ1|‖U‖L2 + λ1,h‖U − V ‖L2 + (1 + λ2,h)

1
2 ‖f − fh‖H−1

)
.

The L2 estimate follows along the same lines. �

Remark 3.7. It can be observed that all estimates in the proof of Theorem 3.6 can be given in
terms of ‖∇U−∇V ‖L2 , ‖U−V ‖L2 , ‖u−u1,h‖, |λ1,h−λ1|, ‖f−fh‖H−1. All these quantities can be
evaluated explicitly in terms of the estimates for the eigenfunctions, eigenvalues and interpolation
errors.

Using the notations of Theorem 3.6, consider two generic problems with solutions Ua, U b
corresponding to the right hand sides fa, f b (not necessarily those explicited in the previous
section). Consider the associated notations V a, V b, Ṽ a, Ṽ b, Uah , U

b
h, f

a
h , f

b
h analogue to those

introduced in the proof of Theorem 3.6. Consider the discrete and continuous the bilinear forms

a : H1
0 (Pn)×H1

0 (Pn)→ R, a(u, v) =

∫
∇u · ∇v − λ1

∫
uv,

ah : Vh × Vh → R, ah(u, v) =

∫
∇u · ∇v − λ1,h

∫
uv.

3.1. Estimations for Hessian eigenvalues. The goal is to estimate the difference between
analytical eigenvalues of the Hessian matrix given in Theorem 2.1 and those computed using
finite elements. This involves terms of the form

|a(Ua, U b)− ah(Uah , U
b
h)|.

Following [7] and the classical triangle inequality the following quantities are estimated, following
the structure of the proof in Theorem 3.6:
First term (interpolation errors). Observing that Ua, U b and V a, V b solve problems hav-
ing the right hand sides fa, f b in H1

0 (Pn) and Vh, respectively, it follows that a(Ua, V a) =
a(V a, V b) = a(V a, U b). Therefore

|a(Ua, U b)− a(V a, V b)| = |a(Ua − V a, U b − V b)| ≤ ‖∇(Ua − V a)‖L2‖∇(U b − V b)‖L2 ,

giving an estimate of order h2. Note that the above follows from a(v, v) ≤
∫
Pn |∇v|

2 and the
Cauchy-Schwarz inequality for the positive bilinear form a(·, ·).
Second term (normalization errors).

|a(V a, V b)− ah(Ṽ a, Ṽ b)| ≤ ‖∇V a‖L2‖∇V b −∇Ṽ b‖L2 + ‖∇Ṽ b‖L2‖∇V a −∇Ṽ a‖L2+

|λ1,h − λ1|‖Ṽ a‖L2‖Ṽ b‖L2 + λ1‖Ṽ b‖L2‖V a − Ṽ a‖L2 + λ1‖V a‖L2‖V b − Ṽ b‖L2 ,

which, in view of inequality (42), leads to an approximation of order h2, since the estimate
depends on ‖U − V ‖L2 and ‖u1,h − u1‖L2 .
Third term (discrete errors).

|ah(Ṽ a, Ṽ b)− ah(Uah , U
b
h)| ≤ |ah(Ṽ a, Ṽ b − U bh)|+ |ah(Ṽ a − Uah , U bh)| ≤

‖∇Ṽ a‖L2‖∇Ṽ b −∇U bh‖L2 + ‖∇U bh‖L2‖∇Ṽ a −∇Uah‖L2 .

The last inequality is a consequence of the fact that ah(·, ·) is a scalar product on {u1,h}⊥ in
Vh and of the Cauchy-Schwarz inequality together with the observation that ah(v, v) ≤

∫
|∇v|2.

Using inequality (43) we get an approximation of order h, where the O(h) term is proportional
to ‖fa,b − fa,bh ‖H−1 , which depends on ‖∇u1 −∇u1,h‖L2(Pn).
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For the sake of completeness, the required information for estimating the eigenvalues of the
Hessian matrix is provided below. Full computations are made in [7]. The notations correspond
to those in Theorem 2.1.
Estimating Ak. It can be seen that Ak = a(U1

0 ,W
Ak) where WAk solves

a(W, v) = (fAkreg , v)H−1,H1
0

+ (fAksing, v)H−1,H1
0
, ∀v ∈ H1

0 (Pn),

∫
Pn
Wu1 = 0

with

(fAkreg , v)H−1×H1
0

=
n−1∑
j=0

(cos(j + 1)kθ + cos jkθ)λ1

∫
Tj

u1v

−
n−1∑
j=0

cos(j + 1)kθ − cos jkθ

sin θ

∫
Tj

(
−sin(2j+1)θ∂2

xxu1 +2 cos(2j+1)θ∂2
xyu1 +sin(2j+1)θ∂2

yyu1

)
v

(fAksing, v)H−1×H1
0

= −
n−1∑
j=0

∫
Sj

cos θ

sin θ
2 cos jkθ(1− cos kθ)∂ru1v.

An explicit a priori estimate for the error between a(U1
0 ,W

Ak) and the finite element counter
part follows from the discussion above.
Estimating Bk. It can be seen that Bk = a(U2

0 ,W
Bk) where WBk solves

a(W, v) = (fBkreg , v)H−1,H1
0

+ (fBksing, v)H−1,H1
0
, ∀v ∈ H1

0 (Pn),

∫
Pn
Wu1 = 0

with

(fBkreg , v)H−1×H1
0

=
cos θ

sin θ

n−1∑
j=0

(cos(j + 1)kθ − cos jkθ)λ1

∫
Tj

u1v

−
n−1∑
j=0

cos(j + 1)kθ − cos jkθ

sin θ

∫
Tj

(
−cos(2j+1)θ∂2

xxu1−2 sin(2j+1)θ∂2
xyu1 +cos(2j+1)θ∂2

yyu1

)
v

(fBksing, v)H−1×H1
0

=

n−1∑
j=0

∫
Sj

2 cos jkθ(1− cos kθ)∂ru1v.

An explicit a priori estimate for the error between a(U2
0 ,W

Bk) and the finite element counter
part follows from the discussion above. Note that the singular part is even with respect to
y, while the function U2

0 is odd for both the continuous and discrete problems. Therefore the
singular part cancels out and can be neglected in the computations in Theorem 3.6 leading to a
stronger estimate.
Estimating Ck. It can be seen that Ck = a(U1

0 ,W
Ck) where WCk solves

a(W, v) = (fCkreg , v)H−1,H1
0

+ (fCksing, v)H−1,H1
0
, ∀v ∈ H1

0 (Pn),

∫
Pn
Wu1 = 0

with

(fCkreg , v)H−1×H1
0

=
cos θ

sin θ

n−1∑
j=0

(sin(j + 1)kθ − sin jkθ)λ1

∫
Tj

u1v

−
n−1∑
j=0

sin(j + 1)kθ − sin jkθ

sin θ

∫
Tj

(
−cos(2j+1)θ∂2

xxu1−2 sin(2j+1)θ∂2
xyu1 +cos(2j+1)θ∂2

yyu1

)
v

(fCksing, v)H−1×H1
0

= −
n−1∑
j=0

∫
Sj

2 sin jkθ(1− cos kθ)∂ru1v.

An explicit a priori estimate for the error between a(U1
0 ,W

Ck) and the finite element counter
part follows from the discussion above. Note that the singular part is odd with respect to y, while
the function U1

0 is even for both the continuous and discrete problems. Therefore the singular
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Figure 4. Symmetric mesh for a regular pentagon for m = 5: the ray [oa0] is
divided into m equal segments.

part cancels out and can be neglected in the computations in Theorem 3.6 leading to a stronger
estimate.

The practical estimates for all quantities involved in the proof of Theorem 3.6 follows from
the following:

• Theorem 3.4, Lemma 3.5
• Effective practical estimates computed in [7, Section 5]

4. Numerical validation

This section provides a series of results which are used in the validated computing process for
the discrete eigenvalue problems and discrete linear systems. Although Intlab [41] has functions
dedicated to these types of problems, applying the corresponding functions directly leads to
inefficient computations overcoming, ultimately, the available computational power. To simplify
computational aspects, various theoretical results are shown in the following.

