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Abstract. We propose a new definition of surface tension and check it in a spin model
of the Pirogov-Sinai class without symmetry. We study the model at low temperatures
on the phase transitions line and prove: (i) existence of the surface tension in the ther-
modynamic limit, for any orientation of the surface and in all dimensions d ≥ 2; (ii) the
Wulff shape constructed with such a surface tension coincides with the equilibrium shape
of the cluster which appears when fixing the total spin magnetization (Wulff problem).

1. Introduction

During the past decade, progress was made in the understanding of the phase segrega-
tion starting from microscopic models. To summarize, two approaches prevail to derive
the Wulff construction for Ising type models. The first one enables to describe the phe-
nomenon of phase coexistence in two dimensions with an extremely high accuracy, in
particular it provides a sharp control of the phase boundaries wrt the Hausdorff distance
(see eg. [DKS, I1, I2, ISc, Pf, PV2]). The second strategy is much less precise and
gives only L

1 estimates; however it can be also implemented in higher dimensions (see eg.
[ABCP, BCP, BBBP, BBP, Ce, B1, CePi1, BIV1, CePi2]).

Phase segregation occurs in a wide range of physical systems, but the two strategies
mentioned above have been mainly implemented in models with symmetry among phases
and in some cases, the specific microscopic structure of the interactions has been at the
heart of the proofs (duality, FK representation, ferromagnetic inequalities ...).

The goal of this paper is to extend the L
1-approach to a class of systems without

symmetry, which can be studied by the Pirogov-Sinai Theory. The L
1-theory is at first

sight not model dependent, it is based on a coarse grained description of the system and
provides a general framework to relate the surface tension to L

1-estimates. Nevertheless,
its concrete implementation has been restricted to a specific class of models: Bernoulli
percolation [Ce], Ising model [B1, BIV1, CePi1] and Potts model [CePi2]. These three
instances have a common structure which arises in the FK representation. The coarse
graining developed by Pisztora [Pi] played a key role in the derivation of the L

1-approach
for the three models above. This hinders the generalization to a broader class of models,
since parts of the proof relied on Pisztora’s coarse graining and thus on the FK represen-
tation. Notice also that the proofs were based on the symmetry of the model and on the
ferromagnetic inequalities. In particular the analysis of the surface tension was completely
model dependent.
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There are some works which deal with surface tension in non symmetric models [BKL,
HKZ1, HKZ2, MMRS], but a general theory of surface tension (including the thermo-
dynamic limit for all slopes) seems still to be missing. In this paper we propose a new
definition of surface tension. The advantage is that its existence in the thermodynamic
limit for arbitrary slopes of the surface and in all dimensions d > 2, does not rely on
the symmetry of the pure phases nor on ferromagnetic inequalities, at least when the
Pirogov-Sinai theory can be applied. The validity of the definition is then confirmed by
the proof that the Wulff construction using this surface tension actually determines the
equilibrium shape of a droplet in the system. The surface tension is characterized by two
specific features, a cutoff on the interface fluctuations and the notion of perfect walls. The
precise definition and heuristics are postponed to Section 3. The thermodynamic limit
of the surface tension is derived by a recursive procedure. The rest of the L

1–approach
(including the coarse graining) is presented in Section 6 following the usual scheme.

In the present paper, we focus on a particular model in order to stress the main ideas in
the most simple context. We actually believe that the proof holds for a general class of two
phase models in the Pirogov-Sinai Theory (see the last paragraph of subsection 2.1). The
liquid/vapour phase coexistence is also the subject of current investigations and it seems
possible to generalize our strategy for particles in the continuum with Kac potentials as
considered by Lebowitz, Mazel, Presutti [LMP].

The main ideas in this work have been developed in collaboration with Dima Ioffe.

2. Model and main theorem

2.1. The model. We consider a lattice model on Z
d, d > 2, which is made of interacting

spins σx taking values {−1, 1}. The interaction depends on a 2d–body potential defined
so that its ground states are the configurations with all spins equal to +1 and all spins
equal to −1. However the interaction is not invariant under spin flip and the analysis of
the Gibbs measures at positive temperatures relies on the Pirogov-Sinai theory and phase
coexistence occurs at non zero values of the magnetic field.

We call cell and denote it by c a cube in Z
d of side 2 (meaning that it contains 2d lattice

sites); denoting by σc the restriction of σ to c, we define the cell potential V (σc) as equal
to 0 if σc ≡ 1 and σc ≡ −1, otherwise V (σc) is equal to the number of +1 spins present in
σc. The hamiltonian in the finite set Λ with b.c. σΛc is then

HσΛc

h (σΛ) =
∑

c∩Λ6=∅

V (σc) −
∑

x∈Λ

hσx .

If σΛc is the restriction to Λc of a configuration σ̄ we will also write H σ̄
h (σΛ).

The Gibbs measure associated to the spin system with boundary conditions σ̄ is

µσ̄
β,h,Λ(σΛ) =

1

Z σ̄
β,h,Λ

exp
(
−βH σ̄

h (σΛ)
)
,

where β is the inverse of the temperature and Z σ̄
β,h,Λ is the partition function. If σ̄ is

uniformly equal to 1 (resp −1), the Gibbs measure will be denoted by µ+
β,h,Λ (resp µ−β,h,Λ).

Classical Pirogov-Sinai theory ensures that for any β large enough, there exists a value
of the magnetic field h(β) such that a first order phase transition is located on the curve
(β, h(β)). In particular on the phase coexistence curve, one can define (see Theorem 4.2
below) two distinct Gibbs measures µ+

β,h(β) and µ−β,h(β) which are measures on the space
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{±1}Zd
. They are obtained by taking the thermodynamic limit of µ+

β,h(β),Λ
and µ−

β,h(β),Λ
.

Each of these measures represents a pure state. The averaged magnetization in each phase
is denoted by

m+
β = µ+

β,h(β)(σ0) and m−
β = µ−β,h(β)(σ0) . (2.1)

Observe that if we replace cells by bonds we recover (modulo an additive constant) the
energy of the nearest neighbor Ising model. Our system is in our intentions the simplest
modification of the nearest neighbor Ising model where the spin flip symmetry is broken
but the ground states are kept unchanged. This choice has been to give up any attempt
of generality and instead to focus on a particular model, where the main ideas are not
obscured by too many technicalities. Nevertheless, we believe our analysis extends to finite
range, many body hamiltonians of the form

∑

X⊂Λ

VX(σX)

provided they are into the Pirogov-Sinai class and under the assumptions that the po-
tentials VX are symmetric and translational invariant, with ground states the constant
configurations. The symmetry assumption means

for all X, VRX

(
(Rσ)RX

)
= VX(σX) , (2.2)

where R denotes the symmetry wrt the origin and (Rσ)j = σ(R)−1(j). We will pursue the
discussion on possible extensions and open questions in Subsection 3.4.

2.2. Phase coexistence. The phenomenon of phase segregation will be described in
the framework of the L

1-approach. Let us first recall the functional setting. On the

macroscopic level, the system is confined in the torus T̂ = [0, 1]d of R
d and a macroscopic

configuration where the pure phases coexist is described by a function v taking values
{m−

β ,m
+
β }. The function v should be interpreted as a signed indicator representing the

local order parameter : if vr = m+
β for some r ∈ T̂, then the system should be locally at r

in equilibrium in the + phase.
To define the macroscopic interfaces, i.e. the boundary of the set {v = m−

β }, a conve-

nient functional setting is the space BV(T̂, {m−
β ,m

+
β }) of functions of bounded variation

with values m±
β in T̂ (see [EG] for a review). For any v ∈ BV(T̂, {m−

β ,m
+
β }), there exists

a generalized notion of the boundary of the set {v = m−
β } called reduced boundary and

denoted by ∂∗v. If {v = m−
β } is a regular set, then ∂∗v coincides with the usual boundary

∂v.
The interfacial energy associated to a domain is obtained by integrating the surface

tension along the boundary of the domain. The surface tension is a function τβ : S
(d−1) →

R
+ on the set of unit vectors S

(d−1), which in our model has the expression specified in

Section 3. The Wulff functional Wβ is defined in L1(T̂) as follows

Wβ(v) =

{ ∫
∂∗v τβ( ~nx) dHx, if v ∈ BV(T̂, {m−

β ,m
+
β }),

∞ , otherwise.
(2.3)
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To any measurable subset A of T̂, we associate the function 1IA = m+
β 1Ac + m−

β 1A and

simply write Wβ(A) = Wβ(1IA).

Fix an interval [m1,m2] included in (m−
β ,m

+
β ). The equilibrium crystal shapes are the

solutions of the Wulff variational problem, i.e. they are the minimizers of the functional
Wβ under a volume constraint

min

{
Wβ(v)

∣∣∣ v ∈ BV(T̂, {m−
β ,m

+
β }), m1 6

∫

bT

vx dx 6 m2

}
. (2.4)

Let D(m1,m2) be the set of minimizers of (2.4).

2.3. Local magnetization. The correspondence between the microscopic quantities and
the functional setting described above can be obtained only after some averaging proce-
dure, as the one we are going to describe. We first need a few extra notations. Let B (K),
K = 2k, k ∈ N, be the partition of Z

d into cubes BK : the seed of the partition is

BK(0) =
{
x ∈ Z

d : 0 6 xi < K, i = 1, .., d
}

and the other cubes of B(K) are obtained by translations by integer multiples of K in all co-
ordinate directions. The sequence B(K), k ∈ N, is then a compatible sequence of partitions
of R

d, namely each cube BN ∈ B(N) is union of cubes BK in B(K), if K = 2k 6 N = 2n.

Given K = 2k, we denote by BK(x) the box in B(K) which contains the point x ∈ Z
d.

The local averaged magnetization is defined by

MK(x) =
1

|BK(x)|
∑

y∈BK(x)

σy . (2.5)

By abuse of notation, MK(·) can be viewed also as a piecewise constant function on R
d.

For simplicity the microscopic region Λ is chosen as BN (0) and, imposing periodic b.c.

it becomes the torus TN . We call ψN the map from TN onto T̂, obtained by shrinking by
a factor 1/N . We then define the local magnetization

MN,K(r) = MK

(
ψ−1

N (r)
)
, r ∈ T̂ (2.6)

which is a function on T̂ piecewise constant on the boxes ψN (BK), BK ⊂ TN . The local
order parameter MN,K characterizes the local equilibrium. The total magnetization in
TN is simply denoted by MN .

We can now state a result on phase coexistence.

Theorem 2.1. There exists β0 > 0 such that for any β > β0 and [m1,m2] ⊂ (m−
β ,m

+
β )

(with m1 < m2), the following holds: for every δ > 0 there is a scale K0 = K0(β, δ) such
that for any K > K0

lim
N→∞

µβ,h(β),N

(
inf

v∈D(m1 ,m2)
‖MN,K − v‖1 6 δ

∣∣∣ m1 6MN 6 m2

)
= 1 ,

where D(m1,m2) denotes the set of the equilibrium crystal shapes (2.4) (where the surface
tension is the one defined in Section 3) and µβ,h(β),N is the Gibbs measure on TN with
periodic boundary conditions.
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3. Surface tension

For any given unit vector ~n = (n1, . . . , nd), we are going to define the surface tension
τβ(~n) in the direction orthogonal to ~n. Contrary to the Ising model, the lack of symmetry
between the two pure phases requires a more complex definition of surface tension which
relies on two new features : a cutoff of the interface fluctuations and the introduction of
perfect walls.

3.1. Interface fluctuations cutoff. We associate to any unit vector ~n = (n1, . . . , nd) a
coordinate direction j ∈ {1, .., d} in such a way that ni 6 nj for all i while ni < nj, for
any i > j. For notational simplicity suppose j = d, the other cases are treated similarly.
We set

Λ`,m(~n) =
{
x ∈ Z

d, ∀i < d, −` 6 xi 6 `; −m 6 (x · ~n) 6 m
}
. (3.1)

As ~n is fixed throughout this section, we will drop it from the notation.
The surface tension τβ(~n) will be the thermodynamic limit of ratios of partition functions

defined on subsets of the slab ΛL, 11ε
10

L. The limit will be taken for appropriate sequences

of the parameters (L, ε), in particular we require L and (ε/10)L to be in {2n, n ∈ N}. We
will first introduce the partition function with mixed boundary conditions.

We want to impose + and − boundary conditions on top and bottom of our domains; it
will be convenient to leave some freedom on their exact location and with this in mind we
introduce the notion of barriers. A barrier in a slab Λ`,m is a connected set of cells in Λ`,m

which connects the faces of Λ`,m parallel to ~ed and it is such that its complement in Λ`,m

is made of two distinct components which are not ?-connected. Let then C+ and C− be
two barriers in ΛL, ε

10
L + εL~ed and ΛL, ε

10
L − εL~ed. The subset of ΛL, 11ε

10
L lying between C+

and C− is denoted by Λ(C+, C−). The mixed boundary conditions σ̄± outside Λ(C+, C−)
are defined as follows

∀x 6∈ Λ(C+, C−), σ̄±x =

{
+1, if (x · ~n) > 0 ,

−1, if (x · ~n) < 0 .

We denote by S+ (resp S−) the set of spin configurations for which there is a barrier
included in ΛL, ε

10
L + εL

2 ~ed (resp ΛL, ε
10

L − εL
2 ~ed) where all spins are equal to 1 (resp −1).

Finally, we introduce the following constrained partition function on Λ(C+, C−) with mixed
boundary conditions (see figure 1)

ZC+,C−

L,ε (S+,S−) =
∑

σ∈{±1}Λ(C+ ,C−)

1{σ∈S+∩S−} exp
(
−βH σ̄±

h (σ)
)
. (3.2)

The barriers S+,S− act as a cutoff of the interface fluctuations: they decouple the interface
from the boundary conditions outside Λ(C+, C−). In the following, we will explain the role
of this screening.

