ON THE POLYGONAL FABER-KRAHN INEQUALITY

BENIAMIN BOGOSEL, DORIN BUCUR

ABSTRACT. It has been conjectured by Pdlya and Szegd seventy years ago that the planar set
which minimizes the first eigenvalue of the Dirichlet-Laplace operator among polygons with n
sides and fixed area is the regular polygon. Despite its apparent simplicity, this result has only
been proved for triangles and quadrilaterals. In this paper we prove that for each n > 5 the
proof of the conjecture can be reduced to a finite number of certified numerical computations.
Moreover, the local minimality of the regular polygon can be reduced to a single numerical
computation. For n = 5,6,7,8 we perform this computation and certify the numerical approx-
imation by finite elements, up to machine errors.
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1. INTRODUCTION

For every bounded, open set  C R? we consider the eigenvalue problem for the Laplace
operator with Dirichlet boundary conditions

—Au = Au in ),
(1) { u = 0 on Of).

The spectrum consists only on eigenvalues, which can be ordered (counting the multiplicity),
0< )\1(9) < )\Q(Q) <. < )\k(Q) — +00.

Lord Rayleigh conjectured in 1877 that the first eigenvalue is minimal on the disc, among all
other planar domains of the same area. The proof was given in 1923 by Faber in two dimensions
and three years later extended by Krahn in any dimension of the Euclidean space (see [18] for
a description of the history of the problem and [32, 31] for a survey of the topic).
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In their book of 1951, Pélya and Szeg6 have conjectured a polygonal version of this inequality
(see [51, page 158]). Precisely, denote by P, the family of simple polygons with n sides in R?
and for every n > 3 consider the problem

2 i A (P).
@) et M)

Poélya-Szeg6 Conjecture (1951). The unique solution to problem (2) is the regular polygon
with n sides and area .

This question, easy to state, has puzzeld many mathematicians in the last seventy years, but
no significant progress has been made. The conjecture holds true for n = 3 and n = 4. A proof
can be found, for instance, in [31] as a straightforward application of the Steiner symmetrization
principle (the original proof can be found in [51]). However, Steiner symmetrization techniques
do not allow the treatment of the case n > 5 since, performing this procedure, the number of
vertices could possibly increase. We are not aware of further results regarding this conjecture.
Neverteless, we mention a new approach, which applies only to triangles, proposed by Fragala
and Velichkov in [24], establishing that equilateral triangles are the only critical points for the
first eigenvalue.

A question of the same nature, involving the logarithmic capacity, has been completely solved
by Solynin and Zalgaler [55] in 2004. The proof takes full advantage from the specific struc-
ture of the problem, in particular from harmonicity of the capacitary functions; it can not be
extended to eigenvalues. Minimization of variational energies in the class of polygons has been
intensively investigated in the recent years (see the survey by Laugesen and Siudeja [42] or [11]
and references therein) but the very specific polygonal version of the Faber-Krahn inequality
remains unanswered.

It is quite straightforward to prove the existence of an optimal n-gon in the closure of the set
of simple n-gons with respect to the Hausdorff distance of the complements, as shown in [31,
Chapter 3]. It has precisely n edges, but it is possibly degenerate in the sense that a vertex
could belong to another edge. However, it is not even known that this polygon has to be convex!
Meanwhile, many numerical experiments have been performed for small values of n (see for
instance [2], [7, Chapter 1], [21]) which all suggest the validity of the conjecture.

The purpose of this paper is twofold. A first objective is to prove that local minimality of the
regular polygon can be reduced to a single certified numerical computation. In fact, we prove that
the local minimality of the regular polygon is a consequence of the positivity of the eigenvalues
of a (2n—4) x (2n—4) matrix related to the shape Hessian of the scale invariant functional P,, 5
P — |P|A1(P). The dimension 2n —4 reflects the number of degrees of freedom for n— 2 vertices,
onces two consecutive ones are fixed. There are two challenges in this question: a theoretical
one and a numerical one. First, one needs to prove that if the matrix is positive definite for the
regular polygon then, for a neigbourhood of the regular polygon, the matrix remains positive
definite. This question is itself not trivial and requires to take full advantage from the uniform
H?%3 regularity of the eigenfunctions for polygons which are small perturbations of the regular
one. Secondly, in the absence of theoretical results concerning the positivity of the eigenvalues
of the Hessian matrix, one has to perform certified computations of the positive eigenvalues of
the matrix, i.e. numerical computations with explicit error bounds that are sufficiently small.
In our context the matrix coefficients depend on solutions of PDEs with singular right hand
sides (in H~'*7) involving the traces of the gradient of the first eigenfunction on the diameter
of the polygon. We perform these computations for n = 5,6,7,8 and certify the numerical
approximation by finite elements, up to machine errors. In order to support the conjecture, we
provide as well (uncertified) numerical computations for n =9, ..., 15.

A second objective of our paper is to prove that for each n > 5 the complete proof of the
conjecture can formally be reduced to a finite number of numerical computations. Roughly
speaking, first, we analytically find a computable open neigbourhood of the regular polygon
where the local minimality occurs. This requires a precise estimate of the modulus of continuity
of the shape Hessian matrix obtained above, for small perturbations of the regular polygon.
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This is the most technical part of the paper. Second, we give a bound for the maximal possible
diameter of the optimal polygon as well as for the minimal length edge and inradius, when its
area is fixed. As a consequence, it remains to prove that all polygons with free vertices in a
(computable) compact set K C R?"~* are not optimal. This can be done by performing a finite
number of certified computations of first eigenvalues, areas and perimeters. Indeed, if a polygon
has vertices in the compact set K and is not optimal, then either due to uniform estimates
of the modulus of continuity of the eigenvalue and measure or to monotonicty of both these
quantities to inclusions, non-optimality is certified in an open neigbourhood. A finite number
of such (open) neigbourdhoods will cover K.

Le us detail our strategy.

Step 1. (Formal computation of the shape Hessian matrix). We interpret the first
eigenvalue as a function depending on the coordinates of the vertices of the n-gon (obtaining
a function defined on a subset of R?") and choose an appropriate, equivalent scale invariant
formulation for problem (2). Once the validity of the first order optimality condition on the
regular polygon is established, we compute the analytic expression of the shape Hessian. For
that purpose, we rely on the computations done by A. Laurain in [43] for the energy functional
(we recall the corresponding result in Remark 7.8) and perform similar computations for the
eigenvalue, following the same method. Taking perturbations of polygons with n sides in the
second shape derivative, we obtain the Hessian matrix (of size 2n x 2n) for the eigenvalue having
the vertex coordinates as variables.

Step 2. (Numerical proof of the positivity of the shape Hessian matrix for the reg-
ular polygon, for a given n). The shape Hessian matrix of the scale invariant functional has
four eigenvalues equal to 0, corresponding to the rigid motions and homotheties of the polygon.
We use interval arithmetics and explicit error estimates for the finite element approximation to
certify the positivity of the other eigenvalues of the shape Hessian matrix for the regular polygon
with n sides. For n = 5,6,7,8 and a suitable choice of an appropriate discretization, we certify,
up to machine errors appearing in the meshing, the assembly and the resolution of the linear
systems in the finite element method, that the remaining 2n — 4 of the eigenvalues of the Hessian
are strictly positive.

A fully certified (including machine errors aspects) positivity of the eigenvalues of the shape
Hessian matrix is enough to prove the local minimality of the regular polygon, provided one
knows that the coefficients of the matrix are continuous for small geometric perturbations of
the regular polygon. This type of stability result is necessary to establish that the non zero
eigenvalues remain positive in small neighborhood of the regular polygon. This is discussed in
Step 3, below. By strict convexity, the regular polygon will be a minimizer in this neighborhood.

Proof strategies based on hybrid, theoretical-numerical strategies, have already been employed
successfully in articles related to spectral theory. In the paper [48], Schiffer’s conjecture is proved
for the regular pentagon, stating that there exists an associated Neumann eigenfunction that is
positive on the boundary and not identically constant. In [15] an example of two dimensional
domain with 6 holes is given for which the nodal line of the second Dirichlet eigenfunction is
closed and does not touch the boundary of the domain, giving a counter example to a famous
conjecture by Payne. In [25] the authors find triangles which are not isometric for which the
first, second and fourth eigenvalues coincide, settling a conjecture stated in [2].

Step 3. (Quantitative stability of the shape Hessian matrix coefficients). Our objec-
tive is to identify a computable neighborhood of the regular polygon where the eigenvalues of a
(2n —4) x (2n — 4) submatrix of the shape Hessian matrix remains positive. The most technical
part is to give analytic, computable, estimates of the variation of the coefficients of the Hessian
matrix, for perturbations of the regular polygon. The difficulty comes from the fact that the
expression of the coefficients involve the solutions of some (degenerate) elliptic PDEs with data
in H~'*7, depending on traces of the gradient of the eigenfunctions on segments. The analysis
requires quantitative estimates of the perturbation of the eigenfunction in H? which relies, via
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Gagliardo-Nirenberg interpolation inequalities, on control of their norm in H?**. These esti-
mates show that the unique, certified, computation of the Hessian matrix on the regular polygon
is enough to obtain local minimality on a computable neignbourhood!

Step 4. (Analytic estimates of the maximal and minimal edge lengths of an optimal
polygon). We give a computable estimate of the maximal diameter of the optimal polygon,
provided its area is fixed. The estimate is inductively obtained for n > 5: if the diameter of
an n-gon exceeds some (computable) value, then its eigenvalue is close to the one associated
to a polygon with n — 1 sides, so it can not be optimal in the class P,. Here we use surgery
techniques inspired from [12], but face the difficulty of keeping constant the number of sides
within the surgery procedure. As well, we give an analytic estimate for the minimal length of
an edge and of the minimal inradius.

Step 5. (Formal proof of the conjecture). We show how to give an inductive formal
proof of the conjecture reducing it to a finite number of (certified) numerical computations
for each value of n. Up to this point we have computed, for the scale invariant functional, a
neighborhood of the regular polygon where its minimality occurs and we have computed the
maximal and minimal legnths of edges of an optimal polygon at prescribed area. Therefore, we
are able to reduce the study of the conjecture to a family of polygons with vertices belonging to
a compact set. Any certified evaluation of the eigenvalue/area of such a polygon showing non
optimality, would readily produce a small neighourhood of non optimal polygons, the size of the
neighourhood being uniform and analitically computed. Monotonicity with respect to inclusions
of both the eigenvalue and the area may be very useful from a practical point of view, but not
necessary for a theoretical argument. Finally we get a ball covering of a compact set which with
known diameter, by balls of uniform size. This means that one can prove the conjecture after a
finite number of numerical computations. We shall describe this procedure in Section 7.

This type of numerical procedure has successfully been used in [10] (to which we refer for a
detailed description), for a different problem involving the same variational quantities but with
only two degrees of freedom. The arguments transfer directly to our problem.

Although we prove that for a specific n the proof of the conjecture is reduced to a finite
number computations, it is not our purpose to perform these computations, for two reasons. On
the one hand, all constants that we prove to exist should be optimized and effectively computed.
On the other hand, even for n = 5, in our procedure the number of degrees of freedom for the
free vertices is 2n — 4 = 6 (see Section 7). An estimate on the complexity of this computational
task is not available at the moment since multiple aspects are involved: the dimension of the
problem (2n — 4), the theoretical estimate of the local minimality neighborhood, the precision
of the numerically validated computations. It is expected that such a task demands important
computational capacities. Before any computational tentative, some further, deep, analysis
should be performed to dramatically reduce the size of the computational tasks.

The structure of the paper is the following. Section 2 is devoted to the computation of the
shape Hessian of the area and first eigenvalue functionals by a distributed formula. In particular,
on polygons, we give the expression of the Hessian matrix of the eigenvalue as function of
vertices coordinates. This section is inspired by the recent work of Laurain [43] for the energy
functional. Section 3 contains a quantitative geometric stability result of the coefficients of the
Hessian matrix with respect to vertex perturbations. This part is the key for the proof of the
local minimality of the regular polygon and allows to estimate the size of the neighborhood of
the regular polygon where minimality occurs. Sections 4 and 5 are devoted to the analysis of
the shape Hessian matrix coefficients and to estimates regarding their numerical approximation.
Section 6 contains certified computation of the eigenvalues of the shape Hessian matrix on the
regular polygon, justifying, up to machine errors, its local minimality for n = 5,6,7,8. In Section
7 we give an estimate of the maximal diameter of an optimal polygon and show how the proof of
the conjecture reduces, for every n € N, to a finite number of numerical computations. As well,
we make short comment about the polygonal Saint-Venant inequality for the torsional rigidity,
which can be analyzed in a similar way.
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2. FIRST AND SECOND ORDER SHAPE DERIVATIVES

In this section we analyze the first and the second order shape derivatives of the first Dirich-
let eigenvalue, for both general domains and for polygons. This section follows the strategy
developed by Laurain in [43] for energy functionals (see Remark 7.8 for a brief summary of the
corresponding results). Many proofs are very similar and we shall not reproduce them, referring
to [43], whenever necessary. Nevertheless, the formulae for the eigenvalues are different, so that
we shall detail them. The ultimate objective for polygons is to get an expression of the Hessian
in distributed form involving sums over the two dimensional domains and remove any boundary
integral expression. This is somehow contrary to what usually one does in shape optimization,
the main motivation being that the distributed expression of the second shape derivative re-
quires less regularity hypotheses than the boundary expressions. This is particularly useful for
polygons. Finally, when restricted to the class of polygons with n sides, we shall describe the
shape Hessian of the eigenvalue by a square symmetric matrix of size 2n x 2n.

In the literature one can find detailed descriptions of the shape gradients and shape Hessians
of the eigenvalue on a smooth set (see for instance [33, 34, 41, 17]). The case of polygons is more
delicate, since the boundary expression of the shape Hessian fails to have sense, due to the lack
of regularity of the boundary.

In order to simplify the reading and the interpretation of potential connections between the
results of this section and [43], we use the same notations and, when the computations are
similar, we prefer not to reproduce them and refer precisely to various sections in [43].

2.1. General domains. For vectors a,b € R? and matrices S, T € R¥9 define the following:
e Id denotes the identity matrix
e a ® b is the second order tensor of two vectors (a ® b);; = a;b;
e a®b=3(a®b+b®a) is the symmetric outer product.
e a - b is the usual scalar product
e S:T= szzl Si;Ti; is the matrix dot product.
It is immediate to notice that (a ® b)c = (¢-b)a and S: (a ® b) = a - Sb.

Given a shape functional Q — J(2) and a vector field © € W1°°(R?, R?) the shape derivative
of J at , denoted by J'(Q) € L(W1>(R? R?),R) is the Fréchet derivative of the application
¢ J((I+¢)(2)) and verifies

J((T+ () = J(Q) + T (D(C) + o([[¢llwr.0)-

As discussed in [43, Section 9.1], when computing second order shape derivatives, several ap-
proaches are possible. The one detailed in [43] uses the Eulerian derivative in order to compute
the Fréchet derivative. However, the Eulerian derivative requires more regularity on one of
the perturbation fields than W1°°(R? R?), while perturbations of polygons are precisely in
Whoo(R? R?).

For a given vector field ¢ € W1°(R4 R?) consider the domain Q¢ = (I + ¢)(Q). It is
well known that for ||(|ly1.« < 1 this transformation is an invertible diffeomorphism. In the
following, when dealing with boundary value problems, we use subscripts to denote functions
¢¢ € HE () and superscripts to denote the functions ¢¢ = p¢ o (I +¢) € H (D).

The objective in the following is to have distributed expressions which require less regularity
than the generally well known boundary expressions for the shape derivative of the eigenvalue
([34], [33]). Following the strategy of Laurain for the energy functional, we state below ana-
logue results for the first and second Fréchet shape derivatives for the simple eigenvalues of the
Dirichlet-Laplace problem (1). While some of these facts are standard (for instance the ex-
pression of the first derivative), the expression of the Fréchet second derivative and the matrix
representation in the case of polygons seem to be new.

In the following we suppose ( is small enough such that A(£)¢) is still a simple eigenvalue.
For simplicity, we do not write its index, which remains constant along the perturbation. Let
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u¢c € H}(€) be the solution of
(3) Vue - Ve dr = A(€¢) / ucve de, Yoo € Hy(Q)
Q Q¢

with the normalization ch (u¢c)?dx = 1. Let u¢ = uco(I+¢) € H} (), so that ue = uo(I+¢) L.
Then

(4) Vue = [(I+ D¢ 'Vuo (I+¢) 7

and a change of variables leads to
(5) / A(Q)Vub - Vo dz = A(Qg)/ uSvdet(I + D¢) dx, for all v € H(Q),
Q Q

with the notation A(¢) = det( + D¢)(I + D¢)~1(I + D¢T)—L.
Following [33, Theorem 5.7.4 |, the mapping

CeWh™® s (uS,\(Q)) € HY(Q) x R

is of class C'*° on a neighborhood of 0, without any smoothness requirement for 2. We differen-
tiate (5) at 0 and denoting u(¢) € Ha () the material derivative, we obtain for all v € H}()

/ A(0)(C)Vu - Vo da + / Vi(C) - Vodz
Q Q
— N(©Q)(O) / wo dz + A(Q) / [(C)v + uv div (] da,
Q Q
for all v € H} (), where A’(0)(¢) = div¢{Id —D¢ — D¢T. Regrouping terms gives

©) [ (ViQ)- To = N@i(Ov) da
= /Q (=A'(0)(O)Vu- Vv + X(Q)(Q)uwv + A(Q)uv div () dz,

for every v € H}(£2). Note that problem (6) does not have a unique solution. Indeed, adding to
4(¢) any eigenfunction for problem (1) associated to the eigenvalue A({2) gives another solution.
Uniqueness is a consequence of the normalization condition fQ(uC)2 det(I + D¢)dx = 1. The
corresponding derivative evaluated at zero is

(7) /Qzuu(g) +u?div ¢ dz = 0.

When dealing with a simple eigenvalue, the additional condition (7) is sufficient to uniquely
identify 4(¢). For multiple eigenvalues, all eigenfunctions in the associated eigenspace should be
used in (7).

With these notations we are ready to state the following result.
Theorem 2.1. Let Q C R? be a bounded Lipschitz domain and ©,¢& € WH(R%, R?Y). Let A be

a simple eigenvalue of the Dirichlet Laplacian and u an associated L?-normalized eigenfunction.
Then

(i) The distributed shape derivative of X\ is given by
@) = [ 8} D¢da
Q

with 87 = (|Vul? =\ (Q)u?) Id —2Vu®Vu. If, in addition, u € H?(), the corresponding
boundary expression is

N@Q)() = - /d IVaC- s
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(i) The second order distributed Fréchet derivative is given by

NGO = [ KNG
Q
with
KA(¢,€) = =2Va(C) - Vi(€) + 2M(Q)i()i(€) + 87 = (D¢ divE + DEdiv ()
+ (=|Vul* + M?) (divEdiv e + D¢T - DE)
+ 2(D¢DE 4+ DEDC + DEDCT)Vu - Vu
— [N ()(Q) div € + N(Q)(€) div ¢]u®.
where u(C) and u(§) are the material derivatives in directions (, &, respectively.

The first point is standard and may be found in many classical references, for instance [33].
Some formulae for the second derivative are also available in the literature, see [33], [34].The
key point is that the distributed expression shown above is valid for Lipschitz domains and
Lipschitz perturbations. Moreover, being written in symmetric form its expression helps in the
computation of the Hessian matrix in the case of polygons.

Proof of Theorem 2.1. The first application of formula (6) is the expression of the first shape
derivative. This computation is a classical result, but we present it here for the sake of com-
pleteness, since it illustrates well the techniques used when computing shape derivatives. Take
v = in (6) and note that, since u is the eigenfunction associated to \(2),

/ V- Vi(C) de = A(Q) / wir(C) da.
Q Q
Using [, u? dz =1, we obtain

/ (div¢|Vul* = 2Vu ® Vu : D) dz = X (Q)(¢) + / MQ)u? div ¢ d.
Q Q

A direct computation leads to
(8) N(Q) () = / [(IVu? = AM(Q)u?)Id —2Vu ® V] : D¢ de = / St : DCdx.
Q Q

Now we choose & € Wh*® and we redo the same procedure to differentiate the first shape
derivative (8). Denote Q¢ = (I + £)(2) and suppose that £ is small enough such that A(€) is
still a simple eigenvalue. Denote with u¢ € H& (€2¢) the eigenfunction associated to the simple
eigenvalue A(€2¢). We have

(9) N(Q)(¢) = /Q [(|Vue* = A(Q¢)ug) Id —2Vue @ Vue| : D(Co (I +€)7") da.
¢

We also have the following elementary computation: D(Co(I+¢)™1) = D¢o(I+&)"'D(I+&)7L.

As before, via a change of variables we write N (€¢)(¢) as an integral on Q defining u® =

ug o (I +¢&) € H}(Q2). Using (4) and performing a change of variables, we obtain

N(Qe)(¢) = /Q [ ((I + D) "N + D) TVt - Vb — )\(Qg)(ug)z) Id
—2(I+ D& IVut & (I +DE)TVut] : DED(I + &) o (I+€)det(I + DE)

Now we are ready to compute the second Fréchet derivative of A(€2) by differentiating the
previous expression w.r.t. ¢ at 0 and denoting the derivative of u¢ at 0 by u(£). We use the
product rule, differentiating the first term, the term D (I +¢)~!o (I +¢) and finally det(I + D¢).
In particular, we have

o (D(I+0) o (I+6))s(0)(¢) = —Dt.
o det(I + DO)g(0)(&) = div(§).
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We obtain the following initial formula for the second shape derivative:
N(@(¢.€) = [ 8}:Ddive - [ 8 DeDg ds
+ /Q[(—D§ — DENVu - Vu + 2Va(€) - Vu] div ¢ de
- [ IN@)©? + M2 div ¢ da
+ /Q [ADETVu ® Vu : D¢ — 4Via(€) ® Vu : D] da

Following [43, pag 25], we have
—4(Va(€) © V) : D+ 2Va(€) - Vadiv ¢ = 24'(0)(¢)Vu - Va(€)

and the material derivative (6) gives

5 /Q A(0)(O)Vu - V() dz = —2 /Q Vi(C) - Vi(€) da + 2V(Q)(0) / wi€) da

Q
+2A(Q) /Q a(Q)i(€) de + 20(Q) /Q wil(€) div ¢ da.

The derivative of the normalization condition gives

/Q 2ui(€) dr = — / u? div € de.