Given a mesh size h and a numerical computation, all quantities in the a priori estimates
are explicit. In all our computations the mesh considered is symmetric and corresponds to a
regular polygon inscribed in the unit circle with one vertex at a0 = (1, 0). See Figure 4 for an
illustration. The mesh size h is given by 1/m where m is the number of segments in which [oa0]
is divided. For a given parameter m the mesh has N = 1 + nm(m+ 1)/2 nodes.

First, the eigenvalues, eigenvectors and solutions to linear systems should be enclosed with
certified intervals using interval arithmetic in Intlab [41]. Let K,M be the rigidity and mass
matrices for the P1 finite elements, defined by

K =

(∫
Pn
∇ψi · ∇ψj

)
1≤i,j≤N

,M =

(∫
Pn
ψiψj

)
1≤i,j≤N

,

where ψi denotes the piece-wise affine function on the mesh of Pn taking the value 1 at the node
1 ≤ i ≤ N and zero for all other nodes.

We are interested in solving the generalized eigenvalue problemKu = λMu, imposing Dirichlet
boundary conditions on nodes in ∂Pn. This can be achieved as follows. Denote byK0,M0 ∈ Rd×d
the submatrices of K and M corresponding to the inner nodes. Then the eigenvalue equation
corresponding to the Dirichlet boundary condition is simply

(44) K0u = λM0u.
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For h small enough, the eigenvalues of (44) having small magnitude approximate the eigenvalues
of the Dirichlet Laplace operator on Pn. One first objective is to solve (44) rigorously, for a given
mesh size, including verified enclosures for the eigenvalues λ1,h, λ2,h and the first eigenvector
u1,h. In order to keep notations simple, since in this section we always deal with λi and ui as
solutions of linear systems, we drop the mention of h in the previous notations. The verification
process can be achieved using Intlab [41] and every element in K0,M0 should be provided using
an explicit interval enclosure by floating point numbers.

The symmetry of the mesh of Pn illustrated in Figure 4 indicates that all triangles in the mesh
are similar to an isosceles triangle with the top angle equal to 2π/n. In particular, the matrices
K, M have precise expressions for all non-zero elements. For interior nodes, not lying on the
boundary, we indicate the formulas corresponding to elements in K0,M0.

Proposition 4.1. The elements of the rigidity matrix K0 corresponding to nodes not lying on
the boundary of Pn are the following:

- i is the central node: Kii = n tan θ
2 ,Kij = − tan θ

2

- i is not a central node: Kii = 2
sin θ + 2 tan θ

2 = 2
tan θ + 4 tan θ

2 , Kij = − 1
tan θ (2 times per

row/column), Kij = − tan θ
2 (4 times per row/column)

If Ah = 0.5h2 sin θ is the area of one triangle in the mesh, the elements of the mass matrix
M0 corresponding to nodes not lying on the boundary of Pn are

- i is the central node: Mii = nAh/6,Mij = Ah/6
- i is not the central node: Mii = Ah,Mij = Ah/6.

When dealing with equation (44) multiple theoretical aspects facilitate the validation process.

Proposition 4.2. a) The matrices K0,M0 are non-singular and eigenpairs for (44) correspond
to eigenpairs for the matrix M−1

0 K0.
b) K0 is an M -matrix, i.e. K0 = sI − B with B ≥ 0 (all elements of B are non-negative).

Therefore K−1
0 has non-negative entries.

c) Furthermore, K−1
0 is positive (all entries are strictly positive). Therefore K−1

0 M0 is positive
and the Perron-Frobenius theorem implies its largest eigenvalue is simple and corresponds to a
positive eigenvector.

d) The smallest eigenvalue of M−1
0 K0 is simple and corresponds to a positive eigenvector. All

other eigenvectors contain both positive and negative terms.

Proof: a) The result follows at once. Denote by I the set of inner nodes of the mesh and N0

the number of inner nodes. Consider x = (xi) the basis coordinates of ψ =
∑N0

i=1 xiψi, which is
a P1 finite element function verifying ψ = 0 on ∂Pn. Therefore, we have

xTK0x = ‖∇ψ‖L2 ≥ 0, xTM0x = ‖ψ‖L2 ≥ 0.

If one of the previous quantities is zero then obviously x = 0. Positive definiteness follows.
b) The fact that K0 is an M -matrix follows at once from Proposition 4.1. Furthermore, since

each line or column of K0 has at least one non-diagonal entry which is strictly negative, each
line and column of B has a non-diagonal entry which strictly positive.

Let s > 0 be the maximal element on the diagonal of K0. Then 1
sK0 = I − 1

sB. The spectral
radius of 1

sB is smaller than 1 (see Theorem 8.1.18 from [24]). Therefore (1
sK0)−1 =

∑∞
k=0(1

sB)k,
which has non-negative entries since B ≥ 0.

c) Let ei be a vector of the canonical basis of RN0 and y = K−1
0 ei ≥ 0. Then

(sI −B)y = ei =⇒ sy = By + ei.

Since s > 0, if y = (yj)
N0
j=1 it follows that yi > 0. Next, if Bjk > 0 then yj > 0 if and only if

yk > 0. To see this observe that

syj ≥ Bjkyk and syk ≥ Bjkyj .
Inductively, since yi > 0 all successive neighbors of the node i verify yj > 0. Finally, since the
mesh is connected, we get y > 0. Since the result is valid for all elements of the canonical basis,
we have K−1

0 > 0.
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The matrix M0 is non negative by construction and has non-zero elements on every line and
column. Therefore K−1

0 M0 > 0.
The Perron-Frobenius theorem implies that the largest eigenvalue of K−1

0 M0 is simple and
corresponds to an eigenvector whose elements are strictly positive. See [24, Section 8.2] for more
details.

d) The largest eigenvalue of K−1
0 M0 corresponds to the inverse of the smallest eigenvalue

of M−1
0 K0. Therefore the smallest eigenvalue of (44) is simple and corresponds to a positive

eigenvector. All other eigenvector verifies ujMu1 = 0, for all j > 1. Since M has positive entries
on every line and all elements of u1 are positive, each uj , j > 1 must have both positive and
negative elements. �

The following result is useful for the numerical validation of the first three eigenvalues of the
regular n-gons. Proposition 4.2 already shows that the first discrete eigenvalue λ1,h is simple and
corresponds to an eigenvector with constant sign. The following result shows that the second
eigenvalue is multiple and its cluster is isolated from the rest by the fourth eigenvalue on the unit
disk B1. Therefore, for h small enough, if two distinct discrete eigenvalues smaller than λ4(B1)
are found for (15) then these correspond to λ1,h and λ2,h.

Proposition 4.3. a) The second eigenvalue of the regular n-gon is at least double. If Th is a
symmetric mesh of Pn like in Figure 4 then the discrete eigenvalue λ2,h for (15) is multiple.

b) Consider n ≥ 5. For a mesh size h > 0 small enough, quantifiable depending on n, there
exist at most three discrete eigenvalues for (15) in the interval [0, λ4(B1)], where B1 is the unit
disk. For n ≥ 5, these three eigenvalues correspond to: λ1,h, which is simple, and the cluster of
λ2,h with multiplicity 2.

Note that on the regular polygon the second eigenvalue is precisely double. This could be
justified with some extra arguments, but this is not necessary for our further analysis.

Proof: a) The regular n-gon is connected, therefore the first eigenvalue λ1 is simple and
corresponds to an eigenfunction u1 having constant sign. Consider the second eigenvalue λ2 and
an associated eigenfunction u2. It is known [1] that the nodal line corresponding to u2 touches
the boundary at exactly two points.

Assume λ2 is simple. Then any rotation ũ2 of u2 with a multiple of 2π/n around the origin
gives an eigenfunction for λ2. Since the nodal line of u2 touches the boundary at exactly two
points, it is impossible that ũ2 is a multiple of u2. Therefore the multiplicity of λ2 is at least 2.