3.2. Perfect walls. A perfect wall is such that its contribution to the finite volume cor-
rections to the pressure is infinitesimal w.r.t. the area of its surface, best examples are
walls defined by periodic boundary conditions. Under suitable assumptions on the inter-
action it is in fact well known that with periodic boundary conditions the corrections to
the pressure decay exponentially with the size of the box. Periodic boundary conditions
are however not useful in our context, because we want to impose one of the two phases on
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some of the walls; but, as we are going to see, it is possible to define some sort of periodic
conditions on single walls of the container.

We start by defining a symmetric partition of Z
d by the hyperplane Σ orthogonal to ~n

and containing 0. Let us first suppose that the orientation ~n is such that Σ ∩ Z
d = {0}.

We then set

Z
d
+ =

{
x ∈ Z

d
∣∣∣ xd > −

d−1∑

i=1

ni

nd
xi

}
\ {0}, Z

d
− = Z

d \ (Zd
+ ∪ {0}) .

Then

Z
d = Z

d
+ ∪ Z

d
− ∪ {0}, Z

d
− = R(Zd

+) (3.3)

where R is the symmetry wrt 0.
If there are sites in Z

d ∩ Σ besides 0, we split them between Z
d
+ and Z

d
− in such a

way that (3.3) is preserved. Notice first that if x ∈ Σ ∩ Z
d, also Rx ∈ Σ ∩ Z

d. Then if
x = (x1, .., xd) 6= 0, we call i the first integer so that xi 6= 0 (i.e. x1 = .. = xi−1 = 0) and
we put x ∈ Z

d
+ if xi > 0 and x ∈ Z

d
− otherwise. Thus

Z
d
+ =

d⋃

k=1

{


x ∈ Z

d
∣∣∣∀i < k, xi = 0, xk > 0, xd > −

d−1∑

j=1

nj

nd
xj



 (3.4)

∪



x ∈ Z

d
∣∣∣∀i < k, xi = 0, xk < 0, xd > −

d−1∑

j=1

nj

nd
xj




}
,

A drawback of the definition is that for ~n oriented along one of the axis of coordinates
the bottom of Z

d
+ is not flat. This could be avoided at the price of considering a more

complicated mapping than the simple symmetry wrt 0.

We now proceed in defining the reflected hamiltonian in Z
d. The idea is to use R in

order to glue together different regions touching the surface Σ so that if, for instance,
x ∈ Z

d
+ interacts across Σ with y ∈ Z

d
− then x will now interact with R(y) ∈ Z

d
+. As the

energy is defined in terms of cells, this can be easily achieved by introducing a new set of
cells {c}R.

Cells which are entirely contained either in Z
d
+, or in Z

d
− or in B = {−1, 0, 1}d are

unchanged. Instead any cell c containing sites both in Z
d
+ and in Z

d
− is replaced by

c →
{

c
+ = (c \ Z

d
−) ∪R(c ∩ Z

d
−)

c
− = (c \ Z

d
+) ∪R(c ∩ Z

d
+)

(3.5)

Notice that both cells c and R(c) generate the same pair c
±, so that the “total number”

of old and new cells is the same.
Extending the definition of V (σc) to the new set of cells, the reflected Hamiltonian is

then

HR,σΛc

h,Λ (σ) =
∑

c∈{c}R

c∩Λ6=∅

V (σc) − h
∑

x∈Λ

σx (3.6)

We will always consider regions which do not contain B, so that the spins in B will act as
boundary conditions: thus the structure of cells entirely contained in B is unimportant.
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In preparation to the definition of the surface tension and using the notation of Sub-
section 3.1, we define the upper half of Λ(C+, C−) by

Λ+(C+) = Λ(C+, C−) ∩ Z
d
+ \ B .

The partition function with reflection and + boundary conditions outside Λ+(C+)

ZC+,R
L,ε =

∑

σ∈{±1}Λ+(C+)

exp
(
−βH(+,R)

Λ+(C+)
(σ)
)
, (3.7)

where the hamiltonian on the r.h.s. is defined in (3.6) with Λ replaced by Λ+(C+). No-
tice that the boundary conditions outside Λ+(C+) are imposed also around the center of

reflection on B = {−1, 0, 1}d . The partition function ZC−,R
L,ε is defined similarly on the

lower half, Λ−(C−) of Λ(C+, C−) and with − reflected boundary conditions on the top (see
figures 1 and 2).

Let ΣL be the bottom face of Λ+(C+), i.e the face with the reflected interactions (the
side length of ΣL is L). As we will see in Lemma 4.7, away from 0 and from its boundaries,
ΣL behaves as a wall with periodic boundary conditions; indeed, the overall contribution
of ΣL to the finite volume corrections to the pressure will be proportional to Ld−2 which
is therefore a “perfect wall” in the sense specified at the beginning of this subsection.

Finally notice that one could also consider a mapping different from the symmetry wrt
0 provided that it respects the topological structure of Z

d and that most of the points are
far apart from their images. This will be made clear in Section 4.

3.3. Definition of the surface tension. We can finally introduce

Definition 3.1. The surface tension in the direction ~n, is defined by

τβ(~n) = lim inf
ε→0

lim inf
L→∞

inf
C+,C−

−(~n · ~ed)

βLd−1
log

ZC+,C−

L,ε (S+,S−)

ZC+,R
L,ε ZC−,R

L,ε

(3.8)

where the infimum is taken over the barriers (C+, C−) in the slabs ΛL, ε
10

L ± εL~ed.

There are two important points in this definition, one is that the perfect walls should
give negligible surface corrections to the pressure. Moreover, due to decay of correlations,
the inf over C+, C− should not matter because of cancellations among numerator and
denominator: the barriers S+ and S− screen the effect of the boundary conditions.

The main step towards the derivation of phase coexistence (Theorem 2.1) will be to
prove the convergence of the thermodynamic limit for the surface tension:

Theorem 3.1. For any β large enough (such that the model is in the Pirogov-Sinai regime,
see Section 4), the following holds

τβ(~n) = lim
ε→0

lim
L→∞

sup
C+,C−

−(~n · ~ed)

βLd−1
log

ZC+,C−

L,ε (S+,S−)

ZC+,R
L,ε ZC−,R

L,ε

, (3.9)
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~n

S−

S+

εL

Λ(C+)

Λ(C−)

C+

C−

0

Λ(C+)

Λ(C−)

Figure 1. On the left, the domain ΛL,εL is depicted with mixed boundary conditions in
the direction ~n and with the interface cutoff. The action of the perfect walls boils down
to fold Λ(C+) and Λ(C−) around the point 0 (see right picture and also figure 2).

where the supremum is taken over the barriers (C+, C−) in the slabs ΛL, ε
10

L ± εL~ed. In

(3.9), the supremum can also be replaced by an infimum.

The derivation of Theorem 3.1 and of the properties of the surface tension is postponed
to Section 5.

3.4. Heuristics on the surface tension. We are going to discuss heuristically the rep-
resentation of the surface tension and explain the choice of the perfect walls and of the
cutoff. We believe that the ultimate justification for Definition 3.1 is to be the surface
tension for which Theorem 2.1 is valid.

Let us start by a rough expansion of logZ+,−
L , which denotes the partition function on

the cube ∆L = {−L, . . . , L}d with mixed boundary conditions in the direction ~n.

logZ+,−
L =

Ld

2
(P+ + P−) +

Ld−1

(~n · ~ed)
τβ(~n) + (τ+

bd + τ−bd) dL
d−1 +O(Ld−2) , (3.10)

The first term is of volume order and corresponds to the pressures of the different pure
phases P+ and P− (which are equal on the curve of phase coexistence, see Lemma 4.2).
The surface tension τβ(~n) arises at the next order, but there are as well other terms of

order Ld−1 which can be interpreted as surface energies due to the boundary conditions.
The lack of symetry of our model implies that the surface energy τ+

bd produced by the

+ boundary conditions differs from the surface energy τ−bd produced by the − boundary
conditions.

In order to extract the surface tension factor, one has to compensate not only the
bulk term, but also the surface energies τ+

bd and τ−bd. In a symmetric case (eg. the Ising

model) τ+
bd = τ−bd therefore the partition function in ∆L with + boundary conditions is the

approriate normalization factor. As this is no longer the case for non-symmetric models,
the following alternative definition seems to be the most natural

τ?
β(~n) = lim

L→∞
−(~n · ~ed)

Ld−1
log

Z+,−
L√

Z+
L

√
Z−

L

. (3.11)
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Notice that this representation of the surface tension would also require an assumption on
the potential similar to (2.2) in order to produce exact cancellations between the numerator
and the denominator.

The representation (3.11) of the surface tension is the most commonly used, neverthe-
less, to our best knowledge, the existence of its thermodynamic limit is not known in
general. The surface tension can be studied for different types of models, in particular, let
us mention the Ashkin-Teller model [Ve], the Blume Capel model [HK], the Potts model
at the critical temperature [MMRS, LMR] and general 3D lattice models [HKZ1, HKZ2].
Depending on the dimension, the results are of different nature.

In 2 dimensions, the interface has a unidimensional structure and a very accurate control
can be obtained by using renewal theory. In particular it should be possible to derive
in a general context a complete expansion of the RHS of (3.11) which would include
the Ornstein-Zernike corrections1. Such results would also provide a description of the
fluctuations of the interface. We refer the reader to the paper by Hryniv and Kotecky
[HK] for an implementation of these methods in the case of Blume-Capel model (see also
[Al, CIV]).

In dimension 3 or higher, if ~n coincides with one of the axis, the interface generated
by the Dobrushin conditions is rigid and an extremely accurate description of the non-
translation invariant Gibbs states can be obtained. As a byproduct of this description,
(3.11) can be derived for a broad class of models (see Holicky, Kotecky, Zaradhnik [HKZ1,
HKZ2]; Messager, Miracle-Solé, Ruiz, Shlosman [MMRS]). However a derivation of (3.11)
in dimensions larger or equal to 3 for general slopes ~n seems still to be missing. In
general, the ground states of tilted interfaces are degenerated, this complicates seriously
the implementation of a perturbative approach of the thermodynamic limit (3.11).

The representation (3.8) of the surface tension was motivated by the Wulff construction
and it has been designed primarily to prove the phase coexistence (Theorem 2.1). The
first step to evaluate the surface energy of a droplet is to decompose the interface of the
droplet and to estimate locally the surface tension. As the system is random, one is lead
to consider partition functions with mixed boundary conditions on arbitrary domains of
the type Λ(C+, C−) and not only on regular sets like ∆L. Locally, the occurrence of an
interface means a term like the numerator of (3.8) can be factorized from the global par-
tition function. At this point, the local surface tension factor is extracted from the global
partition function by removing the numerator of (3.8) and replacing it instead by the de-
nominator of (3.8). In (3.11), the cancellation of the terms corresponding to the boundary
surface tension imposes to choose symmetric domains in the denominator. This constraint
is too stringent to apply the procedure previously described to arbitrary domains. The
perfect walls provide an alternative way to control the surface order corrections without
using symmetry.

The second important feature of Definition 3.1 is the interface fluctuation cutoff. The
Pirogov-Sinai theory describes accurately the bulk phenomena in a low temperature regime,
nevertheless it cannot be applied directly to study Gibbs measures with mixed boundary
conditions. The cutoff decouples the interface from the boundary conditions and therefore
enables us to control the dependence between the surface tension and the domain shapes.
In fact, the problem in the domain between C+ and S+ (resp S− and C−) is set in the
regime associated to the pure phase with + (resp. −) boundary conditions where again
cluster expansion applies.

1Private communication by D. Ioffe.
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The derivation of the thermodynamic limit (Theorem 3.1) relies on a recursive proce-
dure which is reminiscent of the proof of the Wulff construction. The basic idea is to
approximate the interface on large scales by using the Definition 3.1 on smaller scales.
Concretely, the energy in the small regions along the interface is evaluated by pasting the
a priori estimates provided by Definition 3.1. The iteration is possible thanks to the very
loose structure of the definition of the surface tension. The limit wrt ε has no impact
on the value of the surface tension, the main motivation is technical: it is useful in the
iteration procedure and afterwards in the completion of Theorem 2.1.

We are going now to compare the representations τβ(~n) and τ ?
β(~n) of the surface tension.

According to Theorem 3.1 the convergence (3.9) is uniform over the domains Λ(C+, C−)
and thus it is enough to define the surface tension on regular domains of the type ∆L.
Furthermore, the perfect walls are such that

lim
L→∞

1

Ld−1
log

√
Z+

L

√
Z−

L

Z+,R
L Z−,R

L

= 0 .

It remains only to analyze the role of the cutoff of interface fluctuations. Definition 3.1
would coincide with (3.11) if the following holds

lim
L→∞

1

Ld−1
log

Z+,−
L (S+,S−)

Z+,−
L

= lim
L→∞

1

Ld−1
log µ+,−

β,∆L
(S+,S−) = 0 . (3.12)

This statement boils down to prove a very weak form of localization of the interface.
In fact, a much stronger localization is expected since the fluctuation of the interface
are of the order

√
L in 2D and believed to be at most of the order

√
logL in 3D. For

the ferromagnetic finite range Ising model and the Kac-Ising models, (3.12) holds and
Definition 3.1 of the surface tension coincide with the usual one (3.11).

Since the ingredients used in the proof of Theorem 3.1 are the typical ones of cluster
expansion, the extension to more general Pirogov-Sinai models, as those described at the
end of Subsection 2.1, seems possible. For more general models several questions remain.
In particular, Definition 3.1 does not seem appropriate to deal with periodic ground states.
For multi-phase models, the solution of the variational problem is not known and thus a
macroscopic description of phase coexistence is a mathematical challenge. The proba-
bilistic point of view is slightly different since one is interested to derive the macroscopic
variational problem (without solving it) from the microscopic system. In this case, the dif-
ficulties are of two distinct natures: geometric and probabilistic. For a thorough study of
the geometric problems we refer the reader to Cerf, Pisztora [CePi2]. For the issues related
to the coarse graining and the surface tension, we hope that our approach can provide
a step towards the derivation of phase coexistence for multi-phase models. Nevertheless,
it should be stressed that the interesting phenomena, as boundary layers, occurring in
multi-phase models cannot be capture in the L

1-framework. A more refined analysis of
the microscopic structure of the interface is necessary to describe these subtle mechanisms
(see eg [HK, MMRS, HKZ2]).
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4. Peierls estimates, cluster expansion

In this section we will see that notion and procedures of the Pirogov-Sinai theory can be
modified to apply when reflecting walls are present. In particular we will derive formulas
for the finite volume corrections to the pressure which show that the contribution of the
reflecting walls is negligible.

