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Abstract

The convex shape contained in a disk having prescribed area and maximal perimeter is
completely characterized in terms of the area fraction. The solution is always a polygon having
all but one sides equal. The lengths of the sides are characterized through explicit equations.
The case of more general containing shapes is also discussed from both theoretical and numerical
perspectives.

1 Introduction

The classical isoperimetric inequality in the plane states that the disk is the unique shape having
fixed area and minimizing the perimeter. A survey of this problem can be found in [3]. The reverse
problem, maximizing the perimeter of shapes having fixed area, does not have solutions without
adding extra constraints. Indeed, a sequence of flattening rectangles with sides (a, 1/a) does not
have an upper bound for the perimeter. Nevertheless, if the shapes have prescribed area and are
contained in a bounded set then a solution exists and its study is described below.

Reverse isoperimetric inequalities are studied in various contexts. In [1] it is shown that
for any shape Ω there exists an affinely equivalent shape Ω̃ such that the isoperimetric ratio
Per(Ω̃)/|Ω̃|(n−1)/n is smaller than the one given by the regular tetrahedron. The maximization
of the perimeter at fixed area for shapes with bounds on the curvature are given in [7] and [4].
Investigating second order optimality conditions the authors of [8] show that solutions to various
shape optimization problems are polygonal. The case of the reverse isoperimetric problem naturally
enters into this framework.

Considering convex shapes with given area contained in a disk, a complete description of perime-
ter maximizers can be achieved. Denote by D the unit disk in the plane. For convex shapes Ω ⊂ D
consider the problem

max
|Ω|=A

Per(Ω), (1)

where A ∈ (0, π) is given. The Blaschke selection theorem [9, Theorem 1.8.7] and the stability of
the Hausdorff convergence of open sets for the inclusion [6, p.33] implies that (1) has a solution Ω∗.
In the following it is proved that Ω∗ is a polygon inscribed in D which is completely characterized,
up to a permutation of the sides, by the value of the area constraint. A similar result is mentioned
in [5], however the proofs given below are slightly different and completely rigorous. In particular,
Favard shows that the optimal shape should not have an arc in common with ∂D. This does not
imply, however, that the optimal shape is polygonal. Situations where the optimal shape has a
sequence of vertices on ∂D with an accumulation point should be excluded.
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The Lagrangian formulation of (1) is described in [2] where problems of the form

min
Ω

(λ|Ω| − Per(Ω)), (2)

are studied with Ω contained in an annulus. However, as underlined in [2, Section 5] problems (1)
and (2) are not equivalent and techniques from [2] do not apply directly. The case where the shapes
have prescribed area and a prescribed circumradius is described in [5]. Although it is possible to
use ideas from [5] to deduce the result, a different strategy is employed below. First, the problem
is considered in the class of n-gons with an upper bound on the number of sides. It is proved that
the solution does not change, up to a permutation of the sides, when the number of sides becomes
large enough. A classical polygonal approximation argument implies the result for problem (1).

First, let us restrict to n-gons. For n ≥ 3 denote by Pn(A) the class of simple, convex polygons
contained in D with at most n vertices, having area less than or equal to A ∈ (0, π). It is obvious
that Pn(A) is a compact set, described by a finite number of bounded parameters, therefore

max
Ω∈Pn(A)

Per(Ω), (3)

also has a solution. The key to understanding (1) is observing that (3) has a solution which does
not change for n ≥ n0.

First let us investigate the class of admissible polygons Pn(A). If P is a general n-gon which
has a free vertex inside D it is clear that moving it away from the adjacent diagonal towards ∂D
increases its area. Thus n-gons contained in D with maximal area are inscribed n-gons. Considering
central angles θi, maximizing the area amounts to maximizing

∑n
i=1 sin θi under the constraint∑n

i=1 θi = 2π. The concavity of the sine function and Jensen’s inequality imply that the inscribed
regular n-gon has maximal area among n-gons contained in D. Thus Pn(A) is non-void if and only
if A ≤ n

2 sin 2π
n .