Assume the regular n-gon is meshed with a symmetric mesh Th like in Figure 4. Consider λ2,h

a second eigenvalue for the discrete problem (15) together with a second eigenvector u2,h. Since
u2,h is orthogonal on u1,h, which has constant sign, there exist positive and negative elements
in u2,h. Consider a permutation of the elements of u2,h corresponding to a rotation of angle
multiple of 2π/n on the mesh. The positivity and negativity of elements of u2,h cannot remain
invariant for all such rotations. Therefore the discrete eigenvalue λ2,h is also multiple. Passing
to the limit when h→ 0 this also gives an alternative proof for the multiplicity of λ2(Pn).

b) Since the regular n-gon Pn is inscribed in the unit ball, we have Pn ⊂ B1, therefore λk(Pn) ≥
λk(B1) for any k ≥ 1. In [38] it is shown that λ1(Pn) is decreasing with respect to n. Such a result
is not available for higher eigenvalues. Whenever one can show that λ2(Pn) = λ3(Pn) < λ4(B1),
the result follows. For n = 4 the second eigenvalue of the square is λ2(P4) = 2.5π2 < λ4(B) =
j2
2,1 ≈ 5.13...2 = 26.31..., where j2,1 is the first zero of the Bessel function of the second kind.
Therefore, for all n ≥ 4 one has λ2(Pn) = λ3(Pn) < λ4(B1). For h small enough the discrete
eigenvalues verify the same inequality. This will be checked a posteriori in all our computations.
�

In [35] multiple results regarding validated computations regarding eigenvalues and eigenvec-
tors are presented. Theorem 16 in the previous reference shows that in the particular case of
symmetric matrices it is possible to obtain bounds for all eigenvalues and eigenvectors associ-
ated to simple eigenvalues in terms of residuals. A modification of this result corresponding to
generalized eigenvalues is given below, notably using the natural matrix norm associated to the
mass matrix. In some situations, this allows to avoid the usage of eigenvalue and eigenvector
verification routines (like verifyeig in Intlab [41]) which are costly for large matrices.



24 BENIAMIN BOGOSEL, DORIN BUCUR

Proposition 4.4. LetK,M be symmetric matrices in RN×N such thatK,M are positive definite.
Let x̃ ∈ RN and λ̃ ∈ R be an approximate eigenpair. Denote the residual vector r := Kx̃− λ̃Mx̃
and |x|2M = xTMx. Then the following assertions hold:

a) The interval
[
λ̃−

√
rTM−1r
x̃TMx̃

, λ̃+
√

rTM−1r
x̃TMx̃

]
contains at least one generalized eigenvalue of

(K,M).
b) If a ≥ r, |x̃|M = 1 and if [λ̃ − a, λ̃ + a] contains a simple eigenvalue λ∗ but no more

eigenvalues of (K,M) then there is an eigenvector x∗ with associated with λ∗ verifying

|x̃− x∗|2M ≤
rTM−1r

a2
+ max

(|x̃|M − 1)2,

(
1−

√
x̃TMx− rTM−1r

a2

)2
 ,

provided the square root exists.

Proof: The proof could follow from [35, Theorem 16] by a change of variables, choosing
A = M−1/2KM−1/2, but for the sake of completeness the following simple arguments are given
below.

a) Since generalized eigenvalues of (K,M) correspond to eigenvalues of M−1K, which is sym-
metric, positive definite, there exists a basis of RN made of generalized eigenvectors (vk) of
(K,M) associated to eigenvalues λk > 0, k = 1, ..., N . The vectors vk are assumed orthonormal
with respect to the matrix M , in other words, vTi Mvj = δij . Therefore, if x̃ =

∑N
i=1 αkvk then

x̃TMx̃ =
∑N

k=1 α
2
k. On the other hand

r = Kx̃− λ̃Mx̃ =
N∑
k=1

(λk − λ̃)αkMvk.

This implies that

(45) rTM−1r =

N∑
i=1

(λk − λ̃)2α2
k ≥

(
min

k=1,...,N
|λk − λ̃|2

)
x̃TMx̃.

This proves the first assertion.
b) Assume λ∗ = λk is simple with eigenvector vk the normalization conventions described

previously. Using the decomposition x̃ =
∑N

i=1 αkvk we find

x̃TMx̃ =
N∑
j=1

α2
k.

The hypothesis on the separation of λ̃ with respect to λj , j 6= k gives

rTM−1r = (λk − λ̃)2α2
k +

∑
j 6=k

(λj − λ̃)2α2
j ≥ a2(x̃TMx̃− α2

k).

On the other hand, the previous inequality gives

|x̃− vk|2M = x̃TMx̃− 2αk + 1 ≤ rTM−1r

a2
+ (αk − 1)2.

Without loss of generality, assume αk ≥ 0. If αk ≥ 1 then 1 ≤ αk ≤
√
x̃TMx̃, therefore

|x̃− vk|2M ≤
rTM−1r

a2
+ (|x̃|M − 1)2

For 0 ≤ αk < 1 we have αk ≥
√
|x̃|2M −

rTM−1r
a2

, provided |x̃|2M −
rTM−1r

a2
≥ 0. In this case

|x̃− vk|2M ≤
rTM−1r

a2
+

(
1−

√
x̃TMx− rTM−1r

a2

)2

.

The conclusion follows. �
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Remark 4.5. It can be observed that the technique used to prove the second point in Proposition
4.4 gives an estimate concerning the distance to the eigenspace associated to a cluster in case
the eigenvalue is multiple. In this case the residual together with the minimal distance from the
cluster to the closest neighboring eigenvalues is enough to give the estimate.

The expressions involving the matrix norm | · |M can be evaluated either explicitly by solving
a validated linear system or precise properties of the matrix M (which is very particular in our
case: see Proposition 4.1) can help to turn these estimates into a more explicit form.

According to [26] the eigenvalues of the mass matrix verify
1

2
minMii ≤ λmin(M) ≤ λmax(M) ≤ 2 maxMii.

The explicit formulas for Mii give
1

12
min{n, 6}Ah ≤ λmin(M) ≤ λmax(M) ≤ 1

3
max{n, 6}Ah,

where Ah = 0.5h2 sin θ is the area of a small triangle in the mesh shown in Figure 4. Therefore

rTM−1r ≤ 1

λmin(M)
|r|2 ≤ 12

min{n, 6}Ah
|r|2, |x|2 ≤ 1

λmin(M)
|x|2M ≤

12

min{n, 6}Ah
|x|2M .

Similar inequalities remain valid for (K0,M0) which are submatrices of (K,M). Classical inter-
lacing inequalities show that eigenvalues of K0, M0 verify the same bounds.

A second key point is the approximation of the material derivatives defined in (8) which imply
solving the discrete systems associated to the finite element formulations. For simplicity, the
index h is dropped in the following. It should be noted that in the remaining of this section, only
the discrete problem is considered. In this case, given the (discrete) eigenfunction u1 associated
to λ1 the system

(46)
(
A b
bT 0

)(
U
0

)
=

(
f
0

)
needs to be solved for

A = K0 − λM0 ∈ Rd×d, b = M0u ∈ Rd.
The compatibility condition fTu1 = 0 needs to be verified by f ∈ Rd, where u1 is the eigenvector
associated to the smallest eigenvalue λ1.

Recall that T± are the two triangles delimited by y = 0 and y = ±x tan 2π
n . Next, ϕ is the P1

function defined on the triangulation of Pn with n triangles where one node is at the center (see
Figure 1) taking value 1 only at (1, 0). We have

∇ϕ =

(
1,− 1

tan θ

)
χT+ +

(
1,

1

tan θ

)
χT− ,

where θ = 2π/n. The variational formulation for (21) reads: U ∈ H1
0 (Pn)2 verifying

a(U, v) =

∫
Pn

[
(∇u1 · ∇ϕ)∇v + (∇ϕ · ∇v)∇u1 −

(
2λ1/n

0

)
u1v.

]
The explicit equations verified U = (U1, U2) defined in (8) are as follows: Ui ∈ H1

0 (Pn)

(47)
∫
Pn
∇U1 · ∇v − λ1U1v =

∫
T+∪T−

(2∂xu∂xv + ∂yϕ(∂xu∂yv + ∂yu∂xv))− 2
λ1

n

∫
Pn
uv

(48)
∫
Pn
∇U2 · ∇v − λ1U1v =

∫
T+∪T−

(2∂yϕ∂yu∂yv + (∂xu∂yv + ∂yu∂xv))

for every v ∈ H1
0 (Pn), with constraints

∫
Pn Uiu1 = 0.