Q

We also have
SY : D¢CDE = (|Vul? — ) D¢ 2 DE — 2D¢DEV - Vu,
since tr(D¢DE) = DCT - DE. Combining all these expressions we obtain

V(@G = -2 [ (Vi) Vile) - N@u(Ou(e) do+ [ 8}: Dedivedo

Q Q
— / 2DEVu - Vudiv ( dx
Q

+ / 4DETVu © Vu : D¢ dx
Q

- / [N (Q)(¢) divE 4+ N (Q)(€) div ¢Ju? dz
Q

+/(—|vu\2+Au2)DgT : DE 4+ 2DCDEVY - Vu de.
Q

We have
2DETVU © Vu : D¢ = (DEDC + DEDCT)Vu - V.
Which gives

N(@)(CE) = =2 [ (Vi) - Vile) ~ NDi(i(6)) da
+/ S? : (D¢ div € + DEdiv €) da
Q
+ / (—|Vul? + Mu?)(div ¢ div € + D¢ - DE) da
Q
+2 / (D¢DE + DEDC + DEDCTYVu - Vudx
Q
_ /Q IV(Q)(C) div e + N (9)(€) div (Ju? da.

This finishes the proof of the theorem.
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FIGURE 1. Examples of admissible triangulations used for defining perturbations
on a polygon and graphical view of the function (.

2.2. Polygons. In order to exploit the expression of Theorem 2.1 in the case when () is a
polygon, we follow again the strategy of Laurain [43] to extend a geometric perturbation of
vertices to a global perturbation of the polygon.

Vertex perturbation versus global perturbation. Suppose €2 is a n-gon. Starting from
a perturbation of the vertices, the perturbation field ¢ € W1°°(R?) will be built as follows.
Denote the vertices of the polygon by a; € R?, i =0, ...,n — 1 and for each vertex consider the
vector perturbation ¢; € R?, i = 0,...,n — 1. Whenever necessary, we suppose that the indices
are considered modulo n. Consider a triangulation T of €2 such that the edges of the polygon are
complete edges of some triangles in this triangulation. Moreover, consider the following globally
Lipschitz functions ¢; for 0 < i < n—1 that are piecewise affine on each triangle of 7 and satisfy

0 ifi#j
Several choices are possible, as the two examples of Figure 1 show, their extension outside the
polygon being irrelevant. Then, we build a global perturbation of R? given by

(10) pilay) = 0y = {1 =

n—1
(11) (= Cipi € WHP(R?).

i=0
Gradient and Hessian of the area functional. The shape derivatives for the area functional
are classical and are widely studied in the literature (see [33],[43], etc.). The expression of the
shape derivative of the area is

(12) 2/'(¢) = /a ¢

However, in the particular case of n-gons the situation is much simpler, since explicit formulae
exist in terms of the coordinates of the vertices of the polygon. For a non degenerate polygon
whose coordinates of the vertices are denoted by (x;,y;) and whose edges are oriented in the
counter-clockwise order the area is given by

n—1

1

Alx) = B} Z(wiyi-i-l — Tiy1Yi)-
i=0

The coordinates are regrouped in the vector by concatenating the coordinates of the vertices a;
(13) X = (307 ALy eeny an—l) = (fL’O, Yoy -y Tn—1, yn—l) € R2n7
which will always be the case in the following, when parametrizing polygons. The gradient of
the area in terms of the coordinates verifies:

0A 1 0A 1

or; (X) = 5(%—0—1 - yi—l)’ W (X) = 5(—1'1‘4_1 + xi—l)-
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aﬁﬂ?l

a;

a;—1 a;41

FIGURE 2. Boundary perturbation induced when perturbing a vertex

We denote by Req the rotation around ¢ € R? with angle « (in the trigonometric sense), hence
the gradient of the area has the geometric expression

1

(14) VA(x) = B} (Raiﬁﬂﬂ(ai—laiﬂ))i:o,...,n—l :

This is natural, since the area of the polygon when moving a vertex a; only varies when moving
the vertex a; in the normal direction to the closest diagonal.

Another expression of the gradient of the area, using the functions ¢; defined earlier, can be
found following the results of [43] and is given by

(15) VAlx) = (/Q vcpi)i—o,...,n—l‘

Since the expression of the gradient of the area is linear in terms of the coordinates, the
Hessian matrix of the area of the polygon is the constant 2n x 2n block matrix

(16) D*A(x) = (Bij)ogi,jgnfl

1

1 _1
where the non-zero 2 x 2 blocks are given by B;; = (_0% 8) if j=i4+1and B;; = <g 2>
iti =75+ 1.

Following the results in [43] we find that the formula for the Hessian of the area in terms of
the functions ; can also be expressed using the following block structure

(17) B;; = /Q[Wi ® Vip; — V; ® V).

In particular the Hessian of the area can be written as a tensorial product (Kronecker product)
between the matrices

0

10 .. 0 -1
-1 01

O g (0 05
S =05 0
1 00 .. =1 0

Therefore, the corresponding eigenvalues and eigenvectors can be found explicitly.
Gradient of the eigenvalue. Below we compute the gradient of the eigenvalue (1) as function
of the vertices, i.e. the partial derivatives of these functionals with respect to the coordinates
of the vertices of the polygons. The expression of these gradients can be used to prove that
the regular polygon is a critical point under an area constraint and are useful for numerical
computations.

The expression of the gradient of the eigenvalue with respect to the coordinates is a conse-
quence of the shape derivative formulae recalled in the previous section. It is enough to use

the distributed expression of the shape derivative, valid in general, with the perturbation field
¢ introduced in (11). An example is given in Figure 2 for { = (;p;. The proof is similar to the
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case of the torsion energy [43]. We choose to detail here only the boundary expression, with a
slightly different argument than the one used in [43].

Theorem 2.2. The gradient of a simple Dirichlet-Laplace eigenvalue (1) when  is a polygon
with coordinates x as in (13) is given by

VA(x) = (/Qsi\v"m dm)j:O,,..,n—l - —</aQ |vu|2%nd$)i:0,...,n—1’

where n s the outer unit normal vector.

Notice that the boundary expression is always valid, even though the eigenfunction itself
does not belong to H?(2). This is a consequence of the fact that in an arbitrarry polygon
(typically non convex), the eigenfunction enjoys a local H 2+0 regularity far from the corners,
while at corners the singular part has a very specific structure, albeit good enough to make the
boundary expression of the gradient valid. We recall from [8] that

U = Ureg + Using;

where g € H?>T9(Q) for some § > 0 and

n—1
I s
Using = g Cipyreisin | —0 |,
e wj
=

where C; are constants, w; are the angles, v; is cutoff function equal to 1 in a neighborhood of
the vertex a; and (r,6) are the polar coordinates around the angle i.

Proof. The expression VA(x) = ( Jo S Vi dx) is valid. It remains to prove the equal-

i=0,...,n—1

(31999 g == (T Ly

First, note that the gradient of u is point-wise defined on 02, except at the vertices, in a classical
way. We fix a vertex ¢ and define

Q. = Q\ (B(ai-1,¢) U B(ay,e) U B(ai41,¢)),

ity

. =Qn(0B(aj-1,¢) UdB(a;,e) UIB(aj+1,¢)).

Since ulg, € H?(f), a direct computation shows that div Sy = 0 on (), the divergence being
applied on lines. Moreover, since u = 0 on 052, the gradient Vu is colinear with the normal vector
n on JQ. In particular, (Vu® Vu)n = (n-Vu)Vu = |Vu|?n. As a consequence Stn = —|Vu|?n.
Therefore we obtain

/ S\Vyide = — / div(S?)pidz + / Siny;
Qe Qe

£

:—/ ]Vu\ngin—i-/ Stny;.
99\T. r.

We conclude by noticing that
/ Si\ngoi — 0, for e — 0,

£

which is a consequence of the decomposition © = Ureg + Uging. We know that ue, € H 2M(Q)
and H%(Q) is embedded in W1°(Q), so that the gradient of ey is bounded.

At the same time, |Vugng| < Crei ! for some constant C independent on . Both these
observations lead to

/ |Vureg\2 + |Vusing|2 — 0, for e = 0.
Te
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To conclude notice that

([31990) o =i (80990,

= —lim |Vu|?pin = —/ |Vul|*pin.
=0 JoQ.\I'. o0

O
Remark 2.3. It is possible to note that the integrals which come into play in the boundary

expression of the gradient only need to be computed on two adjacent sides to vertex a;, which
gives

2 5
v)\(x) = <_ faiai—l ‘vu’ (pznz faiai_H ‘vu’ (pln$> .
i=0,....,n—1

- faiai71 ’vu|2(plny - faiai+1 |vu’2902ny

geoey

In the following we make the convention that the Jacobian matrix of a vector function contains
gradients of the components on every line.
Hessian matrix of the eigenvalue. Following the notation of [43], we introduce the functions
U; € H}(Q,R?), i =0,...,n — 1 such that @({) = Z?:_ol i - U;. Using (6) we get the set of two
PDEs: U; € H}(Q,R?),

/ (DU; Vv — A(Q)Uv) dx = / [—(Vei @ Vu)Vo +2(Vu © Vo)V, de
Q Q

(18) —I—/ Si\Vgpi/uvd$+)\(Q)/uz;Vgoid:E,
Q Q Q

for every v € Hi (). The normalization condition (7) gives
(19) / (2uU; + u*V;) dx = 0,
Q

so that the system of equations (18) - (19) has a unique solution U;.

The equation verified by the material derivative (6) is well posed and its right hand side
vanishes when evaluated at v = u, the eigenfunction associated to the simple eigenvalue A\. The
same compatibility condition is verified in (18). This can be checked immediately, replacing
v = u and using the expression for S7 stated in Theorem 2.1.

Theorem 2.4. The Hessian matriz N € R?"2" of q simple Dirichlet-Laplace eigenvalue (1)
with respect to the coordinates of the n-gon is given by the following n x n block matrix

N* = (N)o<ij<n—1

where the 2 X 2 blocks are given by
N = /Q (~2DU,DUT + 2M(Q)UUT + Vg, © $)Vyp; + SIVi: @ Vegy) dar
- /Q (= Vul® + M(Q)u?) (2V; © V;) dx
+2 /Q [(wi V) (Vs @ V) + (Ve - Vu) (Vi ® Vi)
+ (Vi - Vi) (Vu ® VU)} da
(20) — /Q u? [wi ® < /Q SV, dx> + < /Q STV da:> ®Vg0j] dz

where U; € HY(Q,R?), i =0,...,n — 1 are solutions of (18)-(19).

Proof of Theorem 2.4: The proof of this result, is computational in nature and is inspired by
[43, Proposition 14]. To obtain the Hessian matrix we use the formula for K* given in Theorem
2.1 for the Fréchet second shape derivative. There are several terms, already computed in [43,
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Appendix A], which also appear in the formula for the eigenvalue. We only present in detail the
terms which are different. We point out that in order to obtain directly the Hessian matrix, the
2 x 2 blocks should be multiplied by the variables §; below, which gives transposed 2 x 2 blocks
compared to [43].

The first term is straightforward

=2 [ (VilQ) - Vi(e) - Mi()i¢)) da
Q

=Y G- </ —2DU; DUJ + AQ)U, U} dat) &.
Q
The second term is treated in [43] (term L3, pag. 38):

/ S? : (D¢ div € + DEdiv €) dx
Q

n—1
=Y G- (/Q (V‘Pi ® STV, + 81V @ wj) da:) &

i,j=0
The third term is similar to the term Ly treated in [43] (pag. 39):

/ (—|Vul? + Mu?)(div ¢ div € + D¢ - DE) da
Q

n—1
= Y 6 ([ Cvar e x@) Vo0 Ve i)

i,j=0
The fourth term treated in [43] (Ls pag. 39):

2 / (DCDE + DEDC + DEDCTH)Vu - Vuda
Q

n—1
- Z G- <2/Q (Ve - Vu)(Vu @ V)

i,j=0
+ (Vi - Vu)(V; ® Vu) + (Vi - V;)(Vu @ V) dx) &

The fifth term is new and will be computed below. Note that under the conventions { =
S0 Gipi and € = S i (see (10)-(11) for the definition of ;) we have:
o div( =310 G- Vo
e for a 2 x 2 matrix A, A: D( = Z?:_()l i AV ;.
Using these relations we have

/ IV(Q)(C) div € + N/(Q)(€) div (Ju? da
Q

n—1
=2 / u’ [(/ Gi- SV dm) (& - V;) + (/ & - S1Ve; dfﬁ) (G V%’)} dx
72079 Q Q
n—1
= G- </ u? [V@i ® </ S{‘Vgpj da:) + </ S%V@i dm) ® Vgaj} dx) &

i,j=0 Q Q Q
Regrouping all the above results finishes the proof of the theorem. O
Remark 2.5. It is worth to notice that the matrix N? obtained in Theorem 2.4 and the

corresponding matrix obtained by Laurain in [43, Proposition 14] have similar structures (see
Remark 7.8). Moreover, the results resemble the structure of the tensor Si\ corresponding to
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the first shape derivative in distributed form. The matrix N* has an additional term coming
from the fact that the eigenvalue A(f2) is already present in Si\, and its derivative appears when
computing the second shape derivative.

Remark 2.6. It can be noted that the Hessian matrix found in (20) does not depend on the
normalization condition (19). It is more convenient in the following to suppose that the functions
U; are normalized with the following condition

(21) / uU;dz =0
Q
where u is the eigenfunction associated to the simple eigenvalue \(€2) of the Dirichlet-Laplacian.

General properties of the Hessian matrix. The formulas for the gradient and the
Hessian matrix obtained previously do not depend on the choice of the perturbation given in
(11). As illustrated in Figure 1 multiple choices for the triangulations defining the functions ¢;
are possible. In particular:

e when the triangulation contains no inner vertices then )" ; ¢; = 1, which implies that
> i1 Vi = 0.
e for the regular polygon, considering a triangulation with an additional vertex at the
center of the polygon provides additional symmetry properties.
In the following we will switch between the two choices above in order to obtain further
properties of the gradient and the Hessian matrix. In the following, define the two vectors
t, = (1,0,1,0,...,1,0) and t, = (0,1,0,1,...,0,1) € R?".

Proposition 2.7. 1. The sum of the components on of the gradient VA(x) on odd and even
positions, respectively is zero. Equivalently we have VA(x) - t, = VA(x) - t, = 0.
2. The vectors t;,t, are eigenvectors of the matriz N* defined in (20).

Proof. Let us note that by choosing ¢; on a triangulation with no interior vertices we have
Z:‘L:_ol V; = 0. This already gives an answer to the first point above since

n—1
Z/ SV, dx = 0.
i=0 7

For the second point, let us note that with the same choice of the functions ¢; the solutions
U; of (18) with the normalization condition (21) verify """ ; U; = 0 since the sum of the right
hand sides in (18) is equal to zero. It is now straightforward to see that N*‘t, = N)‘ty = 0 which
implies that the vectors t,,t, are eigenvectors of N* corresponding to the zero eigenvalue. [J

Formula (20) respects the structure of the second shape derivative. It is possible to simplify
the formula using the definition of 87 and the property (a®b)(c®d) = (b-c)(a®d). Regrouping
terms we obtain

Ny = /Q (—2DU; DU +2\(Q)U,; U7 ) da
+ /Q (IVul* = AMQ)u?) (Vg; ® Vi — Vo, ® Vip;) da
— 2/Q (Vu® Vu) (Ve; @ Ve — Ve @ Vo) do
-2 /Q(Vgoi @ Ve; — Ve @ Vy;) (Vu® Vu) dx

+ 2/ (Vi - Vi) (Vu® Vu) de
Q

— / u? [Vgoi ® </ Si‘Vgpj da:) + (/ Si‘V(pi dac) ® chj] dx
Q Q Q
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It is immediate to see that

(Vu®@ Vu) (Vi ® Vip; — V; @ Vi) + (Ve @ Vi — V; @ Vi) (Vu @ Vu) =
|Vu]2(V<p,~ Q@ Vp; —Vo; ® V).

Therefore, the expression of the Hessian matrix simplifies to
A T T
4 [ (CIVal? = M) (Vs 0 Vs = Ty 0 Vi o
Q

+2 / (Vi - Vi) (Vu® Vu) de
Q

(22) — / u? [Vg&i ® (/ S{‘chj dx) + </ S'V; da:> ® Vgoj} dzx.
Q Q Q

From this point on, in the rest of the paper, we concentrate on the case of the first eigenvalue
of the regular polygon and we further simplify the expression of the Hessian. By uniqueness
arguments the first eigenfunction u of the Dirichlet Laplace operator on the regular polygon has
the same symmetries as the regular polygon.

In the following suppose that @;, 0 < i < mn — 1 are associated to the particular triangulation
T = (Tk)z;(l) of the regular polygon made of congruent triangles with one vertex at the center
(see Figure 1). Thus, the triangulation 7 also respects the symmetry of the regular polygon.
The symmetry of the first eigenfunction implies that ka(|Vu1\2 — A (Q)u?) dr = 0. Using this
relation the gradient of A\1(€2) on the regular polygon becomes

/QS{‘chi = /Q(\vul? — M (Q)ud)Vy; — 2(Vuy @ Vup )V = —2 /Q(Vul ® Vui)Vep;.
Using the fact that Vo; ® Vo, — Vo,; ® Vi, is piece-wise constant on every triangle T}, k =
0,...,n — 1, we find that

A1 ()
€|

/Q (=IVur > = M3 (Vi @ Vip; — Vip; @ Vi) do = —2 B,

where B;; are the blocks of the Hessian of the area given in (17).
Recall that V; is piecewise constant on the triangles T} and by symmetry we have ka u? dr =

1/n for k = 0,...,n — 1. Therefore [, uiV;dr = ﬁka Vyidr = |—§12|V.A(x), where A(x) is
the area of the polygon having vertices at coordinates given by x, as recalled earlier. Therefore,
the last term in N?j has the form

/ u% [Vgoi ® </ Si\Vng dw) + (/ Si\Vgoi dx) ® V(p]] dx
Q Q Q

2
Consider now the Hessian of the product A;(x).A(x) and note that we have

Hess(\1(x)A(x)) = [Q] Hess A\ (x) + VA1 (x) @ VA(x)
+ VA(x) ® VA1(x) + A1(x) Hess A(x).

In this formula the last term of the Hessian of Aj(x) simplifies the tensorial products between
the gradient of the area and the gradient of the eigenvalue.

Following the previous computations we arrive at the following significant simplification for
the Hessian of the product of the area and the eigenvalue.
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Proposition 2.8. In the case where € is a regular n-gon and the triangulation T defining ¢;
is symmetric the Hessian matriz of A\1(Q)|Q] = A(x)A1(x) in terms of the coordinates of the
polygon has the 2 x 2 blocks MZ’-\j, 0<1i,7<n-—1 given by

M) = |9 /Q(—ZDUiDUJT +2M(Q)U;U7)
- () /Q[Vsoz' ® Vip; — Vip; ® Vipi]

(23) + 210 /Q(Wi V) (Vi © V).

The simplified formula (23) for the Hessian of the product of the area and the first eigenvalue
has three terms:

e The first one is related to the decomposition U; of the material derivatives given in (18).
Furthermore, the terms are related to the bilinear form from the variational formulations
of U;, which will be essential in improving the estimates in the numerical simulations.
This part of the Hessian is negative definite.

e The second term is related to the Hessian of the area given in (17). The associated
blocks are non-zero only when |i — j| = 1 (modulo n). This part has both positive and
negative eigenvalues.

e The third term involves only the first eigenfunction u; and the functions ¢; defined in
(10). The associated blocks are non-zero only when |i — j| < 1. This part of the Hessian
is positive definite.

Although the expression of the Hessian given in (23) is explicit, its positive definiteness is not
obvious. The analysis of the eigenvalues of this matrix is continued in Section 4.

3. GEOMETRIC STABILITY OF THE SHAPE HESSIAN MATRIX

In this section we shall perform both a qualitative and quantitative analysis of the behavior
of the coefficients of the Hessian matrix for local perturbations of the vertices of the regular
polygon P, inscribed in the unit circle with one vertex at (1,0). Some of the results would
extend naturally either to perturbations of general convex polygons or even to more general
sets. Nevertheless, we focus on the perturbation of the regular n-gon and we shall not search
generality. The two main technical aspects of this section are described below.

e Continuity of the Hessian matrix coefficients for the geometric perturbation.
We prove the continuity of the shape Hessian matrix for a perturbation of the regular
polygon. This question is itself non trivial because of the weak regularity of the right
hand sides in the equations satisfied by the solutions U; of (18). Stability results for
the eigenfunctions in H? are required, whereas the classically known stability based on
~-convergence holds in H!. The continuity of the coefficients will readily give the local
minimality of the reqular polygon provided the positive definiteness of the Hessian matrix
is known on the regular polygon only.

e Estimate of the modulus of continuity of the coefficients for the geometric
perturbation. This information is crucial to formally reduce the proof of the conjecture
to a finite number of numerical computations. We compute the modulus of continuity
of the coefficients, i.e. we find estimates of the variation of all coefficients of the Hessian
matrix in terms of some power of Hausdorff distance between the perturbed polygon
and the regular polygon. In other words, for every 6 > 0 we identify a value € > 0 such
that all the coefficients of the Hessian matrix computed on polygons with n sides in an
e-neighourhood of P, stay in a d-neighborhood of the coefficients of the Hessian matrix
associated to IP,,.

We split this section in three subsections, going from basic estimates for the variations of the
eigenvalues and eigenfunctions to the estimates of the variation of the matrix coefficients. This
last point is more delicate as it involves solutions of (18)-(21) with variable, singular, right hand
sides that are not in L?.
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Throughout this section, we denote by C, ¥ two positive constants which may change from
line to line. The tracking of those constants is possible but, since we will not perform here
numerical computations of an effective neighborhood of minimality, this is not immediately
useful. Consequently, in order to avoid heavy calculations we choose to prove only the existence
of those constants. In particular, we are not aimed here to optimize the constants, which in case
of certified numerical computations of the neighborhood would be a priority.

3.1. Basic quantitative estimates along the perturbation. Let 2 C R? be a bounded,
simply connected, open Lipschitz set and f € H~!(R?). We consider the problem

—Av = f inQ,
(24) { v = 0 on 99.

In the particular case in which f = 1, we denote wq the the solution of (24), and call it torsion
function. The torsion function is the unique minimizer of the torsion energy,

E(Q):= min 1/ \Vu(z)|*dx — / u(x)dz.
ueH}(Q) 2 Jo 9]

Let now Q,, a € {a,b} be two such domains and denote by v, the solution of (24) on €,
for the right hand side f, and by uj, the L?*-normalized, non-negative eigenfunctions on
corresponding to the first eigenvalues A o, respectively. We denote by dg the Hausdorff distance.