We need to generalize the context considered in the previous section because in the next
ones we will have simultaneously several reflecting surfaces {Σi} (introduced to decouple
different regions of the whole domain). An example is depicted in figure 2. These reflecting
surfaces are separated in such a way that there will be no interference among them and we
can consider each one separately. Let us then call Σ one of them (dropping momentarily
the label i) and describe its structure. Σ is the intersection of a hyperplane H and a
coordinate cylinder π with cubic cross section of integer side. The axis of the cylinder is
the coordinate direction associated to the normal to Σ, in the sense of Subsection 3.1, and
its intersection with Σ, called the center of Σ, is supposed to be in Z

d. We then introduce
the set of boundary sites associated to Σ, i.e. the sites close to the border of Σ and to the
center of Σ. Defining Z

d
± as the spaces above and below H, in the sense of Subsection 3.2,

we call B′ the “boundary of Σ” as the sites x of Z
d
± which are ∗ connected to Z

d
∓ as well

as ∗ connected to πc, if in π, and to π, if in πc. B is defined as the union of B ′ with the
center of Σ and the sites ∗ connected to it. We then call {c′}R the set of all new cells c

′

determined by the reflection through the hyperplane H which are in π, are not contained
in B and differ from original cells.

This refers to the generic surface Σi with Bi and {c′}R
i , we are now resuming the notation

with the subscript i. The union of all Bi will be called B while {c′}R is the union of all
{c′}R

i . We then define the set of new cells {c}R, as the collection of {c′}R and of all cells
which have not been modified by reflections through any of the surfaces Σi. Thus {c}R are
the new cells and {c} the old ones. The new hamiltonian is given by the same expression
(3.6) but with {c}R the above collection of cells. Finally, we set Z

d,R = Z
d \ B and fix

hereafter the spins in B. In the sequel Λ will denote regions in Z
d,R and the the spins in

B will always act as boundary conditions.
The collection {c}R defines a new topology, where the nearest neighbor sites of x ∈ Z

d

is the union of all cells c ∈ {c}R which contain x. Without reflection, this reduces to the
usual notion in Z

d, where the n.n. sites of x are those ∗ connected to x. It is convenient to
add a metric structure, defining the “ball of radius n ∈ N and center x ∈ Z

d”, denoted by
K(x, n) for the old and, respectively, by KR(x, n) for the new cells, by setting K(x, 0) =
KR(x, 0) = {x} and

K(x, n) =
{
y ∈ Z

d : y ∈ c, c ∩K(x, n− 1) 6= ∅, c ∈ {c}
}

(4.1)

KR(x, n) =
{
y ∈ Z

d : y ∈ c, c ∩KR(x, n− 1) 6= ∅, c ∈ {c}R
}

(4.2)

The external boundary of Λ in the old and new topology are

δ(Λ) =
{
y ∈ Λc : y ∈ c, c ∩ Λ 6= ∅, c ∈ {c}

}

δR(Λ) =
{
y ∈ Λc : y ∈ c, c ∩ Λ 6= ∅, c ∈ {c}R

}
(4.3)

where Λ ⊂ Z
d,R (we recall that B belongs to Λc).
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B

K(x, n)

KR(x, n)

B

Figure 2. The two examples above represent the different types of reflecting surfaces
which will be used in this paper. The gray rectangles stand for the location of the
boundary conditions B. On the left, a domain with two reflecting surfaces on its bottom
face; a reflected contour is also depicted. This type of domain will be used in the analysis
of surface tension (Section 5). The domain on the right contains several reflecting surfaces
where the structure of the cells is modified (see Subsections 6.3 and 6.4).

The whole analysis in this section is based on a simple geometric property of the col-
lection {c}R, which is a consequence of the way reflections on a single surface have been
defined and the fact that the reflecting surfaces are separated from each other.

Given x ∈ Z
d,R, call n(x) the smallest integer n such that KR(x, n) ∩ B 6= ∅ and n′(x)

the smallest integer n such that KR(x, n) reaches two distinct reflecting surfaces Σi and
Σj, i.e. contains sites on either side of Σi and on either side of Σj.

Theorem 4.1. Suppose that for all x ∈ Z
d,R, n(x) < n′(x), then, for any n 6 n(x), there

is a bijective map T from K(x, n) onto KR(x, n) which transforms bijectively all cells of
{c} in K(x, n) onto the cells of {c}R in KR(x, n). Consequently, for any ∆ ⊂ KR(x, n)
with also δR(∆) ⊂ KR(x, n)

HR,σ∆c

h (σ∆) = H
σ
T −1(∆c)

h (σT −1(∆)), ZR,σ∆c

β,h,∆ = Z
σ
T −1(∆c)

β,h,T −1(∆)
(4.4)

Proof. Since n < n′(x), it is enough to consider a reflection wrt a single surface
and modulo a change of variables to work in the framework of Subsection 3.2. Suppose
x is in the upper part, x ∈ Z

d
+, then, by induction on k 6 n it is easy to see that

KR(x, k) = T (K(x, k)), where T is equal to the identity on K(x, n) ∩ Z
d
+ and to R on

K(x, n) ∩ Z
d
−. We next check that T is one to one. If it was not the case, there would be

two distinct sites y, z ∈ K(x, n) such that T (y) = T (z). This would mean that z = R(y)
and, since K(x, n) is a convex set, then 0 would be in K(x, n), which is excluded because
n 6 n(x). Since T maps the cells of {c} in K(x, n) bijectively in those {c}R in KR(x, n),
(4.4) follows. The theorem is proved. �

The previous theorem implies that away from the set B, the reflections have no impact
on the energy. This will be useful to evaluate the corrections to the pressure in presence
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of reflected boundaries. The particular structure of the reflecting surfaces will not matter
in the sequel, the analysis only relying on the following assumption:

Assumption: For all x ∈ Z
d,R, n(x) < n′(x). (4.5)

Having defined the setup, we can now start the analysis which begins by recalling the
fundamental notion of contours, adapted to the case of reflecting surfaces.

4.1. Contours. We will refer explicitly to the case of reflections, as underlined by the
superscript R; without R the expressions refer to the case without reflections for which
the classical proofs apply directly and which can anyway be recovered from our analysis
by replacing {c}R by {c}.

We define the phase indicator at x, ηR
x (σ), as equal to 1 (resp. −1) if σ is identically 1

(resp. −1) on all c 3 x, c ∈ {c}R; otherwise ηx(σ) = 0.
Calling R-connected two sites x and y if they both belong to a same cell in {c}R, the

spatial supports sp(Γ) of the R contours Γ of σ are the maximal R-connected components
of the set {ηR

x = 0}. We will tacitly suppose in the sequel that they are all bounded sets.
Let

Γ̄ =
⋃

x∈sp(Γ)

KR(x, 2) (4.6)

Then the R contours Γ of σ are the pairs Γ = (Γ̄, σΓ̄), with σΓ̄ the restriction of σ to Γ̄.
Notice that in each R connected component of Γ̄\ sp(Γ), σx is identically equal either

to 1 or to −1, while the values outside Γ̄ are not determined by Γ and therefore can be
arbitrary. Let

D := Γ̄ \ sp(Γ) (4.7)

and call D0 and D±
i the maximal R connected components of D. D0 is the one which is R

connected to the unbounded component of Γ̄c, D+
i (resp. D−

i ) are the components where
σx (as specified by Γ) is equal to 1 (resp. −1). We also call int±i (Γ) the component of Γ̄c

which is R connected to D±
i . Finally Γ is a ± contour, if σ = ±1 on D0.

The R contours in a bounded domain Λ ⊂ Z
d,R with + [−] boundary conditions are

defined as the contours of the configuration (σΛ,1Λc) [resp. and of (σΛ,−1Λc)].
The weight wR,+(Γ) of a + R contour is

wR,+(Γ) =
e−βHR

h (σΓ̄)

eβh|Γ̄|

n−∏

i=1

ZR,−

β,h,int−i (Γ)

ZR,+

β,h,int−i (Γ)

(4.8)

The superscript R recalls that all quantities are defined using the collection of cells {c}R.

The term eβh|Γ̄| in the denominator is the Gibbs factor of the configuration 1Γ̄ identically

equal to 1 in Γ̄, e−βHh(1Γ̄) = eβh|Γ̄|.
The weight wR,−(Γ) of a − R contour is defined symmetrically with the role of + and

− interchanged. With these definitions, we have the identity

ZR,±
β,h,Λ = e±βh|Λ|

∑

{Γi}
±

Λ

∏

{Γi}
±

Λ

wR,±(Γi) (4.9)

where {Γi}+
Λ [{Γi}−Λ ] is a compatible collection of + [−] R contours in Λ. Two contours

are compatible iff their spatial supports are not R–connected.
For the case without reflections we can apply directly the classical Pirogov-Sinai theory:
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Theorem 4.2. There is c > 0 and, for any β large enough, h(β) ∈ (0, ce−β/2) so that
the thermodynamic limits of µ±

β,h(β),Λ define distinct DLR measures. Moreover, for any

contour Γ, the weight without reflection satisfy

0 < w±(Γ) 6 e−βNΓ/2 (4.10)

where NΓ is the number of distinct cells which cover sp(Γ).

In the following the bound (4.10) will be refered as a Peierls estimate since it leads

µ±β,h(β),Λ(Γ) 6 e−βNΓ/2 (4.11)

The bound (4.10) is actually the crucial point of the theorem, the small weight of the
contours is in fact responsible for the memory of the boundary conditions to survive the
thermodynamic limit, thus yielding the phase transition. Moreover, as we will see, if β
is large, (and the weight small), by cluster expansion, it is possible to exponentiate the
r.h.s. of [the analogue without reflections] of (4.9) and thus to compute the finite volume
corrections to the pressure. This is on the other hand also the key point in the proof of
(4.10), which at first sight makes all the above to look circular. The main goal in this
section is to prove the bound (4.10) in case of reflections.

4.2. Restricted ensembles. Following Zahradnik, we construct a much simpler, ficti-
tious model which, as a miracle, in the end, turns out to coincide with the real one. In
the whole sequel β is large enough and h = h(β), see Theorem 4.2, will often drop from
the notation.

Inspired by (4.9), we set for any bounded region Λ ⊂ Z
d,R,

ΞR,±
β,Λ = e±βh|Λ|

∑

{Γi}
±

Λ

∏

{Γi}
±

Λ

ŵR,±(Γi) (4.12)

ŵR,+(Γ) = min
{
e−βNR

Γ /2;
e−βHR

h (σΓ̄)

eβh|Γ̄|

n−∏

i=1

ΞR,−

β,int−i (Γ)

ΞR,+

β,int−i (Γ)

}
, Γ a + R contour (4.13)

ŵR,−(Γ) = min
{
e−βNR

Γ /2;
e−βHR

h (σΓ̄)

e−βh|Γ̄|

n+∏

i=1

ΞR,+

β,int+i (Γ)

ΞR,−

β,int+i (Γ)

}
, Γ a − R contour (4.14)

where NR
Γ is the number of R cells in sp(Γ). In this way the weights automatically satisfy

the crucial bound (4.10), but first let us check that (4.12)–(4.14) do really define the

“partition functions” ΞR,±
β,Λ and the “weights” ŵR,±(Γ). Indeed, the triple (4.12)–(4.14)

should be regarded as an equation in the unknowns ΞR,±
β,Λ and ŵR,±(Γ). Existence and

uniqueness are proved by induction on |Λ|. If |Λ| = 1, any contour in Λ has no interior,

hence (4.13)–(4.14) specify its weight and consequently (4.12) determines ΞR,±
β,Λ for such a

Λ. If on the other hand we know ΞR,±
β,Λ for all Λ ⊂ Z

d,R, |Λ| 6 n, we can use (4.13)–(4.14)
to determine the weights of all Γ if all their interior parts have volume 6 n; since regions
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Λ with |Λ| = n+ 1 cannot contain contours whose interior part has volume > n, we can

use (4.12) to determine ΞR,±
β,Λ for such a Λ, and the induction step is proved.

For β large enough the weights ŵR,±(Γ) become so small, that the the general theory
of cluster expansion can be applied, see for instance [KP], so that

log ΞR,±
β,Λ = ±βh|Λ| +

∑

π∈ΠR,±
Λ

ω̂R,±(π) (4.15)

where ΠR,+
Λ [ΠR,−

Λ ] is the collection of all + [−] polymers π contained in Λ and ω̂R,±(·)
their weights, all such notions being defined next. Analogous expressions are valid in the
absence of reflections.

A + R polymer π = [Γεi
i ] in ΠR,+

Λ (the definition of − polymers is similar and omitted),
is an unordered, finite collection of distinct + R contours Γi taken with positive integer
multiplicity εi, and such that, setting

X(π) =
⋃

i

sp(Γi), π = [Γεi
i ] (4.16)

X(π) is a R connected subset of Λ.
The weights ω̂R,±(π), π = [Γεi

i ], are given in terms of the weights of contours, ŵR,±(Γ):

ω̂R,±(π) = r(π)
∏

i

ŵR,±(Γi)
εi (4.17)

where

r(π) =
∏

i

(εi!)
−1

∑

G′⊂G(π)

(−1)|G
′|

with G(π) the (abstract) graph of π, which consists of vertices, labelled by the
∑

i εi con-
tours in π, and of edges, which join any two vertices labelled by contours with intersecting
supports. By definition G(π) is connected and the sum in (4.18) is over all the connected
subgraphs G ′ of G(π) which contain all the

∑
i εi vertices; |G ′| denotes the number of edges

in G′.
The number of connections of each site is not increased by the reflection procedure.

