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Shape Optimization

min
ω∈A

J(ω)

Theoretical aspects
? existence, regularity
? shape derivative
? find optimal shapes
? qualitative properties

Numerical aspects
? discretization choice
? efficient computations
? new theoretical ideas
? solve theoretical gaps

Practical aspects
? industrial problems
? analysis
? modelization
? simulation
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Structure of the memoir – purpose of using numerical tools

1. Design optimization for additive manufacturing (practical applications)

2. Numerical shape optimization for convex sets (test and find new ideas)

3. Optimal partitioning and multiphase problems (test and find new ideas)

4. The polygonal Faber-Krahn inequality (contributing to theoretical proofs)
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Structure of the memoir – purpose of using numerical tools

1. Design optimization for additive manufacturing (practical applications)

• Support optimization, overhang constraints
• Simplified simulation model [M. Bihr’s PhD thesis]
• Imperfect part/support interface [M. Godoy’s postdoc]
• New: Accessibility constraints

2. Numerical shape optimization for convex sets (test and find new ideas)

3. Optimal partitioning and multiphase problems (test and find new ideas)

4. The polygonal Faber-Krahn inequality (contributing to theoretical proofs)
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Structure of the memoir – purpose of using numerical tools

1. Design optimization for additive manufacturing (practical applications)

2. Numerical shape optimization for convex sets (test and find new ideas)

• Parametrization using the support function
• Spectral vs discrete representation
• New theoretical ideas – constant width constraint

3. Optimal partitioning and multiphase problems (test and find new ideas)

4. The polygonal Faber-Krahn inequality (contributing to theoretical proofs)
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Structure of the memoir – purpose of using numerical tools

1. Design optimization for additive manufacturing (practical applications)

2. Numerical shape optimization for convex sets (test and find new ideas)

3. Optimal partitioning and multiphase problems (test and find new ideas)

• Optimal partitions for spectral functionals
• Maximizing the length of minimal perimeter partitions
• Optimal Cheeger clusters

4. The polygonal Faber-Krahn inequality (contributing to theoretical proofs)
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Structure of the memoir – purpose of using numerical tools

1. Design optimization for additive manufacturing (practical applications)

2. Numerical shape optimization for convex sets (test and find new ideas)

3. Optimal partitioning and multiphase problems (test and find new ideas)

4. The polygonal Faber-Krahn inequality (contributing to theoretical proofs)

• Second shape derivatives for polygons
• Explicit error estimates – P1 finite elements
• Validated computing: interval arithmetic
• New: complete hybrid proof of local minimality.
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1 Design optimization for additive manufacturing

2 Convex shapes - constant width constraint

3 The polygonal Faber-Krahn inequality
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Additive Manufacturing

The SOFIA project: Industrial partners: AddUp, Safran, Fusia, Zodiac, Volume
Collaboration with Grégoire Allaire, Martin Bihr, Matias Godoy

Material deposition: Technology of interest:
one slice at a time Selective Laser Melting (SLM)

[iti-global.com] [Wikimedia]
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Arbitrary topology, but... other constraints

[robohub.org] [insta3dp.com] [szbiest.com]

Inclined surfaces (overhangs) not realized correctly

Large temperature gradients: thermal deformations as the metal contracts

supports are added solve these problems −→ additional cost −→ optimize them

Regular exchanges with industrial partners: better understand the role of supports

Beniamin Bogosel Shape optimization: theoretical, numerical and practical aspects 5/35



Works related to AM

Model Simulation Validation

[B., G. Allaire, 18] gravity loads, simultaneous part/support opti-
mization

[M. Bihr, B., G. Allaire, 20] optimizing the orientation, boundary
loads, equivalent thermal loads

[M. Bihr et al., 22] simplified model simulation: reducing the stress
and decreasing thermal deformations

[M. Godoy, G. Allaire, B., 22] imperfect interfaces support/part

Most recent work: [G. Allaire, M. Bihr, B., M. Godoy] – accessibility constraints
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Accessibility constraints