Let P ∗ be a solution for (3) and suppose that P ∗ has k ≤ n vertices. Without loss of generality,
suppose that no vertex in P ∗ is redundant, i.e. the vertices are distinct and no three vertices are
colinear. Since |P ∗| ≤ A > 0, P ∗ has at least three vertices. Indeed, if |P ∗| = 0 then P ∗ would be
reduced to a segment. Replacing it with a thin symmetric quadrilateral close to the diameter still
fits in D and obviously increases its perimeter, while remaining admissible.

The following result is immediate:

Theorem 1. Let P ∗ be a solution of (3). Then P ∗ is inscribed in D, i.e., there are no free vertices
among vertices of P ∗.

Proof: Take v a vertex of P ∗ and suppose v /∈ ∂D. Consider a, b the vertices adjacent to v in P ∗.
The line parallel to ab through v generates a chord in D. Denote [cd] the intersection of this chord
with the region generated by the edges of P ∗ adjacent to av, vb. See Figure 1 for an illustration.
Since the function

[cd] 3 v 7→ |va|+ |vb|

is strictly convex, its maximum is attained for extremal points. Thus, either v belongs to ∂D or
va, vb are colinear with one of the adjacent sides, showing that a or b are redundant, contradicting
the assumptions. �

The previous process shows that no convex polygon in Pn which has a vertex interior to D is
optimal for (3). Thus, a solution P ∗ for (3) is an inscribed polygon in D. The same procedure
applies to general containing shapes leading to the following result:
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Figure 1: An optimal n-gon does not have a free vertex inside the container D.

Theorem 2. Let Ω be a bounded convex shape, not reduced to a segment. Let P ∗ be a polygon
maximizing the perimeter among polygons P with at most n sides are contained in Ω and having
fixed area |P | = A ∈ (0, |Ω|). Then P ∗ is inscribed in Ω, i.e., all vertices of P ∗ belong to ∂Ω.

Moreover, in the case of the disk, let us show that P ∗ must contain the center of D in its interior.
If P ∗ does not contain the center of D then P ∗ is contained in the interior of a half-disk and may
be translated such that P ∗ is strictly in the interior of D. Then at least one of the vertices of P ∗

can be moved parallel to the adjacent diagonal contradicting again the optimality of P ∗.
An inscribed polygon P ∗ in the disk D is completely determined, up to a permutation, by the

lengths of its sides, or equivalently, the angles at the center made by the sides.
Take 3 ≤ m ≤ n and consider θ1, ..., θm the corresponding center angles. Since the center of D

is interior to the polygon, we have θi ∈ [0, π], i = 1, ...,m. The area of the inscribed polygon is

|P | = 1

2

m∑
i=1

sin θi

and its perimeter is

Per(P ) = 2
m∑
i=1

sin
θi
2
.

Of course, the central angles also verify the relation
∑m

i=1 θi = 2π.
The optimal polygon P ∗ must saturate the area constraint. While heuristic arguments can be

given, this is a direct consequence of Proposition 5, part (c). Thus, angles characterizing P ∗ are
solutions to the problem

max
(θi)∈Xm

m∑
i=1

2 sin
θi
2

(4)

where

Xm = {(θi)mi=1 :

m∑
i=1

θi = 2π,

m∑
i=1

sin θi = 2A}.

In Section 2 a series of elementary results in analysis and constrained optimization help charac-
terize the solutions of problem (4). The case of a general container is investigated theoretically in
Section 3 and numerical simulations are presented in Section 4.
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2 Main results

2.1 Analysis of a family of constrained optimization problems

In this section some elementary optimization problems are studied which will help prove the main
results of the paper.

Proposition 3. (a) Given S ∈ [0, 2π] and T ∈ (0, 3 sin S
3 ], suppose that 0 < a ≤ b < c ≤ π are

given, such that
a+ b+ c = S, sin a+ sin b+ sin c = T. (5)

Then there exists ε > 0 such that for every s ∈ [0, ε] there exists 0 < t(s) < c−b−s
2 such that

sin(a− s) + sin(b+ s+ t(s)) + sin(c− t(s)) = T. (6)

(b) If 0 ≤ a ≤ b ≤ c ≤ π verify the constraints (5) and they maximize

sin
a

2
+ sin

b

2
+ sin

c

2

then either a = 0 or b = c.

