Shape optimization: theoretical, numerical and practical aspects Habilitation à diriger les recherches

Beniamin BOGOSEL

CMAP, École Polytechnique

30/05/2024

Beniamin BOGOSEL

Shape optimization: theoretical, numerical and practical aspects

Shape Optimization

Theoretical aspects

- * existence, regularity
- \star shape derivative
- \star find optimal shapes
- \star qualitative properties

 $\min_{\omega \in \mathcal{A}} J(\omega)$

Numerical aspects

- \star discretization choice
- \star efficient computations
- \star new theoretical ideas
- \star solve theoretical gaps

Practical aspects

- \star industrial problems
- \star analysis
- \star modelization
- \star simulation

- 1. Design optimization for additive manufacturing
- 2. Numerical shape optimization for convex sets
- 3. Optimal partitioning and multiphase problems
- 4. The polygonal Faber-Krahn inequality

(practical applications) (test and find new ideas) (test and find new ideas) (contributing to theoretical proofs)

1. Design optimization for additive manufacturing

- Support optimization, overhang constraints
- Simplified simulation model [M. Bihr's PhD thesis]
- Imperfect part/support interface [M. Godoy's postdoc]
- New: Accessibility constraints
- 2. Numerical shape optimization for convex sets
- 3. Optimal partitioning and multiphase problems
- 4. The polygonal Faber-Krahn inequality

(practical applications)

(test and find new ideas) (test and find new ideas)

(contributing to theoretical proofs)

- 1. Design optimization for additive manufacturing
- 2. Numerical shape optimization for convex sets

- Parametrization using the support function
- Spectral vs discrete representation
- New theoretical ideas constant width constraint

- 3. Optimal partitioning and multiphase problems
- 4. The polygonal Faber-Krahn inequality

(test and find new ideas) (contributing to theoretical proofs)

- 1. Design optimization for additive manufacturing
- 2. Numerical shape optimization for convex sets
- 3. Optimal partitioning and multiphase problems

- Optimal partitions for spectral functionals
- Maximizing the length of minimal perimeter partitions
- Optimal Cheeger clusters

(practical applications) (test and find new ideas) (test and find new ideas)

4. The polygonal Faber-Krahn inequality

(contributing to theoretical proofs)

- 1. Design optimization for additive manufacturing
- 2. Numerical shape optimization for convex sets
- 3. Optimal partitioning and multiphase problems
- 4. The polygonal Faber-Krahn inequality

• Second shape derivatives for polygons

- Explicit error estimates P_1 finite elements
- Validated computing: interval arithmetic
- New: complete hybrid proof of local minimality.

(practical applications) (test and find new ideas)

(test and find new ideas)

(contributing to theoretical proofs)

1 Design optimization for additive manufacturing

2 Convex shapes - constant width constraint

3 The polygonal Faber-Krahn inequality

Additive Manufacturing

SOFIA The SOFIA project: Industrial partners: AddUp, Safran, Fusia, Zodiac, Volume Collaboration with Grégoire ALLAIRE, Martin BIHR, Matias GODOY

Material deposition: one slice at a time Powde deliver syster

Technology of interest: Selective Laser Melting (SLM)

[Wikimedia]

[iti-global.com]

Arbitrary topology, but... other constraints

[robohub.org]

[insta3dp.com]

[szbiest.com]

- Inclined surfaces (overhangs) not realized correctly
- Large temperature gradients: thermal deformations as the metal contracts

supports are added solve these problems \longrightarrow additional cost \longrightarrow optimize them

Regular exchanges with industrial partners: better understand the role of supports

Works related to AM

[B., G. Allaire, 18] gravity loads, simultaneous part/support optimization

[M. Bihr, B., G. Allaire, 20] optimizing the orientation, boundary loads, equivalent thermal loads

 $[\mathsf{M}.\ \mathsf{Bihr}\ \mathsf{et}\ \mathsf{al.},\ 22]$ simplified model simulation: reducing the stress and decreasing thermal deformations

[M. Godoy, G. Allaire, B., 22] imperfect interfaces support/part

Most recent work: [G. Allaire, M. Bihr, B., M. Godoy] - accessibility constraints

Beniamin BOGOSEL

Shape optimization: theoretical, numerical and practical aspects

Accessibility constraints

* Why? Supports removal: part still in the machine, supports need to be reached
 * How? For simplicity, in a straight line

more restrictive, easy to evaluate

Distance functions: accessibility evaluation

* $h_{\varepsilon} \longrightarrow$ regularized Heaviside function Criteria: surface integral $\int_{\Gamma_{out}} h_{\varepsilon}(d - d_0)$, volume integral $\int_{\Omega_+} h_{\varepsilon}(d - d_0)$

