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Abstract. We study partitions on three dimensional manifolds which minimize the total geodesic
perimeter. We propose a relaxed framework based on a Γ-convergence result and we show some
numerical results. We compare our results to those already present in the literature in the case of the
sphere. For general surfaces we provide an optimization algorithm on meshes which can give a good
approximation of the optimal cost, starting from the results obtained using the relaxed formulation.

1. Introduction

In this article we propose a theoretical and numerical framework for the study of the partitions
(ωi)

n
i=1 of a surface S ⊂ R

3 which minimize the total geodesic perimeter while keeping a prescribed
area for each cell. Thus, we are interested in minimizing H1(∪n

i=1∂Sωi) or equivalently

Per(ω1) + ...+ Per(ωn)

in the class of partitions (ωi) of the surface S such that |ωi| = ci, with the compatibility constraint
c1 + ... + cn = |S|. Here ∂Sω denotes the boundary of a set ω as a subset of the surface S, Per(ω)
denotes the geodesic perimeter of ω, i.e. the perimeter of ω regarded as a subset of the surface S and
|ω| is the area of the subset ω. General theoretical results concerning these minimal partitioning
problems are presented by Morgan in [16]. This theoretical result states that boundaries of a
minimal-perimeter partition are arcs of constant geodesic curvature and the boundaries of the sets
meet in threes with angles of measure 2π/3.

The more specific case concerning the minimal perimeter partitions of sphere with cells of equal
areas was intensively studied from both theoretical and numerical points of view. In the case n = 2
the solution is the partition into two half-spheres. This was proved by Bernstein in 1905 [5]. In
the case n = 3 the optimal candidate is the partition of the sphere into three slices corresponding
to an angle of 2π/3. This was proved by Masters in [15]. The case n = 12 was solved by Hales in
[13] using methods similar to the ones involved in the proof of the honeycomb conjecture [12]. The
case n = 4 was treated by Engelstein in [11] and the corresponding optimal partition is the one
associated to the regular tetrahedron.

The case of the sphere has been studied numerically by Cox and Flikkema [9] using the Surface
Evolver software [7]. They perform computations for n ∈ J2, 32K and they confirm the natural
conjecture for n = 6: the optimal partition in this case is probably the one associated to the cube.
Their algorithm performs the perimeter optimization after choosing a topological structure for the
partition. Thus, the optimization algorithm has to know a priori the topological structure in order
to find the corresponding local minimum. In the end we keep the configuration which gives the best
optimal cost among the admissible combinatorial possibilities.

The algorithm we propose is a generalization of the ideas in [17] to the case of surfaces. First,
there is a theoretical result, similar to the theorem of Modica and Mortola, which we present in
Section 2. This theoretical result justifies the use of the functional

Jε(u) = ε

∫

S
|∇τu|

2 +
1

ε

∫

S
u2(1− u)2

as an approximation of the perimeter as ε → 0. The direct consequence of the Γ-convergence result
is that a sequence of minimizers uε for Jε under the constraint

∫

S uε = c converges to a minimizer
1



2 B. BOGOSEL AND É. OUDET

of the geodesic perimeter under area constraint. For the partitioning case we prove that functionals
of the type

n
∑

i=1

Jε(ui)

approximate the perimeter as ε → 0, where ui are functions associated to the sets ωi which satisfy
some integral and non-overlapping constraints. We implement an optimization algorithm which is
able to solve the above problem on a large class of surfaces. This is an advantage over the methods
used in [9] which can be used only in the case of the sphere.

Working with the relaxed formulation does not provide an exact representation of the contours.
Thus, we cannot directly provide the associated cost once we have the relaxed optimal partitions.
The particular case of the sphere can be solved directly by noting that boundaries between two
cells have constant geodesic curvature [16] and are, thus, arcs of circles. We recover all the results
presented in [9] in the case of the sphere. On more complex surfaces it is complicated to explicitly
work with curves of constant geodesic curvature. Nevertheless, we can extract the contours from
the density representation in order to compute the total perimeter. Since the extracted contours
are not smooth, we perform a constrained optimization stage on the triangulated surface preserving
the topology to obtain reliable approximations of the optimal costs.

2. Theoretical result

As in [17] we would like to have a rigorous theoretical framework which justifies our numerical
method. In the euclidean case it was an adapted version of the Modica-Mortola theorem to the
case of partitions which provided the needed result. In the case of surfaces we did not find an
equivalent result in the literature. We did find the results in [4] which suggest that the relaxation
we consider is the right one on general manifolds. In the above reference a the authors do not prove
a Γ-convergence result, but only the convergence of minimisers. We are concerned here only with
smooth manifolds of codimension one and in this particular case it is possible to adapt classical
methods in order to prove a Γ-convergence result.