? Why? Supports removal: part still in the machine, supports need to be reached
? How? For simplicity, in a straight line

Multi-directional accessibility Normal accessibility

natural choice, difficult more restrictive, easy to evaluate
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Distance functions: accessibility evaluation

? hε −→ regularized Heaviside function
Criteria: surface integral

∫
Γout

hε(d − d0), volume integral
∫

Ω+
hε(d − d0)

Normal accessibility

d0 = distance from ΓD without obstacle d = distance from ΓD with obstacle
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Distance functions: accessibility evaluation

? hε −→ regularized Heaviside function
Criteria: surface integral

∫
Γout

hε(d − d0), volume integral
∫

Ω+
hε(d − d0)

Multi-directional accessibility

Byi Byi

d0 = distance from Byi without obstacle d = distance from Byi with obstacle
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Variable speed

Define V (x) =

{
V+ ≡ 1 in Ω+,
V− < 1 in Ω−,

and solve

{
V (x)|∇d(x)| = 1 in Ω,

d = 0 on ΓD .

Pure obstacle V− = 0.01 V− = 0.5

? V− small enough does not change d outside the obstacle Ω−
? fixed mesh, differentiability
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Shape derivative

[image source: C. Dapogny]

? perturb the domain using a vector field θ

? J((I + θ)(Ω)) = J(Ω) + J ′(Ω)(θ) + o(‖θ‖)

? Standard form: under regularity
assumptions we can write
J ′(Ω)(θ) =

∫
∂Ω f θ · n

? Numerical application: θ = −f n is a
descent direction for the objective function
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Differentiating the accessibility criterion

? The interface Σ between Ω− and Ω+ is perturbed by the vector field θ; d = d(Σ)

J(Σ) =

∫
Ω
j(d) +

∫
Γout

k(d) gives J ′(Σ)(θ) =

∫
Ω
j ′(d)d ′(θ) +

∫
Γout

k ′(d)d ′(θ).

Adjoint state: active where geodesics of d touch the obstacle
− div(V+∇d+p+) = j ′(d+) in Ω+,
− div(V−∇d−p−) = j ′(d−) in Ω−,

p+ = k ′(d)/(V∇d · n) on Γout,
p+ = 0 on ∂Ω \ (Γout ∪ ΓD),

V+(∇d+ · n)p+ = V−(∇d− · n)p− on Σ.

Shape derivative

J ′(Σ)(θ) =

∫
Σ
V+(∇d+ · n)p+ [(∇d+ −∇d−) · n] (θ · n) ds
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Remarks, Implementation

? The framework applies to both normal and (discrete) multi-directional accessibility

? the obstacle bounded by Σ and the target Γout can be considered as shape variables

Numerical aspects:
? compute d with variable speeds V±: classical schemes, fast marching (scikit-fmm)
? computing the adjoint: first-order upwind scheme
? shape representation: level-set in FreeFEM
? volume constraints: projection
? other constraints: augmented Lagrangian
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Example 1: Rendering a cantilever accessible

? a classical cantilever shape is not normally accessible from the left boundary
? minimize the accessibility criterion w.r.t two lateral sides ΓD1 , ΓD2

J(Σ) =

∫
Ω+

hε

(
min
i=1,2

(di (Σ)− d0,i )

)
ds

? constant area (projection), upper bound on the compliance (Augmented Lagrangian)

ΓD1 ΓD2
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Example 2: Simultaneous optimization of part and supports

ω – one PDE for modeling final usage S – supports – one PDE for gravity loads

Accessibility: J(ω,S) =
∫
S hε (d(ω)− d0)

Volume constraints – projection

Compliance constraints – Aug. Lag.
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Numerical Result

? both the part and the supports are modified significantly by the optimization algorithm to
try and respect the accessibility constraint
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Conclusions and perspectives

? More examples and tests in our paper:
[Accessibility constraints in structural optimization via distance functions, Allaire, Bihr, B., Godoy, 23]

Accessibility constraint – motivated by applications in AM:
New ideas explored: differentiating distance functions, non-standard adjoint equations