Normal accessibility

 d_0 = distance from Γ_D without obstacle d = distance from Γ_D with obstacle

Beniamin BOGOSEL

Shape optimization: theoretical, numerical and practical aspects

Distance functions: accessibility evaluation

 $\star h_{\varepsilon} \longrightarrow$ regularized Heaviside function **Criteria:** surface integral $\int_{\Gamma_{out}} h_{\varepsilon}(d-d_0)$, volume integral $\int_{\Omega_+} h_{\varepsilon}(d-d_0)$

Multi-directional accessibility

 d_0 = distance from \mathcal{B}_{v_i} without obstacle d = distance from \mathcal{B}_{v_i} with obstacle

Variable speed

Define
$$V(x) = \begin{cases} V_+ \equiv 1 & \text{in } \Omega_+, \\ V_- < 1 & \text{in } \Omega_-, \end{cases}$$
 and solve $\begin{cases} V(x) |\nabla d(x)| = 1 & \text{in } \Omega, \\ d = 0 & \text{on } \Gamma_D. \end{cases}$

Pure obstacle

 $V_{-} = 0.01$

 $V_{-} = 0.5$

- * V_{-} small enough does not change d outside the obstacle Ω_{-}
- \star fixed mesh, differentiability

Shape derivative

[[]image source: C. Dapogny]

 \star perturb the domain using a vector field θ

 $\star J((I + \theta)(\Omega)) = J(\Omega) + J'(\Omega)(\theta) + o(\|\theta\|)$

* Standard form: under regularity assumptions we can write $J'(\Omega)(\theta) = \int_{\partial\Omega} \mathbf{f} \ \theta \cdot \mathbf{n}$

* Numerical application: $\theta = -\mathbf{f} \mathbf{n}$ is a descent direction for the objective function

Differentiating the accessibility criterion

* The interface Σ between Ω_{-} and Ω_{+} is perturbed by the vector field θ ; $d = d(\Sigma)$

$$J(\Sigma) = \int_{\Omega} j(d) + \int_{\Gamma_{\text{out}}} k(d) \text{ gives } J'(\Sigma)(\theta) = \int_{\Omega} j'(d) d'(\theta) + \int_{\Gamma_{\text{out}}} k'(d) d'(\theta).$$

Adjoint state: active where geodesics of *d* touch the obstacle

$$\left(egin{array}{rll} -\operatorname{div}(V_+
abla d_+p_+)&=&j'(d_+)& ext{in }\Omega_+,\ -\operatorname{div}(V_-
abla d_-p_-)&=&j'(d_-)& ext{in }\Omega_-,\ p_+&=&k'(d)/(V
abla d\cdot \mathbf{n})& ext{on }\Gamma_{ ext{out}},\ p_+&=&0& ext{on }\partial\Omega\setminus(\Gamma_{ ext{out}}\cup\Gamma_D),\ V_+(
abla d_+\cdot\mathbf{n})p_+&=&V_-(
abla d_-\cdot\mathbf{n})p_-& ext{on }\Sigma. \end{array}
ight.$$

Shape derivative

$$J'(\Sigma)(heta) = \int_{\Sigma} V_+ (
abla d_+ \cdot \mathbf{n}) p_+ \left[(
abla d_+ -
abla d_-) \cdot \mathbf{n}
ight] (heta \cdot \mathbf{n}) \, ds$$

Beniamin BOGOSEL

Shape optimization: theoretical, numerical and practical aspects

- * The framework applies to both normal and (discrete) multi-directional accessibility
- \star the obstacle bounded by Σ and the target Γ_{out} can be considered as shape variables

Numerical aspects:

- \star compute *d* with variable speeds V_{\pm} : classical schemes, fast marching (scikit-fmm) \star computing the adjoint: first-order upwind scheme
- \star shape representation: level-set in FreeFEM
- * volume constraints: projection
- \star other constraints: augmented Lagrangian

Example 1: Rendering a cantilever accessible

* a classical cantilever shape is not normally accessible from the left boundary * minimize the accessibility criterion w.r.t two lateral sides $\Gamma_{D_1}, \Gamma_{D_2}$

$$J(\Sigma) = \int_{\Omega_+} h_arepsilon \left(\min_{i=1,2} (d_i(\Sigma) - d_{0,i})
ight) \, ds$$

* constant area (projection), upper bound on the compliance (Augmented Lagrangian)

Example 2: Simultaneous optimization of part and supports

 ω – one PDE for modeling final usage

Benjamin BOGOSEL

S – supports – one PDE for gravity loads

- Accessibility: $J(\omega, S) = \int_S h_{\varepsilon} (d(\omega) d_0)$
- Volume constraints projection
- Compliance constraints Aug. Lag.