We start by defining the space of functions of bounded variations on a d− 1 dimensional surface
in R

d. Let S be a smooth d− 1 dimensional manifold without boundary in R
d. In the following we

consider the tangential gradient of a function u defined on S to be

∇τu = ∇ũ− (∇ũ.n)n,

where ũ is a regular extension of u in a neighbourhood of S n denotes the normal vector to the
surface. In the same way we define the tangential divergence of a vector field w ∈ C1(S;Rd) by

divτ w = tr(Dτw)

where the matrix Dτw contains on line i the tangential gradient of the i-th component of w, i.e.
∇τwi. See [14, Section 5.4] for further details.

We consider the space of functions with bounded variation on S

BV (S) = {u ∈ L1(S) : TV (u) < ∞}

where

TV (u) = sup{

∫

S
udivτ g : |g|∞ ≤ 1}.

Using the divergence theorem on manifolds (see [14, Section 5.4]), we obtain that if u is C1(S) then

TV (u) =

∫

S
|∇τu|.

If ω is a subset of S we define its generalized perimeter as Per(ω) = TV (χω), where χω represents
the characteristic function of ω. By mimicking the proof in the euclidean case we can prove that the
total variation is lower semi-continuous for the L1(S) convergence. We refer to [6] for more details.
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Let (Ci) is a set of local charts which cover S such that each Ci is diffeomorphic to a connected
and bounded open subset Di of R

d−1. We denote by θi : Di → Ci these diffeomorphisms. Then it
is possible to transfer a function u from Ci to Di using the transformation ũi = u ◦ θi. These new
functions ũi, which lie now in Euclidean spaces, are functions of bounded variation. Therefore, it is
possible to transfer some of the theory of BV functions from Euclidean spaces to manifolds of co-
dimension 1 by using local charts and partitions of unity. In particular, it is possible to approximate
finite perimeter sets ω ⊂ S with smooth sets ωn ⊂ S such that ωn → ω in the L1(S) topology and
Per(ωn) → Per(ω).

We are now ready to state the relaxation result in the case of a single phase, which will be
generalized later to the case of a partition. To derive the theorem below we follow the approach
provided by Buttazzo in [8] and Alberti in [1].

Theorem 2.1. Define Fε, F : L1(S) → [0,+∞] as follows:

Fε(u) =







∫

S

(

ε|∇τu|
2 +

1

ε
u2(1− u)2

)

dσ if u ∈ H1(S),
∫

S u = c

+∞ otherwise.

F (u) =

{

1
3 Per({u = 1}) if u ∈ BV (S, {0, 1}),

∫

S u = c

+∞ otherwise.

Then Fε
Γ

−→ F in the L1(S) topology.

Proof: We define φ(t) =
∫ t
0 |s(1 − s)|ds. We consider a sequence (uε) → u in L1(S) such that

lim infε→0 Fε(uε) < +∞. Since Fε(uε) ≥ 1
ε

∫

S u2ε(1 − uε)
2, if we take a subsequence of uε which

converges almost everywhere to u we obtain that
∫

S
u2(1− u)2 = 0,

and thus u ∈ {0, 1} almost everywhere in S. Note that truncating uε between 0 and 1 decreases
the value of Fε(uε) while preserving the fact that uε → u in L1(S). Also note that φ is Lipschitz
on [0, 1] so we can conclude that φ ◦ uε → φ ◦ u in L1(S). By applying the classical inequality
a2 + b2 ≥ 2ab we get that

Fε(uε) ≥ 2

∫

S
|∇τu|φ

′(uε) = 2

∫

S
|∇τ (φ ◦ uε)|.

Taking lim inf in the above inequality and using the semi-continuity of the total variation with
respect to the L1(S) convergence we obtain that

lim inf
ε→0

Fε(uε) ≥ 2TV (φ ◦ u) = 2φ(1)TV (u).

Since u is a characteristic function, it follows that the perimeter of {u = 1} is bounded and therefore
u ∈ BV (S, {0, 1}). Note that φ(1) = 1/6 and thus we recover the desired constant in front of the
perimeter. It is obvious that the integral condition is also preserved in the limit. This concludes
the proof of the Γ− lim inf part of the theorem.

For the Γ− lim sup part we need to exhibit a recovery sequence for each u such that F (u) < +∞.
By a classical argument it is enough to find a recovery sequence only for functions u which are
characteristic functions of smooth sets in S. See [6] for more details concerning the reduction to
regular sets and [3, Theorem 3.42] for the BV approximation of finite perimeter sets with smooth
sets.