The condition T ≤ 3 sin S
3 is necessary since x 7→ sinx is concave on [0, π] and the upper bound

for sin a+ sin b+ sin c follows using Jensen’s inequality.
Proof: (a) We have a, b, c ∈ [0, π] and the sine function is concave on this interval. It is

straightforward to see that mappings of the form

τ 7→ sin(x+ τ) + sin(y − τ), 0 < x < y ≤ 2π

are strictly increasing. Simply differentiate and use the concavity of the sine function. Therefore,
for s > 0 small enough we have

sin(a− s) + sin(b+ s) < sin a+ sin b

and
q : t 7→ sin(a− s) + sin(b+ s+ t) + sin(c− t)

is increasing on [0, c−b−s2 ]. Since b < c, the concavity of the sine function and Jensen’s inequality

implies that sin a+ 2 sin b+c
2 > T .

Thus, there exists ε > 0 and an interval [0, ε] such that q( c−b−s2 ) = sin(a− s) + 2 sin b+c+s
2 > T .

The continuity of q implies the existence of t(s) verifying (6).
(b) If t(s) verifies (a) then the partial derivative of (6) with respect to t is non-zero. The

implicit function theorem implies that the mapping s 7→ t(s) is differentiable. Differentiating (6)
with respect to s gives

t′(s) =
cos(a− s)− cos(b+ s+ t(s))

cos(b+ s+ t(s))− cos(c− t(s))
. (7)

Of course, t′(s) > 0 since cos is decreasing on [0, π].
Consider

h : s 7→ sin
a− s

2
+ sin

b+ s+ t(s)

2
+ sin

c− t(s)
2

. (8)

The derivative with respect to s is

h′(s) =
1

2

(
cos

b+ s+ t(s)

2
− cos

a− s
2

)
+

1

2
t′(s)

(
cos

b+ s+ t(s)

2
− cos

c− t(s)
2

)
.
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Replacing t′(s) from (7) shows that h′(s) > 0 is equivalent to

cos b+s+t(s)2 − cos c−s2

cos(b+ s+ t(s))− cos(c− t(s))
>

cos a−s2 − cos b+s+t(s)2

cos(a− s)− cos(b+ s+ t(s))
. (9)

Both ratios are of the form
cos x2 − cos y2
cosx− cos y

=
1

2

1

cosx+ cos y
,

where the well known equality cosx = 2 cos2 x
2 − 1 was used. Therefore (9) is equivalent to

1

cos(b+ s+ t(s)) + cos(c− t(s))
>

1

cos(a− s) + cos(b+ s+ t(s)
,

which is true, since cos is decreasing on [0, π] and 0 ≤ a− s ≤ b+ s+ t(s) < c− t(s) ≤ π. Thus h
is strictly increasing.

Consider the problem of maximizing

sin
a

2
+ sin

b

2
+ sin

c

2

such that a+ b+ c = S, a, b, c ∈ [0, π] and sin a+ sin b+ sin c = T . Suppose that 0 < T < S ≤ 2π
are given such that the set of admissible triples (a, b, c) is non-void. The set of admissible points is
non-void and compact and the function to be maximized is continuous. Therefore, there exists a
solution (a, b, c) ordered such that a ≤ b ≤ c.

If a > 0 and b < c then the results in (a) imply that h given by (8) is strictly increasing and a
perturbation of the form

0 ≤ a− s ≤ b+ s+ t(s) ≤ c− t(s) ≤ π, s > 0, t(s) > 0

strictly increases the objective function. Therefore, a maximizer verifies a = 0 or b = c. �
Following similar ideas to those in Proposition 3 the following, more general result can be proved.

Proposition 4. Consider functions f, g : [0,M ]→ R+ of class C2 with f ′, g′ injective and g′′ 6= 0
on [0,M ]. Moreover, assume that f ′′/g′′ is injective on [0,M ]. Consider

X = {a, b, c ∈ [0,M ] : a+ b+ c = S, g(a) + g(b) + g(c) = T},

where S, T are chosen such that X is not empty or reduced to a point.
Then if (a, b, c) is a solution to the problem

min
(a,b,c)∈X

f(a) + f(b) + f(c)

such that a, b, c ∈ (0,M) then at least two of a, b, c are equal.