Shape optimization: theoretical, numerical and practical aspects

 \star both the part and the supports are modified significantly by the optimization algorithm to try and respect the accessibility constraint

Numerical Result

 \star both the part and the supports are modified significantly by the optimization algorithm to try and respect the accessibility constraint

* More examples and tests in our paper:

[Accessibility constraints in structural optimization via distance functions, Allaire, Bihr, B., Godoy, 23]

Accessibility constraint – motivated by applications in AM:

New ideas explored: differentiating distance functions, non-standard adjoint equations

Open questions:

1. Justify rigorously the theoretical aspects related to the shape derivative: existence of solution for the adjoint (discontinuous speed across Σ) [Bouchut, James, 98, 1D]

2. Understand the limit case $V_- \rightarrow 0$: pure obstacle case.

2 Convex shapes - constant width constraint

3 The polygonal Faber-Krahn inequality

Motivation: examples

1. Blaschke-Lebesgue Theorem. Among planar shapes of constant width the Reuleaux triangle minimizes the area.

2. Blaschke-Lebesgue Problem in 3D (open). The three dimensional body of constant width with the minimal volume is one of the Meissner tetrahedra.

Support function: functional setting encoding all difficulties

Knowing p, p', p'' gives a parametrization of ω and characterizes convexity:

- spectral decomposition: direct access to p, p', p'' limited to strictly convex sets!
- direct choice of values for some angle discretization: how to choose p', p'' rigorously?

Some numerical results: constant width constraint

Minimizing the volume

[Antunes, B.]

 $\begin{array}{l} \mathsf{Maximizing} \ \lambda_k(\Omega) \\ -\Delta u_k = \lambda_k(\Omega) u_k, \ u_k \in H^1_0(\Omega) \\ [\mathsf{B., Henrot, Lucardesi}], [\mathsf{B., 23}] \end{array}$

Conjecture

Reuleaux triangle – optimal for $1 \le k \le 10$.

 \star optimal for: the area, inradius, perimeter and area of inner parallel sets, the Cheeger constant [Henrot, Lucardesi, 20], [B. 23], Dirichlet-Laplace eigenvalues (numerics)

Questions:

Unifying reason for optimality of the Reuleaux triangle the cases above?
 Concavity for Brunn-Minkowski type inequalities?

 \star The Reuleaux triangle: the only Reuleaux polygon which cannot be perturbed?

2. None of the current proofs for the minimality of the area in 2D generalize to 3D. \star Find new ones which also work in 3D?

New idea in 3D: Meissner polyhedra

finite dimensional constant width family in 3D: analogue of Reuleaux polygons in 2D
 [Montejano, Roldan-Pensado, 18], [Hynd, 23]

New idea in 3D: Meissner polyhedra

finite dimensional constant width family in 3D: analogue of Reuleaux polygons in 2D
 [Montejano, Roldan-Pensado, 18], [Hynd, 23]

2D: Reuleaux polygon

Meissner polyhedra

* Explicit formula for area and volume [B. Volume computation for Meissner polyhedra..., 23]
* Missing ingredient for solving 3D case: better understand extremal finite sets of diameter 1

Conjecture

No Meissner polyhedron is a local minimizer for the area. The tetrahedra are minimizers because **they cannot be perturbed** preserving constant width without adding extra vertices.

Tetrahedron: best among pyramids

Among all Meissner pyramids the tetrahedron minimizes the area/volume.

New proof in 2D

Dimension 2

 $\max_{B(1/2)\subset S\subset B(\sqrt{3}/3)}\frac{1}{2}\operatorname{Per}(S)-\operatorname{Area}(S)$

Solution: regular hexagon [Bianchini, Henrot] Relaxation of Blaschke-Lebesgue in 2D

Dimension 3

 $\max_{B(1/2)\subset S\subset B(\sqrt{3/8})}\frac{1}{2}\mathsf{Mean Width}(S)-\mathsf{Area}(\mathsf{S})$

Solution: conv(M, -M)?? **Relaxation** of the 3D problem??

 \star Challenge for numerics: Optimal shapes should have plenty of segments in the boundary! The non-smooth framework is needed in 3D!