Let’s consider now u = χω where ω ⊂ S is a set with smooth boundary relative to S. We consider
the signed distance function dω : S → R defined by

dω(x) = dτ (x, S \ ω)− dτ (x, ω),
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where dτ is the geodesic distance on S. Note that dω is positive outside ω and negative inside.
Consider the optimal profile problem

c = min{

∫

R

(W (v) + |v′|2 : v(−∞) = 0, v(+∞) = 1}.

Any solution of this minimizing problem satisfies v′ =
√

W (v) and we can impose the initial
condition v(0) = 1/2 in order to have a symmetric behaviour. We can see that the optimal value is

c = 2
∫ 1
0

√

W (s)ds. In our problem we have chosen W (s) = s2(1− s)2. In order to have a function
which goes from 0 to 1 in finite time we may choose

vη = min{max{0, (1 + 2η)v − η}, 1}.

We see that as η → 0 we have

cη =

∫

R

(W (vη) + |(vη)′|2) → c as η → 0.

All these considerations are inspired from [6]. We can define

uε(x) = vη(dω(x)/ε).

We can see that

Fε(uε) =

∫

S

(

ε|∇τu|
2 +

1

ε
W (u)

)

=

∫ T/ε

−Tε

∫

dω(x)=t

(

ε|(vη)′(dω(x)/ε)|
2 |∇τdω(x)|

2

ε2
+

1

ε
W (vη(dω/ε))

)

dHd−2(x)dt

=

∫ T/ε

−T/ε

∫

dω(x)=t

1

ε
(|(vη)′(t/ε)|2 +W (vη(t/ε)))dHd−2(x)dt

=

∫ T/ε

−T/ε
Per(dω(x) = t)

1

ε
(|(vη)′(t/ε)|2 +W (vη(t/ε)))dt

=

∫ T

−T
Per(dω(x) = tε)(|(vη)′(t)|2 +W (vη(t)))dt

where we have applied the co-area formula and T is chosen such that the support of vη is inside
[−T, T ]. Since lims→0 Per({dω(x) = s}) = Per(ω) we see that for ε small enough there exists δ such
that Per(dω(x) = s) < Per(ω) + δ when |s| < Tε. Therefore

lim sup
ε→0

Fε(uε) ≤ (Per(ω) + δ)

∫ T

−T
(|(vη)′(t)|2 +W (vη(t)))dt = (Per(ω) + δ)cη .

Since this is true for any δ, η small enough, by letting δ, η → 0 we obtain the desired result.
In order to have a fixed integral equal to

∫

S χω = c it is enough to consider a shift in the definition
of uε:

uε(x) = vη((dω(x) + sε)/ε),

where sε ∈ [−Tε, Tε]. We can see that for sε = Tε we have uε = 1 on ω and thus
∫

S uε > c while
for sε = −Tε the support of uε is included in ω and we have the opposite inequality. Thus, for each
ε small enough we can change the definition of uε so that

∫

S uε = c. The estimates presented above
are carried with no difficulty in this setting. �

We can now state the result in the partitioning case. We denote by u an element in (L1(S))n. In
order to simplify the notations we introduce the space

X = {u ∈ (L1(S))n :

∫

S
ui = ci,

n
∑

i=1

ui = 1}
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where ci satisfy the compatibility condition
∑n

i=1 ci = Hd−1(S). It is easy to see that X is closed
under the convergence in (L1(S))n.

Theorem 2.2. Define Fε, F : (L1(S)n → [0,+∞] as follows:

Fε(u) =











n
∑

i=1

∫

S

(

ε|∇τui|
2 +

1

ε
u2i (1− ui)

2

)

dσ if u ∈ (H1(S))n ∩X

+∞ otherwise

F (u) =

{

1
3

∑n
i=1 Per({ui = 1}) if u ∈ (BV (S, {0, 1}))n ∩X

+∞ otherwise

Then Fε
Γ

−→ F in the (L1(S))n topology.

Proof: It is easy to see that the Γ− lim inf part follows at once from Theorem 2.1 and from the
fact that X is closed under the topology of (L1(S))n.