Proof: The optimization problem stated previously deals with the minimization of a continuous
function on a compact set, therefore solutions exist. Let (a, b, c) ∈ X be a solution and suppose
that 0 < a < b < c < M , without loss of generality. Then the Jacobian of the mapping F (a, b, c) =(

a+ b+ c
g(a) + g(b) + g(c)

)
has rank two, since g′ is injective. The implicit function theorem states that

there exists a parametrization of X around (a, b, c), given by (−ε, ε) 3 t → (a(t), b(t), c(t)) such
that a, b, c are continuously differentiable with respect to t and (a(t), b(t), c(t)) ∈ X for t ∈ (−ε, ε).
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Without loss of generality assume that a′(t) > 0 on (−ε, ε). In the following, we sometimes drop
the variable t, for simplifying the notations. Differentiating the constraints with respect to t gives

a′ + b′ + c′ = 0, g′(a)a′ + g′(b)b′ + g′(c)c′ = 0.

Using b′ = −a′ − c′ gives
c′(g′(c)− g′(b))− a′(g′(b)− g′(a)) = 0. (10)

A classical result known as the Cauchy mean value theorem states that if h1, h2 are of class C1,
h′2 6= 0 on an interval [x, y] then there exists z ∈ (x, y) such that

h1(y)− h1(x)

h2(y)− h2(x)
=
h′1(z)

h′2(z)
.

Apply this result for h1 = f ′ and h2 = g′ like in the hypothesis on the intervals [a, b], [b, c], obtaining
zab ∈ (a, b) and zbc ∈ (b, c) such that

f ′(b)− f ′(a)

g′(b)− g′(a)
=
f ′′(zab)

g′′(zab)
,
f ′(c)− f ′(b)
g′(c)− g′(b)

=
f ′′(zbc)

g′′(zbc)
.

This allows us to perform the following computation:

f ′(a)a′ + f ′(b)b′ + f ′(c)c′ = c′(f ′(c)− f ′(b))− a′(f ′(b)− f ′(a))

= a′
[
c′

a′
(f ′(c)− f ′(b))− (f ′(b)− f ′(a))

]
= a′(g′(b)− g′(a))

[
f ′(c)− f ′(b)
g′(c)− g′(b)

− f ′(b)− f ′(a)

g′(b)− g′(a)

]
= a′(g′(b)− g′(a))

[
f ′′(zbc)

g′′(zbc)
− f ′′(zab)

g′′(zab)

]
,

where the constraints on a, b, c and (10) were used. The optimality of a, b, c and a′ > 0 implies that
either a = b or zbc = zab, both contradicting the fact that a, b, c are distinct. �

Previous results allow to state the following generalization of Proposition 3.

Proposition 5. Let n ≥ 3 and define

XS,T,n :=

{
(θi)

n
i=1 : 0 ≤ θ1 ≤ ... ≤ θn,

n∑
i=1

θi = S,

n∑
i=1

sin θi = T

}
,

where S ∈ (0, 2π], T ∈ (0, n sin S
n ] are given such that XS,T,n is non-void.

(a) Suppose (θi)
n
i=1 is a solution of

max
(θi)∈XS,T,n

n∑
i=1

sin
θi
2
. (11)

Then either θ1 = 0 or 0 < θ1 ≤ θ2 = θ3 = ... = θn.
(b) Given 0 < T < S ≤ 2π such that XS,T,n is non-void, there exists n0 such that the solution

of (11) does not change (up to a permutation) for n ≥ n0.
(c) The maximal value attained in (11) is strictly increasing with respect to T ∈ (0, n sin S

n ].
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Proof: (a) Suppose that 0 < T < S ≤ 2π are given such that XS,T,n 6= ∅. It is obvious that
XS,T,n is compact, therefore (11) has a solution.

Take three consecutive variables (θi, θi+1, θi+2) of a solution. In view of the results in Proposition
3 (b), either θi = 0 or θi+1 = θi+2.

If θi = 0 for some i then θ1 = 0. Otherwise, θi+1 = θi+2 for all i ≥ 1 implying that 0 < θ1 ≤
θ2 = ... = θn.