Thus, for β large enough, [KP], the series on the r.h.s. of (4.15) is absolutely convergent
and, given any finite sequence Γ1, ..,Γn of contours,

∑

π∈ΠR,±,π3Γi,i=1,..n

|ω̂R,±(π)| 6
n∏

i=1

e−NΓi
(β/2−2dα) (4.18)

where ΠR,± denotes the collection of all + [−] polymers in the whole space Z
d,R and α > 0

is large enough, in particular we will also require that
∑

D30

22|D|e−α|D| < 1 (4.19)

where the sum is over all R connected sets D in Z
d,R which contain the origin (supposing

0 ∈ Z
d,R). D represent the spatial support of a contour and 2|D| bounds the number of

contours with same spatial support D. The extra 2 in 22|D| is for convenience. The factor
2d in the last term of (4.18) enters via the relation (2d)ND ≥ |D|, ND the number of cells
needed to cover D.
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Since by Theorem 4.2, the weights w±(Γ) satisfy the same bounds as the ŵR,±(Γ), we
have, analogously to (4.15),

logZ±
β,Λ = ±βh|Λ| +

∑

π∈ΠR,±
Λ

ω±(π) (4.20)

with ω±(π) defined by (4.17) having w±(Γ) in the place of ŵR,±(Γ). As in (4.18),

∑

π∈Π,π3Γi,i=1,..n

|ω±(π)| 6
n∏

i=1

e−NΓi
(β/2−2dα) (4.21)

We will often use the following corollary of (4.19)-(4.21):

Lemma 4.1. For any β large enough and any x ∈ Z
d,R

∑

X(π)3x

|ω̂R,±(π)| 6 e−β/2+2d+1α (4.22)

and, for any x and n,
∑

X(π)3x,X(π)∩KR(x,n)c 6=∅

|ω̂R,±(π)| 6 e−(β/2−2d+1α)n (4.23)

Both (4.22) and (4.23) remain valid in the case without reflections.

Proof. By (4.18),
∑

X(π)30

|ω̂R,±(π)| 6
∑

Γ:sp(Γ)30

e−NΓ(β/2−2dα) 6 e−(β/2−2d+1α)
∑

Γ:sp(Γ)30

e−α|sp(Γ)|

where we used that |sp(Γ)| = 2dNΓ. Applying (4.19), we obtain (4.22).
To prove (4.23), we denote by {Γ1, ..,Γk} any sequence of contours such that sp(Γ1) 3 x,

sp(Γk) ∩ Kc 6= ∅, K ≡ KR(x, n), and sp(Γi) ∼ sp(Γi+1), i = 1, .., k − 1, (where A ∼ B
shorthands that A is R connected to B). Then the l.h.s. of (4.23) is bounded by

∑

k,{Γ1,..,Γk}

∑

π:Γi∈π,i=1,..,k

|ω̂R,±(π)| 6
∑

k,{Γ1,..,Γk}

k∏

i=1

e−NΓi
(β/2−2dα)

6 e−(β/2−2d+1α)n
∑

k

∑

D13x,Dj∼Dj+1,j=1,..,k−1

k∏

i=1

2|Di|e−α|Di|

which proves (4.23) because, as we are going to see, the sum over k, that we denote by
S(x), is bounded by 1.

Calling SN (x) the sum with k ≤ N , since S(x) is the limit as N → ∞ of SN(x),
it suffices to prove that for all y and N , SN (y) 6 1. The proof is by induction on N .
S1(y) < 1 by (4.19). Suppose SN−1(x) 6 1 for all x, then

SN (x) 6
∑

D13x

2|D1|e−α|D1|
∏

y∈D1

(
1 + SN−1(y)

)
6
∑

D13x

2|D1|2|D1|e−α|D1|

the second factor 2|D1| coming from the induction hypothesis. Then, by (4.19), SN (x) 6 1
for any x and (4.23) is proved. The lemma is proved. �
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By the analogue of (4.22) we conclude convergence of the series on the r.h.s. of

P± := ±h+
1

β

∑

π∈Π(±),X(π)30

ω±(π)

|X(π)| (4.24)

To study the weights of the polymers obtained by reflection we will use the following three
lemmas, where Λ is tacitly supposed to be a bounded region in Z

d. They refer to the case
without reflections and since the magnetic field h is equal to h(β) they are part of the
classical Pirogov-Sinai Theory. For convenience, we give an explicit proof, consequence of
Theorem 4.2.

Lemma 4.2. For β large enough,

P+ = P− = P (4.25)

where P is the thermodynamic pressure at inverse temperature β and magnetic field h =
h(β). Moreover,

logZ±
β,Λ = ±βh|Λ| +

∑

x∈Λ

∑

x∈X(π)⊂Λ

ω±(π)

|X(π)| (4.26)

= β|Λ|P −
∑

X(π)∩Λc 6=∅

|X(π) ∩ Λ|
|X(π)| ω±(π) (4.27)

Proof. (4.26) is just a rewriting of (4.20); (4.25) follows from (4.26) by taking the
thermodynamic limit and using Lemma 4.1. (4.27) is also a rewriting of (4.26). The
lemma is proved. �

Lemma 4.3. For β large enough, and calling δΛ the union of all sites in Λc which are
∗-connected to Λ, ∣∣∣ logZ±

β,Λ − β|Λ|P
∣∣∣ 6 e−β/2+2d+1α|δ(Λ)| (4.28)

Proof. By (4.27)
∣∣∣ logZ±

β,Λ − β|Λ|P
∣∣∣ 6

∑

x∈δΛ

∑

X(π)3x

|ω±(π)|

which, by (4.22), yields (4.28). The lemma is proved. �

The final lemma proves that the bound (4.10) was too conservative.

Lemma 4.4. There is a constant c so that, for β large enough,
∣∣∣ logZ+

β,Λ − logZ−
β,Λ

∣∣∣ 6 2e−β/2+2d+1α|δ(Λ)| (4.29)

w±(Γ) ≤ exp
{
− βNΓ

(
1 − ce−β/2

)}
(4.30)
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Proof. (4.29) follows directly from (4.28). By the analogue of (4.8) without reflections,

w±(Γ) ≤ exp
{
− βNΓ + 2β|h||Γ̄| + 2e−β/2+2d+1α

∑

i

|δ(int−i (Γ))|
}

Notice also that the constraint on h(β) can be easily recovered. By equating the two
r.h.s. of (4.24) and then using (4.22) in the version without reflections, we get

β|h| 6 e−β/2+2d+1α (4.31)

Moreover, if x ∈ δ(int−i (Γ)) there is a cell c such that c ∩K(x, 2) 6= ∅, c ∩ sp(Γ) 6= ∅, so

that to each x ∈ ∪iδ(int−i (Γ)) we can associate a cell contributing to NΓ, in such a way
that the same cell is counted at most |K(0, 3)| times. Thus

w±(Γ) ≤ exp
{
− βNΓ + 2e−β/2+2d+1α|Γ̄| + 2e−β/2+2d+1α|K(0, 3)|NΓ

}
(4.32)

The inequality

|Γ̄| ≤ |sp(Γ)||K(2, 0)| ≤ NΓ2d|K(2, 0)|
concludes the proof of the lemma. �

We turn now back to the main goal of the section, namely to prove that the bound
(4.10) holds also for the weights with reflections. The proof is obtained in two steps.

Theorem 4.3. For any β large enough the following holds. Let x ∈ Z
d,R and n 6 n(x);

then if Λ∪∂R(Λ) ⊂ KR(x, n), ΞR,±
β,Λ = ZR,±

β,Λ and if Γ is a ±, R contour with Γ̄ ⊂ KR(x, n),

then ŵR,±(Γ) = wR,±(Γ) < e−βNΓ/2.

Proof. Under the assumption that n 6 n(x), Theorem 4.1 applies and therefore the
proof will follow from the previous results on the weights without reflection and from the
one to one correspondence between K(x, n) and KR(x, n). In particular (4.4) implies that
for domains strictly contained in KR(x, n)

Z±
β,T −1(Λ)

= ZR,±
β,Λ (4.33)

In the case |Λ| = 1, any contour in Λ has no interior and (4.12)-(4.13) allow to compute
ŵR,±(Γ), getting, as in the proof of Lemma 4.4,

ŵR,±(Γ) 6 exp
{
− βNΓ + 2β|h||Γ̄|

}

hence, for β large enough, ŵR,±(Γ) = w±(Γ) < e−βNΓ/2. Suppose by induction that

for any |Λ| 6 k (Λ as in the text of the theorem), ΞR,±
β,Λ = Z±

β,T −1(Λ)
= ZR,±

β,Λ . Then

if Γ is as in the text of the theorem and moreover all its interior parts have volume
6 k, then the second term on the r.h.s. of (4.12)-(4.13) is equal to w±(T −1Γ), with the

obvious meaning of the notation, which by Lemma 4.4 is, for β large enough, < e−βNΓ/2.
Then the second term on the r.h.s. of (4.12)-(4.13) is smaller than the first one, hence
ŵR,±(Γ) = wR,±(Γ). Since all contours inside Λ have interior parts with volume 6 k,

(4.10) shows that ΞR,±
β,Λ = Z±,R

β,Λ = Z±
β,T −1(Λ)

, thus proving the induction step. The theorem

is proved. �
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Before extending the result to general Λ, we state and prove the following lemma.

Lemma 4.5. For β large enough,

log ΞR,±
β,Λ = β|Λ|P +

∑

x∈Λ

{ ∑

X(π)∩KR(x;n(x))c 6=∅;x∈X(π)⊂Λ

ω̂R,±(π)

|X(π)|

−
∑

X(π)∩K(0;n(x))c 6=∅;0∈X(π)

ω±(π)

|X(π)|
}

(4.34)

Proof. We write

log ΞR,±
β,Λ = ±βh|Λ| +

∑

x∈Λ

{ ∑

x∈X(π)⊂KR(x;n(x))

ωR,±(π)

|X(π)|

+
∑

X(π)∩KR(x;n(x))c 6=∅;x∈X(π)⊂Λ

ωR,±(π)

|X(π)|
}

β|Λ|P = ±βh|Λ| +
∑

i∈Λ

{ ∑

X(π)⊂K(x;n(x));x∈X(π)

ω±(π)

|X(π)|

+
∑

X(π)∩K(x;n(x))c 6=∅;x∈X(π)

ω±(π)

|X(π)|
}

Then log ΞR,±
β,Λ − β|Λ|P is equal to the difference of the r.h.s. of the last two equations.

The first terms in the sum over x cancel with each other, see the proof of Theorem 4.1,
and (4.34) follows after recalling that the weights without reflections are translational
invariant. The theorem is proved. �

Theorem 4.4. For any β large enough, for any bounded Λ ⊂ Z
d,R, ΞR,±

β,Λ = ZR,±
β,Λ and for

any bounded, ±, R contour Γ, ŵR,±(Γ) = wR,±(Γ) < e−βNΓ/2.

Proof. By (4.34) and (4.22), denoting by n(x, y) the maximal integer such that y /∈
KR(x;n(x, y)),
∣∣∣ log ΞR,±

β,Λ − β|Λ|P
∣∣∣ 6 2

∑

x∈Λ

e−[β/2−2d+1α]n(x)
6 2

∑

x∈Λ

∑

y∈δR(Λ)

e−[β/2−2d+1α]n(x,y)

6 2
∑

y∈δR(Λ)

∑

n≥1

e−(β/2−2d+1α)n(2n+ 1)d

which yields ∣∣∣ log ΞR,±
β,Λ − β|Λ|P

∣∣∣ 6 cαe−β/2+2d+1α
∣∣δR(Λ)

∣∣ (4.35)

with

cα = 2eα
∑

n≥1

e−αn(2n+ 1)d (4.36)
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An inductive argument as in the proof of Theorem 4.3 completes then the proof of the
theorem. �

Before ending this Section, we collect some estimates used in the next sections.

Lemma 4.6. Given any positive integer n,

∣∣∣ logZ±
β,Λ − {±βh|Λ| +

∑

x∈Λ

∑

x∈X(π)⊂K(x;n)∩Λ

ω±(π)

|X(π)| }
∣∣∣ 6 |Λ|e−(β/2−2dα)n (4.37)

∣∣∣ logZR,±
β,Λ − {±βh(β)|Λ| +

∑

x∈Λ

∑

x∈X(π)⊂KR(x,n)∩Λ

ωR,±(π)

|X(π)| }
∣∣∣ 6 |Λ|e−(β/2−2dα)n (4.38)

Proof. (4.37) and (4.38) follow from (4.23) and its analogue without reflections. �

This lemma will enable us to estimate the corrections to the pressure. Let us also ex-
amine two other consequences which will be crucial in the rest of the paper.

The first consequence justifies the notion of perfect walls introduced in Subsection 3.2.
We consider the slab ΛL,ε and the reflection wrt to the hyperplane Σ = {x ∈ R

d, (~n·x) =
0} which splits ΛL,ε into two non interacting domains.

Lemma 4.7. There exists c > 0 such that
∣∣∣ logZ+

L,ε − logZR,+
L,ε

∣∣∣ 6 ce−(β/2−2dα)Ld−2 , (4.39)

where Z+
L,ε denotes the partition function on ΛL,εL with + boundary conditions and ZR,+

L,ε

is the partition function obtained by reflection (see Subsection 3.2). The same statement
holds with − boundary conditions.

Proof. Let B = {−1, 0, 1}d. For any x in ΛL,ε, we set

n̄(x) = min{n, K(x, n) ∩B 6= ∅,K(x, n) ∩ Λc
L,ε 6= ∅}

Then
∣∣∣ logZ+

L,ε − logZ+,R
L,ε

∣∣∣ 6
∑

x∈ΛL,εL

( ∑

X(π)∩KR(x;n̄(x))c 6=∅;x∈X(π)⊂ΛL,εL

ωR,+(π)

|X(π)|

+
∑

X(π)∩K(x;n̄(x))c 6=∅;x∈X(π)

ω+(π)

|X(π)|
)

The contribution of the polymers with X(π) in K(x, n) and the reflected ones in X(π) in
KR(x, n) with n 6 n̄(x) cancel with each other by Theorem 4.1.