[B. Mixed volumes and the Blaschke-Lebesgue theorem, 23]

- \star Extend the numerical discrete approach to the 3D case: non-smooth support functions
- \star Further study the geometry of Meissner polyhedra and extremal finite sets of diameter 1
- \star Local minimality for the volume of Meissner polyhedra
 - numerical test for local minimality?
 - second order optimality conditions?

Convex shapes - constant width constraint

The polygonal Faber-Krahn inequality

The isoperimetric problem

 $\min_{|\Omega|=c} \mathsf{Per}(\Omega).$

Ω: General Shape * the solution is the disk

The first Dirichlet eigenvalue: Polyà-Szegö Conjecture

$$-\Delta u_1=\lambda_1(\Omega)u_1, u_1\in H^1_0(\Omega),$$

 $\label{eq:General Shape} \begin{array}{l} \Omega: \mbox{ General Shape (Faber-Krahn} \sim 1920) \\ \mbox{ Theorem: the solution is the disk } \end{array}$

Ω: *n*-gon (Polyà-Szegö 1951, *n* ∈ {3,4}) Conjecture: the solution is the regular *n*-gon

 $\min_{|\Omega|=c}\lambda_1(\Omega).$

Heuristic argument

If the optimal shape **among general shapes** is the disk then, when restricting to *n*-gons **the regular one should be optimal**.

Theory:

 \star Polyà-Szegö 1951: Steiner symmetrization decreases λ_1

only works for $n \in \{3, 4\}$

★ n ≥ 5: Steiner symmetrization may increase the number of sides
 ★ An optimal *n*-gon exists and has precisely *n* sides
 [Henrot, *Extremum problems for eigenvalues*, Chapter 3]
 ★ other works [Fragala, Velichkov, 19], [Indrei, 22]

[source: A. Treibergs]

Numerical evidence:

[Antunes, Freitas, 06], [B., PhD thesis, 15], [Dominguez, Nigam, Shahriari, 17]

Starting point for our work:

[Laurain, 19]: computes second shape derivative for the **Dirichlet energy** on polygons, deduces an explicit formula for the associated Hessian matrix

Hybrid proof strategy: use numerical tools when needed

- * the optimization variables are the coordinates of the polygon
- \star finite dimensional optimization problem classical optimality conditions
 - 1. Explicit computation of the Hessian matrix of $P\mapsto \lambda_1(P)|P|$
 - 2. **Proof of the local minimality** of the regular *n*-gon: numerical proof for $n \le 8$
 - 3. Computation of a neighborhood around the regular polygon where minimality occurs
 - 4. Analytic estimate for geometric features of an optimal polygon
 - 5. Reduce the conjecture for a given $n \ge 5$ to a finite number of certified numerical computations.
- [B., Bucur, On the polygonal Faber-Krahn inequality, 22]

Local minimality: Key points learned

• Shape derivatives: volumic form is well defined for less regular domains

$$\left(-\int_{\partial\Omega}(\partial_n u)^2\theta\cdot\mathbf{n}=\right)\lambda'(\Omega)(\theta)=\int_{\Omega}\mathbf{S}_1^\lambda:D\theta \text{ with } \mathbf{S}_1^\lambda=[|\nabla u|^2-\lambda(\Omega)u^2]\operatorname{\mathsf{Id}}-2\nabla u\otimes\nabla u$$

- Hessian matrix of $(\mathbf{x}_0, \mathbf{x}_1, ..., \mathbf{x}_{n-1}) \mapsto \lambda_1(P)|P|$ is explicit in terms of 2n + 1 PDEs
- For the regular *n*-gon the Hessian eigenvalues can be computed explicitly: 4 of them are 0, the rest depend on 3 PDEs.
- If the remaining 2n 4 are strictly positive then the local minimality of the regular *n*-gon holds

Problem

Proving the positivity of the eigenvalues of the Hessian is not obvious (for us, for now...).

Computing the eigenvalues numerically indicates they are positive. **How to turn this into a proof?**

 \star floating point arithmetic is reliable (when used correctly): BUT a floating point computation is **not a proof**

 \star interval arithmetic replaces floating point numbers x with intervals [x].

- \star operations on intervals are defined such that $\tilde{x} \in [x], \tilde{y} \in [y] \Longrightarrow \tilde{x} * \tilde{y} \in [x] * [y]$
- * toolboxes like INTLAB in Matlab implement these operations rigorously [Rump]

Challenges

- \star many operations \longrightarrow large intervals \longrightarrow useless results
- * Use any theoretical and practical tool available to pre-compute information.