Consider the following partial rigidity matrices:

Kxx =

(∫
T+∪T−

∂xψi∂xψj

)N0

i,j=1

,Kyy =

(∫
T+

∂yψi∂yψj −
∫
T−

∂yψi∂yψj

)N0

i,j=1
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K±xy =

(∫
T±

∂xψi∂yψj + ∂yψi∂xψj

)N0

i,j=1

Note that these matrices are only considered for interior vertices of the mesh, since Dirichlet
boundary conditions are taken on ∂Pn. For the triangulation illustrated in Figure 4 the elements
of the matrices above are all explicit in terms of θ = 2π

n and the usual trigonometric functions.
The terms can be found using the following result.

Proposition 4.6. For a triangle which is homothetic to T+ with factor h, with vertices labeled
i, j, k in the order of (0, 0), (1, 0), (cos θ, sin θ), θ = 2π

n , the gradients of the associated P1 finite
element functions ψi, ψj , ψk are given by

∂xψi = − 1
h , ∂xψj = 1

h , ∂xψk = 0

∂yψi = − 1
h tan θ

2 , ∂yψj = − 1
h tan θ , ∂yψk = 1

h sin θ .

These formulas coupled with the fact that all elements in the symmetric mesh have area 1
2h

2 sin θ
show that the elements of Kxx,Kyy,Kxy,Kyx are completely determined in function of θ and do
not depend on h.

Then the discrete systems associated to (47), (48) when using P1 finite elements have the
form

(49) (K0 − λ1M0)U1 = 2Kxxu1 −
1

tan θ
(K+

xy −K−xy)u1 −
2λ1

n
M0u1

(50) (K0 − λ1M0)U1 = − 2

tan θ
Kyyu1 + (K+

xy +K−xy)u1,

verifying the following orthogonality relations

(51) u1M0U1 = u1M0U2 = 0.

More precisely, the system of the form (46) needs to be solved for

A = K0 − λ1M0, b = M0u1,

where u1 is the first generalized eigenvector associated to (K0,M0) and the right hand sides are
computed using (49), (50).

According to [27], in order to precondition the saddle point system it is enough to consider a
perturbation of the form

(52) A(w) = A+ wbbT

and

(53) A(w) =

(
A(w) 0

0 bTA(w)−1b

)
.

Then according to [27] and [16] we have the following result:

Lemma 4.7. a) Denoting H =

(
A b
bT 0

)
, if w > 0, A is positive semi-definite and H is non-

singular then A(w) given in (52) is positive definite.
b) The eigenvalues of A(w)−1H belong to[

−1,
1−
√

5

2

]
∪

[
1,

1 +
√

5

2

]
.

c) If U∗ is the exact solution of HU∗ = f =

(
f
0

)
then

(54) ‖U∗ − U‖2 ≤
2√

5− 1
max{‖A(w)−1‖2, ‖A(w)‖2‖bT b‖−1

2 }‖AU − f‖2.

Proof: a) Let x ∈ Rd. Then xTA(w)x = xTAx+w(bTx)2 ≥ 0, since A is positive semi-definite.
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Moreover, xTA(w)x = 0 implies xTAx = 0 and bTx = 0. Therefore If x̄ = (x, 0) then Hx̄ = 0
and since H is non-singular, x = 0. Threrfore A(w) is positive definite.

b) This is proved in [16, Theorem 2.5].
c) This is proved in [27, Theorem 2.2].

�
In Lemma 4.7 we have are two degrees of freedom regarding the choice of parameters. The

first one is the scalar parameter w. Secondly, notice that multiplying the vector b with a scalar
does not change solutions to the saddle point system (46). In the following b is chosen of the
form b = γM0u1.

In the following, the dimension d of the system (46) is N0, the number of nodes in the mesh,
not lying on the boundary ∂Pn. Consider the set of generalized eigenpairs (λi, ui), i = 1, ..., d
for (44) which forms a basis of Rd, orthonormalized with respect to M0. Assume λ1 ≤ ... ≤ λd.
For a general x ∈ Rd let x =

∑d
i=1 αivi its decomposition in this basis.

Then, for b = γM0u1 we have

xTA(w)x = xT (K0 − λ1M0)x+ γ2w(uT1 M0x)2 =
d∑
i=1

α2
i (λi − λ1) + γ2wα2

1,

since bTx = γ
∑n

i=1 αiu
T
i M0u1 = γα1. Therefore xTA(w)x ≥ min{λ2 − λ1, γ

2w}. Since A(w) is
symmetric, λ1 is simple (Proposition 4.2) and w > 0 we find

‖A(w)−1‖2 ≤ max{ 1

λ2 − λ1
,

1

γ2w
}.

Continuing the estimates, we have ‖A(w)‖2‖bT b‖−1
2 ≤ (‖A‖2+w‖b‖2)/‖b‖2 ≤ ‖A‖∞/‖b‖22+w.

Replacing b = γM0u1 gives

‖A(w)‖2‖bT b‖−1
2 ≤ ‖K0 − λ1M0‖∞

γ2‖M0u1‖22
+ w.

The matrix norm ‖K0−λ1M0‖∞ is easily evaluated using Intlab. Thus, once w and γ are chosen,
estimate (54) is explicit once the residual ‖AU − f‖2 is known.

The inequalities above show that:
• if γ2w ≥ λ2 − λ1 then ‖A(w)−1‖2 ≤ 1/(λ2 − λ1).
• choosing w = (λ2 − λ1)/γ2 gives

‖A(w)‖2‖bT b‖−1
2 ≤ ‖K0 − λ1M0‖∞

γ2‖M0u1‖22
+
λ2 − λ1

γ2
,

therefore, when γ increases the estimate gets stronger.
• Nevertheless, taking γ large will increase the interval evaluating how well the floating
point approximation verifies the normalization constraint u1M0U = 0. Choosing γ too
large will deteriorate the global residual estimate. In practical computations, choosing
γ = γ0/‖M0u1‖2 for γ0 ∈ [1, 10] gives satisfying results.

Given H the explicit matrix from (46), an interval enclosure H is considered. If enclosures
for the discrete eigenvector u1 are available, then an enclosure f for the right hand side of (49),
(50) are computed. Given U a floating point solution found for solving (46) for the system given
by the midpoint of H (through an iterative approach, Conjugate Gradient for example) with
right hand side the midpoint of f , the residual ‖HU − f‖2 is evaluated using interval arithmetic.
Thus, a validated upper bound for ‖HU − f‖2 is found and an explicit bound for the distance
‖U − U∗‖2 is obtained.

5. Validation strategy, implementation and results

5.1. Detailed description of the validation procedure. In this section, the validation strat-
egy is presented, based on results proved in previous sections. All computations are performed
using interval arithmetic in Intlab [41].
Inputs.
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Figure 5. Mesh of a triangular slice T 0
h of the regular n-gon (left). Mapping from

the slice T 0
h to the whole mesh used to extend a function by dihedral symmetry

(right).

- n, the number of vertices of the regular polygon
- m the number of segments in which the segment [0, 1] is divided in the mesh shown in Figure

4. This gives rise to the mesh size parameter h = 1/m.
The regular polygon Pn is meshed with a mesh Th like in Figure 4, in particular the rays Si are

meshed exactly. The mesh is constructed manually and the submesh T 0
h corresponding to points

in {x ≥ 0, y ∈ [0, x tan θ]} is considered. An explicit mapping allows to extend finite element
functions on T 0

h to Th respecting the dihedral symmetry. See Figure 5 for an example.

A. Finite element computations.

a) Rigidity and Mass matrices. Following Proposition 4.1 the elements of the rigidity and
mass matricesK0,M0 associated to the interior nodes have explicit formulas in terms of θ = 2π/n.
The matrices are constructed using these expressions in Intlab. ThusK0,M0 are interval matrices
containing the exact rigidity and mass matrices. Since K0, M0 are submatrices associated to the
interior nodes, this automatically imposes the Dirichlet boundary conditions.

b) The first discrete eigenvalue and eigenfunction. The first two eigenvalues for the dis-
crete eigenproblem (15), K0ui,h = λi,hM0ui,h are computed initially using floating point arith-
metic. Proposition 4.4 gives two interval enclosures for λ1,h and λ2,h in terms of the residuals.
Following Proposition 4.3 if these two intervals together with the a priori estimates (16) give
upper bounds smaller than the fourth eigenvalue of the unit ball λ4(B1) then the two enclosures
correspond indeed to the first two discrete eigenvalues of (K0,M0).