Since the weights of the polymers are exponentially small (see Lemma 4.1), the result
follows. �

The second consequence will be used in Section 6. Let TN be the torus {−N, . . . , N}d

and we consider a collection of reflections inside TN for which the assumption (4.5) is
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satisfied. Let B denote the boundary conditions imposed by the reflections, i.e. the
centers and the boundaries of each reflecting surfaces. We have

∣∣∣ logZR
β,N − logZβ,N

∣∣∣ 6 cαe−(β/2−2dα)|B| , (4.40)

where ZR
β,N (resp. Zβ,N ) denotes the partition functions in TN with periodic boundary

conditions and with (resp. without) reflection.

5. Properties of the surface tension

In the following, β is fixed large enough such that the results of Section 4 are satisfied
and h refers to h(β). We first derive the existence of the thermodynamic limit for the
surface tension and then its convexity and positivity.

5.1. Proof of Theorem 3.1. The proof can be split into three steps. First, we are going
to prove that the choice of the barriers (C+, C−) has almost no contribution on the ratio
of the partition functions. Then, an inductive procedure enables us to improve (3.8) and
to derive the convergence (3.9).

Step 1 :
The first step is to prove that

τβ(~n) = lim inf
ε→0

lim inf
L→∞

sup
C+,C−

−(~n · ~ed)

βLd−1
log

ZC+,C−

L,ε (S+,S−)

ZC+,R
L,ε ZC−,R

L,ε

. (5.1)

This boils down to check that there are constants (C1, C2) such that for any (L, ε) and

for any (C+, C−) and (C̃+, C̃−)
∣∣∣∣∣∣
log

ZC+,C−

L,ε (S+,S−)

ZC+,R
L,ε ZC−,R

L,ε

− log
Z C̃+,C̃−

L,ε (S+,S−)

Z C̃+,R
L,ε Z C̃−,R

L,ε

∣∣∣∣∣∣
6 C1L

d exp(−C2εL) . (5.2)

The events S+,S− decouple the interface from the boundary effects thus (5.2) can be
derived by using only estimates in a pure phase.

It is enough to consider C̃− = C−. In this case, (5.2) becomes
∣∣∣∣∣∣
log

ZC+,C−

L,ε (S+,S−)

Z C̃+,C−

L,ε (S+,S−)
− log

ZC+,R
L,ε

Z C̃+,R
L,ε

∣∣∣∣∣∣
6 C1L

d exp(−C2εL) . (5.3)

For any spin configuration in S+, let us denote by s+ the support of the + barrier in
ΛL, ε

10
L + εL

2 ~ed which is the closest to the hyperplane Σ = {x; (x ·~n) = 0}. This particular

choice of s+ will be stressed by the notation s+  S+. The constrained partition function
can be decomposed as follows

ZC+,C−

L,ε (S+,S−) =
∑

s+

eβh|s+|ZC+,s+

L,ε Zs+,C−

L,ε (s+  S+,S−) ,
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with the first partition function free of constraints so that cluster expansion applies and
the second partition function which takes into account the constraint that there is no +
barrier in ΛL, ε

10
L + εL

2 ~ed below s+.

We first write

ZC+,C−

L,ε (S+,S−)

Z C̃+,C−

L,ε (S+,S−)
=
∑

s+

ZC+,s+

L,ε

Z C̃+,s+

L,ε

eβh|s+|
Z C̃+,s+

L,ε Zs+,C−

L,ε (s+  S+,S−)

Z C̃+,C−

L,ε (S+,S−)
. (5.4)

Let N = εL/10, (suppose, for notational simplicity, N an integer), then

exp{−4Lde−(β/2−2α)N} 6
ZC+,s+

L,ε

Z C̃+,s+

L,ε

Z C̃+,R
L,ε

ZC+,R
L,ε

6 exp{4Lde−(β/2−2α)N} (5.5)

follows from crossed cancellations among the terms in the numerator and denominator.
We are going to apply the expansion of the partition function derived in Lemma 4.6 with
n = N . The factor 4 is because there are 4 partition functions involved. With reference
to (4.37) and (4.38), the contribution of x such that the scalar product (x · ~n) > 8εL/10

coming from ZC+,s+

L,ε and ZC+,R
L,ε cancel with each other, as well as those from Z C̃+,s+

L,ε and

Z C̃+,R
L,ε . Symmetrically, the contribution of x such that (x·~n) < 8εL/10 arising from Z C+,s+

L,ε

and Z C̃+,s+

L,ε cancel with each other, as well as those from Z C̃+,R
L,ε and ZC+,R

L,ε .

Finally, by applying (5.5), we get from (5.4):

ZC+,C−

L,ε (S+,S−)

Z C̃+,C−

L,ε (S+,S−)
6

ZC+,R
L,ε

Z C̃+,R
L,ε

e4Lde−(β/2−2α)N
∑

s+

Z C̃+,s+

L,ε eβh|s+|Zs+,C−

L,ε (s+  S+,S−)

Z C̃+,C−

L,ε (S+,S−)

6
ZC+,R

L,ε

Z C̃+,R
L,ε

e4Lde−(β/2−2α)N

In the same way we get

ZC+,C−

L,ε (S+,S−)

Z C̃+,C−

L,ε (S+,S−)
>

ZC+,R
L,ε

Z C̃+,R
L,ε

e−4Lde−(β/2−2α)N

Recalling that N = εL/10, we have thus completed the proof of (5.2).

Step 2 :
The goal is to derive a lower bound for

φ(L, ε, C+, C−) =
ZC+,C−

L,ε (S)

ZC+,R
L,ε ZC−,R

L,ε

in terms of τβ(~n). For simplicity S = (S+,S−).
The previous step (see (5.1)) implies that there exists a sequence (εk, Lk)k > 0 such that

∣∣∣∣∣
(~n · ~ed)

βLd−1
k

inf
C+,C−

log φ(Lk, εk, C+, C−) + τβ(~n)

∣∣∣∣∣ 6
1

k
. (5.6)
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We fix (εk, Lk) and consider a pair (ε, L) such that εkLk � εL and Lk � L. In order
to derive a lower bound on φ(L, ε, C+, C−), we are going to localize the interface in the
slab ΛL,εkLk

.
We set Λ0

k = ΛLk,εkLk
, the upper-script 0 is to distinguish it from its translates (which

will be introduced below). We call C0
k = (C+,0

k , C−,0
k ) and S0

k = (S+,0
k ,S−,0

k ) the set of all
spin configurations which have ± barriers as required from the definition of the surface
tension. The “maximal barriers” are denoted by c±,0

k , meaning that c±,0
k is the first barrier

coming from the top [resp. the bottom] of Λ0
k. We also write c±,0

k  C±,0
k for the event

where c±,0
k are the maximal barriers in C±,0

k . We finally call U±,0
k the union of all sites

outside Λ0
k and at distance 1 from its faces parallel to ~n; The ± labels distinguish those

where the b.c. in the definition of the surface tension are set equal to ±1.
Let (Λi

k) be those translates of Λ0
k which are contained in ΛL,εL, where

∀i = (i1, . . . , id); Λi
k = Λ0

k +


(Lk + 2)i1, . . . , (Lk + 2)id−1,−

d−1∑

j=1

(Lk + 2)
nj

nd
ij + ξi


 .

with ξi ∈ [0, 1) chosen such that Λi
k ⊂ Z

d. The same translation which carries Λ0
k onto

Λi
k is used to define Ci

k = (C+,i
k , C−,i

k ), S i
k = (S+,i

k ,S−,i
k ), c±,i

k  C±,i
k , U±,i

k as translates of
the corresponding quantities with i = 0. Notice that the distance between two distinct

Λi
k and Λj

k is always larger than the range of the interaction and indeed two distinct U±,i
k

have at most their external surfaces in common. We denote by U+
k the union of all U+,i

k

with the addition of the regions Λi
k ∩ ΛL,εL ∩ {(x · ~n) > 0}, when i ranges over all values

such that Λi
k is not contained in ΛL,εL. U−

k is defined analogously and Uk = U+
k ∪ U−

k .

The volume of Uk is bounded (for L so large that (Lk + 2)2 < L) by

|Uk| 6 {(Lk + 2)d−22}εkLk
Ld−1

(Lk + 2)d−1
+ Ld−2(Lk + 2)εkLk 6 4εkL

d−1 (5.7)

The first term bounds the contribution of all i where Λi
k ⊂ ΛL,εL, the second term the

remaining ones; the final estimate uses that (Lk + 2)2 < L.

C+

C−

εkLk U+,0
k

U−,0
k

Uk = U+
k ∪ U−

k

c+,i
k

c−,i
k

∆({c+,i
k })

∆({c−,i
k })

Figure 3. Decompostion at the scale Lk of the domain Λ(C+, C−) by means of the
subsets (Λi

k)i (depicted by dashed boxes).

Let Qk be the intersection of the events C i = (C+,i
k , C−,i

k ), S i
k = (S+,i

k ,S−,i
k ) over all i such

that Λi
k ⊂ ΛL,εL. Call c±,i

k the maximal barriers realizing the event C±,i
k (maximal in the
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sense described previously). In order to decouple the events in the different regions (Λi
k),

we fix the spin configurations in Uk as equal to 1±
Uk

, where the latter is the configuration

where the spins are equal to ±1 on U±
k , we call Q′

k such a further constraint. On Qk we

set Λ(c+,i
k , c−,i

k ) as the region in Λi
k which goes from the maximal top barrier c+,i

k down to

the maximal bottom barrier c−,i
k (both included), and set

∆({c±,i
k }) = Λ(C+, C−) \

(
⋃

i

Λ(c+,i
k , c−,i

k )
⋃

Uk

)
,

∆+({c+,i
k }) = ∆({c±,i

k }) ∩ {x; (x · ~n) > 0}, ∆−({c−,i
k }) = ∆({c±,i

k }) ∩ {x; (x · ~n) < 0} .
Imposing the constraint Qk,Q′

k, and decomposing the partition function with respect

to (C+,i
k , C−,i

k ), we get

ZC+,C−

L,ε

(
S
)
> ZC+,C−

L,ε

(
S
⋂

Qk

⋂
Q′

k

)
(5.8)

=
∑

(c+,i
k ,c−,i

k )

e
−βHh(1±

Uk
)
ZC+

∆+({c+,i
k })

(
S+, c+,i

k  C+,i
k

)
ZC−

∆−({c−,i
k })

(
S−, c−,i

k  C−,i
k

)

×
∏

i

{
eβh(|c+,i|−|c−,i|)Z

c+,i
k ,c−,i

k
Lk,εk

(Si
k)

}
.

By introducing the partitions functions in each Λi
k with reflected boundary conditions

at the scale Lk, we will recover an approximation of the surface tension. For each factor

Z
c+,i
k ,c−,i

k
Lk,εk

(Sk) in the last product, we write (see (5.6))

Z
c+,i
k ,c−,i

k
Lk,εk

(Sk) > Z
c+,i
k ,R(k)

Lk,εk
Z

c−,i
k ,R(k)

Lk,εk
exp

(
−β Ld−1

k

(~n · ~ed)

(
τβ(~n) + 1/k

)
)
,

we are using the notation of Subsection 3.2 with R(k) instead of R to underline that the

partition functions Z
c±,i
k ,R(k)

Lk,εk
take into account the multiple reflections at the scale Lk (see

figure 2). By taking the product over all i, we get

∏

i

Z
c+,i
k ,c−,i

k
Lk,εk

(Sk) > exp

(
−β Ld−1

(~n · ~ed)

(
τβ(~n) + 1/k

)) ∏

i

Z
c+,i
k ,R(k)

Lk,εk
Z

c−,i
k ,R(k)

Lk,εk

We are going to plug the previous inequality in (5.8) in order to reconstruct two partition
function on the domains

∆± =
⋃

i

{
∆±({c±,i

k }k) ∪ Λ±(c±,i, R(k)) ∪ c±,i
k

}
.

Notice that the sets ∆± are slightly different from Λ±(C±) since they are built according
to the rules of the reflection at the scale Lk. We finally obtain

ZC+,C−

L,ε

(
S
⋂

Qk

⋂
Q′

k

)
> Z

C+,R(k)
∆+

(
S+, C+,i

k

)
Z

C−,R(k)
∆−

(
S−, C−,i

k

)
e
−βHh(1±

Uk
)

exp

(
−β Ld−1

(~n · ~ed)

(
τβ(~n) + 1/k

))
,

where Z
C+,R(k)
∆+

(
S+, C+,i

k

)
denotes the partition function on ∆+ with a perfect wall made of

multiple reflections on the scale Lk and taking into account the occurrence of the barriers

S+ and {C+,i
k }i.
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By (5.7)

|Hh(1±
Uk

)| 6 c|Uk| 6 c4εkLd−1

so that, it only remains to check that

lim
k→∞

lim
L→∞

inf
C+,C−

1

Ld−1
log

Z
C+,R(k)
∆+

(
S+, C+,i

k

)
Z

C−,R(k)
∆−

(
S−, C−,i

k

)

ZC+,R
L,ε ZC−,R

L,ε

> 0 , (5.9)

because, if we suppose that the previous inequality holds, then

lim inf
L→∞

(~n · ~ed)

βLd−1
inf

C+,C−
log φ(L, ε, C+, C−) > − τβ(~n) .

which completes the Theorem 3.1.

Step 3 :
The final step is devoted to the derivation of (5.9). This amounts to prove that the

corrections to the pressure for the different types of reflected boundary conditions are
negligible.