In a first step, we seek estimates of the form

(25)  [lva = vl w2y < CdFr(0Q0, 0%) (| fall2®2) + 1 foll2@2)) + Cllfa = foll 22,
(26) Ao — Mgl < CdY (094, 0),

(27) ur,a — w1l 2y < Cdir(090a, 09),

for some computable C, 9 > 0.

Above, all functions u o, v, are assumed to be extended by 0 on the complement of their
definition domain, this extension being suitable for H!'-estimates. By abuse of notation, the
extensions by 0 are still denoted with the same symbols. The literature is quite rich for such
type of H'-estimates, like (25) and (27). For instance, Savaré and Schimperna [54] give estimates
for solutions of (24) in the class of sets satisfying a uniform cone condition while Burenkov and
Lamberti [5], Feleqi [23] discuss the eigenfunctions. Concerning (26), we refer to [50] (see as well
Section 7) for sharp estimates with power ¢ = % and controlled constant.

Let us point out a relevant fact, which becomes important as soon as we search to identify all
the constants in (25)- (27). The results referred above occur in the class of domains satisfying a
uniform cone condition, while our setting is much more regular: we locally perturb the regular
n-gon, always obtaining a convex n-gon. This regular behavior will be exploited in the next
subsection to get estimates in higher order norm even in the case of singular right hand sides
and it dramatically simplifies the proofs of the H!-estimates.

Below we shall only recall some results without proofs. The interested reader could easily
recover the estimates in our regular setting in a more direct way. Assume that €,,Q; C R?
satisfy a uniform (p,e)-cone condition (see [54, Definition 2.6]).

Proposition 3.1 (Savaré-Schimperna [54]). If f, = fp := f, there exists a constant depending
only on the diameters such that

1 L rdg(Qa, W\ 3
(28) Ve = Fonliz < CIAR A (P ),
1 1 dH(QHAQb)
. < 2 2 ]
(29) oo = sl < CIAEN A 225

dH(Qa,Qb))é

psine

(30) Iva = vellz2 < Clfllar+ (
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Note that the first two inequalites require f € L?(R?). The result recalled in Proposition
3.1 together with the Poincaré inequality readily gives inequality (25). Note as well that the
Poincaré constants on the two domains equal the first Dirichlet eigenvalues.

For a small perturbation of the regular n-gon, the values of p and ¥ can be computed explicitly.
However, in this last case a more direct proof of the inequalities can be obtained as a consequence
of the uniform bound of the H? norms of the solutions with an explicit value (maybe not optimal)
of the constant C.

Concerning the estimates (26) and (27), we refer to the papers of Feleqi [23] and Burenkov
and Lamberti [13]. Those estimates being less explicit, we give below a self contained argument
which takes advantage of the convexity of the sets.

For now, assume that €2, and £, are convex, in which case the level sets of the torsion function
and of the first eigenfunctions are convex. Moreover, v, and the eigenfunction u; , belong to
H?(€,) as we shall recall in the next subsection. We recall a first regularity result in the class
of convex sets, due to Grisvard [29, Theorem 3.1.2.1].

Proposition 3.2 (Grisvard). Assume Q is a bounded convex open set and fo € L*(Qy). Let
Vo Solve (24). Then

2
D% vallL2(00) < I fallz2(0q)-
For a n-gon which is a small perturbation of the regular n-gon P,,, this inequality gives uniform
bounds for the H2?-norms of the normalized eigenfunctions and of some H? extensions in R2.

The bounds in L* are standard and the convexity of the polygon together with the barrier
method provides L™ estimates for the gradients.

Lemma 3.3. Assume that f, = f, = f € L®(R?), f > 0. Then
(31) / Vs — Vo < dig (90, 90) | 1 (2] dinm(R) + 4] diam(©)).
RQ

Proof. Let Q = Q,N Q. Then we have as well dH(GQﬁQa) < dg (09, 0Q%) and 0 CQ, for
a € {a,b}. Denoting ¥ the solution of (24) in 2, we have

/Qa Vo — Vva|2dx = /Qa F(0—va)dx < || f]loo]Qal gg}i (va(x) — @(z))

We notice that the function v, — ¢ is harmonic on €2, so its maximum on € is attained on €,
where ¥ vanishes. Since 9 lies in a neighborhood of 99, denoting e = dg (0Q4q, 02) we have
g (ale) ~2(0) < _ g, vale),
where the addition of sets denotes the usual Minkowski sum. However, for every x € 90, + B.

we have v, (1) < || flloowa (z) < &]| £|% || VWwal|oo, Where w, is the torsion function.

In order to bound ||Vw, |l Wwe take advantage that the level sets of w, are convex and so we
have a barrier given by the width. Indeed, in every point x of the the level set, we can find an
infinite strip containing the level set and having one boundary line passing through z. Using the
classical barrier method (see [59] for example) gives |Vwq(x)| < W, /2, where W, is the width.
This implies
diam(€2,)

5 .

Adding the estimates for v, and v, leads to the conclusion. (I

/ V5 — Voa|?dz < e f]%|9]
Qo

Perturbations of the regular polygon. For n > 5 we denote P,, = aja] ...a} _; the regular
polygon with n sides inscribed in the unit circle with a§ = (1,0). We denote R,,, r,, the radii of
the circumscribed, inscribed circles for P, and [,, the length of an edge. Denote the area of P,
by A,. The angles are equal to ”T_27T. An easy computation leads to

R,=1,r,= COSE,ln = QSinE,An = nsin(27/n)/2.
n n
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Let P denote generically a perturbation of P, i.e. polygon apa; ...a,_1 with n sides such that
for every i = 0,...,n — 1 we have |a;a}| < e. The critical value of ¢ where convexity is lost is
€ = sin? *. For instance, if
* 1 . 9T
laza;| < 7 Sin” — = eo,
the angles of the perturbed polygon do not exceed
(n—2)m ) <1 ) 7r>
wg=——"—+2arcsin | —sin— | < 7.
n 4 n
We can represent both the boundaries of P,, and P using the same n charts given by the
graphs of the boundaries 9P, P over the segments

3 1 3 1
[xiyi] where x; = “aj + - aj,1,¥i = jai, + A,
In each chart, the function representing the boundary of the polygons is piecewise affine with
two slopes not exceeding tan(7 + arctan(% sin 7)). For n > 5 an upper bound for this quantity
is 0.73.

We denote A, A, the k-th eigenvalues and uy, and uy the corresponding normalized eigenfunc-

tions on P, P, respectively.

Proposition 3.4. Under the previous hypotheses
(32) |)\1 — )\ﬂ < / |V’LL1 — VUT‘deL‘ < 2(E1 + Eg),
R2

where
Er = e(\))?||uf]|X (27 + 27(1 4 €)?),

A (Tn+8)4 —T‘ﬁ 2o < Eq >
A1 (

EPYEDY ri T P, + B:)

1

2\ Es o\ 2 E; 2
E; = A1 - N
T 1ra 1< <rn+8> >+ 1<)\1(]P>n+Ba)

Proof. The inclusions 2=~ P C P, C Jiﬁepv imply (%)2)‘1 > Al 2 (M)Z)‘l'

Tn+E€ Tn

We introduce the problem

[N

Ey

)

Y € HY(P), —A¢ = Xjuj in D'(P).
Using Lemma 3.3 and the Poincaré inequality we have

Eq
Vi — Vui|2d <Ead/ —uiPdr < ————.

Using the orthonormal Hilbert basis of eigenfunctions in H{(P) we consider the decomposition
Y= Z;Of a;u; which gives

/R2 |Vep|2da < /RQ |Vl Pdx + 2/]1@ V(Vy — Vui)de < A+ 2| VY |l2|| Vi — Vil
We have
Al

()2

/ Vol2de = N / bt < N6l < 2 [V a,
R2 R2

which leads to )
> aix :/ V| 2da < Q)7
- R2 A

1

*)2
Consequently, a?X; + A 3% a2 < (/\/\11) < (M)4)\1 S0)

—= Tn

9 9 9 T™n+ € 4
Oél>\1 + Ao P dIL‘—Oél < Al
R2

Tn
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On the other hand,

1
2 > / (u})?dx — 2/ uj(ul —)der >1—2|u] —¢lls > 1—2 <E1> ’ ,
R2 R2 R2 M(Py + Be)
which, after elementary computations leads to

2 )\1 (Tn + 6)4 - T;lL 2)\2 < E1 )
= EQ.
A1 (

N

1—a

<
17)\2—/\1 7“% +)\2—/\1 Pn"‘Ba)
Finally,
/ |V — Vuy |2de = X{/ widr — 2/\1/ wrpdz + A
R2 R2 R2
=\ + X{/ ui (Y —ul)de — 2 a1 + M\
R2
= 2)\1(1 — a1) + X{ — )\1 + X{H@D — 'LLT”Q
2\ By o\ By 2
< AT 1— - M| ~———<] :=Es.
_1+a1+ 1< <Tn+€)>+ 1(/\1(1Pn+BE)> 3
By summation, the inequality follows. O

Remark 3.5. In order to complete the estimates we recall that in simply connected domains
1
luilloo < A7 (see Grebenkov [28, Formula (6.22)]). We also recall from [3] that % < j%’l/j&l,

where jo 1, 71,1 denote the first positive zero of the Bessel functions Jy, Ji and that Ay — Ay >

2
ﬁj(l’) from [1]. As well, by inclusion and homogeneity, A;(P, + B.) > (%ﬁ) AT

We can also give a direct estimate for ||1) — u1|2. Indeed,

+00
/RQ“/’ —uw)’dr = (1-01)’ + ) af = (1—)’+ /R Wz — <

1=2
< (1—a)?+ (1 [l — uill2)* - of
<201 — o) + 200 —uill2 + [l — i3

< E +2< &) >2+ &)
“14a; ? M (P, + B.) M (P, + B2)

Proposition 3.6. There exists a constant C' > 0 such that for all 0 < € < &g

= E4‘

1
Vurlleo < C and [Jur = ujlloc < Cllur — il

Proof. The first inequality is a consequence of the barrier method. The diameter and the inner
ball control the size of the eigenvalue and of the L* norm of the the eigenfunctions, themself
being controlled by &g.

The second inequality is a consequence the Gagliardo-Nirenberg inequality (see for instance

[52])
2 1
[ur = uilloo < ClIVur = Vi zall ua — uil s

Then we use first inequality and the continuous embedding H'(By) C L3(Bs). O
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3.2. Uniform H?** regularity of the eigenfunctions. In this section we recall some finer
estimates of the regularity of the solutions v, of (24) in polygons which are small perturbations
of the regular polygon. However, we need more regularity than H? in order to quantify the
variation of the shape Hessian coefficients. These finer regularity results take full advantage
from the very specific convex, polygonal geometry of the domains, size of angles and number of
local charts of the boundary. We refer the reader to [19] for detailed analysis of the regularity
in polygonal domains.
We recall the following regularity result from [8, Theorem 9.8] (see also [19]).

Lemma 3.7. Let P be a perturbation of the regular polygon P, as above. Let 0 < v < wlo Then,
for every f € H-'*7(P) the solution of (24) in P satisfies

vl g4 py < Clflla-14+(p)-
The constant C' depends on v but it is independent on f and P.

Above, the independence on P comes precisely from the very specific perturbation we consider,
which keeps constant the charts and controls the angles. Let us denote sy = wlo —1> 0 and let
0<s<sp.

Corollary 3.8. Under the previous hypotheses and notations we have
uy € H***(P), usl g2+(py < C,
with C' depends on s but is independent on the perturbation.

Proof. This is a consequence of Lemma 3.7 and of the fact that the right hand sides Ajuy of the
equations solved by the eigenfunctions have an H'-norm equal to A;(1 + A1) which is uniformly
bounded in the class of perturbations we consider. [l

One has to pay particular attention to the extension of u; on the complement of P. As far
as we are concerned with LP, H' properties of the extension, performing an extension by 0 on
R?\ P is enough. Neverhtless, such an extension does not belong to H?, H?**, so we can not
compare the extensions of u; and uj in those norms.

Two choices can be done in order to compare solutions on different polygons in H?. Either
we extend them in H? and compare their extensions, or we locally compare on compact sets
included in both domains. Below, we choose to compare their extensions. The extensions we
seek rely on the Stein universal extension operator (see [56] and [40, 36]). We recall the following
from from [56].

Proposition 3.9. Assuming P is a perturbation of the regular polygon as above, there exists an
extension operator
Ep: LY(P) — L'(R?)
such that
Vg > 0, | Ep(u) | gar2) < Cllullzacpy,
where the constant C above depends on q but not on P.

Remark 3.10. We point out that the extension of Stein relies mainly on the construction
of a smoothed distance function. The choice of this function is not unique. Stein proposed
a construction based on partition of the complement of P on squares belonging to the union
of latices (27%Z?)rcz. In the sequel we shall use this argument and the freedom to build the
smoothed distance function in order to be able to compare the extension operators on P and
P,,. Using a cut off function, we will assume that all extensions Fp(u) vanish outside the ball
Bs.

We recall now the Gagliardo-Nirenberg inequality from [9].

Proposition 3.11. There exists C > 0,9 € (0,1) such that for every u € H**3(R?)

9 -9
Il 2y < Clul Bagesy ol oy
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The key use of this result is related to the possible extensions of an eigenfunction outisde P.
Indeed, from Proposition 3.4 we control the norm |[u; — u|| g1 (r2). However, this is true for the
extensions by 0 of the eigenfunctions not for the extensions given by the Stein operator. Propo-
sition 3.11 together with Proposition 3.9 imply that we can control the norm of the difference
in H? for the Stein extensions provided we control the norm in L?. This is a consequence of the
following Lemma.

Lemma 3.12. By Ep, we denote a (suitably chosen) Stein extension operator associated to
P,,. There exists a constant C' such that for every perturbation P as above there exists a Stein
extension operator Ep satisfying

(33) |Ep(u1) — EIP’H(UT)HLOO(R% < C(lJur — “THLO@(]R@) +du (0P, 0Py,)).

Proof. We rely on the construction of the operator by Stein using the averaging method (see [56,
Theorem 5, page 181]). The difficulty is that we deal with extension operators corresponding
to different domains and applied to different functions. We want to prove that the extended
functions are close in L* provided that the non extended functions are close in L°°. Since each
one is extended with its own operator, we have to detail the construction of the operators in
order to be able to perform the comparison.

Step 1. Localization. Since the boundary of P is described in the same charts as the boundary
of the regular polygon, we use the explicit formula of the extension operator. We refer the reader
to [56, Theorem 5, page 181] (see also [40, 36]), where the explicit construction is given.

There exists a smooth partition of unity consisting on n + 2 functions (¢;);—o, .. n+1 such
that for every vertex a; of IP,, there exists one function v; supported in B(a;, %ln), one of the
functions is supported in Int(PP,,) and one is supported in Int(R?\ P,,). In view of the smallness
of the perturbation P of the regular polygon, we can keep the same n charts to describe the
boundary of 0P and use the same partition of unity as above, for the regular polygon. The
maps of the charts are built in a uniform way as piecewise affine functions having two controlled
slopes.

Moreover, instead of extending u1,u] we shall extend each function u1v;, uj; relying on the
special construction given by Stein in [56, Theorem 5, page 181], which takes advantage from
the specific graph structure of the boundary. Finally, we use the generic comparison

n—1 n—1
S oty — vatylloe < nllor = vallow <1 016 — vayloc.

J=0 J=0

Step 2. Construction of the smoothed distance functions. The expression of the Stein
extension operator is explicit and relies on regularization of the distance functions to P,[P,
respectively, say Ap, Ap, . The construction of these functions is quite delicate and we refer the
reader to [56, Theorem 2, page 171] for all the details. We have Ap € C°(R? \ P), satisfying

(34) cid(z, P) < Ap(zx) < cod(x, P) for every z € P°
o 1ol
(35) S Ap(@)| < Ba(d(x, P) 7,

and similar inequalities for Ap,_ . The constants ¢, c2, B, are independent on P.
In its construction, Stein gives a precise formula for Ap, namely

Ap(x) =y diam(Qx) bk (),
k

where Q. consists in a suitable partition of R?\ P in squares and ¢, are C° functions equal to 1
on (J; and vanishing outside a %—dilation of Qi by the center of Q. The partition (Q)x is not
arbitrary, the size of the squares being controlled by the distance of the square to the boundary
of P.

Assume now that P is a perturbation of P, as above such that dg (0P, 0P,) = ¢. Then,
(36) Ve € R?, |d(x,P) —d(z,P,)| < e.
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Our aim is to slightly modify the construction of the partition (Qg) for P such that at distance
larger than 16e from the boundary of P, the partition coincides with the one associated to P,,.
This will entail that if d(x, P) > 128¢ then Ap(z) = Ap, (x). This is done as follows.

e We first set the family grids (27¥Z2),cz in R? and choose a suitable partition for R?\P,,.
e We select out from this partition all the squares which intersect the set

5 ={z € R?:d(x, P) > 16¢}.

e We use the Stein’s method to fill the rest of the partition associated to P, namely to
cover the open subset of R? \ P not yet covered by the selected partition.

Finally, the construction of the functions ¢; follows the same procedure as Stein. The only
difference from the original Stein construction is only the alteration of the partition at distance
larger than 16e. In view of (36), properties (34)-(35) of Ap are preserved.

The main consequence of this construction is that if d(z, P) > 128¢ then Ap(x) = Ap, (z).

Step 3. Comparison of the extensions. We recall that u; and u] are uniformly Lipschitz in
R?, as a consequence of Proposition 3.6. This plays a crucial role in estimate (33). Let us now
recall from [56] how the Stein extension works. We shall simultaneously write the extension of
uy with Ep and the extension of u] with Ep, .
Suppose P,P, are above the graphs representing their boundaries on a segment [m;, M;],
which we suppose, without loss of generality, is contained in the horizontal coordinate axis.
Let 7 : [1,400] be defined by

e 1 s
T(s) = Elm[exp ( —(s—1)1 exp(—zz)ﬂ.
Then N .
/ H(s)ds = 1LYk =12, / sEr(s)ds = 0, 7(s) “2 O(sF),
1 1

Let ¢ > 0 be a constant such that
Y(z,y) € R\ P, cAp(z,y) > ¢j(z) -y,

V(.Z',y) ERQ\PWJ CAPn(xay) > ¢;(33) - Y
The extension operators are defined for x € [m;, M;] and y < ¢;(z) and y < ¢7(x), respectively,

by
—+o0

Ep(jur)(z,y) = 1 i@,y + 2csAp(z,y))ui (2, y + 2csAp(x, y))7(s)ds,

—+00
Ep, (Yjur)(z,y) = Vi, y + 2csAp, (2, y))ui(z, b+ yesAp, (z,y))7(s)ds,
1

respectively.
Take a point (x,y) such that x € [m;, M;] and d((z,y),0P) > 128¢). Since Ap(z,y) =
Ap, (z,y) and ||¢j|lec < 1, we get by direct computation

+oo
|Ep(thjur)(z, ) — Be, (b5u7) (2. 9)] < Jur — ]l o ee) / I7(s)|ds
= Cllur — uil| oo (m2)-

To complete the estimate, we evaluate both Ep(u1)(z,y) and Ep, (u)(z,y)| for (z,y) lying at
distance not larger than 130e from the boundary of P,. Here we take advantage from the fact
that there exists C, independent on P (see [56, Theorem 5, page 181]) such that

[ Ep(u1)llwiee w2y < Clluallwreopy, 1 Ep, (ul) lwtoo @2y < Clluillyioo,)-

Since wuy,u] vanish on 0P, 0P, respectively, we get that for (x,y) as above we have
Ep(u1)(@,6) < 130:C un s (p), B, (1) (2, ) < 130:C 1 [y e, .

This last inequality concludes the proof. O
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As a consequence of the Proposition 3.11 and Lemma 3.12, together with the uniform bound-
edness of the support of the extended functions, we get the following.

Corollary 3.13. There exist constants C' and 9 € (0,1) independent on the perturbation, such
that
|Ep(u1) = Br, (u}) | g2(2y < Cllur = uf]| oo z2) + d (9P, OPy))".

3.3. Estimates of the Hessian coefficients along the perturbation. In the sequel we
collect some L*°-estimates, necessary for estimates of the coefficients of the Hessian matrix. Let
©*:T* - R, ¢ : T — R be the functions defined in (10) (the second kind, in Figure 1). We
assume that Vi = 0,...,n — 1 |a;a}| < e (which implies dy (0P, 0P;,) < ¢). Then
1 1
*lloo < 1, <LV oo £ ——=, IV <
167l < 1ol < 119 e < 5 IVl < e
2sin =~
2 2e
< lpear+
< ez g 1T
[ulloe < (A)2, Jlufloe < (A1)2,
3 3
IVuilleo < (A1)2,  [[Vurlleo < (A1)2(14¢).
The last inequality takes advantage from the previous one and from the fact that the level sets
are convex, via the barrier method.

Lemma 3.14. Let g € H}(Bs) and S C By a segment. We denote ® € H~1(R?) defined by

H'(R?) 3 ¢ — ®(p) = / gpds.
S

* g
Ve e T"UT,|¢"(x) — p(x)| < 1psar + ——= 11T,
n

Vo e T*UT,|Ve(x) — Vo () ST,

(2sin ZZ — 2¢)

Then, for every s € (0, %] there exists a constant Cy depending only on s, such that
193 gy < Collglarycony

Proof. Indeed, we have

<llgllzzes)llellL2cs)

B(g)| = \ [ gwas

< Cullglly ol b4s gy

In the last inequality, we used the classical trace inequality in H'(R?) and the fractional trace

inequality in H ats (R?) (see [57, Lemma 16.1]) together with the continuous embedding of
H3(—1,1) C L?(—1,1). O

Lemma 3.15. Let S; = [0,1] x {0} and Sy = [A143] be two segments of R? such that
dp(S1,52) < e. Let s > s > 0 and g € H'T5(R?) with bounded support. There erists a

constant C > 0 such that
/ gpds — / gpds
S1 So

Proof. We shall make an explicit computation. Let Sy = [B1Bs] be the segment on the same
line as Sy such that its vertical projection on the horizontal axis is precisely Si. The ||A1By]| <€
and ||A2Bs|| < e. We have the following estimates.