In order to construct the recovery sequence we reduce the problem to the case where the limit u
is consists of piecewise smooth parts in S. In this case we define ui = vη(dωi

(x)/ε) as in the one
phase case. Thus on each ωi we have ui ≥ 1/2 which implies that

∑n
i=1 ui ≥ 1/2. There are two

points which need to be addressed:

(1) The sum equal to 1 condition. Due to the symmetry of the optimal profile we deduce that
there is only one zone where the sum condition is not satisfied and that is in the neighborhood
of singular points. Since an ε-neighborhood of the singular set is of order εd−1. Replacing
each ui by ui/(

∑n
i=1 ui) in these problematic regions we preserve the regularity of each ui

and we note that the functions have bounded gradient of order O(1/ε). We immediately
find that the corresponding energy

∫

Nε

(

ε|∇τui|
2 +

1

ε
u2i (1− ui)

2

)

vanishes as ε → 0.
(2) We also need to modify the functions ui so that they have the same integral over S. In order

to do this we apply a procedure found in [2] where we consider a family of balls in regions
where ui ∈ {0, 1}. On each such ball we can consider modifications of ui such that the sum
is preserved and the integrals have the right value. As above, the sum of energies on these
balls will be negligible in the limit.

Once these points are addressed, the lim sup estimates follows just like in the one dimensional case
and the proof of the theorem is completed. �

3. Finite Element framework

We wish to use this relaxation by Γ-convergence to perform numerical computations so we need
a framework which allows us to compute the quantity

ε

∫

S
|∇τu|

2 +
1

ε

∫

S
u2(1− u)2,

in fast, efficient way. In order to do this we triangulate the surface S and we compute the mass
matrixM and the stiffness matrixK associated to the P1 finite elements on this triangulation. Then,
if for the sake of simplicity, we use the same notation u for the P1 finite element approximation of
u, we have

∫

S
|∇τu|

2 = uTKu
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and
∫

S
u2(1− u)2 = vTMv,

where v = u.2. × (1 − u).2. We have used the Matlab convention that adding a point before
an operation means that we are doing component-wise vector computations. Note that once the
matrices K,M are computed, we only have to perform matrix-vector multiplications, which is really
fast. In this setting we use the discrete gradients of the above expressions given by:

∇uu
TKu = 2Ku,

∇uv
TMv = 2Mv. × (1− 2u).

The partition condition and the equal areas constraint are imposed by making an orthogonal
projection on the linear constraints as follows. We write the discrete vectors representing P1 dis-
cretization of the density functions in the following matrix form

M = (ϕ1 ϕ2 ... ϕn).

The partition constraint implies that the sum of the elements on every line of M is equal to 1 and
the equal area constraint implies that for every column of the matrix M we have the relation

〈v, ϕi〉 = A/n, where v = 11×N ·M.

Here the constant A is the total area of the surface, N is the total number of points in the trian-
gulation and the notation 1p×q represents the p× q matrix whose entries are all equal to 1. These
conditions are discretizations in the finite element setting of the conditions that the integrals of the
density functions ui are all equal to A/n. Indeed, given a triangulation T of S and its associated

mass matrix M , we have

∫

S
1 · ui = 11×N ·M · ϕi, where ϕi is the vector containing the values of

ui at the vertices of the triangulation. The projection routine can be found in Algorithm 1.

Algorithm 1 Orthogonal projection on the partition and area constraints

Require: A = (aij) ∈ RN×n, c ∈ R1×n, d ∈ RN×1, v
1: (ei) =

∑

j aij − ci (line sum error; N × 1 column vector)

2: (fi) =
∑

i viaij − dj (column scalar product error; n× 1 column vector)
3: Define the matrix C of size n× n by

{

ckl = ‖v‖22/n if k 6= l

ckk = ‖v‖22 − ‖v‖22/n

4: (qj) = (fj)− 〈v, e〉/n (n× 1 column vector)
5: Compute (λj) ∈ Rn×1 with λn = 0 such that C|(n−1)×(n−1)(λj)|n−1 = (qj)|n−1. The indices

indicate a sub-matrix with the first n − 1 lines and columns, or the sub-vector formed by the
first n− 1 components.

6: S =
∑

j λj

7: ηi = (ei − S · vi)/n (N × 1 column vector)
8: Aorth = (ηi) · 11×n + v · (λj)

T , where 1p×q is the p× q matrix with all entries equal to 1
9: A = A−Aorth

return A

Once we have this discrete formulation we use an optimized LBFGS gradient descent procedure
[19] to compute the numerical minimizers. In order to avoid local minima where one of the phases
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ϕl is constant, which arise often when the number of phases is greater than 5, we add a Lagrange
multiplier which penalizes the constant functions. In this way, we optimize

n
∑

i=1

ε

∫

S
|∇τϕ

i|2 +
1

ε

∫

S
(ϕi)2(1− ϕi)2 + λ(std(ϕi)− starget)2,

where std(ϕl) is the standard deviation of ϕl and starget is the standard deviation of a characteristic
function of area Area(S)/n.