(b) Fix 0 < T < S ≤ 2π such that XS,T,n 6= ∅ for some n ≥ 3. Note that adding some extra
variables equal to zero does not change the constraint set or the objective function. Thus XS,T,n

can be identified with a subset of XS,T,m for m ≥ n.
If the solution of (11) verifies 0 < θ1 ≤ θ2 = ... = θn then the following system admits at least

one solution:
θ1 + (n− 1)θ2 = S, sin θ1 + (n− 1) sin θ2 = T, 0 < θ1 ≤ θ2.

Then θ1 ∈ (0, Sn ], θ2 = S−θ1
n−1 and θ1 verifies

sin θ1 + (n− 1) sin
S − θ1

n− 1
= T. (12)

The function

θ 7→ sin θ + (n− 1) sin
S − θ
n− 1

,

is strictly increasing on [0, S/n]. Therefore, (12) has a solution in (0, S/n] if and only if

T ∈
(

(n− 1) sin
S

n− 1
, n sin

S

n

]
. (13)

Note that (n − 1) sin S
n−1 < n sin S

n since 0 < S ≤ 2π, n ≥ 3 and x 7→ sinx
x is decreasing on [0, π].

Moreover, the sequence n sin S
n is increasing and converges to S.

Therefore, given S ∈ (0, 2π] and T ∈ (0, S), there exists a unique n such that (12) has a solution
in (0, S/n] and that n verifies (13). Therefore, there exists a unique n0 such that (11) has a solution
in XS,T,n0 with θ1 > 0.

If n ≥ n0 then strictly positive components of the solution of (11) in XS,T,n are the same (up
to a permutation) as the the ones in the solution in XS,T,n0 .

(c) The previous arguments show that θ1, solution of (12), is strictly increasing with respect to
T . The objective function has the same montonicity properties, thus the maximal value in (11) is
strictly increasing with respect to T . �

2.2 Reverse isoperimetric inequality for convex polygons contained in a disk

We are now ready to state and prove the main result of the paper. This result is also stated in
[5], however the proof argument stated there is incomplete. Favard proves that the convex shape
maximizing the perimeter cannot contain an arc of the boundary of the bounding disk ∂D. This
does not show that the optimizing shape is a polygon. In addition it should be proved that an
inscribed polygonal shape with vertices on ∂D and an accumulation point for the vertices is not
optimal.

Theorem 6. Solutions to problem (3) are uniquely characterized by n and A, up to a permutation
of the sides. Given A ∈ (0, π), there exists m such that for n ≥ m the solution to problem (3) does
not change, up to a permutation of the sides.
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Given A ∈ (0, π), solution to problem (1) is a polygon inscribed in D, having m sides with m
verifying

(m− 1) sin
2π

m− 1
< 2A ≤ m sin

2π

m
. (14)

The angles subtended by the sides have the form 0 < θ1 ≤ θ2 = ... = θm where θ1 ∈ (0, 2π
m ] solves

sin θ1 + (m− 1) sin
2π − θ1

m− 1
= 2A.

Proof: In view of the discussion in the introduction, solutions to (3) are inscribed polygons in
D. Considering the central angles θi associated to each sides, then (θi)

m
i=1 solve the optimization

problem (4). Proposition 5 applied for S = 2π, T = 2A shows that solutions of (4) verify

0 < θ1 ≤ θ2 = ... = θm,

where m is the unique positive integer verifying (14). Thus, for n ≥ m, the solution of (3) does not
change, up to a permutation of the sides.

Consider a solution Ω∗ to problem (1) and let Qn be a sequence of convex polygons converging
to Ω∗. Since the maximizer Ω∗ contains the center of D, as recalled in the introduction, assume that
Qn contain the origin. Without loss of generality we may assume Qn ∈ Pn(A). Indeed, consider
for each Qn a maximal homothety factor λn ∈ (0, 1] such that λnQn has area at most A and is
contained in D. If λn < 1 replace Qn with λnQn. Since the limit Ω∗ has area A and is contained
in D, we have λn → 1 as n → ∞. For each n consider a solution Rn ∈ Pn(A) for (3). Since Rn is
inscribed in D, its sides of positive length are given by the central angles 0 < θ1 ≤ θ2 = ... = θm
and there exist a finite number of permutations of these m sides, the sequence Rn has a converging
subsequence which has a limit Ωm ∈ Pm. The optimality of Rn implies Per(Qn) ≤ Per(Rn) and
passing to the limit we obtain

Per(Ω∗) ≤ Per(Ωm),

where Ωm is a polygon in Pm(A). Therefore, there exists a polygonal solution to (1) for any choice
of A ∈ (0, π).