/ gwds—[ geds S/ \gw|d0+/ lgpldo <
Sa Sa [A1B1] [A2 B3]

1 1
< |lgllocg2 (lell L2(a Br)) + €l L2142 B2])) < CE2 [0l 1 (R2)-
Let us introduce the projector II; : 52 5 (z,y) — (z,0) € S;. Then,

g(pdS—/ goHl(pds < g S 00 2e S/ (,OdS.
/. A oy (220 [ 1

Vo € H'(R?), < e20)¢)lm 2.




ON THE POLYGONAL FABER-KRAHN INEQUALITY 25

Moreover,

/ gochpds—/ geds
52 Sl

1
sruéz\—l)r/rg@,ow( 'z,0) \dx+/|g:couso Uz,0)) - p(z,0)|dz

—1(z,0)
< 2%llgllo el 1 s, + / 19(2,0)| / 15 o)y
1 e 7) g 2 13
< - -
< 2ellgllelielosisy + ol [ ([ 192 lan) ]

1
2, .
< 26 gllocllll 1 3, + ooy [2¢ / / Soay) dady)

= 2¢lglloollell 15y + 9l 2(51) (20) 2 ol

Adding all the previous estimates, we conclude the lemma. O

We turn our attention to Uj;, the solution of (18) - (21) in P. Recall that the expression of
the coefficients of N;; in (20) does not change when a multiple of the eigenfunction w; is added
to U;. In the following, whenever working with vectorial quantities, estimates are understood
component by component.

We drop the index i and we formally write

—-AU—-XU = f inP
(37) U =0 onoP
f puUdzx = 0

Here f € H '(P,R?) is defined in (18) and involves the following type of terms (possibly
multiplied by geometric quantities)

0
MurlrVe, oD?*u, Vo D?u, a—ZVu’Hl 1S, (VeVu)nH!|S

where S is an edge of T, n is the normal and H!|S is the one dimensional Hausdorff measure
restricted to the one dimensional set S. Note that u; € H*"(P) and all these quantities are
controlled for our perturbation, in a norm which is at least H 175,

Lemma 3.16. For every s € [0, 3 A (% — 1)), there exists a constant Cs > 0 not depending on
P, such that
[Ull g5 py < Cs.

Proof. One readily gets
(1-31) [ 190 < 1711l g,

which gives, using the Poincaré inequality in the orthogonal of u,

)\2+1
HUHHl P) Ao HfHH L(Pp)-

Taking into account the Andrews-Clutterbuck result [1] and the structure of f, Lemma 3.7 gives
the conclusion. O

In order to estimate

/ IVU* — VU|%dz
R2

we rely on the stability estimates for simultaneous domain and right hand side perturbations.
Moreover, in view of the definitions of U*, U, we have to work in the orthogonal on u,u*, and
use a correction term built by projection.

We have the following.
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Lemma 3.17. There exist positive constants C, v > 0, such that for every admissible perturba-
tion
¥ 9

10 = U g1y g2y < Ce”.
Proof. Without restricting the generality we can assume that P C P,,. Indeed, if this is not the
case, we compare both U and U* with the solution U on the regular polygon (1 + ¢)P,,, which
contains both P and P,.

We introduce the following auxiliary problem
(38) —AV = XNU*+f* inP
V =0 on 0P

which has a classical weak solution. In view of the result of Savaré-Schimperna [54, Theorem
8.5]

* *T T * 1
(39) IV = U2 < CIINU" + [ g-1(y)e2-

In the same time, both V and U* belong to H'** with controlled norm, so in particular they
belong to W2 with controlled norm. Using again the Gagliardo-Nirenberg inequality for the
Stein extension of V, we get

IEp(V) = U* ||, < Ce”.

Note that U* € H'*$(P,) and that H'**(P,) continuously embeds in W'*22¥5(P,). Conse-
quently, from Holder inequality

2
2+s
/ IVU*dz < / IVU*[*Fsdx P, \ P|z+ < CeZs,
P, \P P, \P

Finally,
IV = Ui,y < Ce”.

Let us now introduce the function V =V — ([p Vurdz)uy € Hj(P). Then
IV = Vlingir = lutllngeey [ Vinda

= llurll 3 py [/ (V-U"ujdx+ [ V(u — uT)dm] < Cev.

P, Py,
At the same time,
—~AV = AV = \JU* + f* — AV := f in D'(P)
and by straightforward computation

/ VU - VV[P =\ (U -V)%dz = (f - f,U - V)u-1xm-
P

Since both U,V are L%-orthogonal on u;, we get
A2
Ao — A1

HU_VHH(%(P) < If = Flla-

It remains to estimate ||f — f||z-1. Since
f=F=f-[+AV-\U",
we can use the stability result (39) to conclude that ||f — f||z-1 < Cev.

We can now conclude with the following.

Theorem 3.18. There exists C,9 > 0 such that for every polygon P € P, satsifying Vi =
0,....,n—1, |aal| <e < ey we have

INZ; — (N [lo < C”,

VE=1,...,2n, |[M(NY) =\ ((NY)¥)] < Ce.
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Proof. The first inequality is a direct consquence of Lemma 3.17. The second one is a fur-
ther consequence of the Weyl inequality on the stability of eigenvalues for perturbations of a
symmetric matrix and on the equivalence of all norms over a finite dimensional space. O

Remark 3.19. The Hessian matriz of the area of the polygon is constant. As a direct conse-
quence, a similar estimate holds for the Hessian matriz M» of the scale invariant functional

P+ [PIM(P).

4. EIGENVALUES OF THE HESSIAN MATRIX FOR THE REGULAR POLYGON

We denote again P,, = [apa;...a,_1] the regular polygon with n-sides, centered at the origin,
with the vertex ag at the point (1,0). As well, A\; := A\ (P,) denotes its first eigenvalue and
up = u1(P,) a positive, L?>-normalized eigenfunction. We also use the notation 6 = 27 /n.

As a consequence of the homogeneity of the eigenvalue to rescalings

M(tP) = 5 (P)

the proposition below establishes the equivalence between the original problem (2) and some
unconstrained versions. Its proof is standard and will not be recalled.

Proposition 4.1. Let ¢ > 0. The three problems below
(40)  (Ly) A1 (P), (L) : Hé%l |P|A1(P), (L3): min (Al(P) —i—c|P|)

: min
|P|=|Py|, PEPR P pPeP,
have the same solutions, up to rescalings.
For the convenience of the reader, we also collect below some well known facts.

Proposition 4.2. Letn > 3. Then

(1) The first eigenfunction on P, has the symmetry of the n-gon.
(2) e P, is a critical point for problem (L1) above;
e any reqular n-gon is a critical point for problem (Lg) above (see Theorem 4.14);
A1 (Py)
[Prc
(3) If moreover any of the regular n-gons above is a local minima for its own problem, then
all the others are local minima for their own problems.

1
e the reqular n-gon ( )4Pn is critical for problem (Ls) above.

Remark 4.3 (Symmetry of the first eigenfunction). On P, the first eigenfunction enjoys the
symmetry of the polygon. In particular on all triangles AOa;a;;11 the eigenfunction has the
same geometry, symmetric with respect to the bisector of the angle a@l. As well, the
normal derivative of the eigenfunction vanishes on the segments [Oa;|, [Oa;;1].

Remark 4.4 (Optimality conditions). The existence of other critical polygons than the regular
polygon is an open question for n > 4. In the case of triangles, results in [24] show that the
equilateral one is the only possible critical point for the two functionals (first eigenvalue and
torsional rigidity) studied here.

Proposition 4.5. Let P, be the reqular polygon defined above. If the Hessian matriz M of
P — |P|\(P) evaluated at Py, given in (23), has 2n — 4 eigenvalues that are strictly positive
then P, is a local minimum.

Proof. In the previous section in Theorem 3.18 it is shown that the coefficients of Hessian
matrix are continuous for a local perturbation of the free vertices. Therefore, it would be
enough to prove that the Hessian matrix associated to the free variables is positive definite.
Fix the two consecutive vertices a,_s,a,_1 and consider the associated matrix M which is the
(2n — 4) x (2n — 4) principal submatrix of M?* obtained by removing the last four lines and
columns. Then M is the Hessian matrix of the same functional, with the last four variables
removed.
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First of all, we observe that M has 4 zero eigenvalues which correspond to translations,
scalings and rotations which leave the objective function invariant. In Propositions 4.6, 4.12
direct proofs are given showing that

1 0 1 0

0 1 0 -1

1 0 CcOs 2r sin 2m
(41) te=| o | tw=1]1[s sin 21 = —cos 2

O 1 sin 2(n;1)7r _ cos 2(n;1)7r

are indeed eigenvectors of M? associated to the zero eigenvalue.

Suppose that M* has 2n — 4 strictly positive eigenvalues (in addition to the four zero eigen-
values described above). The result stated in [37, Theorem 4.3.28] shows that the eigenvalues of
M have lower bounds given by those of M?, therefore they are non-negative. Suppose that M
has a zero eigenvalues with an eigenvector 5 € R?»~4. Completing ¢ with zeros would give an
eigenvector of M associated to the zero eigenvalue. This is impossible since taking the last four
components of the eigenvectors in (41) gives four independent vectors in R*. Therefore M is pos-
itive definite implying that [P, is indeed a local minimum for the functional P — A\ (P)|P|. O

The remaining part of this section is dedicated to the computation of the eigenvalues of
M. In particular, we show that the eigenvalues of M* can be computed in terms of the first
eigenfunction u; and the solutions (Ug, UZ) of (18) with the normalization condition an Ubuy =
0, i = 1,2. A numerical approach for proving that the matrix M* has 2n — 4 eigenvalues that
are strictly positive is provided in the next section.

Proposition 4.6. 1. The vectors t, = (1,0,...,1,0) € R* ¢, = (0,1,...,0,1) € R?*" are
eigenvectors of M* associated to the zero eigenvalue.

Proof. The proof is immediate, following the expression of M* given in (23). Proposition 2.7
shows that t, and t, are in the kernel of the Hessian of the eigenvalue and are orthogonal to
both the gradients of the eigenvalue and of the area. Moreover, they are also in the kernel of
the area Hessian (16). Combining all these aspects finishes the proof. O

The following result recalls the symmetry properties of v and U(}, Ug. For simplicity, we use
the notation a(u,v) fp Vu - Vv — )\fp U.

Proposition 4.7. The following holds.
1. The functions dyuy, Oz po, 0z UL, 8,UZ are even with respect to y and the functions Oyuy,
Oy 0, ByUol, 0:UZ are odd with respect to y.
2. The quantities
J = a(Ug,Uj), j = a(U, U7)
are even with respect to j (modulo n) and the quantities
i a(Us,U3),j — a(U3,Uj)
are odd with respect to j (modulo n).

The proof is straightforward from the definitions.

Change of basis. In order to deduce more information about the structure of the Hessian
matrix it is useful to perform a change of basis so that for each vertex the basis directions
correspond to the radial and tangential directions (see Figure 3). The Hessian matrix in the
new basis is given by the formula H* = PTM*P where P = (Pij)i<ij<n is a 2 x 2 block matrix
with P;; = <C(.)S(‘7. -De - sm@ B 1)9>. Of course, M* and H* have the same eigenvalues.

sin(j —1)0  cos(j —1)8

Moreover, the Hessian matrix H” in this particular basis has an additional property. Indeed,

it can be seen that in this basis the matrix does not change when a circular perturbation is
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x a

ao

Euclidean basis
ClIC ) aO
a3
a4

FIGURE 3. Change of basis to radial and tangential components (left). An ex-
ample of symmetric triangulation defining ¢; for the regular polygon (right).

applied to the vertices. Therefore the resulting Hessian matrix H” is circulant with respect to
its 2 x 2 blocks:

H, H, .. H,,
(42) — H,1 Hp H, >
H, H, .. H,

The spectrum of this block circulant matrix is made of the union of the spectra of the following
n matrices of size 2 x 2

(43) B,, = Ho + ppHi + ppHo + ... + pf ' H,, g,

where p, = exp(ikf), k = 0,...,n — 1. Fore more details the reader can refer to [58] and the
references therein. One may note that the symmetry of H* implies that H,,_; = H. Moreover,
the 2 x 2 matrices described in (43) are all Hermitian (and therefore have real eigenvalues).

In the following we assume that the triangulation defining the functions ¢; in (10) is symmetric
and is made of the triangles 7 having vertices (0,0), (cos j8,sin jf), (cos(j + 1)8,sin(j + 1)8),

0 < j <n—1. For convenience we may use the notation Ty = Ty,T_ = T,,—1 (see Figure 3).
With these notations it can be seen that for 0 < 7 <n — 1 we have

1 sin(j +1)6 —sin(j —1)0
(44) Vi = sin 0 [(— cos(j +1)6 Lz + cos(j —1)6 7] -

Furthermore, in view of the symmetry of the eigenfunction, a simple integration by parts shows
that

(45) / Vuy - Vo = )\1/ upv, Vv € H}(P,)
T; T;
Denoting with Mg, My, ..., M,,_; the blocks of the first line in M, it is immediate that
Mo, M1 (prRy), ..., M,,_1(prRg)" ! are the blocks on the first line of H* = PTM*P. Therefore,
in view of (43), we have

Bpk =My + Ml(kag) + ...+ Mnfl(kaG)n_la

where R, — <CQST —sinT

sinT  cosT
in the trigonometric sense. By abuse of notation we will use the same notation for the rotation
of angle 7 around the origin. Recalling the formula (23) we decompose each one of the blocks
M; = M + M3 + M3 with

1_ G(U&,Ujl) G(U&anQ) 2 _ o A
M] == 2|PTL’ (a(UOQ,U]l) a(Ug’sz) ,M] - Al n[V(po ® VQOJ VSO] ® VQOO],

) denotes the rotation matrix around the origin with the angle 7
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M;’ = 2|P,| / (Voo - V;)(Vur @ Vug)
Py,

In the following, we compute separately the matrices Bi,k = Z?;ol piMé-Rjg, forl =1,2,3. We

denote by Id the identity matrix and J = ((1] _01> The area of P, is |P,| = 0.5nsin 6.

Note that the matrices M]2 come from the Hessian of the area. Using straightforward com-
putations we have M? = —)\; <_8'5 0(’)5> = 0.5M R /2, M2 |, = —M7? and M]2 = 0 for
j ¢ {1,n — 1}. Therefore

= A1 _ : .
Z piM?Rjg = ?(kaﬂ/erg + kR _r/2—9) = A1(— cos(k0) sin 01d + i sin(k6) cos 0J).
§=0

Furthermore, let A,, = fT+(8mu1)2, Ayy = fT+ (Oyu1)?, Agy = fT+ dyu10yuq. Then we have by
the symmetry of the eigenfunction that A,, + Ay, = A\1/n. The fact that the gradients undergo
a rotation when transferred from 7_ to T implies the matrix equality

A —A A A
46 Rg < TT xy) RT — ( T xy) )
(46) —Azy By Avy Ay
We find that —A,;sinf + Ay, sinf + 2A,, cos = 0. With the notations above we have
My = 4Tl (57 ) M= 2T Ve, (47 4.
A —A
M; | =2|P,|(Veo - Vipr— m o
L= 2BV Ton (5 )
It is immediate to see that (Vg -Ve1)r, = (Vo Vn—1)r. = — cosf|Vp|?. Keeping in mind

that |[P,| = 0.5nsiné and |Vo|r, = 1/sinf we get

M = 2n <Am 0 ) M= _n('zosﬁ (Am Awy> ,

sinf \ 0 Ay sinf \Azy Ay
0/ A —A
M3, = _ncosy T zy )
sin 0 _Azy Ayy

Of course, the other blocks on the first line are all equal to zero. Therefore we obtain

' - 2n (A, O
Z pch?Rje = M% + pkM:ng + pkM?lile — ( >

S1n 9 Ayy
 2ncos(kt) Ay cos? 0+ AgycosBsinf 0
sin @ 0 Ayy cos?f — Ayy cossind
2n sin(k0) 0 —Ayy cosfsind + Ay, cos® 0
sin 6 AyycosOsinf + Ay, cos? 6 0 )
Since Azz + Ayy = A1/n and —Ag, sinf + Ay, sinf + 24, cos @ = 0 we deduce that
cos 6

Using these relations and the computations above we find that

n—1
2n(1 —cos(kf)) (A 0
(M7 + MR, = - :
JZ; PeM; sin(6) 0 Ay

It remains to compute the contribution of the terms MJ1 Let us recall that due to the
symmetry of the triangulation defining ¢; we have, denoting U; = (U ]-1, U jQ) the solutions of
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(18) with the normalization (21), that
Uj(z) = RjyUo(Rjya).
Note that this implies that RTHU- =Upo R]TH. For 0 < j <n —1 we have
1\/[ R (UO,Ul) (UO,UZ) cos(jf) —sin(j0)
7= \a(Ug, Ul) (Uo,UQ) sin(j0)  cos(j0)
a(UO,cos(jH)U1 +51n(]0)U2) a(
a(UO,cos(jH)Ul +sm(]0)U2) a(UZ, — sin(j
G(anUo o %f)) a(Ug, Uy OR;@)
(U07UO R ) (U07U0 R )

Remark 4.8. For 0 < j < n — 1 the sum of the elements which are not on the diagonal of
M}Rjg is zero. This is a consequence of the fact that a(U}, U oR})) = —a(UZ, Us oRY,) which
simply comes from the change of variables y = Rfeaz and the fact that Ug is odd with respect
to y and U} is even with respect to y (see Proposition 4.7).

a(Ug, — sin(j Q)Ul—l—cos( 0)UJ2)
9)U1 + cos(j H)UJZ))

The next result shows that the eigenvalues of B, , and as a consequence those of M, can be
expressed in terms of uy, U, UZ.

Theorem 4.9. For 0 <k <n —1 we have B,, = ( a,k ng> with
k

1k
n—1
Qg :qk/ (Dpu1)? — 2|P,a UO,ZCOS jk@)(cos(]G)Ul —i—sm(jH)U )
7=0
n—1
Br = / (Oyu1)? — 2|P,|a( UO,ZCOS ]k@)(—Sln(]H)U +cos(j0)U )
7=0
n—1
Y = —2|Pla(Ug, > sin(jkd)(—sin(j6)U; + cos(j6)U7))
j=0
n—1
= 2P, |a(U3, > sin(jk0)(cos(j0)U} + sin(j6)U7})),
=0

where . = 2n(1 Sl(;o;(k@))

Moreover, the eigenvalues of B, are given by

prok = 0.5(ag + Br — \/(Oék — Be)2 +4v7), part1 = 0.5(a + By + \/(Oék — B)? +477).

As a consequence, the eigenvalues of the Hessian matriz My given in (23) are exactly pu;,
7=0,....2n—1.

Proof. In view of the previous computations we have

B - 2n(1 —cos(kd)) (Ayz O
PE Sine 0 A’qy
n—1
, (Ug, (cos(jO)U; +sin(j0)U?))  a(Ug, (—sin(j0)U} + cos(j0)U?))
—2{Pn| Z) cos(jk0) <a(Ug, (cos(jO)U + sin(70)02))  a(UZ, (~ sin(j8)U + cos( H)UjQ))
=
n—1
‘ o (Ug, (cos(j0)U;} +sin(j0)U?))  a(Uy, (—sin(j0)U; + cos(50)U7))
*Q”]P’”'_Zosm(?’“") <a(Ug,(cos(j9)Uj1 +sin(jO)U?))  a(UZ, (—sin(jO)UY + cos(j 9)UJ))
=
The formulas follow directly from Proposition 4.7 and Remark 4.8. O

In the following, we continue the computation further by using the variational formulations
for (Ujl, Uj2)7 j=0,...,n—1. Recall that R;‘-Fer =Ujpo RJTO. We only develop the expressions
that are non-zero from the above matrices.
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Proposition 4.10. We have the following equalities:

n—1 n—1

a(Ug, Y cos(jkO)U o Rly) = (cos(j + 1)kf + cos jko6) / Vu, - VU}
J=0 j=0 T;

n—1
1)k6 — k0 —si j j
N Z cos(j + cos j / ( sin(25 +1)0  cos(2j + 1)0) Yy - VU]
Jj=0 T

sin 0 cos(2j +1)0  sin(2j + 1)0

n—1 n—1
a(U,S cos(jkO)UZ o BT,) = ‘;’jg (cos(j + 1)k6 — cos ko) / Vuy - VU2
=0 T

J=0

—1

cos(j + 1)ké — cos jkO —cos(2j +1)0 —sin(2j +1)0 )
' Zo sin 6 /T (-sin(Qj +1)0  cos(2j +1)0 Vuy - VU
j

n—1 n—1
a(Us, > sin(jk8)UZ o RY,) = cos 6 (sin(j + 1)k6 — sinjke)/ Vuy - VUL
o sin 6 = T,
n—1 . . o
sin(j + 1)k0 — sin jk6 —cos(2j +1)0 —sin(2j +1)0 L
+ jZO sin 0 7. \—sin(2j +1)8  cos(2j +1)8 Vuy - VU
n—1 n—1
a(Ug, > sin(jk0)Uj o Rjp) = > (sin(j + 1)k9+sinjk9)/ Vuy - VU?
j=0 j=0 T

n—1
sin(j + Dk —singk0 [ (—sin(2j +1)§ cos(2j +1)8 2
+ ZO sin 0 T cos(2j +1)0  sin(2j +1)0 Vu, - VU;.
j=

The proof is computational in nature and is detailed in Appendix A.

Remark 4.11. A direct consequence of Theorem 4.9 and Proposition 4.10 is the fact that the
eigenvalues of the Hessian matriz M» of \(x)A(x) can be expressed explicitly in terms of the
first eigenfunction uy and the couple (Ug,UZ).

The previous results allow us to give more details in the particular cases k € {0,1,n — 1}

Proposition 4.12. If k = 0 then B,, = 0 with associated eigenvalues pg = p1 = 0. This
implies that the vectors s,r € R*" defined in (41) are eigenvectors of M.

For k =1 we have oy = 81 =71 and By, = o _11 i . In particular po = 0, us = aq.

For k = n —1 we have ap—1 = Br—1 = —Yn—1 and B, = ap_q (1 1z>' In particular
pon—2 = 0, plan—1 = an—1 = .

Proof: When k = 0 the computations in Proposition 4.10 and the fact that fQ VU& 2. Vu, =
)\fQ U01’2u1 = 0 imply that B,, = 0.