Open questions:
1. Justify rigorously the theoretical aspects related to the shape derivative: existence of
solution for the adjoint (discontinuous speed across Σ) [Bouchut, James, 98, 1D]

2. Understand the limit case V− → 0: pure obstacle case.
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1 Design optimization for additive manufacturing

2 Convex shapes - constant width constraint

3 The polygonal Faber-Krahn inequality
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Motivation: examples

1. Blaschke-Lebesgue Theorem. Among planar shapes of constant width the Reuleaux
triangle minimizes the area.

2. Blaschke-Lebesgue Problem in 3D (open). The three dimensional body of constant
width with the minimal volume is one of the Meissner tetrahedra.

Numerics: better understand the constant width constraint, general functionals in 2D, 3D
Co-authors: P. Antunes, A. Henrot, I. Lucardesi, F. Nacry, A. Al Sayed, M. Michetti
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Support function: functional setting encoding all difficulties

[Schneider, Convex bodies], [Bayen, Henrion], many others
Definition: p(θ) = maxx∈ω(x · θ)
Width: w(θ) = p(θ) + p(θ + π)
Parametrization: x(θ) = p(θ)r(θ) + p′(θ)t(θ)
Convexity: p(θ) + p′′(θ) ≥ 0 (the hard part...)

p(θ1)

p(θ2)

p(θ3)

Knowing p, p′, p′′ gives a parametrization of ω and characterizes convexity:

spectral decomposition: direct access to p, p′, p′′ - limited to strictly convex sets!

direct choice of values for some angle discretization: how to choose p′, p′′ rigorously?
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Some numerical results: constant width constraint

Minimizing the volume

[Antunes, B.]

Maximizing λk(Ω)
−∆uk = λk(Ω)uk , uk ∈ H1

0 (Ω)
[B., Henrot, Lucardesi], [B., 23]

Conjecture

Reuleaux triangle – optimal for 1 ≤ k ≤ 10.
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Why is the Reuleaux triangle optimal for so many functionals?

? optimal for: the area, inradius, perimeter and area of inner parallel sets, the Cheeger
constant [Henrot, Lucardesi, 20], [B. 23], Dirichlet-Laplace eigenvalues (numerics)

Questions:

1. Unifying reason for optimality of the Reuleaux triangle the cases above?
? Concavity for Brunn-Minkowski type inequalities?
? The Reuleaux triangle: the only Reuleaux polygon which cannot be perturbed?

2. None of the current proofs for the minimality of the area in 2D generalize to 3D.
? Find new ones which also work in 3D?
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New idea in 3D: Meissner polyhedra

? finite dimensional constant width family in 3D: analogue of Reuleaux polygons in 2D
? [Montejano, Roldan-Pensado, 18], [Hynd, 23]

2D: Reuleaux triangle 3D: Meissner tetrahedron
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New idea in 3D: Meissner polyhedra

? finite dimensional constant width family in 3D: analogue of Reuleaux polygons in 2D
? [Montejano, Roldan-Pensado, 18], [Hynd, 23]

2D: Reuleaux polygon 3D: Meissner polyhedron
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Meissner polyhedra

? Explicit formula for area and volume [B. Volume computation for Meissner polyhedra..., 23]

? Missing ingredient for solving 3D case: better understand extremal finite sets of diameter 1

Conjecture

No Meissner polyhedron is a local minimizer for the area. The tetrahedra are minimizers
because they cannot be perturbed preserving constant width without adding extra vertices.

Tetrahedron: best among pyramids

Among all Meissner pyramids the tetrahedron minimizes the area/volume.
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New proof in 2D

Dimension 2

max
B(1/2)⊂S⊂B(

√
3/3)

1

2
Per(S)− Area(S)

Solution: regular hexagon [Bianchini, Henrot]

Relaxation of Blaschke-Lebesgue in 2D

Dimension 3

max
B(1/2)⊂S⊂B(

√
3/8)

1

2
Mean Width(S)−Area(S)

Solution: conv(M,−M)??
Relaxation of the 3D problem??