First, we check that the constrained partition function Z
C+,R(k)
∆+

(
S+, C+,i

k

)
is asymptot-

ically equivalent to the non-constrained partition function Z
C+,R(k)
∆+ . Let µ

+,R(k)
∆+ be the

corresponding Gibbs measure. Then the following holds

µ
+,R(k)
∆+

(
S+, C+,i

k

)
>
(
1 − Ld−1 exp(−cεL)

)(
1 − Ld−1

k exp(−cεkLk)
)Nk . (5.10)

This can be derived as follows. The occurrence of a barrier with blocks uniformly labelled
by 1 in the slab Λl,m implies that there is no connected set of blocks labelled by −1 joining

the two faces of Λl,m orthogonal to ~n. Under µ
+,R(k)
∆+ , a Peierls estimate similar to (4.11)

(see theorem 4.4). A Peierls type argument implies then that a connected set of − blocks

with length at least m has a probability smaller than exp(− β
2m). Applying recursively

the Peierls argument, we derive (5.10).

By hypothesis on the sequence (εk, Lk), for k large enough (5.10) implies

µ
+,R(k)
∆+

(
S+, C+,i

k

)
> 2−1−Ld−1 exp(−cεkLk) .

Therefore

lim
k→∞

lim
L→∞

1

Ld−1
inf
C+

log
Z

C+,R(k)
∆+

(
S+, (C+,i

k )
)

Z
C+,R(k)
L,ε

> 0 . (5.11)

This reduces the proof of (5.9) to

lim
k→∞

lim
L→∞

1

Ld−1
inf

C+,C−
log

Z
C+,R(k)
∆+ Z

C−,R(k)
∆−

ZC+,R
L,ε ZC−,R

L,ε

= 0 . (5.12)

Again this estimate will follow from cross cancellations between the 4 partition functions.
Following the strategy of step 1, the bulk contribution and the correction to the pressure

from the boundary terms C+, C− can be estimated by Lemma 4.6; they are of the order

Ld exp
{

2Lde−(β/2−2α)εL/10
}
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Thus it is enough to check that the contribution of the perfect walls involved in each
partition function will be negligible wrt to the surface order. We first consider the partition

functions ZC+,R
L,ε , ZC−,R

L,ε . By an analogous argument of the one used to derive (4.39), we

see that the corrections to the pressure induced by the perfect wall Σ are of the order Ld−2.

We consider now the partition functions with multiple reflections. The perfect wall
associated to the box Λi

k is denoted Σi and to each reflection corresponds a particular set
Bi of boundary conditions. The set Bi comprises the sites around the center of reflection
in Σi as well as the sites outside Λi

k which are connected to Σi. The union of the Bi is
denoted by B (see figure 2).

In order to use the estimate of Section 4, we should first check that the assumption (4.5)
holds for the multiple reflections at the scale Lk. Suppose that for some x, n′(x) 6 n(x).
Following the proof of Theorem 4.1 there exists a bijective map T such that KR(x, n) =
T (K(x, n)) for any n < n′(x). Thus KR(x, n′(x)−1) contains only sites in K(x, n′(x)−1)
or in the reflection of K(x, n′(x)−1) wrt one perfect wall. By construction KR(x, n′(x)) is
obtained by adding all the cells connected to KR(x, n′(x)−1), so that it is impossible that
KR(x, n′(x)) contains sites in two distinct perfect walls Σi and Σj without intersecting
the boundaries of Σi and Σj which are included in B. This shows that n(x) < n′(x) and
that assumption (4.5) is satisfied.

In each partition function Z
C+,R(k)
∆+ or Z

C−,R(k)
∆− there are

(
L
Lk

)d−1
reflections at the scale

Lk. Each reflection leads to corrections of the order Ld−2
k and overall we get an effect of

the order Ld−1

Lk
. As k diverges this leads to vanishingly small contributions wrt the surface

order Ld−1.
Combining the previous estimates, we conclude (5.12).

5.2. Properties. We are going to establish some basic properties of the surface tension

Proposition 5.1. For any β large enough such that the model is in the Pirogov Sinai
regime

inf
~n∈Sd−1

τβ(~n) > 0.

The positivity of the surface tension defined in (3.11) was already derived in [BKL]
(nevertheless the existence of the thermodynamic limit was an assumption in [BKL]).

The homogeneous extension on R
d of the surface tension is defined by

∀x ∈ R
d, τβ(x) = ‖x‖2 τβ

(
x

‖x‖2

)
, τβ(0) = 0 .

Proposition 5.2. The surface tension τβ is convex on R
d.

As a consequence [Am], the functional Wβ is lower semi-continuous.

The definition (3.8) of the surface tension in the direction ~n relies on the arbitrary
choice of the orientation of the slab along one of the axis (see section 3). Nevertheless,
since τβ is convex, it is also continuous and therefore the value of the surface tension is
independent of the arbitrary choices in the definition.
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Proof of Proposition 5.1.
According to Theorem 3.1, it is enough to prove that there is cβ > 0 such that uniformly

over ~n the following holds

∀L > 0,∀ε > 1

L
, inf

C+,C−
log

ZC+,C−

L,ε (S+,S−)

ZC+,R
L,ε ZC−,R

L,ε

6 − cβL
d−1 . (5.13)

At this stage the constraint (S+,S−) plays no role and can be dropped. Furthermore, it
is enough to select the most simple barriers C+, C− and to derive

∀L > 0,∀ε > 1

L
, log

Z+,−
L,ε

Z+,R
L,ε Z−,R

L,ε

6 − cβL
d−1 , (5.14)

where Z+,−
L,ε denotes the partition function with mixed boundary conditions in the domain

ΛL,εL. For simplicity we suppose that nd = (~n · ~ed) > 1/
√
d.

As explained after the heuristic expansion (3.10), the precise derivation of the surface
tension requires to compensate precisely the boundary surface tensions τ+

bd and τ−bd appear-

ing in the numerator and the denominator. For (5.13), only a crude bound on τ+
bd and τ−bd

is necessary. More precisely, by (4.38), there is C1 > 0 such that

∣∣∣logZ+,R
L,ε + logZ−,R

L,ε − βP|ΛL,εL|
∣∣∣ 6 C1

nd
Ld−1e−β/2 . (5.15)

Due to the mixed ± b.c. the spin configurations which contribute to Z+,−
L,ε have necessarily

an “open” contour Γ whose spatial support, sp(Γ), ∗-disconnects the top and bottom
faces of ΛL,εL. The complement of Γ̄, see Subsection 4.1 for definitions, is made by a
finite number of regions, say ∆1, ..,∆n, with their boundaries, δ∆i (i.e. all cells in ∆c

i ,
∗-connected to ∆i) where the spins have a constant sign, denoted by ξi. Then

Z+,−
L,ε =

∑

Γ

e−βHh(σΓ̄)
n∏

i=1

Zξi

∆i

By (4.28), we get

Z+,−
L,ε 6 e

β|ΛL,εL|P
∑

Γ

e−βHh(σΓ̄)+β|Γ̄|P
n∏

i=1

ee
−β/2+2αNδ∆i

In the last product we use the inequality

n∑

i=1

Nδ∆i
6 3dNΓ

(as each cell in δ∆i is ∗-connected to a cell of sp(Γ) and the correspondence is at most
3d to 1). Moreover, by the definition of contours and using the fact that h belongs to

(0, e−β/2+2d+1α) (see (4.31))

−βHh(σΓ̄) 6 β|h||Γ̄| − βNΓ 6 − β[1 − e−β/2+2d+1α6d]NΓ .
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The previous estimate implies that for β large enough,

Z+,−
L,ε 6 e

β|ΛL,εL|P
∑

Γ

exp
{
−
(
β[1 − e−β/2+2d+1α6d] − 6d2e−β/2+2d+1α − 3de−β/2+2d+1α

)
NΓ

}

6 eβ|ΛL,εL|P
∑

D3x∗,ND > 2−dLd−1

e−β/2ND23d|D|

where the sum is over all connected sets D of cells (D standing for sp(Γ)) which contain
x∗ a point of ΛL,εL ∗-connected to the surface which separates the + and − boundary

conditions; 23d|D| counts the number of contours with given spatial support. This leads to

Z+,−
L,ε 6 e

β|ΛL,εL|Pe−(β/2−α)2−dLd−1
(5.16)

Inequalities (5.15) and (5.16) imply

Z+,−
L,ε

Z+,R
L,ε Z−,R

L,ε

6 exp
{
− Ld−1

(
2−d(

β

2
− α) − C1

nd
e−β/2

)}

Since nd > 1/
√
d, for β large enough (5.14) holds.

Proof of Proposition 5.2.
The convexity is equivalent to the pyramidal inequality (see eg [MMR]). To any col-

lection of unit vectors (~n1, . . . , ~nd+1), one associates a pyramid ∆(~n1, . . . , ~nd+1) with faces
(Fi)i orthogonal to (~ni)i. Let |Fi| be the area of Fi. Then the pyramidal inequality means
that

|F1| τβ(~n1) 6
d+1∑

i=2

|Fi| τβ(~ni) . (5.17)

The derivation of the pyramidal inequality follows closely the approximation scheme ex-
plained in the second step of the proof of Theorem 3.1. For a given (L, ε), instead of
approximating the surface tension in the slab ΛL,εL(~n1) by localizing the interface in the
smaller slabs ΛLk,εkLk

(~n1), the interface is constrained to follow a more complicated peri-
odic pattern.

More precisely, the hyperplan orthogonal to ~n1 and going through 0, is paved by unit

(d − 1)-dimensional cubes denoted by (C (`))`. For any `, let F (`)
1 be a translate of F1

rescaled appropriately to fit in the cube C (`). The corresponding pyramid is denoted by
∆(`). In this way, a periodic structure is created

Q =
⋃

`

(
C(`) ∪ ∆(`)

)
\ F (`)

1 .

The interface will be forced to cross ΛL,εL(~n1) by following the periodic pattern NQ, where
N = ε2L. This is done by decomposing each flat region of NQ orthogonal to ~ni into slabs
ΛLk,εkLk

(~ni), with Lk � N . The interface is allowed to fluctuate inside each slab, thus
an approximation of the surface tension in each directions ~ni can be recovered. Since the
portion of the interface outside the slabs is small wrt the surface order, its contribution is
negligible and we obtain

Ld−1

nd
τβ(~n1) 6

∑

`

{
|C(`) \ F (`)

1 |
nd

τβ(~n1) +

d+1∑

i=2

|F (`)
i |
nd

τβ(~ni)

}
. (5.18)

Thus inequality (5.18) follows.
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6. Wulff construction

In this section, β is fixed large enough such that the results of Section 4 on the phase
transition regime hold. The Gibbs measure with magnetic field h(β) and periodic boundary
conditions on TN is denoted by µβ,N .

6.1. Coarse graining. A key step in the analysis of the equilibrium crystal shapes is to
extract a precise information from the L

1-estimates by means of a coarse graining. For
this purpose, we adapt in our context a coarse graining which was introduced in [B2].

The typical spin configurations are defined at the mesoscopic scale K = 2k. Let ∂BK =
BK+Kα \ BK be the enlarged external boundary of the box BK , where α is in (0, 1). The
parameter ζ > 0 will control the accuracy of the coarse graining.

Let x be in TN and denote by BK(x) the corresponding B(K)–measurable box. For
any ε = ±1, the box BK(x) is ε-good if the spin configuration inside the enlarged box
BK+Kα(x) is typical, i.e.
(P1) The box BK(x) is surrounded by at least a connected surface of cells in ∂BK(x) with
η–labels uniformly equal to ε.
(P2) The average magnetization inside BK(x) is close to the equilibrium value mε

β of the
corresponding pure phase

∣∣MK(x) −mε
β

∣∣ 6 ζ and MK(x) =
1

(2K + 1)d

∑

i∈BK(x)

σi .

See figure 4.

On the mesoscopic level, each B(K)–measurable box BK(x) is labelled by a mesoscopic
phase label

∀x ∈ TN , uζ
K(x) =

{
mε

β, if BK(x) is ε-good ,

0, otherwise.

|MK −m+
β | 6 ζ

+

K

Kα

d > 2

Figure 4. Coarse grained configuration with overlapping + good blocks.

For large mesoscopic boxes, the typical spin configurations occur with overwhelming
probability.
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Theorem 6.1. Then for any ζ > 0, the following holds uniformly over N

∀{x1, . . . , x`}, µβ,N

(
uζ

K(x1) = 0, . . . , uζ
K(x`) = 0

)
6
(
ρζ

K

)`
, (6.1)

where the parameter ρζ
K vanishes as K goes to infinity.

Despite the fact that the mesoscopic phase labels are not independent, the Theorem
above ensures that the occurence of the bad-blocks is dominated by a Bernoulli measure.
For the sake of completness, the proof of Theorem 6.1 is recalled in the Appendix.

As in (2.6), the macroscopic counterpart of the phase labels is defined by

uζ
N,K(x) = uζ

K

(
ψ−1

N (x)
)
, x ∈ T̂ .

The images of B(K) boxes by ψN are denoted by B̂N,K(x).
Any discrepancy in the L

1–norm between the coarse graining and the local order param-

eter can be neglected with superexponential probability. By construction, for any x ∈ T̂

either |MN,K(x)−uζ
N,K(x)| is smaller than ζ or the block B̂N,K(x) has label uζ

N,K(x) = 0.
Using the domination by Bernoulli percolation, the following holds. Given any δ > 0, one
can choose the accuracy ζ of the coarse graining and a scale K0(δ, β) such that for any
mesoscopic K > K0

lim
N→∞

1

Nd−1
log µβ,N

(
‖MN,K − uζ

N,K‖1 > δ
)

= −∞ . (6.2)

This estimate will enables us to rephrase statements on the local parameter in terms of

the phase labels uζ
N,K which are much easier to handle.

6.2. Equilibrium crystal shapes. The concentration in L
1 of MN,K to the solutions of

the variational problem requires the derivation of precise logarithmic asymptotic in terms
of the surface tension.

Proposition 6.1. Let v be in BV(T̂, {m−
β ,m

+
β }), then one can choose δ0 = δ0(v), such

that uniformly in δ < δ0

lim inf
N→∞

1

Nd−1
log µβ,N

(
‖MN,K − v‖1 6 δ

)
> −Wβ(v) − o(δ) ,

where the function o(·) depends only on β and v and vanishes as δ goes to 0.