As a consequence if v € R? then (v,Ryv, ..., R—1)9v) € R?" is an eigenvector of M associ-

ated to the zero eigenvalue. Taking v = (1,0) gives s and taking v = (0, —1) gives r
When k =1 let us evaluate

n—1
a(Ug, Z (Cos(jG)(cos(jH)Uj1 + sin(j@)UjZ) —sin(j0)(— S.in(jH)Uj1 + cos(jH)UjQ))
=0
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On the other hand, Proposition 4.6 shows that t, = (1,0,...,1,0) is an eigenvector of M*
given in 23 for a zero eigenvalue. Therefore, the scalar product of the first line of M* with t, is
zero and we obtain

n—1
2n(1l — cos @
=20 " a(Uy,U}) + (sina)A” = 0.
=0

Using the relations computed above we find that ap — v, = 0.

Using the second formula for 74 in Theorem 4.9 and the fact that t, = (0,1,...,0,1) is an
eigenvector of M?* from Proposition 4.6 we find that 8, = 7. The case k = n — 1 follows from
B =B O

Pn—1 p1*

Corollary 4.13. We have B,, =B, _, (with indices modulo n). Therefore:
1. By, and B, , have the same eigenvalues.

2. If n is odd then the spectrum of M consists of 4 zero eigenvalues and n — 2 double
etgenvalues.
3. If n is even then Bpn/2 is diagonal and the spectrum of M consists of 4 zero eigenvalues,

n—4 double eigenvalues and another two eigenvalues that can be found on the diagonal of Bpn/2'

For the sake of completeness, in the following we give a short proof that the regular polygon is
a critical point for P — |P|A1(P). This result is known and can be recovered, for instance, using
ideas from [24] or [7, Chapter 1]. The proof given below relies on the representation formulas
for the gradient given in Theorem 2.2.

Theorem 4.14. The reqular polygon is a critical point for x — A(x)A1(x).

Proof. Fix the regular polygon P, inscribed in the unit circle with ag = (1,0) and denote by A\;
its first eigenvalue. Consider the functions ¢;, i = 0,n — 1 defined in (10) and suppose they are
symmetric like in the right picture in Figure 1. For i € {0,...,n — 1}, the components 2i,2i + 1
of the gradient of the objective function are given by

A1/ v‘Pi+|Pn|/ S1Vei.
Py, Pn,

In view of the symmetry of the polygon and of the first eigenfunction, it is enough to perform
the computations for ¢ = 0.
We have ¢o = (1, —1/tan )1y, + (1,1/tan@)1ly_. This already shows that

21 1
(1) w [ V=2t (o)

Using the expression of VA;(x) and (45) we find that

IlP’nl/ STV = \Pn\/ —2(Vuy ® Vuy) Vi
Py, P,
= —4|P,| (fT+[(8$u1)2 - taiaawulayulb

Using (47) we simplify the above expression to

2)1 1
4 P, Vo = —"=|P, :
(49) Pl [ 890 = -2 (o)

Adding (48) and (49) we find that the first two components of the gradient of x — A(x)A1(x)
are zero. By symmetry, all the other components are zero and P, is indeed a critical point. [

5. A PRIORI ERROR ESTIMATES FOR THE COEFFICIENTS OF THE HESSIAN MATRIX

The eigenvalues of M* are described analytically in the previous section, but the formulae do
not allow us to prove that these eigenvalues are non-negative. In view of Proposition 4.5 proving
that M* has 2n — 4 eigenvalues that are strictly positive is enough to infer the local minimality
of the regular polygon. In this section we describe how we can certify numerically this fact. In
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order to achieve this we provide a priori error estimates concerning numerical approximations
based on finite elements for ay, Bk, given in Theorem 4.9.

First we refer to classical certified estimates for the approximation of the first eigenpair and
of the second eigenvalue on the regular polygon P,, using P4 finite elements. In a second step,
we get certified estimates for the finite element approximation of the function U;. In the last
step we get certified approximation results for the coefficients of the Hessian matrix.

5.1. Step 1. Certified approximation of the first eigenpair and of the second eigen-
value. In the literature one can find certified approximation for the first eigenvalue in regular
polygons (see for instance [38]). We shortly recall of the results of [44, Theorem 4.3].

Let us consider a triangulation 7" of P,. In each triangle T; € 7", the ratio between the
smallest edge and the middle one L; is denoted «; and the angle between these two edges is ;.
Then, we denote

1+a?+ \/1 + 2a? cos(27;) + o

\/2(1 +a? — \/1 + 2a? cos(27;) + af)

Following [44, Section 2], we introduce the constant
C(Ty)
h )
where the parameter h dictating the size of the mesh is the size of the median edge. Let us

denote V" the finite element space associated to 7" with P finite elements. Denote by N> Uk
the k-th eigenvalue of P,, and its associated eigenfunction approximated in V", solving

C(T;) := 0.493L;

(50) Cy = sup
h

(51) Uk,h € Vh,/ Vukyh -V, = )\k,h/ Uk hUh, Yoy, € Vh.

n

Results of [45] show that
Ak

VE>1, App > Ap > ——ol
= RO T Ty oy,

As a direct consequence we have
(52) M = Aol < AL LCT/(1+ CTRAZ ;) WP

Denoting II; , the Lagrange interpolation operator on the vertices of triangles of T", for
functions u € H?(P,,) we have
IV = VIL () 2 < Crhl[D?ul| 2.

For each u € H}(P,) let us denote P, (u) the projection of u onto the finite element space V",
namely the solution of

(53) Pp(u) € Vh,/ (Vu — VPy(u), Vop)dz =0, Yoy, € V.
Then
(54) Vu — VPy(u)||2 < C1h||D*ul 2 and  |Ju — Ppy(u)| 2 < C1h||Vu — VPyul 2.

In particular, for u = uy € H?, using || D?ul|z2 = [|Aul|z2 ([29, Theorem 4.3.1.4]), we get
(55) HVul - VPh(ul))HLQ < Clh||D2u1||L2 = Clh)\l and Hu1 - Ph(ul)HL2 < C%hz)\l.

In order to estimate the error for the eigenfunction, let u; 5, be an L?-normalized, finite element
approximation of the first eigenfunction given by (51).

Let us denote by p = Py (u1) and decompose p = auy j, + P, where an purpdr =0, a € R.
Note that changing the sign of wuyy still gives an L?-normalized solution, therefore we may
assume « > 0 in the previous decomposition.
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As we know that

Vp - Vo, = Vuy - Vo, = )\1/ vy, Yup € Vi,
Py Py, n

we get
Vp- Vo, — )\1,h/ PUn =/ (Mut — Appp)on,  YV™
P, n n

Using the Poincaré inequality on the orthogonal of u 5 in VI we get

A2h — ALk _ 1 _
/ (VP2 < [[Awr — A ppl| 2 ——|VDl| r2dz,
A2p Pn VA2
or
1
12— _ Adh
(56) NRIBlze < IVBlz < = (1A = Ml + Aallun = plz2 ).
’ (A2h — ALn)
We obtain the error estimate
l1—« 1,
(57) Vs = Vsl < 90 = Tpllga + 29l + L1Vl

We compute the following bounds for ||p|| 12, || Vp|| 2, which are immediate from the definition
of p and the projection operator Pj:

IVplZ, = / Vuy - Vp = Al/ uip < A1llpllze < M(flurllzz + llp — vallz2)
Pn

n

In order to conclude we need bounds for ae. We have fIP’n p? =a?+ fIF’n P2, which shows that

|1—a\<!1—a2\</P p2+/P <u?—p2></P P+ s — pllie (2 + s — pllza).

This estimate can be written in a quantitative form using (56) and (55). Since a > 0, for h
small enough, an explicit lower bound for « can also be found.
In the same way we obtain the L? error estimate for the first eigenfunction

|1 — af 1
(58) lur —uiplle < |lur —pllg2 + WHPHH + EHPHL?-

It can be noted that the optimal rates of convergence are obtained in (57) and (58). Moreover,
the term of order O(h) in (57), which dominates the estimates comes from the interpolation error
bound for |[Vu; — Vp||z2 while the remaining terms are of higher order O(h?).

5.2. Step 2. Certified approximation of U;. We begin with some generic approximation
results for solutions of the Laplace equation with Dirichlet boundary conditions with singular
right hand sides.

Lemma 5.1. Let v € (0,3) and v the solution of (24) on P, with f € Hféf'y(RQ). Then

1 1.1
(59) Vv = VP (v)][r2 < HfHHf%ﬂ(W)(Clh)2 T(1+ /\*1)2”-
and
3_ 1.1
(60) v — Pp(v)|lg2 < ID“HH_%_W(RQ)(Clh)2 T(1+ /\*1)2”-

Proof. By the Aubin-Nitsche lemma [14, p.136] we get
[0 = Pa(v)llr2 < C1A[|Vo = VP, (0)] 12
To prove that, it is enough to introduce
¢ € Hy(P,), —A¢ = v — Py(v) in Hy(P,).
Then ¢ € H?(P,) and using [29, Theorem 4.3.1.4] we get
ID%¢]| 2 = [IAE] L2 = [lo — Pu(v) |l 2,
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so that

o= Pi@I3e = [ V€ Tlo=Pio)ds = [ V(- T1149) T = Ple))do
Pn Pn

< C1h|| D¢ 2| Vv = VPu(v) 12 < Crhllv = Pa(v)] 22l Vo = VP (0)]| 2.
Since f € H_%_V(RZ) then

190 = VPu)I3e = (£ = PuloDir-ssiy < 113 gy 10 = PaC) g g

From the Gagliardo-Nirenberg interpolation inequality (all norms in R? are taken to be the
Fourier transform ones), we get

1 1
1 1+
19 = VP2 < 171y o 0 = PaC)I2 10 = Pa(o) 7o

1_ 1.1
514 gy (CLRE 7 (L ) V0 = TPy (0)

Finally, we get the conclusion. (I

Theorem 5.2. Let U € HE(P,) be the solution of

—AU-MU = f inP,
(61) U = 0 ondP,
fIP’n wmUder = 0

where (f,u1) g1 g1 =0, f = freg+ fsing with freg € L3(Py,) and fsing € H_%_V(Pn), where v €
(0, %) Assume fy, is a numerical approzimation in H=' of f which satisfies ( fn, u17h)H717H& =0
and (ujp, A\1,p) @ numerical approzimation of (u1, A1) in H&(Pn) x R. Denote Uy the finite
element solution in V" for

(62) o € VP, / (VUL - Vo = \aUn0) d = (fis 0) g1
together with the normalization
(63) /]P> uy pUp dx =0,
Then, denoting by V the solution of —AV = \U + f in V", we have

IVU = VU2 < CLAIMD + frgllze + Wfsngl - (CHmE 70+ )37

L ((CPINT + fgll + Uil -y g (C1F 0+ )57

+ V2l p = ullz2 )

A
sy (P = Ml e + Aal = Pu@)llz

1
+ (1 + An)2 | f — thH*)-
Proof. We denote U,eg, Using the solutions of
Ureg € HS(]P)”), *AUreg = )\1U + frega Using € H&(Pn)a *AUsing = fsinga

so that U = Uyeg + Using.
We introduce the auxiliary functions Vieg, Veing € V", Vieg = Pr(Ureg) Veing = Pr(Using) the
finite element solutions of

Vieg €V, —AVieg = MU + freg  Vaing € V", —AViing = fsing-
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For Viing, the estimate (59) from Lemma 5.1 holds, and gives
1_ 1.1
||VUsing - vVsing”L2 < HfsingHHf%w(Clh)Q V(l + )\—)2+’Y’
1
while for Vies the estimate from (55) gives
[VUieg = VViegllz2 < Crh|MU + fregllL2-

Let us denote V' = Vieg + Viing and define V=V- (f]:[»n Vuy pdx)uy . Then we have

~ 1 1
(64)  [VV =VV]2 = A, < ALLUU = Vg + VI g2 luan = ullz2)-

/ (VuLh — Uul)
Py

We have that V is the finite element solution of
VeVt —AV - MV =MU+f =MV,
which gives
IVV — VU |*dz — Al,h/ V= Unl’dz = (MU + f =XV = fuV = Un) gy -
P, Py
By the Poincaré inequality in the orthogonal of uq ; we get

A -
<1 - W) / IVV — VU, |2dz
Aon) Jp,

< IMU = MaV 2V = Unligz + 1f = fall -1V = Upll

1

1 1 \2 .
< INU = MV IV = TUslla +1f = Sl (1452 ) 197 = T0ile

Finally,
(65) IVV = VUl L2(p,)
1
Ash 1
< m(\)\l,h = MUz + MpllU = Vg2 + (1 + Ao p) 2| f — thH*)-

Theorem 5.3. With the notations of Theorem 5.2, the following estimate holds
1
U = Ugll2z <2C1A||VU = VV |12 + [V 2 |lur — wipll2 + Ao |\VV — VU 12.
Proof. First, by the Aubin-Nitsche trick, we have |[U — V|2 < C1h||VU — VV||2. Using the

definition of V' we have

v - Vizep,) = ‘/P Vuy pdz

/ VuLh — U’uldﬂj

n

SNU = Vllez + [V 2 llus — uapll 2

Finally, we have

i 1 1
IV = Uhllzp,) < A p IVV = VUL L2p,) < Non—un (\/\1,h = MUl 2P,

1
AT = Vilzae, + U+ 2o 1f = falla-ip,))-
U

Remark 5.4. It can be seen that the estimates from Theorems 5.2, 5.3 become explicit as soon
as || fllg-1, | fregll L2, HfSngHHf%fw lf — fullg-1 are known. We present below some inequalities
that help obtain upper bounds for all other quantities presented here.
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Using the fact that U is orthogonal on the first eigenfunction u; we find

)\2()\2 + 1)
VAl < V0l < YRR E D g

Since V' is the projection of U on Vj, we have [[VV|[2 < [|[VU||12. Secondly we have [|[V||z2 <

\/%HVVHHL Since V is the projection of V on the orthogonal of ujj, in V* we immediately

have |V|[z2 < ||V g2 and [|[VV |2 < [[VV]| 2.
We obtain the following estimates for Up:

IVUAIZ> = MallUnlZ2 < Inll—1 Ul -

Since Uy, is orthogonal on uyp the first eigenfunction associated to Ay, we have |[VUp |7, >
)\z,hHUhH%Q which implies that

)\1h 1
(1 - ) VU2 < Ifullrs o1+ ——[VUllzo.
A2h A2h

This implies

Ao n(1+ Ao p)
A2.h — AL

)

rllUnl |2 < [|[VUR] 12 < I full -1

Remark 5.5. In practice, the singular right hand side that we consider is of the following type.
Let S =[0,1] x {0} and g = ‘9“1 . We define fing € H™'(R?) by

Vo € HYR?),  (fsings @) i-1xm = /Sgcpds'

Then for every v € (0, 3) we have

1

1 Iy ’
fsing € H 2 7(R2)7 ||fsing||H—%fy(R2) < (M) HgHLz(S)'

Indeed, for every ¢ € H %+V(R2)
(fsmga ) 7777><H2+7 > HQHL2 S)H@HL%S
and use the trace theorem for ¢ from H §+7(R2) onto L?(R x {0}) with constant C, :=

1
(%) : (see Pak and Park [49]).
272 T(1/247)

Practical estimate. In order to estimate ||g||;2(s) above, we notice that

2 82u1 2
gder = — [ u dr < — | wiAurde = A\ | ujde.
5 s 0x? s s

Here, we have used that % € H& (S) for symmetry reasons and angular behavior, together with
%Qy’gl < 0, from symmetry and convexity of the level lines of u;. In order to estimate |, S uldz,

we can use the following

luillzzsy < lluanllzees) + llw

0 ou 3
<thnalls + [ [ [ (S 200) gy

If the approximation by finite elements has the symmetry of the n-gon, then

oup 0 1
// ﬂ_ “”) dxdygunﬂ)/zj%/P [Vuy — Vug .
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Analysis of the function Uy = (U3,UZ). As we have seen in Section 4, it is enough to
concentrate on the function Uy defined in (18) with the normalization condition (21). Recall
the definition of ¢; is given in in (10) (see also Figure 1).

Denote by fy € H~!(P,,R?) the right hand side from (18) for j = 0. Since the index 0 is fixed,
we shall drop it from Uy, its right hand side fy and ¢g. We denote by T =Ty and T =T,
the upper and lower triangles of the support of ¢. Then

1 1 1
—1p (1,——— ) +17 (1,—— ) andVz eP,, — g ur (2).
Ve =lr, ( ’ tan@) +ir < ’tan@) and v € IVe@)l sing YT ()

The right hand side f € H~(PP,,, R?) is the distribution given by
Yo € CZ(Py), (£,v)g-1xp1 = / — (Vo ®@ Vu1)Vo + 2(Vuy © Vo)V dr

n

+/ Si‘Vg@/ ulvdx—i—)\l/ urvVdz.
Py Py Py

Recall that S} = (|Vu1|? — A\ju?) Id —2Vu; ® Vuy. Using integration by parts, we notice that
/ — (Ve @ Vup)Vodr + A\ / uvVedr = 0.
Py Py
We observe that in the expression of f]Pn Si\Vgo the first term cancels for symmetry reasons. We
may also use the fact that the regular polygon is critical for A;(P,)|P,| so that

A A1 _2M

Pl Jp,
Moreover
1
2 _ by
/ —2(Vur ® Vup)Vodr = —4 /T+ (G1) tanO(a‘rul)(ayul)dx = <801> .
n 0

Therefore s7 = —2\; /n.
On the other hand, if Q(v) = v — (an ulv) uy is the L2-projection of v on the orthogonal of
u1, we may note that

(66) f,v)g-19m1 = / 2(Vuy ® Vu)Vedz — 2/ (Vur ® Vur)Vedz

_9 / (Vr © VQ(v))Vepda

Working with a symmetric triangulation for ¢; (Figure 3) and a mesh that is exact on
T; and respects the symmetries of the regular polygon (Figure 4) the uniqueness of the first
discrete eigenfunction u;j implies that (46) holds also for the discrete quantities. In par-
ticular fT+(8mu17h)2 + fT+(8yu1,h)2 = App/n and —sin@fT+(8mu17h)2 + sin&fTJr(@yuLh)Q +
2(:089fT+ Ozu1 pOyur p, = 0. We denote by

2 / (f}ul,h)Q B 1 8u17h 8U1,h de
< Bh> = 4| ) \ Oz tand Ox Oy
0

and using the previous relations we find that s{"h = —2\y p/n. Therefore |s{‘—si‘7h\ = Z|\1—Appl-
Let f;, be the distribution given by: Vv € C2°(R?)

(fn,v) -1 = /

(Vo ® Vuy p)Vedr + / (Vuyp ® Vo)V dr + sih/ uy po de.
Py

P, Pr
Proposition 5.6. The following inequality occurs

2v/2 1
I~ falls < =g IV = Vs + e (19 = sl + sl — el ).
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Proof: The proof is straight forward by direct computation, taking into account the vector
norm inequality ||(a ® b)c|| < ||al|||b]|||c]| and the Poincaré inequality

0]

1
|2 < ﬁ”“”]{&-

We also used the symmetry of the mesh, which gives

2
Vurp — V| 2erpury = \/;’VUUL — Vuillp2(p,)-

d
Practical estimate. We estimate below the quantities needed for the estimates in Theorem

5.2. In order to estimate || f*|| -1, || fiogll 22 and | SiingHH_%_W we use the following notations:

1 1xwHL A
(£, 0) 1,11 = (E;Q ;ﬁ 1X§1) :/ 2(Vu1®Vv)Vg0dm+/ uiv dz (501)

n n

— / (V(p . VQ(U))VUl + / (VSD : VUI)VQ(U)

n

A
:/ (V¢.V0)Vu1dx+/ (ch'Vul)Vvd::H—/ u1v dz (501>

n n n

() + (3)+ (&)

Since Q(v) is the projection of v on the orthogonal of ui, [|[VQ(v)| 12 < ||Vv| 2 and ||Q(v)]| 2 <

[0l 2
For the H~! estimate we work with the formula involving Q(v) and we have

(ff )1 m :/T o (20,u10;Q(v) + 0y p(0:119yQ(v) + 8,119, Q(v)))

£ - < 2v2 (/ (@ U1)2>1/2 \/
- Ty * tanfV n

A similar computation for f? leads to

2 V2 o)
1210 = 20 (o) B2

ot

Which implies that

Let us denote Sy, Sp, S— the segments [0, exp(i6)], [0, 1], [0, exp(—if)] in the complex plane,
and n = (ng,ny) the outside normal of a domain. We have

(Alvv) fTJrUT UVSO v%%:l +f8T 'UV(P naul +f8T ’UVQP Ilau1
(A%v) — Jr,ur vV Vaul +faT vV - nam + [or vV na“1

We decompose each term in A’ = A;eg + A;m , the regular part given by the first integral over

T, UT_ and the singular part given by the sum of the last two integrals over the boundaries of
OT and OT_. Following [29, Lemmas 3.4.1.2-3] we find that ||V (9yu1) L2(1;) = VAl Owwa || L2

and [|[V(0yu1)| z2(r;) = VA lOyua | L2(r;)- Therefore, for the regular parts we have
V21 V21

[Alegllze < LM 0llzagrsy |A%gllze < X210 lnzer,

We explicit Vi - n on Sy, S4,S— and we obtain
1 8 1 o 1 8
((A;mgv )) _ _fS+ s ¥ ul + 2[50 tan0V 9z U1 fS sin @ Bqécl
(Asmg7 U)

= o 1 8u1 1 Juy
fS+ smo Yoy 5_ smoV oy Oy
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We have [[0yu1(|12(s,) = €08 0||0zu1 | 12(sy) and [[Oyurl|p2(s,) = sinb]|0zu1l[r2(g,) since the nor-
mal component of the gradient of u; is zero on these segments. Therefore, using Remark 5.5 we
obtain
1+ cosf
HAsmgH -1 < 2817\/>||U1HL2 So) CW? HAsmgH 7%7'\/ < 2\/>‘71HU1||L2(SO)C’Y'
A similar computation leads to

((Bl>v)> fT ur. VVe- Vaul +f8T vV - Vuing + [5p vV Vuing
(B?,v) fT ur. vV Vaul +f8T+ vV - Vuing + [or vV - Vuin,

and we observe that the boundary integrals vanish. For the regular parts we have the same
estimates as before

V2X1

(T4) ||BlregHL2 < = sin

”Breg||L2 = ||a u1||L2 (Ty):

m

si

It is straightforward to see that Cl, C? are L? distributions, C? = 0 and ||CY| ;2 = |s] = 2A\1/n.
Finally, we get

\/2)\ 21 \/2)\

| fregllz2 < 2-img 10zuillezry) + == I/ wegllz2 < 2~ g 19yurllcaery)-
1 +cos€
H smgH -1 < 2T V HulHLQ(So CW? H smgH S 2y )‘1HU1HL2(5’0)C

Using the fact that HﬁxulHT+ + H(?yulHT+ = A\1/n we may also use the slightly weaker, but
simpler bounds below:

: 2 [2xn . 2\ \/5 2\ 2\ \/5
(3 -~ < -+ < - a7 =
1 e < g\ 0 Wregllee < g/ + == I, rallrz < oV

5.3. Step 3. Estimates for the eigenvalues of M*. As shown in Theorem 4.9 and Propo-
sition 4.10 the eigenvalues of M* can be expressed in terms of u; and (U3, U2). As we saw in
the previous sections, the terms containing derivatives of u; can be well approximated using P4
finite elements using an estimate of order O(h) with explicit constants.