In order to have a good approximation of the optimal partition, we want do decrease ε so that
the width of the interface is small. We notice that if we chose ε of the same order as the sides of
the mesh triangles the algorithm converges. Furthermore, we cannot make ε smaller, since then the
gradient term will not contain any real information, as the width of the interface is of size ε. In
order to avoid this problem, we consider refined meshes associated to each ε. At each step where
we decrease ε we interpolate the values of the previous optimizer on a refined mesh and we consider
these interpolated densities as starting point for the descent algorithm on the new mesh. In the
case of the sphere we make four refinements ranging from 10000 to 160000 points. Some optimal
configurations, in the case of the sphere, are presented in Figure 1. A detailed study of the case of
the sphere along with a comparison with the known results of Cox and Flikkema [9] are presented
in the next section.

As underlined before, our approach allows a direct treatment of any surface, as long as a qual-
itative triangulation is found. We perform some numerical computations on various shapes like
a torus, a double torus, and a more complex surface called Banchoff-Chmutov of order 4. A few
details about the definitions of these surfaces are provided below:

• We consider a torus of outer radius R = 1 and inner radius 0.6 (see Figure 2). This torus is
defined as the zero level set of the function

f(x, y, z) = (x2 + y2 + z2 +R2 − r2)2 − 4R2(x2 + y2).

• The double torus used in the computation (see Figure 3 is given by the zero level set of the
function

f(x, y, z) = (x(x− 1)2(x− 2) + y2)2 + z2 − 0.03.

• The complex Banchoff-Chmutov surface (see Figure 4) is given by the zero level set of the
function

f(x, y, z) = T4(x) + T4(y) + T4(z),

where T4(X) = 8X4 − 8X2 + 1 is the Tchebychev polynomial of order 4.

4. Refined optimization in the case of the sphere

The costs associated to the relaxed functional do not provide a good enough approximation of
the total length of the boundaries. In this section we propose a method to approximate the optimal
cost in the case of the sphere. The results of [16] state that boundaries of the cells of the optimal
partitions have constant geodesic curvature. In the case of the sphere the only such curves are the
arcs of circle. See for example [18, Exercise 2.4.9] for a proof. The results of Cox and Flikkema
[9] show that optimal configurations are not made of geodesic polygons. In order to perform an
optimization procedure which captures this effect they chose to make an initial optimization in
the class of geodesic polygons and then divide each geodesic arc into 16 smaller arcs and restart
the procedure with more variable points. They manage to approximate well enough the general
optimal structure but they still work in the class of geodesic polygons with additional vertices.
Our approach presented below is different in the sense that we consider general circle arcs (not
necessarily geodesics) which connect the points.

The first step is to extract the topology of the partition from the previous density results, i.e.
locate the triple points, the edge connections and construct the faces. In order to perform the
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Figure 1. Minimal perimeter partitions on the sphere into n equal area cells for
n ∈ {2, 3, ..., 24, 32}.
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Figure 2. Minimal perimeter partitions on the torus with outer radius R = 1 and
inner radius r = 0.6 together with their associated flattenings for n ∈ [2, 11]. The
center rectangle is represents the torus, while periodic continuations are made to

easily see the topological structure.

Figure 3. Minimal perimeter partitions on a double torus for n ∈ {2, 4, 6}.

Figure 4. Minimal perimeter partitions on a Banchoff-Chmutov surface for
n ∈ {2, 4, 6, 8}.
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refined optimization procedure we need to be able to compute the areas of portions of the sphere
determined by arcs of circles. This is possible using the Gauss-Bonnet formula. If M is a smooth
subset of a surface then

∫

M
KdA+

∫

∂M
kg = 2πχ(M), (4.1)

where K is the curvature of the surface, kg is the geodesic curvature and χ(M) is the Euler char-
acteristic of M . This result extends to piecewise smooth curves and in this case we have

∫

M
KdA+

∫

∂M
kg +

∑

θi = 2πχ(M), (4.2)

where θi are the turning angles between two consecutive smooth parts of the boundary. In the case
of a polygon the turning angles are the external angles of the polygon. The formula (4.2) allows the
computation of the area of a piece of the sphere bounded by arcs of circle. In this case the Euler
characteristic is equal to 1, the curvature of the unit sphere is K = 1 and the geodesic curvature is
piecewise constant. For more details we refer to [10, Chapter 4].

A first consequence of the Gauss-Bonnet theorem in connection to our problem is noting the fact
that, apart from cases where we have a certain symmetry like n ∈ {3, 4, 6, 12} the optimal cells
are not geodesic polygons. This is made clear in cases where we have a hexagonal cell. If the arcs
forming the boundary of such a hexagonal cell would be geodesic polygons then its area would be
equal to 6 · 2π/3 − 4π = 0. Thus a spherical shape bounded by six arcs of circle can never be a
geodesic polygon without being degenerate.