Proposition 6.2. For all v in BV(T̂, {m−
β ,m

+
β }) such that Wβ(v) is finite, one can choose

δ0 = δ0(v), such that uniformly in δ < δ0

lim sup
N→∞

1

Nd−1
log µβ,N

(
‖MN,K − v‖1 6 δ

)
6 −Wβ(v) + o(δ) ,

where the function o(·) depends only on β and v and vanishes as δ goes to 0.

6.3. Upper bound. The proof of Proposition 6.2 follows the general scheme of the L
1

Theory. First the boundary ∂∗v is approximated; this enables us to reduce the proof
to local computations in small regions. Then in each region the interface is localized
on the mesoscopic level by using the minimal section argument. In the last step, the
representation of the surface tension (see Definition 3.1) enables us to conclude.

Step 1 : Approximation procedure.
We approximate ∂∗v with a finite number of parallelepipeds.
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Theorem 6.2. For any δ positive, there exists s positive such that there are ` disjoint

parallelepipeds R̂1, . . . , R̂` included in T̂ with basis B̂1, . . . , B̂` of size lenght s and height

δs. The basis B̂i divides R̂i in 2 parallelepipeds R̂i,+ and R̂i,− and the normal to B̂i is
denoted by ~ni. Furthermore, the parallelepipeds satisfy the following properties
∫

bRi

|X bRi(x) − v(x)| dx 6 δ vol(R̂i) and
∣∣∣
∑̀

i=1

∫

bBi

τβ(~ni) dH(d−1)
x −Wβ(v)

∣∣∣ 6 δ,

where X bRi = m+
β 1 bRi,+ +m−

β 1 bRi,− and the volume of R̂i is vol(R̂i) = δsd.

The proof follows from standard arguments of geometric measure theory (see for example
[Ce, B1]). Theorem 6.2 enables us to decompose the boundary into regular sets (see figure
5) so that it will be enough to consider events of the type

{
MN,K ∈

⋂̀

i=1

V(R̂i, δvol(R̂i))

}
,

where V(R̂i, ε) is the ε-neighborhood of X bRi

V(R̂i, ε) =

{
v′ ∈ L

1
(
T̂
) ∣∣

∫

bRi

|v′(x) −X bRi(x)| dx 6 ε
}
.

h

1
2
δh

{v = 1}

{v = −1}

~ni

bBibRi,+

bRi,−

Figure 5. Approximation by parallelepipeds.

According to (6.2), the local averaged magnetization can be replaced by the mesoscopic
phase labels. Therefore Proposition 6.2 is equivalent to the following statement : for any
δ positive, there exists K0 = K0(δ, h), ζ0 = ζ0(δ, h) such that uniformly in K > K0, ζ 6 ζ0

lim sup
N→∞

1

Nd−1
log µβ,N

(
uζ

N,K ∈
⋂̀

i=1

V(R̂i, δvol(R̂i))

)
6 −Wβ(v) + C(β, v)δ. (6.3)

The previous inequality localizes the L
1–estimates into regular macroscopic domains

Ri
N which are the counterparts of the domains ΛsN,δsN (~ni) introduced in Section 3. To

use the definition of the surface tension, one has first to establish the existence of 4 barriers
in Ri

N which will play the roles of C+, C− and S+,S−. The derivation of this boils down to
transfert the macroscopic L

1–bounds into a microscopic statement on the localization of
an interface inside each Ri

N . This is a key step in the L
1–approach and the coarse graining

will play a major role.
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Step 2 : Minimal section argument.

The microscopic images of R̂i,± in TN are denoted Ri,±
N and we set Ri

N = Ri,+
N ∪ Ri,−

N .

For simplicity, we will only prove the existence of a + barrier C i,+ lying in the upper part
of Ri

N and refer to [B2] for a complete derivation. We consider ∂ topRi
N the face of Ri

N

orthogonal to the vector ~ni and contiguous to Ri,+
N . Let Ri,top

N be the set of sites in Ri,+
N at

distance smaller than δs
10N of ∂topRi

N . At a given mesoscopic scale K, we associate to any

spin configuration the set of bad boxes which are the boxes BK intersecting Ri,top
N with uζ

K

labels equal to 0 or −1. For any integer j, we set B i,j
N = Bi

N + j cdK ~ni and define

Bi,j
N =

{
y ∈ Ri,top

N | ∃x ∈ Bi,j
N , ‖y − x‖ 6 10

}
.

The sections Bi
j of the parallelepiped Ri

N are defined as the smallest connected set of

B(K)–measurable boxes BK intersecting Bi,j
N . The parameter cd is chosen such that the

Bi
j are disjoint surfaces of boxes. For j positive, let n+

i (j) be the number of bad boxes in

Bi
j and define

n+
i = min

{
n+

i (j) :
9δs

10cd

N

K
< j <

δs

cd

N

K

}
.

Call j+ the smallest location where the minimum is achieved and define the minimal sec-

tion in Ri,top
N as Bi

j+ (see figure 6).

bad blocks

bad blocks

{v = −1}

{v = 1}

Bj−

i

Bj+

i

R
i,+
N

′

R
i,−
N

′

Figure 6. Minimal sections.

For any spin configuration such that uζ
N,K belongs to

⋂`
i=1 V(R̂i, δvol(R̂i)), the number

of bad boxes in a minimal section is bounded by

n+
i 6 δvol(R̂

i)
10cd
δs

(
N

K

)d−1

6 10cdδs
d−1

(
N

K

)d−1

.
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As
∑`

i=1 |B̂i| = `sd−1 can be controlled in terms of the perimeter of ∂∗v, the total number
of bad boxes is bounded by

∑̀

i=1

n+
i 6 δ C(v)

(
N

K

)d−1

. (6.4)

From the very construction of the coarse graining, the + spin surfaces associated to

overlapping boxes with uζ
N,K labels equal to 1 are connected. As each minimal section

contains mainly + good blocks, there exist almost a + barrier in each minimal section. By
modifying the spin configurations σ on the bad boxes, we will complete these + barriers.

More precisely, we associate to any configuration σ the configuration σ̄ with spins equal
to + on the boundary of each bad box in the minimal section B i

j+ and equal to σ otherwise.

The cost of this surgical procedure can be estimated as follows.

µβ,N

(
uζ

N,K ∈
⋂̀

i=1

V(R̂i, δvol(R̂i))

)
6

∑

(i1,...,ik)

∑

(j1,...,jk)

∑

(n+
1 ,...,n+

k )

µβ,N

(
{n+

1 , . . . , n
+
k }
)
.(6.5)

The r.h.s. takes into account the fact that in the domains Ri1 , . . . , Rik , the minimal
sections are at heights j1, . . . , jk ∈ [9δsN

10K , δsN
K ] and contain n+

1 , . . . , n
+
k bad boxes such that

(6.4) holds. Once the location of the bad boxes is fixed, the number of spin flips to modify

σ into σ̄ is at most C(v)
(

N
K

)d−1
Kd−1. By construction σ̄ belongs to the set A1 of spin

configurations which contain a + barrier in the upper part of each domain Ri
N

µβ,N

(
{n+

1 , . . . , n
+
k }
)
6

k∏

α=1

(
(sN/K)d−1

n+
α

)
exp

(
δ C2(v, β)Nd−1

)
µβ,N

(
A1

)
,

where (sN/K)d−1 refers to the total number of blocks in each minimal sections. Summing
over all the configurations and using (6.4) again, we obtain

∑

(n+
1 ,...,n+

k )

µβ,N

(
{n+

1 , . . . , n
+
k }
)
6 exp

(
o(δ)C3(v, β)Nd−1

)
µβ,N

(
A1

)
. (6.6)

Finally replacing (6.6) in (6.5), we get

µβ,N

(
uζ

N,K ∈
⋂̀

i=1

V(R̂i, δvol(R̂i))

)
6 2`

(
N

K

)`

exp
(
o(δ)C3(v, β)Nd−1

)
µβ,N

(
A1

)
. (6.7)

Repeating the same argument, we can consider instead of A1 an event A which contains
at least 4 barriers in each Ri

N . For any spin configuration in A, we define the set of sites

Ci,+ as the support of the + barrier in Ri,+
N which is the closest to ∂topRi

N . In the same
way, Ci,− is the location of the − barrier in the lower part of Ri

N which is the closest to
(Ri

N )c. By analogy with the notation of Section 3, the set of spin configurations which
contain a + and a − barrier in the domain Λ(C i,+, Ci,−) is denoted by S i = (S i,+,Si,−).

Step 3 : Surface tension estimates.
As a consequence of the previous step, for any spin configuration in A, there exists a

microscopic interface localized in each cube Ri
N . Thus we are now in a good shape to



34 T. BODINEAU AND E. PRESUTTI

check that

lim sup
N→∞

1

Nd−1
log µβ,N (A) 6 −

∑̀

i=1

∫

bBi

τβ(~ni) dHx + C(β, v, δ) , (6.8)

where C(β, v, δ) vanishes as δ tends to 0. Combining the previous inequality with (6.7),
we deduce (6.3). We now proceed in deriving (6.8).

We first pin the interfaces on the sides of each Ri
N by imposing that the boxes on

the boundary of each Ri,+
N (resp Ri,−

N ) parallel to ~ni have η labels equal to 1 (resp −1).

Since the height of Ri
N is δs, this procedure requires to modify at most δsd−1Nd−1 spins.

Therefore this has no further impact on the evaluation of the statistical weights of the
configurations because the cost of flipping these spins is bounded by exp(δC(v)N d−1).

In this way, the domain TN is partionned into the domains Λ(C i,+, Ci,−) and a remainder
which will be denoted by ∆.

µβ,N (A) =
1

Zβ,N

∑

(Ci,+,Ci,−)

Zω
∆

∏̀

i=1

ZCi,+,Ci,−

N,δN (Si) ,

where the boundary conditions ω are imposed by the values of the spins outside ∪iΛ(Ci,+, Ci,−)
Introducing by force the partition functions with the perfect walls we get

µβ,N(A) =
1

Zβ,N

∑

(Ci,+,Ci,−)

Zω
∆

∏̀

i=1

ZCi,+,R
N,δN ZCi,−,R

N,δN

∏̀

i=1

ZCi,+,Ci,−

N,δN (Si)

ZCi,+,R
N,δN ZCi,−,R

N,δN

. (6.9)

By the definition 3.1 of the surface tension, the last term in the RHS is bounded by

∏̀

i=1

ZCi,+,Ci,−

N,δN (Si)

ZCi,+,R
N,δN ZCi,−,R

N,δN

6 exp

(
−Nd−1

[
∑̀

i=1

∫

bBi

τβ(~ni) dHx + |B̂i|c(β,N, δ)
])

, (6.10)

where the remainder c(β,N, δ) satisfies

lim sup
δ→0

lim sup
N→0

c(β,N, δ) = 0 .

In order to complete the derivation of (6.8), it remains to check that

lim
N→∞

1

Nd−1
log


 1

Zβ,N

∑

(Ci,+,Ci,−)

Zω
∆

∏̀

i=1

ZCi,+,R
N,δN ZCi,−,R

N,δN


 = lim

N→∞

1

Nd−1
log

ZR
β,N

Zβ,N
= 0 ,

where ZR
β,N denotes the partition function in TN where the interactions have been reflected

in the middle of each Ri
N . The previous statement follows readily from (4.40) where the

contribution of the reflected boundary conditions to the pressure are proven to be of order
Nd−2. Nevertheless in order to apply (4.40), we have first to check that the assumption
(4.5) holds for the particular topology imposed by the reflections. If assumption (4.5) fails,
it is easy to see that one can decompose each parallelepiped Ri

N into smaller parallelepipeds

{Ri,k
N }k of side lenght h′ � h for which Theorem 6.2 still holds (see the proof in [B1]). If

h′ is smaller than the mutual distance between the parallelepipeds {Ri
N}i, a set KR(x, n)

can not intersect two regions Rj,k
N and Rj′,k′

N with j 6= j′ without touching the boundary
conditions B. Following the argument detailled in the third step of Subsection 5.1, we can
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then exclude multiple reflections between cubes {Ri,k
N }k. Thus assumption (4.5) is also

valid in this setup.

6.4. Lower bound. In order to derive Proposition 6.1, it is enough to consider the typical
spin configurations which contain a microscopic contour in a neighborhood of the bound-
ary of ∂∗v. At this stage, Theorem 3.1 becomes necessary.

Step 1 : Approximation procedure.

We first start by approximating the boundary ∂∗v by a regular surface ∂V̂ . A polyhedral
set has a boundary included in the union of a finite number of hyper-planes. The surface
∂∗v can be approximated as follows (see figure 7)

Theorem 6.3. For any δ positive, there exists a polyhedral set V̂ such that

‖1IbV − v‖1 6 δ and
∣∣Wβ(V̂ ) −Wβ(v)

∣∣ 6 δ.
For any s small enough there are ` disjoint parallelepipeds R̂1, . . . , R̂` with basis B̂1, . . . , B̂`

included in ∂V̂ of side length s and height δs. Furthermore, the sets B̂1, . . . , B̂` cover ∂V̂

up to a set of measure less than δ denoted by Û δ = ∂V̂ \⋃`
i=1 B̂

i and they satisfy

∣∣∣
∑̀

i=1

∫

bBi

τβ(~ni) dH(d−1)
x −Wβ(v)

∣∣∣ 6 δ,

where the normal to B̂i is denoted by ~ni.

The proof is a direct application of Reshtnyak’s Theorem and can be found in the paper
of Alberti, Bellettini [AlBe].

Figure 7. Polyhedral approximation.

bUδ

~ni

bBj

bRi

{v = −1}

Using Theorem 6.3, we can reduce the proof of Proposition 6.1 to the computation of
the probability of {‖MN,K − 1IbV ‖1 6 δ}. According to (6.2) the estimates can be restated
in terms of the mesoscopic phase labels. It will be enough to show that : for any δ > 0,
there exists ζ = ζ(δ) and K0(δ) such that for all K > K0

lim inf
N→∞

1

Nd−1
log µβ,N

(
‖uζ

N,K − 1IbV
‖1 6 δ

)
> −Wβ(V̂ ) − o(δ), (6.11)

where the function o(δ) vanishes as δ goes to 0.
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Step 2 : Localization of the interface.