Results of the previous section show that the estimate of the computation error for U behaves

like h2 7. Trying to bound directly the error for the eigenvalues of M* will give estimates of
the same order, which in practice are not fine enough to provide bounds that allow to certify
that the non-zero eigenvalues of M are positive.

However, it turns out that the estimate of the coefficients of the shape Hessian matrix of
the eigenvalue is better, namely in A'=27, as a consequence of the particular structure of the
coefficients. As shown in [27, Section 5] defining and solving an auxiliary problem using the
same bilinear form can double the speed of the convergence.

We use the notations of Theorem 5.2 for two generic problems with solutions U®, U® corre-
sponding to the right hand sides f?, f® (not necessarily those explicited in the previous section).
As well, we use the associated notations V¢, Vb, Ve Vb, Uy, Uﬁ, i f}bL. We denote the bilinear
forms

a: H}(P,) x H}(P,) — R, a(u,v):/Vu-Vv—)\l/uv,

ap VP x VP S R, ap(u,v) = /Vu-VU—)\ljh/uv.
Our objective is to estimate error terms of the type
|a(U®, U®) — an (U}, U,
in order to get an estimate of order h'=27 for ay, By, v in Theorem 4.9. We have
(67) |a(U,U°) = ap(UR, Up)| <
(U, U") = a(VE, VO [+ a(V, V) = an(VE VO] + |an(V, V') = an(UR, UR)].

We estimate each term of the right hand side, separately, the most delicate being the first one.
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First term.

a(U%U%) —a(Ve, V) = | VU*-V) V(U -V?)
Py,

— Al/ (U —VHVE — )\1/ (Ub - vhue,
so that
|a(Ua7 Ub) - a(vav Vb)’
<IVU* = V) 2IVO = VO lg2 + AVl 22|V = U%|| g2 + Ml|U?| 2|V = U 2.

As a consequence of Lemma 5.1 applied for the L?-norms of both the functions and their gradients
we get a control in h1727,
Second term.
a(Ve, V) = an(VE V) S [VV 2| VYV = VP2 + [V 2| VVE = YV 2
+ An = MUV 2Vl 2 + MVl 2V = V2 + AV 2V = VO e,

which, in view of inequality (64), leads to an approximation of order h.
Third term.

lan(VE,V?) = an(Ug, Up)| < lan(VE, VP = U] + lan(V® = U, Up)| <

IVV 2| VVP = VU2 + |VUR| 2] VV® = VUL 2.

The last inequality is a consequence of the fact that ay(-,-) is a scalar product on {uj ,}* in
VI and of the Cauchy-Schwarz inequality together with the observation that ay(v,v) < [ |Vv|2.
Using inequality (65) we get an approximation of order h.

Remark 5.7. The problematic term in the previous estimates can be simplified when the two
distributions and associated solutions have opposite parity properties. Indeed, suppose that

. 1
J1 = Fibg + fing With fieg € L%, f8,, € H™277 such that (f,,, U* = V?), 4 4. =0. Then
we have
(U -V . VU -V = [ vU*-vU°-V?
P, Py,

=(MU*+ r%g + S%ng, Ut — Vb>H—17H1 = (MU + ég, Ut — Vb)L27L2,
leading to an estimate of order h3/2=7, for v € (0,0.5).

Below we show how to choose the functions in the above estimates in order to obtain the
desired bounds for the quantities described in Theorem 4.9. Since in the case £k = 0 we have
ag = By = 70 = 0 we focus only on the cases 1 < k <n — 1.

Remark 5.8. It can be noted that the error estimates above can already be applied for terms of
the type a(Ujl’Q, Ul1’2) that appear in the expressions of M and oy, Bk, v&. However, if multiple
such terms are present in some expression, a direct error estimate will accumulate the errors
and the final results will be unusable for reasonably large h. It is best to choose properly the
functions U®, U? beforehand and apply the error estimate only once.

The term «;. Denote by

n—1
Wk = " cos(jk0)Us o R,
j=0
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so that a(U}, W) allows us to express oy, (see Proposition 4.10). The orthogonality of Us on
uq implies that fIP’n Wy = 0. Denote f* € H~! the distribution

n—1
(fak,/U)H—lyHé = Z(cos(j + 1)k0 + Cosjk‘@))\l/T UV
7=0 !

Z cos(j + 1)k0 — cos jk0 —sin(2j +1)0 cos(25 +1)0 Vi -V
sme o\ cos(2j+1)0  sin(2j+1)9) VUV

7=0

—sin(25 +1)0 cos(25 +1)6 )
cos(éjj—k 1)% sin((2§ + 1))9> preserves its length and
reflects it about the line through the origin making an angle (j + 1/2)0 + w/4. The symmetry

of the first eigenfunction u; implies that (f*,u;) = 0. These observations imply that W is
the unique solution of the problem

Multiplying a vector with the matrix (

a(W,v) = (fak,U)H—l,Hé, Yo € HY(P,), [ Wuy = 0.

Py
Elementary computations show that

n—1

(68) (cos jkO + cos(j + 1)k0))? = n 4 n cos(kh),
5=0
n—1

(cos jkb — cos(j + 1)kB))? = n — ncos(kB).
5=0
n—1

(sin jkO + sin(j + 1)k0))? = n + n cos(kh),
§=0
n—1

(sin jkO — sin(j + 1)k0))? = n — ncos(kh).

.
o

Therefore, a straightforward estimate using (68), the symmetry of the eigenfunction u; and
1
loll2 < e ol shows that

[1+cos(k)  /A(1— cos(k‘@))
(697 -~ <
1750 = A 1+ X\ + sin 6

. ar _ cos(j+1)kO—cos jkO [ — Sin(2j + 1)9 COS(2j + 1)9
Denoting K% = sin@ < cos(2j +1)0  sin(2j +1)8

) we have

n—1 n—1 n—1
Z/ K;"“Vul-Vv—Z/ —div(K;‘kVul)erZ/ (K§*Vuy - n)o.
=0 /T =0 /T =1 70T;

Since u; € H%(P,) the first term is regular. Let us investigate the second term. Denote with
S, Sj41 the two rays associated to the triangle T3, j = 0,...,n — 1 (with notation modulo n).

Denote with N; = <_ sin 76

cos j0 > the normal to S; in the trigonometric sense. The symmetry of

the eigenfunction (see Remark 4.3) implies that (Vuy)s, = 9,u1 <Z?§jg> which implies

(— sin(2j + 1) cos(25 + 1)0

cos(2j +1)0  sin(2j + 1)0) Vu - N;j = Opuq cos 6.
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We obtain for v € HE(Py,)

n—1 n—1
Z/ (K3*Vuy -njv = Z (—/ (K3*Vup - Nj)v —I—/ (K3*Vuy - Nj1)v )
j=0 0T} 3=0 S; Sj+1
n—1
N / (K52 = K5*)Vur - Nj)o
7=0"5i
=— Z/ Cf)Se(cos(j + 1)k0 + cos(j — 1)kf — 2 cos jk0)O,ujv
— /s, sinf
= — Z/ cos6 QCosjk:Q(l — cos k#)Oru1v
S; sin 6
Finally

n—1
o cos 6 )
(fsigg,v)H,leé =— EO /sj Sin020053k0(1 — cos k0)Oruyv.

which, using Remark 5.5, gives

n—1

o cos 6 .
1Fegll g < 2y 5| cos jkO(1 — cos k0) |/ Al[ua]l L2 (s0)Cry
=0 S1n
For the regular part, we have
n—1
(frs0) -1y = >_(cos(j + 1)k:0+cosjk:0))\1/ v
=0 T;

n—1 . 1
1)k6 — ko
B Z cos(j + ) cos j / ( — sin(2j + 1)982901“
= sin 6 T;

+ 2cos(27 + 1)98§yu1 + sin(2j + 1)98§yu1)v

and using the fact that |[D?u1|| 2 = A1 we obtain

reg”L2 <v1 +COS k@ A1+ 7\/m)\1

Remark 5.9. Let us introduce the vectors

v = (cos((j + 1/2)8),sin((j + 1/2)0)),v; = (—sin((j + 1/2)8), cos((j + 1/2)8)).

Expressing the derivatives of u; in the (v;,7;) basis, by direct computation one gets
( gg’ )H—1><H& =

n—1
1)k —
jzo(cos(j + 1)k6 + cos jkO) A\ /Tj uy — 2008(] + 811415109 cos jk6 Z/

Consider now the discrete version of f% replacing u; and A1 by their discrete approximations

n—1

(f}?k,v)H—lyHé = Z(cos(j + 1)k6 + COSjk’Q))\l,h/T U B
=0 J

n—1 . .
cos(j + 1)kO — cos jkO —sin(2j 4+ 1) cos(25 +1)0
+ Z sin @ T COS(2j + 1)0 Sln(2j + 1)0 VULh - Vv

J=0
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Working under the hypothesis that the mesh 7" has the symmetries of the regular polygon and
that the triangles T} are meshed exactly, we have (f3*, u1 ) H-LHD = 0. By direct computation

we obtain

n—1 n—1
(Fo% — fo,0) = Z(cos(j + ko + cosjkﬁ)/ (AMur — Appurp)v + Z/ K™ (Vu— Vuy) - Vo
=0 Ti

which implies

1+ cos k6
L£% = fp -2 < 4 T(P\l Atpl 4 Avpllur — uipllr2)

n V1 — cos k6

— |Vu — V|
The term (. Denote by
n—1
Wh = Z cos(jkO)UZ o R;‘-Fg
j=0

so that a(UZ, WP) allows us to express 3 (see Proposition 4.10). The orthogonality of U2 on
w1 implies that fIP’n Whku; = 0. Denote fﬁk € H! the distribution

-1
0
(fﬁk,U)Hﬂ’Hé = 2?50 (cos(j + 1)kO — Cosjk@))\l/T Ugv
Jj=0 j
1 ) .
cosli + LIk = COSJM/ —cos(2j + 1) —sin(2j + 1)6
+ P sin @ 7\ — sin(2j +1)0  cos(2j +1)0 Vuq - Vo.

Same as before, the symmetry of the first eigenfunction w; implies that (£, u;) = 0. These
observations imply that W5 is the unique solution of the problem

a(W,v) = (fﬁk,v)H_17Hé, Y € H&(]P’n),/ Wu; =0.
Pn
A straightforward estimate shows that

0 |1—cos(kf) +/Ai(1— cos(kb))
B g1 < Ay i .
17 = = Lsing 1+ XM + sin 6

Similar computations as before give

(fsmg7 )H*leé = Z/ 2 cos jkO(1 — cos k6)druqv.

which, using Remark 5.5, gives

n—1
kel - <2 [cos jkO(1 = cos k)| Al [ 12(s,) C
7=0

For the regular part, we have

n—1
cos . .
(freg, V) -txml = “nd E (cos(j + 1)k6 — cosgkﬁ))\l/ U
J=0

T;

n—1

1)k6 — k0
Z cos(j + cos j / ( ~ cos(2j + 1)08;%;#‘1
= sin 6 T,

— 2sin(2j + 1)08§yu1 + cos(2j + 1)98§yu1)v
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and using the fact that || D?u1|| 2 = A1 we obtain

0
Hfi’“gHLz < :?jax/l — cos(kO) A1 + —\/1 — cos(kO) ;.

Consider now the discrete version of f%, replacing u; and \; by their discrete approximations

n—1
cos

(f;?kav)Hfl,H& = (cos(j + 1)kO — Cosjk‘ﬁ)/\l,h/ U1 pv
sinfd 7

n—1 . .
cos(j + 1)k — cos jkO —cos(2j+1)0 —sin(2j +1)6
* z% sin 0 . \—sin(2j +1)0  cos(2j + 1) V- Vo
]:
Working under the hypothesis that the mesh 7" has the symmetries of the regular polygon
and that the triangles 7} are meshed exactly, we have ( f,f FouLh) -1, = 0. Below we use the

cos(j+1)k0—cos jko <— COS(2j + 1)0 - Sin<2j + 1)6

notation K ]B ko= ) By direct computation we

sin —sin(2j +1)8  cos(2j +1)0
obtain
(fﬁk _ }{3%71)) _
cosf = . _ N
~ sind (cos(j + 1)k6 — cos jkf) (Arur — Ay pugp)v + Z K; ¥(Vu — Vuy) - Vo
7=0 T; — .

which implies

Br _ By <cos€ 1 — cos k6 N
177 = £l < S e
+\/1—cosk:0

sin @

The term ;. In this case we have two possible formulae. We provide the details for both
of them. Denote by

—u1nlz2)

IVu — Vup|| 12

n—1
Wkl =3 "sin(jk6)Us o RY,
j=0
so that a(U}, Wk1) allows us to express v (see Proposition 4.10). The orthogonality of UZ on
w1 implies that flP’n Wk ly, = 0. Denote f’”ﬁ1 € H~! the distribution

n—1
cos 0

Vier1 _
(f ’U)H_I’Hé ~ siné

7=0

n(j +1)kf — sin jko / (— cos(2j +1)0 —sin(2j 4 1)0
T,

(sin(j + 1)k — sin jkO) A / Uv
T;

M

sin 0 —sin(2j +1)0  cos(2j +1)0 ) V- Vo

7=0

Same as before, the symmetry of the first eigenfunction u; implies that (f*! u;) = 0. These
observations imply that W7! is the unique solution of the problem

a(W,v) = (f1,0) -1 g1, Yo € H&(Pn),/ Wu, = 0.
IP)‘IL

A straightforward estimate shows that

0 |1—cos(kf) +/Ai(1— cos(kf))
||y, SO ‘
Il < Lsing 14+ X\ + sin

Similar computations as before give

( ;’;’gl,v)H_leé = — Z/ 2sin jkO(1 — cos k6)Oruqv.
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which, using Remark 5.5, gives

n—1
[FAL yobo S 2> " |sin jkO(1 — cos k0)|v/ A [|ur]| 2(s,)C
7=0

For the regular part, we have

n—1
cos 6 . o
( 1?:3%71’1})H_1><Hé =g Z(sm(] + 1)k6 — Slnjk‘@))\l/T ULV
§=0 j

n—-1 . .. in 7
1)k — k
- Z Sln(] + ) Sln] 0 / ( - COS(Qj + 1)ea§xU1
= sin 0 T;

— 2sin(2j + 1)0@§yu1 + cos(2j + 1)98§yu1)v

and using the fact that ||D?u1| ;2 = A1 we obtain

1625 e < 20 T conlEAN + 2 T cos(RA)

Consider now the discrete version of f7!, replacing u; and A\; by their discrete approximations

n—1

(sin(j + 1)k60 — sinjkG))\Lh/ U pv
j=0 1

N ”Zl sin(j + 1)k6 — sin jk6 / “cos(2j +1)8 —sin(2j + 1)8
sin 0 .\ —sin(2j +1)0  cos(2j +1)0

cos b

7 0) s gy =

sin 0

> VULh - Vo

Working under the hypothesis that the mesh 7" has the symmetries of the regular polygon and

that the triangles T} are meshed exactly, we have ( ;Z’“’l, U/Lh)H—l’Hé = 0. Using the notation

il _ sin(j+1)k6—sinjko [ —cos(2j +1)0 —sin(2j +1)0 .
KJ - sin 6 ( Sln(2j + 1)9 COS(2j + 1)9 we obtain

(f"/k,l _ f}’;/k717,u) _

n—1 -
- cos (sin(j + 1)k6 — sln]kﬁ)/ (Arur — Ay pup)v + Z/ sz’l(vu — Vuy) - Vv

sin 0 = 7

which implies

vl _ pdy <cos€ 1 —coskf _ _
1/ P llm = T n (IAr = Al + Arpllur —uipliz2)

i v1 — cos kb

sin 6

”VU - VUhHLQ.

For the second formula for v, denote by
n—1
W2 =Y " sin(jk60)Us o R,
j=0
so that a(UZ, W7t2) allows us to express v (see Proposition 4.10). The orthogonality of U on
uq implies that fIP’n W2y = 0. Denote f¥2 € H~! the distribution

n—1

(f%’Q,v)HflyHé = Z(Sin(j + 1)k6 + Sinjk:é?))\l/ UV

=0 T;

n—1 . . ..
sin(7 + 1)k — sin k0 —sin(25 + 1)0 275+ 1)6
+Z (G+1) J /T( sin(2j + 1) cos(2j + )>Vu1-Vv.

= sin 0 cos(2j +1)0 sin(25 +1)6
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Same as before, the symmetry of the first eigenfunction u; implies that (f*2 u;) = 0. These
observations imply that W72 is the unique solution of the problem

a(W,v) = (f%Q,v)H,lﬁH&, Yo € HY(P,), [ Wuy =0.
Py

A straightforward estimate shows that

|14 cos(kf)  /Ai(1 — cos(kf))
1 <A .
A== 1+ XM + sin @

Similar computations as before give

£

cos b

2
( gﬁgav)H—leg =

Z/ 2sin jkO(1 — cos k#)Oruqv.

sin 0
which, using Remark 5.5, gives

COS

3N 3 <25 Dsmjkre(l — cos k) |/ M [[un] 2(5) s

For the regular part, we have

n—1
( r'é’“g’Z,v)H_leol = Z(sin(j + 1)kO + sinjk:Q))\l/ ULV
j=0 T;

n—1 . . P
kO —
- sin(j + ).l<:99 Sin j &0 / (= sin(2j + 1)002,u1
=0 S1n T
+ 2cos(27 + 1)98§yu1 + sin(2j + 1)98§yu1)v

and using the fact that |[D?u1|| 2 = A1 we obtain

r“Ye’gZHLg < /14 cos(kO)A1 + 7\/m)\1

Consider now the discrete version of 72, replacing u; and A by their discrete approximations

n—1
( }'L}’k,27v)H,1’Hé = Z(sin(j + 1)k6 + sinjk@))\lyh/ U pv
=0 T

2 sin(j + 1)k6 — sin jkO —sin(2j +1)0 cos(2j + 1)0
+) i

sin 0 cos(2j +1)8  sin(2j + 1)9) Vuyp - Vo

5=0
Working under the hypothesis that the mesh 7" has the symmetries of the regular polygon and
that the triangles T} are meshed exactly, we have ( Z’“’Q, u17h)H—17Hé = 0. Using the notation

K'yk,2 _ sin(j+1)k6—sin jk6 <— Sin(Qj + 1)0 COS(Qj + 1)9
j =T/ 2

Sind cos(2j + 1) sin(2j + 1)0) we obtain

(f702 = =2, 0) =

n—1 —
Z sin(j + 1)k + 81n]k0)/ (Aur — Ay pu,p)v + Z/ Kyk’z(vu - Vuy) - Vo
=0 j '

J

which implies

1+ cos kO
1772 57 < vl )

V1 — coskf
+
sin
We conclude this section with the following result summarizing the error estimates obtained.

[Vu = Vup|| 2.
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Theorem 5.10. The terms ay, B, Vi in Theorem 4.9 admit an explicit error estimate of order
O(h'=27) for every v € (0,1/2) when the first eigenfunction uy and the function Uy = (U, UZ)
are approrimated using P1 finite elements.

Proof: Recall that the estimates given in Section 5.1 allow us to obtain explicit bounds for
Iz (Opu1)? and fTO(aym)Q of order O(h). Denoting g = 2n(1—cos(kb)) we have the following.

sin 6
e For ay, = g, fTo (0pu1)? — 2|Pp|a(Ud, W) we apply (67) with U® = U, U? = W,
o For B = g [7, (8yu1)? — 2[Pp|a(Ug, WPk) we apply (67) with U® = Ug,U" = Wh. We

note that (fgflg, 'U)H—l’H(% = 0 for every function v that is odd with respect to y. Since
U& and its numerical approximation verify this hypothesis as soon as 7 is symmetric
with respect to the x axis we may apply Remark 5.7 and obtain a better error estimate.

e For v, = —2|P,|a(U}, W) we apply (67) with U® = U}, U’ = W1, We note that
(kg
numerical approximation verify this hypothesis as soon as 7y is symmetric with respect
to the x axis we may apply Remark 5.7 and obtain a better error estimate.

e For vy, = 2|P,|a(UZ, Ws2) we apply (67) with U® = U2, U’ = W2,

In conclusion, the terms oy, By, v& admit quantified approximations of order O(h'=27) for every
v € (0,1/2). O

U)H717H3 = 0 for every function v that is even with respect to y. Since U and its

Remark 5.11. We summarize rapidly the results leading to Theorem 5.10, showing that the
estimates are explicit and indicating how to compute the estimates in practice. Recall that we
work with Py finite elements on meshes made of congruent triangles (see Figure 4), meshing
exactly the symmetric triangulation defining the functions @; (see the symmetric case in Figure
1).

1. The constant Cy defined in (50) is explicit in terms of n and h since all triangles in our
meshes are congruent.

2. Explicit estimates for |\ — A pl, [lur —uipllz2@,), [IVur — Vg pllp2e,) based on [44] are
given in Section 5.1.

3. FEaxplicit estimates for quantities involving Uol, Ug are based on Theorem 5.2. These es-
timates depend, in particular, on || fregl| L2, ”fsing”H—%—w lf = frllg-1, for particular choices of
the distribution f. The details concerning U} and U are given in Section 5.2.

4. In view of Theorem 4.9, explicit estimates for eigenvalues of M?* depend on the estimates

n—1

[Vur —Vuy pllp2(p,) and those for particular linear combinations of functions (Ujl’z)jzo. Section

5.3 shows in detail how these estimates are obtained. The main ingredient is again Theorem 5.2.