The equation verified by the angles can be found in the proof of Proposition 5. �
Solutions of problem (2), the Lagrangian formulation for (1), can also be characterized, assuming

Ω ⊂ D.

Theorem 7. For every λ > 0, problem

min
Ω⊂D

λ|Ω| − Per(Ω), (15)

where Ω is assumed convex, has a solution. The solution is either the disk D, a segment which is a
diameter of D or a polygon completely characterized by λ.

Proof: First, let us note that for λ > 0 the objective function is bounded and the Blaschke
selection theorem implies the existence of a minimizer Ω∗. If Ω∗ = D there is nothing to prove.

Suppose that |Ω∗| < |D|. Then Ω∗ also solves (1) for A = |Ω∗|. Results of Theorem 6 imply
that Ω∗ is a polygon completely characterized by its area. �

We do not attempt to fully characterize solutions of (15) since this can be achieved using ideas in
[2]. The solution Ω∗ could be identified as follows. Consider m the number of sides of Ω∗, assuming
it is a non-trivial m-gon. Consider the corresponding angles 0 < θ1 ≤ θ2 = ... = θm. Then, denoting
θ = θ1 ∈ (0, 2π

m ] we have

λ|Ω| − Per(Ω) = λ
1

2

(
sin θ + (m− 1) sin

2π − θ
m− 1

)
− 2

(
sin

θ

2
+ (m− 1) sin

2π − θ
2(m− 1)

)
.
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Figure 2: Values of λ in terms of m and θ given in (16) for 3 ≤ m ≤ 10.

If Ω∗ is not the regular m-gon, the optimality of Ω∗ implies that θ is a critical point for the previous
expression of θ. Using cosx− cos y = 2(cos x2 − cos y2 )(cos x2 + cos y2 ) we obtain

λ =

(
cos

θ

2
+ cos

2π − θ
2(m− 1)

)−1

, (16)

where θ ∈ (0, 2π
m ]. A plot of the values of λ in terms of m and θ is shown in Figure 2 for 3 ≤ m ≤ 10.

It should be noted that not all values of λ ≥ 0 can be written in the form given by (16).
Numerical simulations suggest that the gaps between different branches of possible values for λ

correspond to regular polygons with the corresponding number of sides. If λ > 1 the optimal shape
is a diameter of the disk while for λ ≤ 0.5 the solution is the whole disk.

3 General convex sets

The disk containing the convex shapes can be replaced by a general convex set. The existence of
perimeter maximizers under area constraint is straightforward.

Theorem 8. Let Ω be a convex and bounded shape with non-empty interior and let A ∈ (0, |Ω|) be
a choice for the area constraint. Then, assuming ω ⊂ Ω is convex, the problem

max
|ω|=A, ω⊂Ω

Per(ω)

has a solution.

Proof: Like in the case of the disk, combine the Blaschke selection theorem [9] and the stability
of the Hausdorff convergence for set inclusion [6, p.33]. �
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Remark 9. The convexity of the container Ω could be relaxed, since the inclusion constraint
and convexity are preserved under Hausdorff convergence. Nevertheless, the study of the maximal
perimeter convex subset is more difficult in this case since the optimal shape can touch non-convex
parts in ∂Ω at most one point.

In the case when the container Ω is a convex polygon the following result holds.

Theorem 10. Let Ω be a convex n-gon and A ∈ (0, |Ω|). Then there exist a solution of

max
|ω|=A, ω⊂Ω

Per(ω) (17)

which is polygonal.

Proof: Like in the case of the disk, consider Pn(A,Ω) the family of convex polygons included in
Ω with at most m sides and area at most A. Consider the discrete problem

max
P∈Pm(A,Ω)

Per(P ). (18)

This problem has solutions, since it is finite dimensional in nature and the perimeter depends
continuously on the vertices of a polygon P . Like in the case of the disk (Theorem 1) an optimal
polygon P cannot have free vertices in the interior of Ω. Therefore solutions of (18) are polygons
P whose vertices lie on the boundary ∂Ω of the containing set.