For the first eigenvalue λ1,h, which is simple (see Proposition 4.2) an enclosure is found for
the first eigenvector u1,h. This is achieved either using a modification of the routine verifyeig
in Intlab [41] (where the matrix inversion is replaced with three validated linear systems solved
with verifylss) applied on the slice T 0

h or by using the direct bound using the residual, shown
in Proposition 4.4. Whenever Intlab can be used for bounding the first eigenvector it gives a
tighter enclosure than the residual estimate.

The second eigenvalue is always validated using the residual estimate given in Proposition
4.4. For the second eigenvalue the whole mesh of Pn is be used. For large meshes, the existence
of symmetric eigenfunctions for λ2,h allows to use only half the mesh for finding an interval
enclosure for the second discrete eigenvalue. The associated matrices can be obtained taking
submatrices corresponding to the full mesh and replacing the diagonal values corresponding to
m/2 nodes underlined in Figure 6.

c) Approximation of the material derivatives. Next, all information required for solving
(49), (50) is computed using interval arithmetic. In particular the partial rigidity matrices
described in Proposition 4.6 are computed using exact formulas in Intlab.
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Figure 6. Using half the mesh of Pn to solve the discrete problem associated
to the second eigenvalue in (15). The associated mass and rigidity matrices are
submatrices of those for the full polygon. The diagonal elements of the points
underlined need to be modified slightly.

Systems (49), (50) are solved initially in floating point arithmetic using the Conjugate Gradient
algorithm. An initialization with the zero vector guarantees that the orthogonality condition on
u1,h is preserved since the right hand sides are orthogonal to u1,h.

Following Lemma 4.7 the residuals for the linear systems are computed using interval arith-
metic for the floating point results obtained previously. All variables appearing in the estimate
(54) are computed in floating point arithmetic. Notably, the interval enclosure of λ2,h − λ1,h

obtained in the previous step is used.
In the end, interval enclosures for solutions of (49) and (50), verifying the orthogonality

conditions (51), are obtained.

B. Computation of the eigenvalues of the Hessian matrix. Up to this point interval
enclosures are available for λ1,h, λ2,h, u1,h, U

1
h , U

2
h . These are used to compute the eigenvalues of

the Hessian matrix of the first eigenvalue, given in Theorem 2.1.
The computation of the integrals of partial derivatives of u1,h and U ih is achieved by assembling

partial rigidity matrices for all triangles Ti corresponding to slices of the regular n-gon into n
parts like in Figure 1. These matrices depend again explicitly on θ = 2π/n.

At the end of this step, the discrete approximations µhj , j = 0, ..., 2n− 1 for the eigenvalues of
the Hessian are available with guaranteed interval enclosures.

C. A priori estimates for finite elements. The final step is controlling the distances |µj−µhj |,
j = 0, ..., 2n− 1 using the a priori error estimates for finite element computations:

• |λk − λk,h| is bounded by (16) according to [33].
• ‖∇u1 −∇u1,h‖L2 and ‖u1 − u1,h‖L2 are bounded by (18), (19).
• In some cases, the equality (20) may be used to iteratively replace the weakest of the
three estimates above with a better one, therefore improving all estimates.

Finally, results in Section 3 are used to quantify the finite element errors for the solutions
of the material derivatives (47), (48) and for equations described in Section 3.1 involved in the
estimation of the errors for the Hessian eigenvalues.

D. Certification of local minimality. At the end of the previous step a guaranteed error
estimate is found for each one of the Hessian eigenvalues in Theorem 2.1. According to [7,
Section 4] four of the eigenvalues of the Hessian on the regular n-gon are identically equal to
zero. Thus, if 2n − 4 of the interval enclosures found for the Hessian eigenvalues are included
in (0,+∞), then the numerical certification of local minimality succeeds: the regular n-gon is a
local minimizer for the first Dirichlet-Laplace eigenvalue.
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Figure 7. Computations for the regular pentagon. Left: certified intervals
containing the non-zero eigenvalues of the Hessian (three pairs of double eigen-
values). Right: certified intervals containing the smallest non-zero eigenvalue.

5.2. Simulations and Results. Given n the number of vertices and m the number of segments
on the ray [oa0] in the mesh illustrated in Figure 4, the computation described in the previous
section is performed. The validation procedure succeeds for n ∈ {5, 6}. The case n ≥ 7 is
inaccessible for the moment. It is not a question of computational power: the a priori error
estimates are not small enough compared to the size of the intervals associated to the variables
appearing in the computation. Details are shown below.
The regular pentagon. The computations described in the previous section are performed

for meshes corresponding tom ∈ {200, ..., 600}. It can be seen in Figure 7 that form large enough
the 2n− 4 intervals containing the non-zero eigenvalues of the Hessian matrix (see Theorem 2.1)
are contained in (0,∞), therefore these eigenvalues are guaranteed to be positive. This shows
that the regular pentagon is a local minimizer for problem (2). The validation procedure succeeds
already for m = 250. Multiple observations are given below:
(a) Evolution of intervals enclosures with respect to h = 1/m. The size of the intervals

stabilizes, even though the mesh becomes finer and finer. This is due to the quick growth in the
interval size for the eigenvalues µhj computed with finite elements (formulas from Theorem 2.1
with finite element variables). Multiple factors contribute to this:

• The condition number of the rigidity matrix behaves like O(h−2) = O(m2) (see [26]).
Therefore, the performance of linear solvers becomes worse for finer meshes. This also
affects the interval enclosures produced by Intlab [41].
• The linear systems (49), (50) have wider right hand sides for fine meshes, therefore
produce wider results.
• The Hessian eigenvalues computations depend on integrals of the form

∫
Ti
∂x,yu1,h ·

∂x,yU
1,2
h . These evaluations produce intervals proportional to the number of triangles

in the slice Ti, which is O(m2) = O(h−2).
• The combined effect of all these aspects is illustrated in Figure 8 where it can be seen
that the interval size increases drastically when h→ 0. The a priori estimate verify the
theoretical O(h) bound, while the interval sizes behave like O(h−5).

(b) Evaluation of finite element quadratures with intervals. Let us discuss in more
detail the evaluation of finite element terms of the form

∫
Ti
∂x,yu1,h ·∂x,yU1,2

h with intervals. It is
apparent from Proposition 4.6 that the elements of the rigidity matrices used to compute these
quantities do not depend on the scaling of the triangle. The area of the triangle is canceled
when computing the integral of a term of size 1/h2. Therefore, assuming uh, Uh1,2 are computed
as solutions of linear systems and eigenvalue problems, obtaining intervals of a given size ρ,
assuming this size is not worsened when h→ 0 (this is often not the case), the interval enclosure
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Figure 8. Computations for the regular pentagon. The radius of the intervals
for the FEM computation of the Hessian eigenvalues is shown with respect to the
mesh size h = 1/m, together with the corresponding a priori estimate, whose
leading term is O(h).

for
∫
Ti
∂x,yu · ∂x,yU1,2 will be proportional to the number of triangles in the mesh of Ti times

ρ, giving O(m2ρ) = O(ρh−2) in our case. Therefore, the sole evaluation of the quadrature of a
triangulation produces a drastic increase in the resulting intervals.

Another interpretation for the increase in interval sizes when dealing with integrals of deriva-
tives of P1 functions given with intervals, can be given as follows. If the discrete functions are
given as intervals of size ρ then an interval enclosure of the integral includes the worst case
scenario when the function oscillates with amplitude ρ from one vertex to the next one. Thus,
errors are proportional to the number of oscillations, i.e. the number of triangles.