In order to perform the optimization we take the vertices as variables and we add one supple-
mentary vertex for each edge. This is enough to contain all the necessary information since an arc
of circle is well defined by three distinct points on the sphere. In the sequel we denote Pn the set of
partitions of the sphere into n cells and with An the partitions in Pn having equal areas. In order
to have a simpler numerical treatment of the problem we can incorporate the area constraints in
the functional by defining for every partition (ωi) ∈ Pn the quantity defined for every ε > 0 by

Gε((ωi)) =

n
∑

i=1

Per(ωi) +
1

ε

n−1
∑

i=1

n
∑

j=i+1

(Area(ωi)−Area(ωj))
2.

If we denote

G((ωi)) =

{

∑n
i=1 Per(ωi) if (ωi) ∈ An

∞ if (ωi) ∈ Pn \ An.

then we have the following Γ-convergence result.

Theorem 4.1. We have that Gε
Γ

−→ G for the L1(S2) convergence of sets.

Proof: For the (LI) property consider a sequence (ωε
i ) ⊂ Pn which convergence in L1(S2) to (ωi).

It is clear that we have Area(ωε
i ) → Area(ωi) and the perimeter is lower semicontinuous for the L1

convergence. Thus we have two situations. If (ωi) ∈ Pn\An then limε→0Gε((u
ε
i )) = ∞. If (ωi) ∈ An

then the lower semicontinuity of the perimeter implies that lim infε→0Gε((ω
ε
i )) ≥ G((ωi)).

The (LS) property is immediate in this case. Choose (ωi) ∈ An, or else there is nothing to prove.
We may choose the recovery sequence equal to (ωi) for every ε > 0. Thus the property is verified
immediately. �

Remark 4.2. We note that in the above proof the simplicity of the proof of the (LS) property is
due to the fact that the functionals Gε are well defined on the space {G < ∞}, which makes possible
the choice of constant recovery sequences. This is not the case in the results proved in Section 2.

This Γ-convergence result proves that minimizers of Gε converge to minimizers of G. As a
consequence, in the numerical computations, we minimize Gε for ε smaller and smaller in order to
approach the minimizers of G, which are in fact the desired solutions to our problem.
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Since the parameters are of two types: triple points and edge points, we prefer to use an opti-
mization algorithm which is not based on the gradient. The algorithm is described below.

• For each point P consider a family of m tangential directions (vi)
m
i=1 chosen as follows:

the first direction is chosen randomly and the rest are chosen so that the angles between
consecutive directions are 2π/m.

• Evaluate the cost function for the new partition obtained by perturbing the point P in each
of the directions vi according to a parameter ε.

• Choose the direction which has the largest decrease and update the partition accordingly.
• Do the same procedure for each edge point by performing the two possible orthogonal
perturbations of the point with respect to the edge.

• If there is no decrease for each of the points of the partition, then decrease ε.

This algorithm converges in each of the test cases and the results are presented in Table 1. In
the optimization procedure we start with ε = 1 and we reiterate the optimization decreasing ε by a
factor of 10 at each step until we reach the desired precision on the area constraints. We are able
to recover the same results as Cox and Flikkema for n ∈ [4, 32]. Furthermore, unlike in the case
of geodesic polygons, all triple points consist of boundaries which meet at equal angles of measure
2π/3. In Figure 5 you can see the results for n = 9 and n = 20. The red arcs are geodesic connecting
the points and are drawn to visually see that not all the boundaries of the optimal structure are
geodesic arcs.

our results Cox-Flikkema
N non-geo. area tol. non-geo.
4 11.4637 5× 10−7 11.464
5 13.4304 2× 10−7 13.430
6 14.7715 2× 10−7 14.772
7 16.3519 3× 10−7 16.352
8 17.6927 3× 10−7 17.692
9 18.8504 2× 10−7 18.850
10 19.9997 4× 10−7 20.000
11 21.1398 4× 10−7 21.140
12 21.8918 5× 10−7 21.892
13 23.0953 4× 10−7 23.095
14 23.9581 3× 10−7 23.958
15 24.8821 2× 10−7 24.882
16 25.7269 2× 10−7 25.727
17 26.6365 3× 10−7 26.637
18 27.4647 2× 10−7 27.465

our results Cox-Flikkema
N non-geo. area tol. non-geo.
19 28.2735 2× 10−7 28.274
20 28.9992 1× 10−7 28.999
21 29.7748 2× 10−7 29.775
22 30.5094 2× 10−7 30.509
23 31.2260 2× 10−7 31.226
24 31.9117 3× 10−7 31.912
25 32.6172 8× 10−8 32.617
26 33.2675 2× 10−7 33.268
27 33.8968 9× 10−8 33.897
28 34.5521 4× 10−7 34.552
29 35.2065 6× 10−7 35.207
30 35.8199 5× 10−7 35.820
31 36.3941 4× 10−6 36.394
32 36.9310 4× 10−6 36.931

Table 1. Comparison between our results and the results of Cox and Flikkema in
the case of the sphere.