Since Ω is an n-gon, for each edge of Ω there are at most 2 non-redundant vertices of an inscribed
convex polygon P . Thus, solutions of (18) have at most 2n vertices. Therefore, for m ≥ 2n the
solution Pm to (18) is also a solution for m = 2n. In any case, there exists a polygon P ∗ with at
most 2n sides which is solution to (18) for all m ≥ 2n.

Now consider a solution ω for (17). Let Pk be a polygonal approximation of ω such that Pk ⊂ ω
for every n. For example, one might consider inscribed n-gons with uniformly distributed vertices
on ∂ω. Of course, we have Pk → ω in the Hausdorff convergence when k → ∞. For k ≥ 2n
polygons Pk are admissible in (18), showing that Per(Pk) ≤ Per(P ∗). Letting k → ∞ we have
Per(ω) ≤ Per(P ∗). Thus, P ∗ is a polygonal solution for (17). �

Remark 11. It is tempting to conjecture that replacing D with a convex or strictly convex set Ω,
we have the following result: convex sets ω ⊂ Ω having prescribed area and maximal perimeter are
polygons. An argument like in [5] could be formalized: if the optimal set ω∗ contains a segment ab

and a subset
>
bc of ∂Ω, then assuming

>
bc is small enough, replacing b with b′ such that the triangle

∆ab′c and the curvilinear triangle abc have the same area increases the perimeter: ab+
>
bc < ab′+b′c.

When Ω is not a disk it is difficult to investigate inscribed polygons with fixed area and maximal
perimeter. If a parametrization of ∂Ω is available, the length and area bounded by a chord depends
on the position of both endpoints, not only on the length of the chord, like in the case of the disk.

4 Numerical aspects

4.1 The disk

The characterization of the solutions of problem (1) given in Theorem 6 suggests the following
algorithm for finding the optimal shape, given a volume fraction A ∈ (0, π).

(i) Find the number of sides of the polygon by identifying n ≥ 2 such that (n−1) sin 2π
n−1 < 2A ≤

n sin 2π
n . Since q : x 7→ sinx

x is decreasing for x ≥ 0, it is enough to find xA such that q(xA) = A/2π,
then use 2π

n ≤ xA <
2π
n−1 to find n.
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(ii) Next, in view of (12), solve the equation

sin θ + (n− 1) sin
2π − θ
n− 1

= 2A

which has a unique solution θ in the interval [0, 2π
n ]. This gives the central angle of the smallest

side. The other remaining edges all have equal lengths and central angles (2π − θ)/(n− 1).
The above steps can be implemented using a simple root finding algorithm for finding zeros in

an interval for a monotone function. Examples of optimal polygons for (1) are shown in Figure 3
for various values of the area fraction A ∈ (0, π).

4.2 General convex containers

In this section a numerical framework is proposed for maximizing the perimeter of a polygon in-
scribed in a regular convex container Ω and having a given area. For simplicity, Ω is parametrized
by its radial function ρΩ : [0, 2π]→ R+. Of course, it is assumed that Ω contains the origin. Denote
r(θ) = (cos θ, sin θ) the radial vector in the direction θ.

Given n ≥ 3 the number of vertices of the polygon, the algorithm searches n angles θ1 ≤ θ2 ≤
... ≤ θn ∈ [0, 2π] such that the polygon with vertices ai = ρΩ(θi)r(θi), i = 1, ..., n has a given area
A ∈ (0, |Ω|) and maximizes the perimeter. Denoting by o the origin, in the implementation the
following quantities are computed:

Area(∆aioai+1) =
1

2
ρΩ(θi)ρΩ(θi+1) sin(θi+1 − θi)

|aiai+1| =
√
ρΩ(θi)2 + ρΩ(θi+1)2 − 2 cos(θi+1 − θi)ρΩ(θi)ρΩ(θi+1).

These quantities are enough to compute the area and perimeter of the polygon a1,a2, ...,an. Of
course, assuming ρΩ is C1 the partial derivatives can also be computed with respect to all vari-
ables (θi)

n
i=1. Thus, gradient based constrained optimization algorithms can be employed to study

the problem. In the computation below the Matlab fmincon routine is used with algorithms
interior-point and sqp.