For terms of the form
∫
Ti
∇u1,h · ∇U1,2

h , the fact that u1,h is a discrete eigenvalue should
be used, to obtain the equivalent formula λ1,h

∫
Ti
u1,hU

1,2
h . This latter integral is computed

using a mass matrix, whose elements are proportional to h2. Therefore, there is no explosion in
the interval size as the mesh increases for integrals not containing gradients. This observation
motivates the use of integrals without derivatives, whenever possible, to decrease the size of the
interval enclosures.

The previous observation can be seen as the interval arithmetic analogue of the a priori
estimates:

• The estimate ‖∇u−∇uh‖2L is of order h, while ‖u− uh‖L2 = O(h2), assuming u ∈ H2.
• Assuming triangles of uniform area, and enclosures for finite element variables uh, vh with
uniform intervals with respect to h, the interval enclosure for

∫
T ∇uh · ∇vh has a radius

O(h−2) bigger than the one for the enclosure for
∫
T uhvh.

The regular hexagon. Computations for the regular hexagon for m ∈ {200, 250, ..., 600}
are shown in Figure 9. The certification of local minimality using the method proposed in the
previous section succeeds again for m large enough: the certified lower bound for the smallest
non-zero eigenvalue becomes positive. The validation procedure succeeds already for m = 380.
On the other hand, compared to the regular pentagon, for m = 600 the radius of the intervals
for the Hessian eigenvalues computed using finite elements becomes larger than the a priori
estimate. This shows that refining the mesh further will not improve the results.
The regular heptagon. Computations for the regular heptagon for m ∈ {200, 250, ..., 600}

are shown in Figure 10. The certification of local minimality fails in this case. The radius of the
intervals for the Hessian eigenvalues computed using finite elements becomes larger than the a
priori estimate for m = 600. Moreover, it can be observed that the radius of the enclosure of
the smallest eigenvalue increases for m ≥ 500 even though the a priori estimate continues to
decrease.
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Figure 9. Computations for the regular hexagon. Left: evolution of the a
priori estimates and the size of the intervals for µhj coming from the FEM com-
putations. Right: certified intervals containing the smallest non-zero eigenvalue.
The validation of local minimality succeeds in this case.

Figure 10. Computations for the regular heptagon. Left: evolution of the a
priori estimates and the size of the intervals for µhj coming from the FEM com-
putations. Right: certified intervals containing the smallest non-zero eigenvalue.
The validation of local minimality does not succeed in this case.

n Results from [7] Results of this paper
h DoF Intervals h = 1/m m DoF Intervals

5 9.8e-4 2.5 million 7 0.0040 250 156876 X
6 4.2e-4 17 million 7 0.0026 380 434341 X
7 1.9e-4 97 million 7 - - -
8 1.35e-4 220 million 7 - - -

Table 1. Comparing the estimates in [7] with those of this paper. The improved
error estimates allow us to use interval arithmetic in all computation, validating
the local minimality for the regular pentagon and the regular hexagon.

Comparison with previous results. Results provided in [7] used weaker a priori estimates.
Meshes for which these estimates could validate the positivity of the non-zero eigenvalues of the
Hessian matrix were too large to validate local minimality using intervals. The improvement of
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the constant in the interpolation constant (10) was also helpful to further decrease the compu-
tational cost. Table 1 shows a quick comparison of the results. Mesh sizes are chosen in each
case such that h is as large as possible while a priori estimates guarantee the positivity of the
Hesian eigenvalues.

5.3. Implementation. The Matlab code implementing the steps described above allowing to
certify the local minimality for n ∈ {5, 6} can be found at the following repository:

https://github.com/bbogo/PolyaSzego
It requires a working installation of Intlab [41]. See Appendix B for more details.

5.4. Conclusion, Perspectives. The theoretical results and certified numerical simulations
presented in this paper show the following result:

Theorem 5.1. The regular n-gon is a local minimizer for the first Dirichlet-Laplace eiengvalue
among n-gons with fixed area for n ∈ {5, 6}.

Concerning perspectives for improving the results we mention the following:
• A posteriori estimates. Refining the error estimate for ‖∇u1 − ∇u1,h‖L2(Pn) would
directly influence the leading term for the error estimates discussed in Section 3.1. Having
better estimates would allow the validation procedure to succeed for meshes with fewer
triangles, where using interval arithmetics for finite element computations will lead to
tighter interval enclosures. The results in [8] should be applied in this context.
• Higher order elements. The context of P2 finite elements may be of interest since it
gives improved error estimates. Results in [34] could help to adapt such techniques to
our problem.
• Spectral methods. The method of particular solutions was used in [11], [10] to compute
enclosures for the Dirichlet Laplacian eigenvalues and eigenfunctions on polygons. Similar
results should be applied to problems (21), where the singular behavior should be taken
into account in the choice of particular solutions. Methods described in [18] behave well
in singular contexts. Investigating quantified error bounds for such methods is of interest
concerning the results of this paper.

Appendix A. Morley element and interpolation constants

Consider T a triangle in the plane with vertices x1, x2, x3 labeled in the positive trigonometric
sense. Denote by γ1, γ2, γ3 the edges opposite to x1, x2, x3, respectively, having positive orienta-
tion. By definition, the Lagrange P1 interpolant Π(u) of a function u defined on a triangle T ,
is the affine function taking the same values as u at the vertices of T . Therefore Π(u)− u takes
zero values at the vertices of T . Consider the space

V 2(T ) = {u ∈ H2(T ) : u(xk) = 0, k = 1, 2, 3}.
Note that this space is well defined since functions in H2(T ) are continuous, thus point values
can be considered. In order to obtain the best constant in the inequality

(55) ‖∇(Π(u)− u)‖L2 ≤ C(T )|u|H2 ,

where |u|2H2 = ‖∂xxu‖2L2(T ) + 2‖∂xyu‖2L2(T ) + ‖∂yyu‖L2(T ) the following Rayleigh quotient is
considered:

C(T ) = sup
u∈V 2(T )\{0}

‖∇u‖L2(T )

|u|H2(T )
.

This constant is well defined and an upper bound can be found through classical estimates
involving the eigenvalues of the Laplacian and the Poincaré inequality. Indeed, assume for
contradiction that for some sequence (un) ∈ H2(T ) we have ‖∇un‖L2(T ) = 1 and |un|H2(T ) → 0.
Let us denote un = 1

|T |
∫
T un, so that we can apply the Poincaré-Wirtinger inequality in H1(T )

to the functions un − un, hence their L2 norms are uniformly bounded. This means that the
sequence (un−un)n is bounded in H2 and each function vn := un−un is constant on the vertices
of T , while ‖∇vn‖L2(T ) = 1 and |vn|H2(T ) → 0. We can assume that vn converges weakly in

https://github.com/bbogo/PolyaSzego
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H2(T ) to some function v. In particular, the convergence will also hold in C0,α(T ), for every
α ∈ (0, 1) and in H1(T )-strongly. We get that |v|H2(T ) = 0, so that v is affine. But, v is
constant on the vertices of T , so that v is a constant function, in contradiction with the fact that∫
T ‖∇v‖

2 = 1.
This constant is denoted C4(T ) in [29], where it is shown that

(56) C(T ) ≤
√

n2

n2 − 1
C(n)(T ),

where C(n)(T ) is defined as follows:
• Given a triangle τ with vertices pk and edges γk, i = 1, 2, 3 and ϕ ∈ H2(τ) consider the
interpolation operator Π

(β)
τ (using the same notations as in [29]) such that:

a) Π
(β)
τ ϕ ∈ {a1x

2 + a2xy + a3y
2 + a4x+ a5y + a6 : ai ∈ R, i = 1, ..., 6}.

b) Π
(β)
τ ϕ(pk) = ϕ(pk), k = 1, 2, 3

c)
∫
γk
∇Π

(β)
τ ϕ · n =

∫
Γk
∇ϕ · n, k = 1, 2, 3.

In other words, Π
(β)
τ ϕ is a second order polynomial in x, y taking the same values

as ϕ at the vertices of τ and having the same average normal flux across the edges γk,
k = 1, 2, 3.