Thus we can conclude that the relaxed formulation presented in the previous section is able
to match the best known configurations in the literature. Furthermore for n ∈ [5, 25] ∪ {32} the
algorithm finds the good configuration without much effort, while for n ∈ [26, 31] multiple tries with
different initial conditions were needed in order to find the best configuration. The fact that the
structure of the partition is not fixed is a great advantage offered by our method.

5. Computing the optimal cost - general surfaces

The approach used in the previous section cannot be applied to other surfaces than the sphere.
Indeed, the general expression of curves of constant curvature is not known explicitly for other types
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Figure 5. The difference between optimal configuration (black) and the geodesics
connecting the points (red).

of surfaces. One way to approximate the total perimeter of the partition would be to extract the
contours of the optimal densities and evaluate the length of each discrete contour. A natural way to
extract a contour corresponding to a density function would be taking a level set, for example the
level 0.5. It is possible to extract such level sets by looking at which triangles contain values which
are both above and below the level set. On each triangle which is cut by the contour we make a
linear interpolation which determines a segment in the contour of the level set.

Once we have an idea on how to extract the contours, the first question arises: how to make sure
that the level sets extracted form a partition of S? We denote by T a triangulation of S. If we
think of extracting the 0.5 levels of each density, the shapes determined by these contours will not
overlap, but around triple points there will be some free space left. One way to make sure that we
have extracted a partition is to take the 0.5 levels of the function defined on the triangulation T by

φi(x) =

{

1 if ui(x) ≥ maxi 6=j uj(x)

0 otherwise,
(5.1)

where ui are the optimal densities obtained numerically. These contour levels of the functions φi

almost realize a partition of S with the following issues:

(1) There is a small void space around each triple point, but this void is included in one of the
triangles of the mesh, and can be dealt with.

(2) Since we extract the level sets of a function which is either 0 or 1 on the vertices of the
triangulation, the contour lines will pass through the middle of the edges of the triangles
situated at the border between two phases. This creates some contours which are quite
zigzagged and whose length is significantly larger than the optimal total perimeter.

We illustrate these two issues in Figure 6.
Nevertheless, once we have extracted these contours it is possible to make a direct optimization

of the total length of the boundaries with the constraint of fixed area of the cells. This optimization
is made directly on the triangulated surface. We describe the optimization algorithm below.

Variables and representation of the partitions. We denote (xi)
h
i=1 a generic family of

variable points situated each on an edge of the triangulation T such that each edge contains exactly
one variable point. To these points we associate a family of parameters (λi)

h
i=1 which gives the

position of each point xi on the corresponding edges. We take this global parametric approach since
each of these points belongs to at least two cells and we’ll need to evaluate its contribution in the
gradient of the area and the for all the cells that contain it. Having a global sets of points avoids
having to match points between different contours.
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Figure 6. A small space left around triple points (left) and the non-regular initial
extracted contours (right).

Each cell of the partitions is represented by a structure of pairs of edges of triangles of T which
determine, along with the parameters (λi), the segments which form the discrete contour of the cell.
The pairs of edges is ordered so that the contour is continuous. Contours may have one or more
connected components.

Computation of the perimeters of the cells. The perimeter of a cell is computed by following
the segments forming the contour and incrementally adding their lengths to the total length. If the
vertices of the segment are given by xi = λiv1 + (1 − λi)v2 and xj = λjv3 + (1 − λj)v4 then the
length of the segment [xi, xj ] is

ℓ([xi, xj ]) = ‖λiv1 + (1− λi)v2 − λjv3 − (1− λj)v4‖,

expression which is differentiable if the length is not zero. The derivatives with respect to λi and
λj are then added to the gradient vector. Note that for the points which are not vertices of some
contour the gradient is zero.

Computation of the areas of the cells. In order to compute the area of a cell we use the
information given by the functions φi defined in (5.1). The function φi shows, among other things,
what is the position of each triangle in T with respect to the cell i. Indeed, denoting by T a triangle
in T , we have the following cases:

(1) All the vertices v of the triangle T satisfy φi(v) = 1. Then T is completely inside the cell i
and we add its area to the total area of the cell.

(2) Two vertices v1, v2 of T satisfy φi(v1,2) = 1 and the third satisfies φi(v3) = 0. Thus we only
add a portion of the area of T to the total area of cell i. Note that this value of the area
depends linearly of one parameter λk and of another parameter λl. The derivatives of these
contributions are added to the vectors containing the gradient of the area of the cell i.