 \star Nothing can be taken for granted: e.g. one needs to prove that the first eigenvalue found numerically is indeed the first eigenvalue!

Goal: Show that a Hessian eigenvalue $\mu = \mathcal{F}(\lambda_1, \nabla u_1, \nabla U^1, \nabla U^2)$ is strictly positive.

A priori estimates: continuous vs (exact) discrete solutions

 P_1 finite elements: simple, explicit estimates

Explicit a priori error estimates [Liu, Oishi, 13]

- $|\lambda \lambda_h| \leq C_1 h^2$
- $||u u_h||_{L^2} \le C_2 h^2$

• $\|\nabla u - \nabla u_h\|_{L^2} \le C_3 h$ (interpolation error dominates $\|\nabla (u - \Pi_{1,h} u)\|_{L^2} \le Ch|u|_{H^2}$) where C_1, C_2, C_3 are **explicit** for a given mesh.

Strategy: $\star a(u, \varphi) = (f, \varphi)_{H^{-1}, H^1}$ in $H_0^1(\Omega)$ (continuous problem) $\star a(v, \varphi) = (f, \varphi)_{H^{-1}, H^1}$ in \mathcal{V}^h (same RHS, but discrete; controlled by the interpolation error) $\star a(v_h, \varphi) = (f_h, \varphi)_{H^{-1}, H^1}$ in \mathcal{V}^h (actual FEM solution; continuous vs discrete RHS)

 \star easy to see how to choose h in order to achieve a desired precision

Search for an Equilibrium

high precision \rightarrow small $h \rightarrow$ big discrete linear systems \rightarrow bad control of machine errors

Our contribution

Explicit a priori estimates for problems of the form

$$\int_{\Omega} \left(\nabla U \cdot \nabla v - \lambda_1(\Omega) U v \right) = \int_{\Omega} f v + \int_{S} g v, \quad \forall v \in H^1_0(\Omega), \int_{\Omega} U u_1 = 0$$

* $f \in L^2(\Omega)$, S represents the rays $[\mathbf{oa}_i]$, $g \sim \partial_r u_1 \in H^{1/2}(S)$. * explicit estimates: $\|\nabla U - \nabla U_h\|_{L^2(\Omega)} = O(h)$ if segments in S are meshed exactly * **key idea:** U is not in $H^2(\Omega)$ but is piece-wise H^2 [Grisvard, Chapter 4]

32/35

A) Solve the FEM problems using interval arithmetics.

Control machine errors for the discrete problems

- \star solve in floating point; validate afterwards (INTLAB, residual)
- \star explicit assembly all triangles in the mesh are congruent
- * modify verifyeig in INTLAB: replace matrix inversion with 3 verified linear systems
- B) Compute the eigenvalues of the Hessian matrix.

Interval arithmetic is used in all computations

* replace all FEM variables in the formulas and obtain $\mu_h = [\underline{\mu_h}, \overline{\mu_h}]$. C) Add the a priori estimates.

Control errors between continuous and (exact) discrete problems * use optimal interpolation constants: mesh contains congruent triangles * the actual eigenvalue μ is guaranteed to belong to $[\mu_h - Ch, \overline{\mu_h} + Ch]$

If 2n - 4 of the intervals obtained are contained in $(0, +\infty)$ the **proof of local minimality** succeeds.

\star Complete validation of local minimality for $n\leq 8$

 \star Key points: improved error estimates, optimal interpolation constants

n	[B., Bucur, 22]			[B., Bucur, soon]		
	h	DoF	Intervals	h	DoF	Intervals
5	9.8e-4	2.5 million	X	0.0125	16200	\checkmark
6	4.2e-4	17 million	X	0.0095	33390	\checkmark
7	1.9e-4	97 million	X	0.0055	114030	\checkmark
8	1.35e-4	220 million	X	0.0037	292680	\checkmark

Conclusions

Polygonal Faber-Krahn inequality – academic problem:

New ideas explored: shape derivatives on polygons, explicit FEM estimates, validated numerics for local minimality

What's next? Continue the program proposed in [B., Bucur, 22]

- \star Convexity of the optimal *n*-gon would surely help a lot.
- \star A posteriori error estimates for the singular problem?
- \star in preparation: The boundary structure theorem also holds for λ'' on convex polygons.

Numerics in shape optimization:

- practical applications
- guiding the theoretical study
- contribute to theoretical proofs

Thank you!