? Challenge for numerics: Optimal shapes should have plenty of segments in the boundary!
The non-smooth framework is needed in 3D!
[B. Mixed volumes and the Blaschke-Lebesgue theorem, 23]
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Perspectives

? Extend the numerical discrete approach to the 3D case: non-smooth support functions

? Further study the geometry of Meissner polyhedra and extremal finite sets of diameter 1

? Local minimality for the volume of Meissner polyhedra
- numerical test for local minimality?
- second order optimality conditions?
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1 Design optimization for additive manufacturing

2 Convex shapes - constant width constraint

3 The polygonal Faber-Krahn inequality
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The isoperimetric problem

min
|Ω|=c

Per(Ω).

Ω: General Shape
? the solution is the disk

Ω: n-gon
? the solution is the regular n-gon
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The first Dirichlet eigenvalue: Polyà-Szegö Conjecture

−∆u1 = λ1(Ω)u1, u1 ∈ H1
0 (Ω), min

|Ω|=c
λ1(Ω).

Ω: General Shape (Faber-Krahn ∼ 1920)
Theorem: the solution is the disk

Ω: n-gon (Polyà-Szegö 1951, n ∈ {3, 4})
Conjecture: the solution is the regular n-gon

Heuristic argument

If the optimal shape among general shapes is the disk then, when restricting to n-gons the
regular one should be optimal.
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Works on the subject

Theory:
? Polyà-Szegö 1951: Steiner symmetrization decreases λ1

only works for n ∈ {3, 4}
? n ≥ 5: Steiner symmetrization may increase the number of sides
? An optimal n-gon exists and has precisely n sides

[Henrot, Extremum problems for eigenvalues, Chapter 3]

? other works [Fragala, Velichkov, 19], [Indrei, 22]
[source: A. Treibergs]

Numerical evidence:
[Antunes, Freitas, 06], [B., PhD thesis, 15], [Dominguez, Nigam, Shahriari, 17]

Starting point for our work:
[Laurain, 19]: computes second shape derivative for the Dirichlet energy on polygons,
deduces an explicit formula for the associated Hessian matrix
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Hybrid proof strategy: use numerical tools when needed

? the optimization variables are the coordinates of the polygon
? finite dimensional optimization problem - classical optimality conditions

1. Explicit computation of the Hessian matrix of P 7→ λ1(P)|P|
2. Proof of the local minimality of the regular n-gon: numerical proof for n ≤ 8

3. Computation of a neighborhood around the regular polygon where minimality occurs

4. Analytic estimate for geometric features of an optimal polygon

5. Reduce the conjecture for a given n ≥ 5 to a finite number of certified numerical
computations.

[B., Bucur, On the polygonal Faber-Krahn inequality, 22]
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Local minimality: Key points learned

Shape derivatives: volumic form is well defined for less regular domains(
−
∫
∂Ω

(∂nu)2θ · n =

)
λ′(Ω)(θ) =

∫
Ω

Sλ1 : Dθ with Sλ1 = [|∇u|2−λ(Ω)u2] Id−2∇u⊗∇u

Hessian matrix of (x0, x1, ..., xn−1) 7→ λ1(P)|P| is explicit in terms of 2n + 1 PDEs

For the regular n-gon the Hessian eigenvalues can be computed explicitly:
4 of them are 0, the rest depend on 3 PDEs.

If the remaining 2n − 4 are strictly positive then
the local minimality of the regular n-gon holds

Problem

Proving the positivity of the eigenvalues of the Hessian is not obvious (for us, for now...).

Computing the eigenvalues numerically indicates they are positive.
How to turn this into a proof?
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Reliable computing: Interval arithmetic

? floating point arithmetic is reliable (when used correctly): BUT a floating point
computation is not a proof
? interval arithmetic replaces floating point numbers x with intervals [x ].
? operations on intervals are defined such that x̃ ∈ [x ], ỹ ∈ [y ] =⇒ x̃ ∗ ỹ ∈ [x ] ∗ [y ]
? toolboxes like INTLAB in Matlab implement these operations rigorously [Rump]

Challenges

? many operations −→ large intervals −→ useless results
? Use any theoretical and practical tool available to pre-compute information.
? Nothing can be taken for granted: e.g. one needs to prove that the first eigenvalue found
numerically is indeed the first eigenvalue!