This interpolation operator is also called the Morley interpolant. Since the gradient
of a quadratic function is a linear function, the average of the normal derivative on an
edge of τ is proportional to the normal derivative at the midpoint of the side. Thus, one
can take as degrees of freedom for the Morley interpolant the values at the vertices and
the normal derivatives at the midpoints of the sides.
• Given n ≥ 1 define T ′ = ∪n2

k=1τk the triangulation of T into n2 congruent triangles similar
to T (splitting each side of T into n equal segments like in Figure 5). Given u ∈ H2(T )

consider the interpolant Π(β)u such that

Π(β)u|τk = Π(β)
τk
u.

In other words, on each sub-triangle τk, Π(β)u is a quadratic polynomial, taking the same
values as u at the vertices of τk and having the same normal flux as u across the sides of
τk.
• The constant C(n)(T ) is defined by

(57) C(n)(T ) = sup
u∈V 2(T )\0

‖∇Π(β)u‖L2(T ′)

|Π(β)u|H2(T ′)

.

The notations L2(T ′) and H2(T ′) simply mean that functions are in the corresponding
spaces for each member of the triangulation T ′. The functions may not be globally H2,
for example.

The estimate (56) states that the discrete eigenvalue obtained when using the Morley finite
element on a triangulation of T using equal triangles gives an upper bound for the constant in
the interpolation estimate (55). The proof of the estimate is a simple consequence of the identity

|ϕ|2H2(τ) = |Π(β)
τ ϕ|2H2(τ) + |ϕ−Π(β)

τ ϕ|2H2(τ),

which follows from the definition of the Morley interpolant. In other words, the Morley inter-
polant decreases the H2 semi-norm on a triangle.

In order to have a tight estimate for the interpolation constant C(T ) it is enough to have a
certified inclusion for C(n)(T ), obtained using interval arithmetic.

To achieve this, we show below an intuitive strategy for assembling the matrices associated
to the Morley element, which can help compute C(n)(T ). For alternative approaches one might
consider [28]. The strategy is as follows:

• From the degrees of freedom for the Morley element (values at vertices, normal derivatives
at midpoints of the edges) one can find the full gradient at the midpoints of the edges
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with an elementary observation regarding quadratic functions: if P is quadratic on T

then P (pk+1)− P (pk) = 2|pk+1 − pk|∂τP
(
pk+1+pk

2

)
.

• Gradient of a quadratic function on T is affine on T . Knowing gradients at midpoints
gives the gradients at vertices.
• Knowing gradients as vertices as affine functions leads to easy assembly of the matrices
involving first and second derivatives using classical ideas regarding P1 finite elements.

In the following, the contribution of a triangle of the mesh to the assembly matrices is de-
scribed. The procedure could be applied to a general mesh Ω where the degrees of freedom
corresponding to Morley finite elements correspond to values at vertices and values on edges
(corresponding, for example, to half the normal derivatives across the edges).

Supposing that v1, v2, v3 are the values of an quadratic function p at the vertex of T and
ψ12, ψ31, ψ23 are half the normal derivatives at the midpoints of the sides xixj and `ij = |xi−xj |
then the components of the gradient of p at the vertices of T can be found through the matrix
product: 

p1,x

p1,y

p2,x

p2,y

p3,x

p3,y

 =MT


v1

v2

v3

ψ23

ψ31

ψ12


where

MT =

−I2 I2 I2

I2 −I2 I2

I2 I2 −I2

M23 0 0
0 M31 0
0 0 M12




0 − 1
`23

1
`23

0 0 0

0 0 0 σ23 0 0
1
`31

0 − 1
`23

0 0 0

0 0 0 0 σ31 0
− 1
`12

1
`12

0 0 0 0

0 0 0 0 0 σ12

 .

The unitary matrices Mij = 1
`ij

[(xj − xi)|(xj − xi)⊥] rotate a coordinate system aligned with
xj − xi to make it align with the one corresponding to the canonical basis. Tangential and
normal derivatives of p at midpoints are transofrmed into partial derivatives ∂xp, ∂yp. The
values σij ∈ {−1, 1} are arbitrary (but fixed) sign choices for the flux on the edge [xi, xj ] giving
an orientation for the flux, opposite for the two triangles adjacent to this side.

Next, consider the permutation matrix P which regroups on the first three components the
values of ∂xp and on the last three the values of ∂yp.

p1,x

p2,x

p3,x

p1,y

p2,y

p3,y

 = PMT


v1

v2

v3

ψ23

ψ31

ψ12

 .

Next, consider the mass and rigidity matrices KT ,MT for P1 finite elements on the triangle T .
Denoting by v a generic vector containing all degrees of freedom for the Morley elements (one

per vertex and one per edge) we have the following. Assume the domain Ω is triangulated with
triangles {Ti}Ni=1.

A) The matrix Kxx which for a Morley function ũ with degrees of freedom v computes

vTKxxv = |ũ|2H2(T ′) =
N∑
i=1

∫
Ti

(∂xxũ)2 + 2(∂xyũ)2 + (∂yyũ)2 =

N∑
i=1

‖∇px‖2L2(Ti)
+ ‖∇py‖2L2(Ti)

,

where px, py denote degree one polynomials corresponding to ∂xũ, ∂yũ on the triangles of the
mesh, is given as follows. For each triangle in the mesh, the contribution corresponding to the
degrees of freedom associated to the values and fluxes along the elements of the triangle is given
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by

MT
TP

T

(
KT 0
0 KT

)
PMT ,

where KT is the rigidity matrix for P1 elements on the triangle T .
B) The matrixMxx which for a Morley function ũ with degrees of freedom v computes

vTMxxv = ‖∇ũ‖2L2(T ′) =
N∑
i=1

∫
Ti

(∂xũ)2 + (∂yũ)2 =
N∑
i=1

‖px‖2L2(Ti)
+ ‖py‖2L2(Ti)

is given as follows. Then for each triangle in the mesh, the contribution corresponding to the
degrees of freedom associated to the values and fluxes along the elements of the triangle is given
by

MT
TP

T

(
MT 0
0 MT

)
PMT ,

where MT is the mass matrix for P1 elements on the triangle T .
The assembly procedure described above may not be the most efficient, but it has the advan-

tage of being clear and explicit. Moreover, for the triangulation of the original triangle T into
n2 congruent triangles the assembly can be rendered explicit and evaluated with INTLAB with
a tight interval enclosure. The constant C(n)(T ) defined in (57) is given by

C(n)(T ) =
√

1/ρ1, where ρ1 = inf
v,v(xk)=0

vTKxxv
vTMxxv

,

which means that ρ1 is the smallest generalized eigenvalue for the matrices (Kxx,Mxx), tak-
ing into account the Dirichlet boundary conditions v(x1) = v(x2) = v(x3) = 0. To impose
these boundary condition, the corresponding lines and columns are eliminated from (Kxx,Mxx)
obtaining (K0

xx,M0
xx).

Given ρ, the smallest generalized eigenvalue of (K0
xx,M0

xx) approximated using a floating point
computation, the routine isspd from INTLAB verifies if the matrix

K0
xx − (ρ− ε)M0

xx

is symmetric positive definite for some ε > 0 (for example ε = 10−6). If the numerical validation
succeeds, an upper bound for C(n)(T ) is obtained, which gives an upper bound for C(T ) from
(56).

Observing that the constant C(T ) defined in (55) scales linearly with the size of T , it is enough
to compute it for a triangle with vertices x1 = (0, 0), x2 = (1, 0), x3 = (a, b), verifying b > 0. In
this case, denoting with ψ1, ψ2, ψ3 the P1 finite element functions on T it follows immediately
that

∂xψ1 = −1 ∂xψ2 = 1 ∂xψ3 = 0
∂yψ1 = a−1

b ∂yψ2 = −a
b ∂yψ3 = 1

b .

The expression of the rigidity matrix KT on the triangle T follows, observing that the area of T
is equal to b/2. For the mass matrix one obtains

MT = |T |

 1/6 1/12 1/12
1/12 1/6 1/12
1/12 1/12 1/6

 .

The code which for a given pair (a, b), b > 0 gives a certified upper bound for the optimal
interpolation constant C(T ) can be found at the following repository:

https://github.com/bbogo/PolyaSzego/tree/main/Morley
The code requires a working installation of INTLAB [41]. It receives as inputs the vertex co-

ordinates (a, b) and the number of segments m in which every side is divided for constructing the
mesh. It outputs a certified upper bound for C(T ) if the validation method succeeds. Otherwise,
it outputs a message indicating that a lower bound was not found.