(3) Two vertices v1, v2 of T satisfy φi(v1,2) = 0 and the third satisfies φi(v3) = 1. Again, we
only add a portion of the area of T to the total area of cell i which again depends linearly of
one parameter λk and of another parameter λl. The derivatives of these contributions are
added to the vectors containing the gradient of the area of the cell i.

(4) If all the vertices of T satisfy φi(v) = 0 then the triangle is outside the cell and we move on.

The empty spaces around triple points. As we have noted above and seen in Figure 6,
around triple points we have some empty spaces determined by three points which belong to the
three sides of some of the triangles in T . In each configuration of this type we add a Steiner tree
corresponding to the three variable points. Each of the three area regions which are formed are added
to the corresponding cell while the perimeter is modified with the length of two adjacent segments
in the Steiner tree. See Figure 7 for further details. In order to find the gradient corresponding to
the lengths and area changes due to the addition of these Steiner points we use a finite differences
approximation.
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Figure 7. Treatment of empty space around triple points. We consider the
Fermat point X of the empty triangle ABC and we add corresponding area and
perimeters to the corresponding cells. For example the area of ABX is added to
Cell 3 and the quantity AX +BX −AB is added to the perimeter of Cell 3.

Figure 8. Contours after the constrained optimization algorithm. You can also
see a zoom around the triple points: the segments which join the Fermat points

align themselves with the rest of the contour.

Constrained optimization algorithm. We have the expressions and the gradients of the
perimeters and areas of the cells as functions of the parameters (λi)

h
i=1. This allows us to use the

algorithm fmincon from the Matlab Optimization Toolbox in order to implement the constrained
optimization algorithm. We use the interior-point algorithm with a low-memory hessian approxi-
mation given by an LBFGS algorithm. The initial values of the parameters (λi)

h
i=1 are all set to

0.5. The algorithm manages to satisfy the constraints at machine precision while minimizing the
perimeter and thus smoothing the zigzagged initial contours (like the ones in Figure 6). An example
of result may be seen in Figure 8.

It may be the case that some vertices of the contour would ”like” to switch to another side. This
can be the case if at the end of the optimization one of the parameters λi is close to 0 or 1 or a
triple point in one of the constructed Steiner trees is on the boundary of the corresponding mesh
triangle. In this cases we modify the initial contours taking into the account these results and we
restart the optimization procedure. The modification is done in the following way.



PARTITIONS OF MINIMAL LENGTH ON MANIFOLDS 15

n Minimal length

2 15.07
3 22.61
4 30.15
5 37.25
6 41.93

n Minimal length

7 47.12
8 50.77
9 53.37
10 56.80

Table 2. Approximation of the optimal costs for minimal partitions of a torus
into equal area cells. These partitions are represented in Figure 2

(1) If one of the λi is equal to 0 or 1 then we add the corresponding point to the adjacent cell
and restart the algorithm.

(2) If one of the triple points arrives on the edge of its corresponding mesh triangle then we
allow it to move to the adjacent triangle.

After a finite number of switches the configuration stabilizes and a local minimum is found.
We test the presented algorithm on the results obtained in previous sections. In the case of the

sphere we obtain the same values found in Table 1. The approximations of the optimal costs for
partitions presented in Figure 2 for a torus of radii R = 1, r = 0.6 in Table 2.

6. Conclusions

We propose an algorithm for finding numerically the partitions which divide a surface into cells of
prescribed areas and minimize the sum of the corresponding perimeters. This algorithm is rigorously
justified by a Γ-convergence result which is a generalization of the Modica-Mortola theorem in the
case of smooth (d− 1)-dimensional manifolds.

In the case of the sphere we are able to recover all the results presented in the article of Cox
and Flikkema [9]. The optimal costs of the spherical partitions are precisely evaluated by using
the qualitative results in [16], which imply that the boundaries of the cells are arcs of circles. We
recover the same optimal costs as the ones presented in [9]. We underline that one of the advantages
of this relaxed method is the fact that we do not need to set the polyhedral configuration of the
partition a priori. The cells emerge from random density configurations and place themselves in
the best positions.

The Γ-convergence method is not limited to the case of the sphere. Once we have triangulated a
surface the same algorithm applies. We present a few test cases of more complex surfaces. While the
relaxed optimal partitions can easily be obtained, computing the optimal costs is not straightforward
since the relaxed costs are not precise enough. In order to be able to compute an approximation of
these optimal costs we extract the contours of the optimal densities and we perform a constrained
optimization on the triangulated surface.
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