6. NUMERICAL SIMULATIONS

6.1. Local minimality. Given the regular polygon P,, with n sides inscribed in the unit circle
with a vertex at (1,0), we divide it into n equal slices used in the definition of ¢;, like in Figure
3. Then we give an integer m > 1 and for each one of the triangles 7T}, j = 0,...,n — 1 we
construct a mesh 7" consisting of congruent triangles similar to %T] In this way we obtain a
mesh with median length h = 1/m. Examples are given in Figure 4. The procedure described in
the following only applies for small values of n > 5. For n — oo, triangles in the mesh become
flat and the proposed mesh is not appropriate anymore.

With this definition of mesh 7" all triangles in the mesh are similar and the constant C
defined in the beginning of Section 5.1 can be explicitly identified in terms of n. Given the mesh
T" we compute using P; finite elements:

e the first two eigenvalues Ay j,, A2 5, and the first eigenfunction u; j, of the discrete Dirichlet-
Laplace eigenproblem (51).
e the solutions U} = (Uj{h, Uj%h) of

DUhV’U - )\l,h Uhv = (fh, U)H—l,H(}
Py Py
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FIGURE 4. Examples of symmetric meshes for regular polygons used in the computations.

for the discrete distributions f,{, j=0,...,n—1 given by

(£, v)g—1 g = / (Vej - Vuy p)Vo —|—/ (Vo - Vu)Vuyp, + sih/ UL pY.
Pn ]Pn n
using the normalization fIP’n Uiul,h =0.
e for 1 < k < mn — 1 approximations of W W8k W1 W2 are constructed from
(U jl U ]2 1)- Therefore we obtain the approximations of ay, By, v, from Theorem 4.9 that

are of order O(h'~=27) for v € (0, 3), with explicit error bounds given in the previous
section.

The procedure described above provides for each k = 1,...,n — 1 intervals I,,, I3, , I, for which
we have the guarantee that oy, € I, , Br € Ig,, Vi € I,,. Using the interval arithmetic toolbox
Intlab [53] we find intervals I;(h,v) containing the eigenvalues p;, 0 < j < 2n — 1 of MA
described in Theorem 4.9. Given a value of h and the associated numerical approximations we
obtain a whole range of intervals I;(h,y) for v € (0,0.5). Note that changing v at fixed h is not
a difficulty since this parameter appears only in the choice of constants and exponents. When ~
is close to zero we obtain a weak estimate in Theorem 5.2 while for « close to 0.5 the constants
in the estimates from Remark 5.5 become very large. An appropriate choice for v is made using
a simple grid search. If among the intervals I;(h,y) we obtain only two that contain zero then
we conclude, based on Proposition 4.5, that the regular polygon P, is a local minimum for
P — |P|A1(P). If this is not the case we decrease h and we repeat the procedure.

Remark 6.1. Numerical algorithms employed in scientific computing use floating point arith-
metic. As a consequence there is a difference between the exact discrete solution of the finite
element problem and the one given by the numerical algorithm. The sources of error are as
follows:

o the numerical mesh is a slight perturbation of the exact mesh, leading to perturbations
in the mass and rigidity matrices.

e the linear systems are solved using iterative methods with a stopping criterion related to
the residual vector.

In general, it is admitted that errors coming from the above considerations are smaller than the
theoretical error estimates shown in Theorem 5.10. The condition number of the linear systems
involved is of order O(h™?), therefore, we expect that for h > 10~* the machine errors do not
dominate in the estimation of A\1. Moreover, for the gradient terms and for Ug, which have an
even weaker convergence rate, the discretization error is expected to dominate machine errors.
We also make this assumption in the following.

The results shown in this section prove the local minimality of the reqular polygon when ne-
glecting errors coming from floating point computations. Most algorithms are designed such that
these errors are minimized and therefore it is generally agreed that these errors are smaller than
the errors between the continuous solution and the exact discrete one. However, guaranteeing
that the floating point errors are small enough it is a non-trivial matter that needs to be addressed
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n future works. Ideally, the whole computation of the finite element problems should be handled
using an interval arithmetic library like Intlab [53], which is a non-trivial task in view of the
minimal size of the problems listed in Table 3.

Remark 6.2. Before going further, let us justify our choice to work with finite elements. There
exist precise numerical methods that compute eigenvalues and eigenfunctions for the Laplace op-
erator smooth domains or on polygons. Among these we mention [16] where particular solutions
are used coupled with interval arithmetic to get guaranteed enclosures for the Laplace eigenval-
ues. These techniques were used in [15] to answer a question of Payne regarding the nodal line
of the first eigenfunction on a domain with holes. In [6] the authors give tight inclusions for the
Neumann eigenvalues and in [26] a fast numerical method is used for solving Laplace problems.

While the methods enumerated above can give precise approximation for the eigenvalues and
eigenfunctions, this is no longer the case when approrimating material derivatives (18). Two
non-trivial differences, compared to the case of the Laplace operator treated in the references
above, appear in our case: the operator in equations (80) is —A—X1(P,)I and solutions (Ujl’2)?:_&
are not in H*(P,). As we discussed previously, these functions have discontinuous normal
derivatives across segments inside the reqular polygon P,. Adapting methods enumerated above
to this case is not straightforward.

Formulas given in Theorem 4.9 and Proposition 4.10 allow us to compute the eigenvalues of
the Hessian matrix in knowing the first eigenfunction u; on P, and the pair (U}, U2) solution of
(18). Using Py finite elements it is straightforward to approximate the first eigenpair. Given a
mesh 7;, with N, vertices, and denoting by (@-)fi”l the P basis functions, the rigidity and mass
matrices are defined by

</1P>n ¢ ¢j> 1<i,j<n </1P>n ¢ ¢J> 1<i,j<n

The first eigenpair and the second eigenvalue are approximated by solving the generalized eigen-
value problem Ax = ABx. Denote by x; the eigenvector associated to the first eigenvalue. Then
(62) is solved by considering embedding the orthogonality on w;  in the linear system:

(a7 906

The constraint vector c is given by ¢ = XlTB and the right hand side f is computed by evaluating
( &’2, ®i) -1 g for every ¢; in the finite element basis.

In order to have an error estimate small enough such that the interval around the eigen-
value does not contain zero rather small values of h need to be considered, leading to large
computational problems. The value of h and the number of degrees of freedom (d.o.f) for the
computational problems are listed in Table 1. Therefore, in order to be able to solve these prob-
lems the software FreeFEM [30] is used in its parallel version together with the libraries PETSc
[4], SLEPc [35], Hypre [22]. The computations use 200 processors and are run on the cluster
Cholesky from the IDCS Mesocenter at Ecole Polytechnique. The error estimates allow us to
obtain sufficiently small intervals for h = 10~* for n € {5,6,7,8}. The resulting eigenvalues and
quantities needed are given to the interval arithmetic library Intlab [53]. The library is then
used to compute the interval enclosures for the eigenvalues. The non-zero eigenvalues and the
corresponding enclosures are given in Table 2. The results shown in Table 2 indicate that the
regular polygon is a local minimizer for problem (2) for n € {5,6,7,8}.

In Table 3 we estimate the largest mesh size h for which the certified numerical computations
validate the local minimality of the corresponding regular polygon. Exploiting the symmetry of
the eigenfunction and of the functions U&, Ug the size of the problems can be further reduced
in half. The estimates presented in Table 3 are not explicit and can only be checked after the
numerical computations are finished. The optimal mesh size depends, in particular, on the
smallest non-zero eigenvalue of the Hessian matrix, which is not known a priori and seems to
decrease as n increases.
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h d.o.f.

Pentagon | 10~% | 250 025 001
Hexagon | 10~ | 300 030 001
Heptagon | 10~% | 350 035 001
Octagon | 10~% | 400 040 001
TABLE 1. Size of the computational problems for the finite element computations.

Hexagon
Pentagon Eig. l.b. u.b. mult.
Eig. L.b. u.b. mult. || 1.323826 | 1.040291 | 1.629895 2
2.568803 | 2.359297 | 2.784816 2 3.916803 | 3.112218 | 4.719205 2
8.015038 | 7.558395 | 8.460722 2 12.990672 | 12.188270 | 13.795257 2
13.458443 | 13.012758 | 13.915086 2 7.566593 | 6.326083 | 8.803012 1
11.540733 | 10.304314 | 12.781243 1
Octagon
Heptagon Eig. l.b. u.b. mult.
Eig. L.b. u.b. mult. || 0.452095 | 0.182855 | 0.774247 2
0.747352 | 0.446026 | 1.096876 2 1.171933 | 0.309482 | 2.034382 2
2.056766 | 0.963449 | 3.148214 2 2.772135 | 1.273803 | 4.268064 2
4.655979 | 3.078862 | 6.228621 2 12.049631 | 11.187182 | 12.912082 2
12.292485 | 10.719843 | 13.869602 2 13.037208 | 11.541279 | 14.535540 2
12.582047 | 11.490599 | 13.675364 2 3.999568 | 1.460555 | 6.536411 1
11.740713 | 9.203870 | 14.279726 1

TABLE 2. Numerical approximations of the 2n — 4 non-zero eigenvalues of the
Hessian matrix for n € {5,6,7,8} together with intervals given by the error
estimate in Theorem 5.10

Mesh size | deg. freedom
Pentagon 9.8e-4 ~ 2.6 million
Hexagon 4.2e-4 ~ 17 million
Heptagon 1.9e-4 ~ 97 million
Octagon 1.35e-4 | =~ 220 million
TABLE 3. Approximately optimal mesh sizes and number of degrees of freedom
for which currently known a priori estimates allow to certify the local minimality.

It is possible to compute the eigenvalues of the Hessian matrix for higher n, without guarantee
that the numerical eigenvalues are precise enough. Nevertheless, it is well established that a
priori estimates are rather pessimistic and the following results might precise enough. In Table
4 we present the non-zero eigenvalues of the Hessian matrix for h = 1073 for 9 < n < 15. These
eigenvalues are positive, suggesting that the regular polygon is still a local minimzier in these
cases.

6.2. General gradient descent simulations. The gradient of the first eigenvalue with respect
to the coordinates of the vertices is given in Theorem 2.2. Using these formulas is straightforward
to implement a gradient descent algorithm starting from random initial polygons.

Simulations were performed for the minimization of the first eigenvalue for n € [5,15] and in
every case the result of the optimization was a polygon very close to being regular. In order to
see how close to being regular is the polygon w,, given by the simulation the following information
is given in Table 5: the optimal numerical first eigenvalue, the difference between the maximal
and minimal edge lengths, the difference between the maximal and minimal angles (in radians),
the difference between the optimal numerical eigenvalue and the precise first eigenvalue of the
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n =12 | mult.
n =10 | mult. || n =11 | mult. 0.0952
n=9 | mult. || 0.1927 0.1334 0.2160
0.2888 2 0.4601 0.3096 0.5128
0.7145 1.1017 0.7386 0.9473
1.7104 1.9625 1.3501 1.4287
2.8667 2.4640 1.9129 1.6659
11.4506 10.8361 10.2373 9.6701
12.1695 11.9253 12.1968 12.0620
13.4392 12.7814 13.2741 12.6398
13.5487 13.4475 13.2059
13.5861
n =14 | mult. || n =15 | mult.
n =13 | mult. || 0.0521 0.0397
0.0697 0.1146 0.0864
0.1554 0.2694 0.2022
0.3669 0.4994 0.3744
0.6801 0.7918 0.5989
1.0598 1.0742 0.8406
1.3586 1.1995 1.0115
9.1413 8.6527 8.2033
12.2461 12.1611 12.0933
12.8768 12.4975 12.2933
13.0664 12.5693 12.9147
13.7288 13.4024 13.6292
13.7331 2 13.6320 2
TABLE 4. Numerically computed non-zero eigenvalues of the Hessian matrix for
larger 9 < n < 15 on meshes of size h = 1073,

\V)

\V)
\V)

DN NN DN DN

NN =N DN DN DN
NN DNDNDNDNDN

NN DN NN DNDDN

\)
\)

\)

DN DNNDNDDNDNDDNDN
DN DN RN DNDDNDDNDDN
DDNDNNDNDNDNDNDNNNDN

n J(wy) | diff. sides | diff. angles | J(wy,) — J(w})
5 | 18919104 | 1.3e-5 2.3e-5 3.4e-9
6 | 18.590116 | 5.1e-5 7.7e-5 3.2e-8
7 118.429994 | 8.4e-5 1.8.1e-4 1.1e-7
8 | 18.342161 | 9.2e-5 2.1e-4 1.6e-7
9 | 18.289808 | 3.8e-4 3.7e-4 2.6e-7
10 | 18.256613 | 3.1e-4 6.1e-4 5e-7
11| 18.234528 | 3.3e-4 4.1e-4 3.3e-7
12| 18.219257 | 3.3e-4 5e-4 2.9e-7
13 | 18.208358 | 6.5e-4 1.3e-3 4.8e-7
14 | 18.200368 | 7.5e-4 2.1e-3 6.6e-7
15 ] 18.194378 | 1.5e-3 3.1e-3 1.7e-6

TABLE 5. Results of the gradient descent optimization algorithm with random
initial polygons.

regular polygons w given on the following web page: https://www.hbelabs.com (based on the
article [39]). Repeating the simulation starting from random initial polygon always gives similar
results. The results shown in Table 5 indicate that the optimal numerical polygons w, found
by the numerical algorithm are close to being regular. Furthermore, the value of the objective
function is as close to the precise value given for the actual regular polygon w, as the precision
of the numerical computations allows. These computations further suggest that the regular
polygon is indeed the global minimizer for (2).
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7. REDUCTION OF THE PROOF OF THE CONJECTURE TO A FINITE NUMBER OF NUMERICAL
COMPUTATIONS

In this section we provide a strategy for proving the conjecture using a finite number of
computations for a given number of sides. We denote by P,, the closure of the class of simple
polygons with at most n edges in the topology associated to the Hausdorff distance between the
complements. A polygon belonging to P, may be degenerate in the sense that one vertex can
belong to a different edge. This degenerate situation may be of different types, in particular it
may lead to a disconnection, i.e. to a union of two polygons, situation which can not occur for
an optimal polygon.

Let us denote for every n > 3 the minimal value for the scale invariant formulation by

I = min{|P|\1(P) : P € P,}.

It is known that [} < I’ _; (see [31, Section 3.3]).

The proof strategy is summarized as follows. First, theoretical and numerical results in
Sections 3-6 are applied to identify a quantified local minimality neighborhood around the
regular n-gon. Secondly, the objective function for the remaining polygons should be investigated
using a finite number of numerical computations. Multiple aspects regarding this are established
in this section:

e Fixing a value for the area, there exists an upper bound for the diameter of an optimal
polygon. This result is proved in Theorem 7.1 and establishes that the study of the
space of admissible n-gons can be reduced to a compact region.

e In Theorem 7.3 it is proved that polygons with fixed area verifying the diameter bound
found in Theorem 7.1 have a lower bound for the shortest edge.

e Given P € P, a numerically certified computation of |P|A;(P) € [l,, — €, 1, + €] may lead
to the following outcomes:

(i) 1, — e > [*: then P is not optimal and an open neighborhood around P will be
identified where the inequality \i(P)|P| > [} still holds. See Lemma 7.4.
(ii) I, + € < I}: a counterexample is found, showing the conjecture is false.

(iii) For any precision €, using the available computing power, we have I} € [l,, —¢, [, +€].
In this case no conclusion can be drawn. Assuming that computations can be made
arbitrarily precise, such a situation indicates that a non-regular n-gon P exists such
that A\ (P)|P| = [}, indicating that the conjecture is not valid.

Therefore, the proposed strategy can always be implemented, arriving at one of the following
outcomes:

a) After a finite number of computations one proves the conjecture is true. The compact
space outside the local minimality neighborhood around the regular n-gon is finitely covered.

b) After a finite number of computations one identifies a polygon with a lower objective
function than the one for the regular polygon - in this case the conjecture is false.

c) There exists a non-regular n-gon having exactly the same eigenvalue as the regular one.
The proof strategy will converge to such a polygon without being able to reach it in a finite
number of steps.

In order to justify that for every n the conjecture can be reduced to a finite number of
numerical computations, we begin with some theoretical analysis. Assuming the area of a
polygon with n sides is fixed (say 7), we shall find a value Dpax such that if the diameter of
the polygon exceeds Dy ax then the polygon cannot be optimal for (2). As well, we shall find a
minimal value for the length of the edges ey, and for the inradius ry;, of an optimal polygon.
All these results (which depend on n), produce a compact set of polygons (seen as subset of
R27=4) outside which any polygon cannot be optimal for |P|\;(P).

Theorem 7.1. Let n > 3. There exists a value Dyayx > 0 such that if P € P, |P| = m and
diam(P) > Dmax then
AL (P) > 1.

In other words, when searching the minimizer in the class of n-gons of area 7, it is enough
to restrict to polygons with diameter less than or equal to Dy,.. This information is crucial
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in order to limit the number of numerical computation and leads to the possibility of a formal,
inductive, proof of the conjecture. The value of Dyax can be computed and depends on [},
and Al(Pn)

Proof: The proof is inspired by the surgery argument of [12], where the authors propose a
precise way to estimate the diameter of an optimal set in relationship with the first eigenvalue.
The key idea is that if the diameter of an optimal set is too large, one can cut the set with a
strip of positive width in order to produce a better one. The main difficulty in our case is that
cutting a polygon having n edges with a strip may produce a union of polygons, some of which
may potentially have more than n edges, making them non-admissible. In order to handle this
situation, further analysis is necessary.

Setting the constants. Denoting A = [} /7%, we consider the unconstrained problem
(69) min{\;(P) + A|P|: P € P,}.

Then, the solution of this problem is the same as the solution of the constrained problem with
area m set in (2). Let us denote by @, an optimal polygon, having area m. Let K > I /7 be
fixed. For instance, K may be obtained using a numerical approximation from above of A;(IP,).

Surgery. In order to get the bound on the diameter, we shall use the surgery results of [12]. A
series of technical constants are introduced in [12] with the following purpose: given a bounded
open set €2, look at the maximum of the torsion function in the intersection of 2 with some
strip. If this maximum is less than a technical constant, then after removing the strip (and so
disconnecting the set or not) one of the connected components has smaller first eigenvalue than
the original set, after rescaling. The technical procedure developed in [12] applies to any open
set, in particular to polygons. However, extra care is needed in our case because the procedure
may increase the number of the sides of the polygon. The technical constants from [12] are
denoted below ¢, Cy and rg. We refer to [12] for all details. In this paper we keep track of the
constants in order to leave the path open for effective future computations.

We set

1

27(8 4+ 121log 2)eﬁK2’
value which plays the crucial role in [12, Lemma 3.1]. We can use [12, Lemma 4.2] with the
constant ¢ from above, which (in the notations of [12, Lemma 4.2]) leads to suitable values
(ro, Cp). For instance, we can choose Cy(Cy + 1) < ¢ and 19 = C. Roughly speaking, if the
torsion function of a bounded open set {2 of measure 1 is below Cyr in some infinite strip S, of
width r < 79, then one of the connected components of Q\ S, has lower first eigenvalue than €2,
after rescaling.

C

Step 1. (Use of [12, Lemma 3.1]) In view of the choice of ¢, the polygon @, is a subsolution
for the torsion energy

P — E(P) + ¢|P]|,
in the class P,, i.e. for every P € P,, such that P C @Q,, we have
E(Qn) + C|Qn| < E(P) + C’P’,

where the torsion energy of P is defined by

1
E(P)= min / ]Vu\Qdm—/udx.
ueH{(P) 2 Jp P

Indeed, if for some P € P,,, P C @),, we would have the opposite inequality
E(P) 4 c|P| < E(Qn) + ¢|@nl,
then from [12, Lemma 3.1]) we would get
[P[AL(P) < |Qn[A1(@n),

in contradiction with the optimality of (),,.
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0. <i | {T;}

FIGURE 5. Intersecting (,, with a strip not containing a vertex gives a union of
trapezes 1.

Step 2. (Use of [12, Corollary 4.3]) Let w be the torsion function of @),. Assume a € R and
denote by
Sp(a) ={(z,y):r—a<z<r+a}

an open strip in R?. Assume that the interior of the strip intersects Q,, and does not contain
any vertex. In this case, the intersection of the strip with @, is a union of trapezoids {7}}cs
(see Figure 5). When removing any of these trapezoids, one splits the polygon @, in two (or
more, if a vertex is on the boundary of the strip) polygons.

Following [12, Corollary 4.3], using the constants (rg,Cp) defined above, we know that if
maxg, (q) W < C2 then

(70) E(Qn\ Sr(a)) +¢|Qn \ Sr(a)] < E(Qn) + c|Qul.
In fact, taking a closer look to the argument of [12, Corollary 4.3], leads as well to
(71) E(Qn\Tj) +c|lQu\T;| < E(Qn) + ¢|Qnl-

As a consequence of [12, Lemma 3.1] this implies

|Qn \Tj|)\1(Qn \Tj) < |Qn|A1(Qn) for every j € J.

This last inequality leads to a contradiction of the optimality of (), only if the open set @, \Tj
consists in a union of polygons, each one with at most n edges. In this case, it is enough to
pick the one with minimal first eigenvalue and contradict the optimality of @,. Of course, it
may happen that one of the connected components of @, \Tj is a polygon with more than n
edges, as new edges could be produced by the surgery procedure. We shall prove that if the
diameter is larger than some computable constant, then there exists some suitable strip S, (a)
and a suitable trapezoid T} such that each connected component of @, \ T, is a polygon with
at most n edges. This contradicts the optimality of Q.

Step 3. (Preparatory facts) We know from the Saint-Venant inequality [47] that

m
dr < —.
/7wa8

The following results is, for instance, contained in [12, Lemma 2.2]:

if w(zp) > n > 0, then /

wdx > ﬂ(52,
Bs(zo) 2

where 6 = 2,/7.
Consequently, if we consider a strip Sa,,(a) such that

max w > C2,
Sa2rg (a)
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then, recalling that Cy = ryg,

/ wdz > 2rCy,
Bac (z0)

where z is a maximum point of w in Sa,,(a). In particular

/ wdx > 27r061.
Sarg (a)

Let us introduce the natural number (|-] denotes the integer part)

3 1
‘= BrcalJ e Lﬁca*J !

Clearly, if the diameter of @), is larger than 8Cyk, then taking the z-axis along the diameter,
there will be at least one strip of width 4Cy where the mass of w is less than C’g.