All results described in [29] can be verified using the code proposed above. The estimates rele-
vant to the contents of this paper correspond to isosceles triangles with edge length 1 and central
angle 2π/n, giving a = cos(2π/n), b = sin(2π/n), n ∈ {5, 6}. The corresponding constants are

https://github.com/bbogo/PolyaSzego/tree/main/Morley
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θ 2π/5 2π/6 2π/7 2π/8 2π/9 2π/10
C(T ) 0.3697 0.3200 0.3146 0.3107 0.3104 0.3128

Table 2. Certified upper bounds for P1 interpolation constants on isosceles tri-
angles corresponding to a slice of a regular n-gon for n ∈ {5, 6, 7, 8, 9, 10}.

summarized in Table 2, where dependence on C(T ) the central angle of the regular polygon is
emphasized.

Appendix B. Description of the code

The Matlab code proving the local minimality of the regular n-gon for problem (2) can be
found at the following repository:

https://github.com/bbogo/PolyaSzego
It uses interval arithmetic and requires a working installation of INTLAB [41]. Details re-

garding the implementation can be found in the code comments. For the sake of completeness,
a description of the functions and of the validation process is described below. Before running
the code, the subfolder ./Tools/ should be added to the Matlab path.
a) Validation for the first two eigenvalues and the first eigenfunction. The implemen-
tation is based on the discussion in Section 5. The first main function is PolyaHessInterval.m.
For running the code corresponding to n = 5 and m = 250 division points on the ray [oa0] type:

>> PolyaHessInterval(5,250)

The code constructs two meshes, one for the slice T+ (see Figure 1), where the first eigenfunction
is computed and validated, exploiting the symmetry. The first eigenpair is either validated using
verifyeig in INTLAB or with a residual estimate. A second mesh of the full polygon is used for
computing and validating the second eigenvalue. The validation uses the residual estimate from
Proposition 4.4. At the end of the validation process the eigenvalue and eigenfunction enclosures
are saved to a file to for a later use.

The matrices needed in the computation are assembled exactly. Only the incidence relations
in the mesh are used in the assembly, all other aspects are computed analytically.
b) Validating the local minimality of the regular n-gon. The remaining of the validation
procedure can be achieved using the function PolyaHessIntervalU.m. For running the code
corresponding to n = 5 and m = 250 division points on the ray [oa0] type:

>> PolyaHessIntervalU(5,250)

Number of positive eigenvalues = 6
Proof of local minimality succeeded!
Degrees of Freedom (full mesh) 156876
intval ans =
[ −2.8083, 2.5145]
[ −2.8083, 2.5145]
[ −0.0001, 0.0001]
[ −0.0001, 0.0001]
[ 0.0547, 5.3775]
[ 0.0547, 5.3775]
[ 2.6266, 12.6594]
[ 2.6266, 12.6594]
[ 8.8146, 18.8474]
[ 8.8146, 18.8474]

Listing 1. Output of the numerical validation code for n = 5, m = 250. Six out
of the ten eigenvalues are positive, proving the local minimality of the regular
pentagon.

https://github.com/bbogo/PolyaSzego
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The linear systems associated to the material derivatives (49), (50) are solved and validated
and an interval enclosure for the solution is found. Conjugate gradient is used to obtain a
floating point solution, which is validated using Lemma 4.7. Afterwards, the eigenvalues of the
Hessian matrix are evaluated from the finite element results, following Theorem 2.1. Next, all
elements involving the a priori estimates in Sections 2, 3 quantifying the error between continuous
solutions of the PDEs involved and the finite element counterparts are computed.

The code outputs a sequence of interval enclosures for the eigenvalues of the Hessian matrix.
If 2n − 4 of these intervals are included in [0,+∞) then the validation procedure succeeds and
local minimality is proved (see [7, Section 4]). The local minimality validation succeeds for n = 5
(taking m = 250) and n = 6, (taking m = 380). An example of output for n = 5, m = 250 is
shown in Listing 1.

Appendix C. Fast validation of eigenvalues for large sparse matrices

Applying directly the routine verifyeig from Intlab [41] to generalized eigenvalue problems
of the form

K0u = λM0u

leads to significant computational costs when K0,M0 are of large sizes. Looking at the code
provided with Intlab, it seems that the large cost comes from the inversion of a matrix. While it
is true that multiple linear systems need to be soved using the matrix in question with various
right hand sides, for large problems it is more efficient to consider linear systems instead. The
function verifylss in Intlab allows to solve linear sparse systems of large sizes, therefore, this
routine is used whenever a linear system is solved. The modifications are underlined in the
Listings 2, 3. For the generalized eigenvalue problem the matrix B and its midpoint midB appear
in the same places as in the original verifyeig function.
.....
R = midA − lambda*speye(n);
R(:,v) = − xs;

R = inv( R ); % matrix inversion

C = A − intval(lambda)*speye(n);

Z = - R * ( C * xs );

C(:,v) = − xs;

C = speye(n) - R * C;

Y = Z;
Eps = 0.1*mag(Y)*hull(−1,1) + midrad(0,

realmin);
m = 0;
mmax = min( 15 * ( sum(sum(mag(Z(v,:))

>.1)) + 1 ) , 20 );
ready = 0;
while ( ~ready ) && ( m<mmax ) && ( ~any(

isnan(Y(:))) )
m = m+1;
X = Y + Eps;
XX = X;
XX(v,:) = 0;

Y = Z + C*X + R*(XX*X(v,:));

ready = all(all(in0(Y,X)));
end
.....

Listing 2. The original
verifyeig function in Intlab.

.....
R = midA − lambda*speye(n);
R(:,v) = −xs;
% without matrix inversion
C = A − intval(lambda)*speye(n);

Z = -verifylss(R,(C*xs));

C(:,v) = −xs;

Y = Z;
Eps = 0.1*mag(Y)*hull(−1,1) + midrad(0,

realmin);
m = 0;
mmax = min( 15 * ( sum(sum(mag(Z(v,:))

>.1)) + 1 ) , 20 );
ready = 0;
while ( ~ready ) && ( m<mmax ) && ( ~any(

isnan(Y(:))) )
m = m+1;
X = Y + Eps;
XX = X;
XX(v,:) = 0;

Y = Z+verifylss(R,(R-C)*X+XX*X(v,:));

ready = all(all(in0(Y,X)));
end
.....

Listing 3. Replacing matrix
inversion with linear systems.

The modified verifyeig is applied to randomly generated matrices with sizes up to 1000×1000
and compared with the original version. The results produced are identical (intervals have the
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Figure 11. Comparison of computation times for the eigenvalue verification rou-
tine verifyeig in Intlab and the modified version, applied to sparse matrices
coming from the discretization of a Laplace PDE. The significant time improve-
ment allows to validate eigenvalues and eigenvectors for matrices of sizes up to
105 × 105.

same center and same radius). For full matrices the proposed modification is not faster than the
original version for the cases tested.

Nevertheless, the situation changes when the matrices involved are sparse and come from
discretization of finite element problems like (15). The generalized eigenvalue problem for a
triangular slice meshed with congruent triangles obtained by dividing each one of the sides intom
segments (m2 triangles) is solved with the original version of verifyeig and the modified version.
The computations are realized for m ∈ {30, 40, ..., 90, 100} and the difference in computation
times is shown in Figure 11. The speed gain from removing the matrix inverse is significant,
since Intlab uses a sparse version of the linear system verification routine verifylss. The
verification with the modified version was tested successfully for triangle division parameter m
up to 450, corresponding to matrix size of roughly 105 × 105.

For even finer meshes, further modifications are provided to the verifyeig routine. An initial
floating point system used is replaced with an iterative method. This modification was tested
for the mesh parameter m up to 600 corresponding to matrices of size 180901× 180901. These
modified versions of verifyeig could be of potential interest for other applications involving
eigenvalues of large sparse matrices.
Acknowledgements: The authors thank Maxime Breden, Xuefeng Liu and Siegfried M. Rump
for valuable discussions and advice regarding the validation procedure using interval arithmetic.
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