The images of V̂ , R̂i and Û δ in TN will be denoted by VN , Ri
N and U δ

N . We split Ri
N

into Ri,−
N and Ri,+

N which are the microscopic counterparts of V̂ ∩ R̂i and R̂i \ V̂ .

We will enforce the occurrence of a microscopic interface along the boundary ∂V̂ . As
in the derivation of the upper bound, the domains Ri

N are the counterparts of ΛN,δN (~ni).

Let Ai,+ be the event that there are two + barriers in Ri,+
N and Ai,− the analogous event

with two − barriers in Ri,−
N . The ± barrier in Ri,±

N which is the closest from (Ri
N )c is

denoted by Ci,±. We set A =
⋂`

i=1 Ai,+ ∩Ai,−. Let us also define Di,+ (resp Di,−) the set

of spin configurations such that the η-labels are equal to 1 (resp −1) on the sides of R i,+
N

(resp Ri,−
N ) parallel to ~ni. In order to construct a closed contour of spins surrounding VN ,

we define D as the set of configurations in Di,+ and Di,− such that the blocks on one side
of U δ

N have η-labels − and + in the other side.

Any spin configuration in A ∩ D contains a microscopic interface which decouples VN

from its complement. One has

µβ,N

(
‖uζ

N,K − 1IbV ‖1 6 δ
)
> µβ,N

({
‖uζ

N,K − 1IbV ‖1 6 δ
}
∩A ∩D

)
. (6.12)

The spin configurations inside VN (resp V c
N ) are surrounded by − (resp +) boundary

conditions, so that they are in equilibrium in the − (resp +) pure phase. Bulk estimate
imply that one can choose s small enough, ζ ′ = ζ ′(δ) and K ′

0 = K ′
0(δ) such that

lim
N→∞

µβ,N

(∫

bV c

|uζ′

N,K(x) −m+
β | dx >

δ

2
or

∫

bV
|uζ′

N,K(x) −m−
β | dx >

δ

2

∣∣∣ A∩D
)

= 0 .

(This limit can be obtained by using a proof similar to the one of Theorem 6.4).
So that (6.12) can be rewritten for N large enough as

µβ,N

(
‖uζ′

N,K − 1IbV
‖1 6 δ

)
>

1

2
µβ,N (A∩D) . (6.13)

Step 3 : Surface tension.

Let Λ be the union of the sets Λi = Λ(Ci,+, Ci,−). The configurations in the event A∩D
contain two closed surfaces with + and − blocks which partition the domain TN into 3
regions.

TN = Λ ∪ ∆+ ∪ ∆− ,

where ∆± represents the location of the ± pure phases and Λ is concentrated along the
interface. We proceed now to evaluate the RHS of (6.13)

µβ,N (A∩D) >
1

ZN

∑

Ci,+,Ci,−

Z+
∆+Z

−
∆−

∏

i

ZCi,+,Ci,−

Λi
(Si) ,

where we used analogous notation to Section 3 for the partition function with mixed bound-
ary conditions. Introducing the partition functions with reflected boundary conditions we
get

µβ,N (A∩D) >
1

ZN

∑

Ci,+,Ci,−

Z+
∆+Z

−
∆−Z

Ci,+,R
Λi

ZCi,−,R
Λi

∏

i

ZCi,+,Ci,−

Λi
(Si)

ZCi,+,R

Λ+
i

ZCi,−,R

Λ−

i

, (6.14)
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where Λ±
i refers to the sets Λ±(Ci,±) which were introduced in subsection 3.2. The last

term in the RHS is an approximation of the surface tension in each domain Λi, therefore
Theorem 3.1 implies

inf
Ci,+,Ci,−

1

Nd−1

∑

i

log
ZCi,+,Ci,−

Λi
(Si)

ZCi,+,R

Λ+
i

ZCi,−,R

Λ−

i

> −
∑

i

∫

bBi

τβ(~ni) dH(d−1)
x − P (v)c(δ,N) , (6.15)

where limδ→0 limN→∞ c(δ,N) = 0 and P (v) is the perimeter of v.
It remains to check that

lim
N→∞

1

Nd−1
log


 1

ZN

∑

Ci,+,Ci,−

Z+
∆+ Z

−
∆− Z

Ci,+,R

Λ+
i

ZCi,−,R

Λ−

i


 = 0 . (6.16)

Combining inequalities (6.15) and (6.16) we see that

lim inf
N→∞

1

Nd−1
log µβ,N (A∩D) > −

∑̀

i=1

∫

bBi

τβ(~ni) dH(d−1)
x − o(δ) .

Using Theorem 6.3 and letting δ vanish, we conclude the proof of Proposition 6.1.

We turn now to the derivation of (6.16). Since the reflected boundary conditions de-
couple the system, the numerator should be understood as the product of two partitions
functions associated to the sets ∆̄+ = ∆+ ∪i Λ+(Ci,+) and ∆̄− = ∆− ∪i Λ−(Ci,−), where
Λ(Ci,±) denotes the part of Λi. It is important to note that contrary to ∆±, the sets ∆̄±

are independent of the choice of the surfaces C i,±. In particular, following the notation of
Section 3, ∑

Ci,+

Z+
∆+ Z

Ci,+,R

Λ+
i

= ZR
∆̄+(Ci,+),

where the RHS denotes the partition function on ∆̄+ under the constraint that in each

R
i,+
N there is a + barrier. Applying the same strategy as for the derivation of (5.11), we

can check that

lim
N→∞

1

Nd−1
log

ZR
∆̄+(Ci,+)

ZR
∆̄+

= 0 .

This implies that (6.16) is equivalent to

lim
N→∞

1

Nd−1
log

ZR
∆̄+ Z

R
∆̄−

ZN
= 0 . (6.17)

The partition functions in the numerator take also into account the constraints imposed
by the set D on the spins along the set U δ

N and on the sides of Ri
N parallel to ~ni. These

constraints can be released up to a small cost wrt the surface order. This comes from the
fact that the event D is supported by at most c(d, δ)N d−1 edges where c(d, δ) vanishes as
δ goes to 0. Therefore the probability of D is negligible with respect to a surface order
and we get ∣∣∣∣∣log

ZR
∆̄+ Z

R
∆̄−

ZR
N

∣∣∣∣∣ 6 c(d, δ)N
d−1 , (6.18)

where ZR
N is the unconstrained partition function on TN for which the interactions in the

middle of each Ri
N have been modified and replaced by perfect walls. Again by the same

considerations as in the last argument of the proof of the upper bound (see Subsection
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6.3), one check that one can find a polyhedral approximation for which assumption (4.5)
is satisfied. The corrections to the pressure induced by the reflection are negligible wrt
the surface order (see (4.40)) so that

lim
N→∞

1

Nd−1
log

ZR
N

ZN
= 0 .

This, combined with (6.18) implies the validity of (6.16).

6.5. Exponential tightness. The purpose of this Subsection is to prove that phase co-
existence cannot occur by creation of many small droplets. Rephrased in a mathematical
way, this means that with an overwhelming probability, the configurations will concentrate
close to the compact set

Ka =
{
v ∈ BV(T̂, {m−

β ,m
+
β }) | P ({v = m−

β }) 6 a
}
, (6.19)

where P denotes the perimeter and a will be chosen large enough.

Proposition 6.3. There exists a constant C(β) > 0 such that for all δ positive one can
find K0(δ) such that for K > K0

∀a > 0, lim sup
N→∞

1

Nd−1
log µβ,N (MN,K 6∈ V(Ka, δ)) 6 − C(β) a,

where V(Ka, δ) is the δ-neighborhood of Ka in L
1(T̂).

The estimate (6.2) allows us to shift our attention from the local averaged magnetization
to the mesoscopic phase labels. In particular Proposition 6.3 follows from

Theorem 6.4. Fix ζ > 0. For every a > 0 and δ > 0 there exists a finite scale K0(δ),
such that for all K > K0

lim sup
N→∞

1

Nd−1
log µβ,N

(
uζ

N,K 6∈ V(Ka, 2δ)
)
6 − c(β,K)a , (6.20)

where c(β,K) is a positive constant.

The core of the proof relies on the control of the phase of small contours by means of an
entropy/energy argument. The argument is standard and depends only on the structure
of the coarse graining. We refer the reader to [BIV1] (Theorem 2.2.1), where Proposition
6.4 was derived in a complete generality. Finally, notice that similar arguments can easily
be adapted to multi-phase models (see Remark 3.4 in [BIV2]).

Theorem 2.1 can be obtained by combining Propositions 6.3, 6.1, 6.2. Since Ka is
compact with respect to the L

1 topology (see [EG]), the exponential tightness property
6.3 enables us to focus only on a finite number of configurations close to Ka. The precise
asymptotic of these configurations is then estimated by Propositions 6.1, 6.2 (see [B1] for
details).

Appendix A. Proof of Theorem 6.1

The magnetic field is equal to h(β) and omitted from the notation throughout the proof.
The proof follows the argument developed in [B2].
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Step 1. Let us start with a single box. If BK(x) is not a good box then either there is
a contour of length at least Kα crossing the enlarged boundary or conditionally on the
event that the box BK(x) is surrounded by a surface of η-block spins of sign εx, the
magnetization MK(x) is atypical. These two occurrences can be estimated separately.
Applying the Peierls estimate (4.11), we get

µβ,N

(
there is a contour crossing ∂BK(x)

)
6 Kd−1 exp(−cβKα) . (A.1)

Conditionally on the occurrence of a connected surface S of η-block spins of sign εx sur-
rounding the box BK(x), the configurations inside BK(x) are decoupled from the exterior.
We first use Tchebyshev inequality

µβ,N

(
{|MK(x) −mεx

β | > ζ}
∣∣ S
)
6

1

ζ2K2d
µεx

β,int(S)


(

∑

i∈BK(x)

σi −mεx
β

)2

 .

where int(S) is the region surrounded by S. As S has been chosen as the closest surface to
(BK+Kα)c, the magnetization inside the box BK(x) is measurable after the conditioning.
Classical Pirogov-Sinai theory ensures also that under the assumptions of Theorem 4.2,
the correlations decay exponentially in the εx-pure phase, so that we obtain

µεx

β,h,int(S)

(
{|MK(x) −mεx

β | > ζ}
)
≤ 1

ζ2Kd
χ , (A.2)

where the susceptibility χ =
∑

i∈Zd µ
+
β (σ0;σi) is finite.

Step 2. In order to evaluate the probability of the event
{
uζ

K(x1) = 0, . . . , uζ
K(x`) = 0

}

the partition B(K) is sub-divised into cd sub-partitions (B(K)
i )i 6 cd

such that two cubes of

size K+Kα centered on two sites of B(K)
i are disjoint. By applying Hölder inequality, the

estimate (6.1) is reduced to cubes which are not nearest neighbors.

µβ,N

(
uζ

K(x1) = 0, . . . , uζ
K(x`) = 0

)
6

cd∏

i=1

µβ,N

(
∀xj ∈ D(K)

i , uζ
K(xj) = 0

) 1
cd .

Step 3. The event
{
uζ

K(x1) = 0, . . . , uζ
K(x`) = 0

}
can be decomposed into 2 terms : on

`′ boxes the density is atypical, whereas there are contours crossing the ` − ` ′ enlarged
boundaries of the remaining boxes.

For a given collection of j boxes, we define

Aj = {The j boxes are surrounded by ± surfaces, but their averaged magnetizations

are non typical}
Bj = {There are contours crossing the j enlarged boundaries of the boxes} .
The probabilities of both events can be evaluated as follows. As the j boxes are disjoint

and the surfaces of blocks decouple the configurations inside each box

µβ,N (Aj) 6
(
µβ,N(A1)

)j
6
(
αK

)j
,

where the constant αK = χ
ζ2Kd was introduced in (A.2).
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µβ,N (Bj) =

j∑

i=1

µβ,N

(
{∃ i contours crossing the j enlarged boundaries}

)
.

We choose i blocks as starting points of these contours. Then we have to evaluate
∑

|Γ1|+···+|Γi| > jKα

µβ,N (Γ1, . . . ,Γi) ,

where the contours (Γ1, . . . ,Γi) have also to cross each boundaries of the j cubes.
Let nr be the number of boundaries crossed by the contour r

∑

|Γ1|+···+|Γi| > jKα

µβ,N (Γ1, . . . ,Γi) 6
∑

n1+···+ni=j

∑

(Γr ,nr)

µβ,N (Γ1, . . . ,Γi) .

If a contour crosses nr boundaries then it has a length at least nrK
α +(nr − 1)K because

the distance between the boxes is at least K. Thus

∑

|Γ1|+···+|Γi| > jKα

µβ,N(Γ1, . . . ,Γi) 6
∑

n1+···+ni=j

i∏

r=1

exp(−cβnrK
α − cβ(nr − 1)K)

6 exp(−cβjKα)

(
∞∑

n=1

exp(−cβ(n− 1)K)

)i

6 Ci exp(−cβjKα) .

µβ,N (Bj) 6

j∑

i=1

(
j

i

)
K(d−1)iCi exp(−cβjKα) 6 exp(−cβ jKα)(1 + CKd−1)j = (α′

K)j .

where the constant α′
K vanishes as K goes to infinity.

Combining both estimates, we obtain

µβ,N

(
uζ

K(x1) = 0, . . . uζ
K(x`) = 0

)
6
∑̀

`′=1

(
`

`′

)
µβ,N (A`′)

1/2µβ,N (B`−`′)
1/2
6
(
αK + α′

K

)`
.

This completes the proof.
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[MMR] A. Messager, S. Miracle-Solé, J. Ruiz, Surface tension, step free energy and facets in the equilibrium

crystal , J. Stat. Phys. 79, (1995).
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