We recall now the following inequality, for which we refer to [60]. Let € be a bounded,
open simply connected set in R2. Let wg be the torsion function in . We have wq(z) =
fQ Gq(z,y)dy, where Go(x,y) is the Green function for the Dirichlet-Laplace operator on €.
From the Cauchy-Schwarz inequality we have

1/2
un(@)l <1012 ( [ Gato.oPay)
In [60, Proof of Theorem 1.5, inequality (5.16)] it is shown that if mR% = || then

/ Gy (z,y)dy < M,
Q

™
where d(z) is the distance from x to 9€2. This leads to the estimate
4 81/2(1(:1:)1/2

3/4

We use this inequality for 2 = @y, so that |Q,| = 7, getting the bound wq, (x) < 2v/2d(z) /2.
We introduce now e*,d* such that

(73) 2v2(e*)2 < €3 and d* = =
e

(72) wa(2)] < |2

Lemma 7.2. The diameter of @y, can not be larger than 2d* + (k + n — 2)8Cj.

Proof. Assume for contradiction that there are two vertices ag, a,, such that the diameter of
@, is the segment [ag, a,,] and that its length is larger than 2d* + (k + n — 2)8Cp. Around the
midpoint of [apa,,] we build k£ + n — 2 adjacent strips of width 8Cj. Outside the strips there are
two sub-segments of [apa,,], each having length at least d* (see Figure 6). We remove at most
n — 2 strips having a vertex in their interior and among the remaining k strips there is one, say
Sacy, (a) such that
max w < Cg.
Sacy(a)

From the choice of the strip, the set S¢,(a) does not contain any vertex of the polygon @, so
that an edge either crosses the strip from one side to the other, or it stays on the same side. In
particular, this implies that @, N S¢,(a) is a union of open trapezoids {7}};. Moreover, we get
for each such trapezoid

Qu\ T M1 (Qn \ T;j) < |Qn|A1(@n)-
Assume we remove one trapezoid, say 7}, from @, N S¢,(a) and get two polygons P%j and
Pr}j, which together have n + 4 edges. There are two possibilities.

(1) Both polygons P%_ and P; have no more than n edges. This situation contradicts the
J J
optimality of Q.
(2) One of P:lpj and P}j has n + 1 edges and the other one has 3 edges.
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N e’ N e’
k +n — 2 strips k +mn — 2 strips

(a) (b) ()

FIGURE 6. (a) Continuous curve linking two triangles on opposite sides of the
strip. Moving the trapezoids in the proof of Lemma 7.2: the trapezoid meets a
neighbor of ag (b) or another vertex aj (c).

In the following, we suppose that the second situation above occurs for each trapezoid 77,
otherwise we contradict optimality. We claim that on one side of the strip there are only
triangles.

If there is only one trapezoid, there is nothing to prove. Assume for contradiction that there
are two trapezoids, which when removed generate triangles on both sides of the strip. From
simple connectedness, there is a continuous curve contained inside the polygon, joining the
interiors of the two triangles. See Figure 6 (a). This curve crosses the strip at least one more
time, implying the presence of at least another trapezoid, which cannot leave a triangle on either
side when removed without disconnecting the polygon. Therefore, removing this trapezoid, we
split the polygon in two polygons with less than n edges contradicting optimality.

In conclusion, removing any one of the trapezoids 7T} generates triangles, all situated on one
side of the strip. Assume this occurs on the left. Now, we choose the triangle containing the
vertex ag on the left, which is at distance at least d* from the strip and the trapezoid which
isolates it in a triangle. We continuously move the strip S¢,(a) to the right (and the trapezoid
with it) up to the moment when the strip touches a first vertex. This vertex can be a neighbor
of ag (Figure 6 (a)) or a different vertex aj (Figure 6 (c)). In any case, the trapezoid will split
the polygon in either two or three polygons and the number of edges for each polygon is at most
n.

Moreover, one polygon is the triangle with a vertex in ag. The area of this triangle together
with the trapezoid is at least d*e/2, where e is the length of the longest vertical edge of the
trapezoid, on the right side of the strip. This set is fully contained in the polygon, so has area
at most 7, meaning that § < e*. Using inequalities (72)-(73) we get that the maximum of wg,
on the trapezoid is below C’g . This contradicts the optimality of the polygon. O

Theorem 7.3. Assume P = [ag...a,_1] € Py, is such that |P| = 7, diam(P) < Dyax. There
exists 6o > 0 such that if |aga;| < § < oy then

(74) m\(P) > 15, — C62,
where C' depends only on n.

In other words, an optimal polygon of area 7 in P,, can not have an edge smaller than a
certain threshold. To observe this fact, it is enough to choose dy such that

1
(75) r - C8E > I

The following type of result has been proved by Davies in [20] and refined by Pang in [50]. We
give a short proof below, based on the comparison with the torsion function.

Lemma 7.4. Assume P = [ag...a,_1] € Py, is such that |P| = 7, diam(P) < Dyax. Let Q € Py,
Q = [bo...by_1] such that for every i =0,...,n—1, |a;b;| <J. Then

IM(Q) — M (P)| < 4v2me = (max{\ (P), \(Q) )2\ (P N Q)d2.
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Proof. Assume in a first step that @ C P and denote wg,wp the associated torsion functions.
The inequality is a consequence of [12, Inequality (2.6)] which gives

0 < M(Q) — M(P) < 23 M\ (P2 (Q) /P (wp — wo)da

and of the estimate

/ (wp —wg)dx < 22752
P

which is a consequence of (72) applied to wp and of the harmonicity of wp —wg on Q.
In general, if Q € P, we use the previous argument and compare both A;(P), A1(Q) with
AM(PNQ). O

Remark 7.5. The statement of Lemma 7.4 can be easily extended to the case where |P| has
lower and upper bounds of the form 0 < m < |P| < M. The corresponding constants can be
explicited in terms of m and M.

Proof. (of Theorem 7.3) Consider P = [ag...ap_1] € Py, is such that |P| = 7, diam(P) < Dpax
and |apay| < 0. If 7A1(P) > ¥ _, inequality (74) is proved. Assume that 7\ (P) < [>_;. We
shall build a polygon @ € P,_1 having almost the same eigenvalue and area.

Assume at least one of the angles ap, a; is convex, for example ag. Then we move the point ag
towards a; continuously, denoting it af) = (1 —t)ag +ta;. If the segment [a,,_1af)] does not meet
any other vertex of the polygon for any t € (0, 1), then we denote @ the new polygon obtained

for t = 1. Clearly, Q € P,—1 and Lemma 7.4 can be applied to get
M (Q) = M(P) < 4v/2reie A (Q)03.

From Makai’s inequality [46] we know that A;(P) > ﬁ, where pp is the inradius. Since
P
T\ (P) <[y, we get
T 52
< ph
4lx
On the other hand, pg > pp — 9, hence
1 1
M(Q) £ 5 M(B) < T A1(By).
2 (/@) — 20
Finally we get
* l*
n—1 n—1
— - (P) < —AM(P) <A — (P
W_Dmax(s 1( )— ‘Q’ 1( )— I(Q) 1( )
3
1 1 1
< 4V 2nein A1(B1) | o2,

N

(/45 ))* — 20

and we conclude this case.

If for some t € (0,1) the edge [a,_1a)] meets a vertex. Then the inequality above is still true,
and the polygon P! is split in two polygons, each one with at most n — 1 edges. See Figure 7
(left). We choose the one which has the lowest eigenvalue and repeat the previous argument.

If both angles ay, aj are concave, we consider the same type of movement af) = (1 —t)ag+ta;.
If the segment [a,—1a}] does not meet any other vertex of the polygon for any ¢ € (0, 1), then we
denote () the new polygon obtained for ¢ = 1 and follow the previous argument. The difference
occurs if [a,_1a}] meets a vertex, say aj. In this case the angle aj, is convex. However, there
is no splitting in this case. We continue the movement, moving at the same time a; parallel
to [ap—1a9], denoted aj See Figure 7 (right). If the movement finishes at ¢ = 1, we apply
previous argument. If the movement blocks because the segments [a;_iaj], [a},a,41] touch
another vertex then the polygon splits, since we move a convex angle towards the interior of the
polygon, and we stop following the same argument as in the previous case. If it blocks because
[a,—1a}] meets another vertex, we treat it the same way as aj and continue the movement. The
blocking can occur at most n — 3 times. O
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a,_1 ag A ag

ak

ag azﬁ) ap
FI1GURE 7. Modification of the polygon for removing a small edge: the case of a
convex angle ag (left), the case of two concave angles agp,aj (right)

Below, based on previous results obtained in this section, we present a strategy which may
lead to the proof of the conjecture after a finite number of numerical computations.

Strategy for the proof of the conjecture. For every n > 5, one of the following issues
occurs: either after a finite number of computations the conjecture can be proved or disproved,
or the proposed algorithm does not converge in a finite number of steps due to the presence of
a non-regular polygon having the same objective function.

Theorem 7.6. For n > 5 we have the following alternatives:

(a) The validity of the conjecture can be established using a finite number of certified numerical
computations.

(b) There exists a non-reqular n-gon Q, € P, for which |Qu|A\1(Qyn) = 1.

Proof: Assume (b) does not hold. Then an optimal n-gon @,, (which exists) is either the
regular n-gon, or a general n-gon verifying |Q, |\ (@) < I%.

We know the inequality is true for n = 4. Assume now that the inequality is true for polygons
having up to n — 1 edges. Then recalling the notation P, = [aj...a},_;] for the regular polygon
inscribed in the unit circle with one vertex at aj = (1,0) we have I} _; = A\ (Pyp—1)|Pp_1].
We have a certified estimate from above and from below for this value. In order to prove the
conjecture for n edges, we shall analyze problem (69) in the following steps.

Step 1. Compute a certified approximation of the first eigenpair (A1, u;) on P,. The certified
approximation of the eigenfunction u; holds in Hg (P,,).

Step 2. For the regular polygon PP, inscribed in the unit circle, having the vertex ag = (1,0) we
compute the spectrum of the shape Hessian of A1 (P,,)|P,| and we certify the positivity for 2n —4
of its eigenvalues using results from Sections 4, 5.3. This concludes that the regular polygon is
a local minimum.

From now on, we identify polygons P = [aga; ...a, 1], with a; = (2;,;), by a point in R?7~%
having coordinates (z2,y2, ..., Tn—1,Yn—1). We consider the first two points fixed: ap = ajj,a; =
aj. Without restricting generality, we can assume that the edge [apa;] is the longest edge in the
polygon P. Let us denote P the family of such polygons of P,,, identified as a compact subset
in R?7—4,

Step 3. Compute, using Theorem 3.18, a neigbourhood of P,, in R?"~*, where

P (P) = [PalAi(P).
More precisely, for a value 9 > 0 we have |P|A\1(P) > |Py|A1(Py) for every P = [ag...a,_1],
with ag = afj, a; = aj, such that for all i = 2,...,n —1, |a;af| < g¢. Of course, in order to obtain
€0, the availability of the constants C' and ¢ in Theorem 3.18 is assumed. Let us denote L,, this
neighbourhood, which is a closed set.
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Step 4. Using Theorem 7.1 find an estimate for the minimal measure of an optimal polygon in
the class P. Here we use the fact that the maximal length of an edge is precisely |apa;| = |ajaj]|.
Then, we get

P

168l < Do
Using Makai’s inequality we get a lower bound for the inradius of an optimal n-gon (called pmin
in the sequel), since

1
—|P| < |P|\(P).
iy P < PN P)
In particular, if 4p% < |P|/I; then P cannot be optimal. Using Theorem 7.3, we obtain a lower
bound on the shortest edge, emin.

All these three geometric constraints: measure, inradius and shortest edge generate a smaller
compact set P’, defined by purely geometric constraints, such that P’ C P in R?"~4. In partic-
ular, the lower bound on the inradii of such polygons, makes that the inequality in Lemma 7.4
becomes uniform. Below we work with ¢ < 2%z < 1. Indeed, for every P,Q in the class P’ the
value A\i(B,,,,—s) is an upper bound for A\i(P), \(Q), \i(P N Q): for P,Q € P’, there exists
a universal constant K (with explicit value, issued from Lemma 7.4) such that if the distance
between the respective vertices is at most § then |A;(P) — A1 (Q)| < K62,

The variation of the area ||P| — |Q|| is also controlled by a term of the form K’64, with
K’ = nDyax + nm. There exist universal upper bounds for the first eigenvalue and for the area
in P’. Therefore, there exists an explicit constant K" such that if the distance between the
respective vertices of P, € P’ is at most ¢ then

(76) M (P)P] = M(@)IQIl < [PI(A(P) = M(Q) + M(Q)IIP| - Q| < K62

Step 5. Consider ¢; > 0 and § > 0 such that K"(26)% < e1/4, with K” from (76). Moreover,
suppose that 20 < §p with dy from (75). We cover the bounded set P’ \ £, (admissible n-gons

2n—4
which are not in the local minimality neighborhood) with at most ca;,,—4 (%) balls (Bj)je.s

of radius §, where cg,_4 is a dimensional constant. Several estimates of co,_4 are available, a

/o1 2n—4
non optimal one being (% .

Choose one of the balls B; enumerated above. Take an admissible polygon P € P'\ L,
having coordinates (2, %2, ..., Zn—1,Yn—1) in the ball B;. If such a polygon does not exist, there
is nothing to be done and we move to the next ball. We evaluate | P|A;(P) numerically, obtaining
a certified estimate interval of length at most €1 /4. If this certified computation gives

(77) PIN(P) > 1+
then P is not optimal and, in view of the choice of the constant §, no other optimal polygon exists
having coordinates in the same ball. If (77) holds for every ball B; containing an admissible
polygon then the conjecture is solved. If for some polygon the inequality fails, we divide €1 by
2 and restart the computation.

The procedure can have the following outcomes:

e For some €1 > 0 small enough inequality (77) holds for all the balls covering P\ £,,. In
this case, the conjecture is proved in a finite number of steps.

e The previous outcome never occurs. Therefore, there exists a sequence of n-gons @
outside £,, such that liminfy_,o |Qk|A1(Qr) < I%. This sequence will have a converging
subsequence having a limit Q € P,,. Since we supposed that option (b) does not hold, the
polygon @ will be a counterexample for the conjecture, i.e. |Q|A\1(Q) < I%. Therefore,
after a finite number of computations it will be possible to check that for a given k we
have |Qk|A1(Qr) < I, disproving the conjecture.

O
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Remark 7.7. From practical point of view, this procedure is rather inefficient and abstract,
but it shows that the proof strategy can succeed provided enough computing power is available.
The strategy above could definitely be improved by taking advantage of particular features of
the problem: monotonicity of eigenvalues for inclusions, monotonicity of the area for inclusions,
easy computation of the first order shape derivatives, lower bounds by geometric features like
the inradius or the distance function to boundary, etc. It is expected that the confidence
neighborhood is larger for polygons which are far away from the regular one.

Remark 7.8 (Polygonal Saint-Venant inequality). Another variational energy of interest is
torsional rigidity. It is denoted by

. —Aw = 1 in €,
(78) T(Q) —/dex, where w verifies { w = 0 ond,
and the problem to consider
79 T(P).
() el TP

The Saint-Venant inequality states that the maximum of the torsional rigidity among all sets
of area 7 is achieved on the disc. Pélya and Szegd have also conjectured in 1951 (see [51, page
158]) the following.

Conjecture. The unique solution to problem (79) is the regular polygon with n sides and area
.

All the results we have obtained for the eigenvalue transfer similarly to the conjecture above.
However, this conjecture is computationally less challenging than the eigenvalue. In particular,
there is no additional normalization and orthogonality constraints for w and for the associated
material derivatives. The proof of the local maximality goes through the computation of the
Hessian matrix of (78) on the regular polygon. The expression of its coefficients was obtained
by Laurain in [43]. Recalling that the functions ¢; are constructed in (10), one introduces the
functions U; € H}(P,R?), i =0,..,n—1

(80) / DU, Vv = / —(Vy; @ Vw)Vu +2(Vw © Vv)Vy; —i—/ vV, for every v € HY(P).
P P P

The following result is proved by Laurain in [43, Proposition 14]: the Hessian matrix T € R27x2"
of the torsional rigidity (78) with respect to the coordinates of the n-gon is given by the following
n X n block matrix

T = (Tij)o<ij<n—1
where the 2 x 2 blocks are given by

Tij = /PDUiDUJT + Vi ® SPVp; + ST Vs ® Ve,

—i—/P (;\VwIQ — w) (2Vpi © V;)
+ /P —(Vgi - Vw)(Ve; @ Vw) — (Ve; - Vu)(Vw ® V)

(81) - [(Vei-Vep(Twe vu)
P
where U;,i =0, ...,n — 1 are solutions of (80) and SP = (—1/2|Vw|? + w)Id +Vw ® Vw.
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APPENDIX A. PROOF OF PROPOSITION 4.10

Recall that functions ¢; are associated to a symmetric triangulation 7, 0 < 5 <n — 1. The

gradients of ¢; are expressed in (44).
First diagonal term from the real part:

n—1
a(Ug, Z cos(jkO)U3 o RjTe) =
5=0
- / S cos(jk)(Vi; - VUR)(cos(i8)0uur + sin(j6)Oyus)
+ / Zcos(jk:@)(chj - Vuy)(cos(j0)0, U + sin(56)9,Up)
= / 2(2 cos(jk0) cos(j0)0xp)0pur 0: U,
Qi
+ / D (2cos(jk0) sin(j0)0y ;) yu1 9, Up
Q4
n—1
+ / (cos(jk0) cos(j0)0yp; + cos(jkb) sin(j0)dup;)0yu1d:Uy
Q
7=0
n—1
+ / (cos(jk0) cos(j0)0yp; + cos(jkb) sin(j0)dpp;)Opu1d, Uy
Q
7=0
1
== Z 2(cos jkO cos jOsin(j + 1)0 — cos(j + 1)k6 cos(j + 1)0sin j6) / Dpu1 0, U
7=0
n—1
sm@ Jz(:) 2(cos(j + 1)kOsin(j + 1)0 cos jO — cos jkO sin j0 cos(j + 1)0 / dyu10,U}
-1
sm Z cos(j + 1)k — cos jkO) cos(2j + 1) 9/ (0:u10,U3 + 9yu10,UY)
_ 2 n_ll( in(2] + 1)0(cos jk0 — cos(j + 1)k0)
iy 2 5 (sin(2j cos j cos(j
+ sin f(cos jkf + cos(j + 1)k0)) / Dpu1 0, U
T;
2 a1
+ i d 2 5(5111(2] + 1)8(cos(j + 1)kf — cos jk0)

+ sin 6(cos jkO + cos(j + 1)k6)) / dyu10, U3
Tj

— cos jkb) cos(2j + 1)0 / (0xu10,Ug + Oyu10,U3)
0 T
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n—1
Z cos jkO + cos(j + 1)k0) / Vuy - VUO
j=0

= cos(j + 1)kO — cosjk0 [ [—sin(2j +1)0 cos(2j + 1)0
+>° ;

sin 6 cos(2j+1)8 sin(2j + 1)9> Vi - VU

=0
Second diagonal term from the real part:
n—1
a(U3, Z cos(jkO)UZ o R}:g) =
=0
n—1
= / Z cos(jk0)(V; - VUZ)(— sin(j60)dpur + cos(jf)dyus)
Q%
7=0
n—1
+ / Z cos(jk0)(V; - Vur)(—sin(j0)9,UZ + cos(j0)0,US)
Q“
7=0

Z/Z(—Qcos(jk@)Siﬂ(j@)@xgoj)@wul@ng
Qo

+/ Z(Qcos(jk@)Cos(j9)8y<pj)8yu18yU02
Qi

i
L

(— cos(jk0) sin(j0)0yp; + cos(jk0) cos(j0)Drp;)Oyu10,Us

+
S~

Il
- o

S .

+
S~

(— cos(jk0) sin(j0)9yp; + cos(jk0) cos(560)Drp;)0pur 8, UL

<
Il
o

|
—

= L 2(cos(j + 1)k6 — cos jk6) sin(j + 1)6 sinjﬁ/ Dpu1 0,UZ
T;

sin

S
o

J
n—1

2(cos(j + 1)k6 — cos jkb) cos j0 cos(j + 1)9/ Oyu10,Us
T;

7 (cos(j + 1)kO — cos jk0) sin(2j + 1)0/ (0,u10, UG + 9yu10,U7)
T;

_ 11
= — (cos(j + 1)k6 — cosjk@)cosg C028<2] + )¢ / Dpu1 0, US

_|_

(cos(j + 1)k6 — cosjk:&)cose +cos(2j + 1)6 / Dyud,U?
T.

sin 6 4 2

j=

n—1

Z cos(j + 1)k — cos jkO) sin(25 + 1) 0/ (0,u10,U3 + 0yud,Ug)

[e=]

 sind

n—1
= C?SH (cos(j + 1)k0 — cos jkO) / Vuy - VUE
sin 6 4 ‘ T

-1 cos(j + 1)k@ — cos jk0 / (— cos(2j +1)§ —sin(25 +1)6
T

o2
sin ¢ —sin(25+1)0  cos(2j +1)0 > Vur - VUs



ON THE POLYGONAL FABER-KRAHN INEQUALITY

Term on position (1,2) from the imaginary part:

n—1
a(Ug, Z sin(jk0)UZ o RjT(,) =
=0
_ / S sin(jk0) (Vs - VUD)(— sin(0) Dyt + cos(j0)0,m)
Q“
+ / Z sin(jk0)(Ve; - Vur)(— sin(j6)9,Uj + cos(j6)0,U7)
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T;

sin 0 4
]:
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22 sin(j + 1)k6 — sin jk6) cos j6 cos(j + 1) 0/ Oyu10y Us
=0

sm 0
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1 o .., cosf —cos(2j+1)0 1
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1 . ... .cosf+cos(25+1)0 1
+sin9 z:: 2(sin(j + 1)k6 — sin jk0) 5 /Tj Oyu10yU
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T

sin 0 —sin(25 4+ 1)8  cos(25 +1)6

<
I
o

) Vuy - VUg.

67



68 BENIAMIN BOGOSEL, DORIN BUCUR

Term on position (2,1) form imaginary part:

n—1
a(Ug, Y sin(jk0)U; o Ry) =
=0
n—1
_ / S sin(j40)(Vep; - VUZ)(cos(j0) Dy + sin(j0),u1)
Q%
7=0
n—1
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Q4
7=0
n—1
- / S (25in(jk0) cos(j0)2up;)Outr D, U2
Q55
n—1
+ / > " (2sin(jk0) sin(j0)0y ;)1 0, UG
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Jj=0 j
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sin(j + 1)k — sin jk0 / <_ sin(2j + 1)0 cos(2j +1)0
T

2
sin @ cos(2j+1)8  sin(2j + 1)0> Vi - VU
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