Taking θi as variables in the optimization is possible algorithm may lead to difficulties since all
inequalities of the form θi ≤ θi+1 need to be imposed. To simplify the problem and the implemen-
tation, consider the following variables instead:

θ1, δ2 = θ2 − θ1, δ3 = θ3 − θ2, ..., δn = θn − θn−1.

Of course, the computation of the area and the perimeter is straightforward using these new vari-
ables. The monotonicity constraints for the radial angles are transformed into positivity constraints
for θ1, δ2, ..., δn. Also, the last vertex an corresponding to the angle θn = θ1 + δ2 + ... + δn should
not go beyond a1 on ∂Ω, therefore

δ2 + ...+ δn ≤ 2π. (19)

Thus, using the new variables the objective function and the constraint and their derivatives can
be computed and the constraint (19) together with θ1 ≥ 0, δi ≥ 0, i = 2, ..., n should be imposed.
To stabilize the algorithm, the upper bound 2π is also consider for all variables.

The problem is more complex, with many local minima, when considering general containers.
Therefore, multiple runs of the algorithm with different random initializations for the optimization
variables are used. The result giving the largest perimeter is shown in the figures below.

Applying the proposed algorithm to the disk gives precisely the results predicted by the theo-
retical aspects shown in the previous sections.
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A = 1 A = 3
2 sin 2π

3 A = 1.75

A = 2 A = 2.5 A = 6
2 sin 2π

6

A = 2.8 A = 3 A = 3.05

Figure 3: Maximal perimeter convex sets contained in the unit disk D for different area fractions
A ∈ (0, |D|). Changes in the number of edges occur when A is the area of a regular n-gon inscribed
in D.
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A = 1 A = 1.7 A = 2

Figure 4: Numerical results for maximization of the perimeter among polygons with 10, 30 and 50
sides inscribed in Ω1 (with radial function given by (20)) with given area fraction A.

A = 0.5 A = 1 A = 1.2

Figure 5: Numerical results for maximization of the perimeter among polygons with 10, 30 and 50
sides inscribed in Ω1 (with radial function given by (21)) with given area fraction A.

Next, consider the shape Ω1 with radial parametrization

ρΩ1(θ) = 1 + 0.45 cos θ + 0.04 sin(2θ). (20)

Optimization results for area fractions A ∈ {1, 1.7, 2} are shown in Figure 4. The numerical opti-
mization is done in each case among polygons with 10, 30 and 50 vertices. The numerical optimizer
is the same polygonal results with 3, 4 and 5 vertices, respectively. The optimization algorithm is
ran 20 times with random initializations. This suggests that the result obtained for the disk should
extend for general convex containers.

A second set of computations is presented in Figure 5 for the shape Ω2 with radial parametriza-
tion given by

ρΩ1(θ) = 1 + 0.1 cos(2θ). (21)

and areas A ∈ {0.5, 1, 1.2}. Solutions are again polygonal.
In the general case we have the following observations:
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• When A → 0 the optimal shape converges to a diameter of the container Ω. Therefore, for
elongated domains it is possible that solutions will have both long edges approaching the
diameter and small edges close to the regions of ∂Ω which are touched by a diameter.

• The situation of the disk is very particular: the symmetry allows arbitrary permutations of
the sides for the optimizer. The fact that for the disk we have a series of ”large” edges and a
”small” one is unlikely to generalize to the general case.

• The numerical algorithm proposed for general containers behaves well for small area fractions.
For larger area fractions the algorithm faces more and more local minima and results are not
as reliable.

5 Conclusions

In this paper the problem of finding the convex shape contained in a disk, having prescribed area and
maximal perimeter is completely solved. The result also appears in [5] with an incomplete argument
regarding the polygonal character of the minimizer. The optimal shapes are always polygonal with
all but one sides equal and completely characterized by the area fraction. The proof is achieved by
investigating the analogue problem in the class of polygons, observing that solutions do not change
when allowing more than a well characterized number of sides.

The general case is discussed both from theoretical and numerical points of view. When the
containing shape is polygonal, the perimeter maximizer under area constraint is also polygonal.
When the containing shape is a general convex set, theoretical aspects become more challenging. A
numerical algorithm is proposed and implemented showing that in certain situations it seems that
perimeter maximizers under area constraint are indeed polygonal.
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