Goal: Show that a Hessian eigenvalue µ = F(λ1,∇u1,∇U1,∇U2) is strictly positive.
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A priori estimates: continuous vs (exact) discrete solutions

P1 finite elements: simple, explicit estimates

Explicit a priori error estimates [Liu, Oishi, 13]

|λ− λh| ≤ C1h
2

‖u − uh‖L2 ≤ C2h
2

‖∇u −∇uh‖L2 ≤ C3h (interpolation error dominates ‖∇(u − Π1,hu)‖L2 ≤ Ch|u|H2)

where C1,C2,C3 are explicit for a given mesh.

Strategy: ? a(u, ϕ) = (f , ϕ)H−1,H1 in H1
0 (Ω) (continuous problem)

? a(v , ϕ) = (f , ϕ)H−1,H1 in Vh (same RHS, but discrete; controlled by the interpolation error)
? a(vh, ϕ) = (fh, ϕ)H−1,H1 in Vh (actual FEM solution; continuous vs discrete RHS)

? easy to see how to choose h in order to achieve a desired precision

Search for an Equilibrium

high precision → small h → big discrete linear systems → bad control of machine errors
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Our contribution

Explicit a priori estimates for problems of the form∫
Ω

(
∇U · ∇v − λ1(Ω)Uv

)
=

∫
Ω
fv +

∫
S
gv , ∀v ∈ H1

0 (Ω),

∫
Ω
Uu1 = 0

? f ∈ L2(Ω), S represents the rays [oai ], g ∼ ∂ru1 ∈ H1/2(S).
? explicit estimates: ‖∇U −∇Uh‖L2(Ω) = O(h) if segments in S are meshed exactly

? key idea: U is not in H2(Ω) but is piece-wise H2 [Grisvard, Chapter 4]

Symmetric mesh U1
0 U2

0
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Validation strategy

A) Solve the FEM problems using interval arithmetics.
Control machine errors for the discrete problems

? solve in floating point; validate afterwards (INTLAB, residual)
? explicit assembly – all triangles in the mesh are congruent
? modify verifyeig in INTLAB: replace matrix inversion with 3 verified linear systems
B) Compute the eigenvalues of the Hessian matrix.

Interval arithmetic is used in all computations
? replace all FEM variables in the formulas and obtain µh = [µh, µh].
C) Add the a priori estimates.

Control errors between continuous and (exact) discrete problems
? use optimal interpolation constants: mesh contains congruent triangles
? the actual eigenvalue µ is guaranteed to belong to [µh − Ch, µh + Ch]

If 2n − 4 of the intervals obtained are contained in (0,+∞) the proof of local minimality
succeeds.
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Preliminary results

? Complete validation of local minimality for n ≤ 8
? Key points: improved error estimates, optimal interpolation constants

n [B., Bucur, 22] [B., Bucur, soon]

h DoF Intervals h DoF Intervals

5 9.8e-4 2.5 million 7 0.0125 16200 X
6 4.2e-4 17 million 7 0.0095 33390 X
7 1.9e-4 97 million 7 0.0055 114030 X
8 1.35e-4 220 million 7 0.0037 292680 X
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Conclusions

Polygonal Faber-Krahn inequality – academic problem:
New ideas explored: shape derivatives on polygons, explicit FEM estimates, validated
numerics for local minimality

What’s next? Continue the program proposed in [B., Bucur, 22]

? Convexity of the optimal n-gon would surely help a lot.
? A posteriori error estimates for the singular problem?
? in preparation: The boundary structure theorem also holds for λ′′ on convex polygons.

Numerics in shape optimization:

practical applications

guiding the theoretical study

contribute to theoretical proofs

Thank you!
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