
STABILITY OF INTERFACES AND STOCHASTIC DYNAMICS
IN THE REGIME OF PARTIAL WETTING.

T. BODINEAU AND D. IOFFE

Abstract. The goal of this paper is twofold. First, assuming strict convexity of
the surface tension, we derive a stability property with respect to the Hausdorff
distance of a coarse grained representation of the interface between the two pure
phases of the Ising model. This improves the L1 description of phase segregation.

Using this result and an additional assumption on mixing properties of the
underlying FK measures, we are then able to derive bounds on the decay of the
spectral gap of the Glauber dynamics in dimensions larger or equal to three. These
bounds are related to previous results by Martinelli [Ma] in the two-dimensional
case. Our assumptions can be easily verified for low enough temperatures and,
presumably, hold true in the whole of the phase coexistence region.

1. Introduction

During the last decade, a series of studies enabled to derive rigorously the oc-
currence of phase segregation starting from a model with microscopic interactions.
The phase separation phenomenon has been established for a fairly general class of
models, but the correspondence between the microscopic models and the equilibrium
crystal shapes (solution of the Wulff variational problem) is extremely loose. Thus,
important questions remain and a complete theory of phase coexistence is far from
being achieved.

A thorough description of the phase coexistence phenomena should include a
characterization of the structure of the interface (thickness, fluctuation, detailed
structure ...) as well as an understanding of the relaxation of the system to the pure
phases away from the interface. So far such complete program has been achieved
only in the case of two dimensional nearest neighbor Ising model [DKS, DH, ISc, Pf,
PV, BCK]. The strategy developed in this context, relies on the one dimensional
structure of the interface; this enabled to derive not only the Wulff construction,
but as well quantitative statements on the microscopic configurations: existence of
a unique large droplet, localization of the interface wrt the Hausdorff distance ...
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For systems in three or more dimensions the interface is a more complicated
geometrical object and a different approach of phase coexistence, the L1-theory, was
initiated in order to bypass the complexity of the microscopic configurations.

In this new framework, a weaker characterization of the phase segregation is ob-
tained in terms of local averages of the magnetization. In this way, the occurrence of
macroscopic equilibrium crystals whose shapes are solutions of a variational problem
can be predicted, but unlike the two dimensional case, nothing can be inferred on
the interface. In fact one can not even conclude from these results that the equilib-
rium crystal contains only a pure phase: as the statements are formulated in terms
of averages and interfaces are understood only in L1-sense, one could not rule out
the situation when equilibrium crystals contain minority phase impurities or even
are made of a collection of small crystals glued together .

The first step is to propose a relevant interpretation of the interface. Let us, as
an example, consider a three dimensional Ising model with Dobrushin boundary
conditions, i.e. mixed boundary conditions which enforce an horizontal interface. In
this case, the interface can be unambiguously defined as the unique open contour in
the system. At low temperature, the interface is a rigid two dimensional hyperplane
with some protuberances attached to it (e.g. one dimensional filaments). The statis-
tic of these excitations is known and the open contour which forms this interface is
localized wrt the Hausdorff distance. On the one hand, as the temperature increases
above the roughening temperature the interface is expected to be macroscopically
flat but with some logarithmic fluctuations. However, as the temperature approaches
the critical temperature, the behavior of the microscopic contour becomes irregular
and in particular one dimensional filaments are conjectured to percolate through
the whole system [ABL]. Thus a microscopic representation of the interface is then
irrelevant since the microscopic contour might be completely delocalized (see [CePi]
for a discussion on this phenomenon). The way out is to renormalize the sys-
tem at a proper mesoscopic scale for which the interface becomes regular. This is
characteristic of the physicists heuristics which says that the complex microscopic
configurations can be reduced to an effective interface model and should share the
same properties on a suitable mesoscopic scale.

As mentioned previously, the L1-theory sheds little light on the statistical proper-
ties of random interfaces. The goal of this paper is to show that, nevertheless, on a
mesoscopic level some smoothness properties of the interface are restored. Though
much more modest than the heuristic picture described above, our results show that
the low dimensional excitations of the coarse grained interface disappear and we re-
cover a macroscopic stability with respect to the Hausdorff distance of the random
interface.

The exact statement of this stability result is given in Subsection 3.1 along with
some comments on the implications for the statistical Hausdorff stability of higher
dimensional mesoscopic Wulff shapes.

The second part of this paper deals with dynamical properties, we derive bounds
on the logarithmic asymptotics of the spectral gap of the Glauber dynamics. Such
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asymptotics are non trivial whenever the energy level of the bottleneck between two
pure, though possibly metastable, phases is strictly higher than the free energy of
each of the respective phases.

For a two dimensional Ising model with free boundary conditions, Martinelli de-
rived in [Ma] the precise logarithmic asymptotics of the spectral gap. He proved that
the dominant time scale to reach one equilibrium state starting from the other one
is the creation of an interface; once created the interface moves in a much shorter
amount of time until the other equilibrium state is reached. Martinelli devised very
ingenious techniques in order to control the occurrence of the interface and its mo-
tion, in particular the dynamical estimates were reduced to some statements on the
equilibrium measure. The analysis of [Ma] has been based on very specific facts
about the Hausdorff stability of the 2D nearest neighbor Ising model interfaces, on
the closely related exponential mixing properties of finite volume pure state and
on exact surface order large deviation asymptotics for the magnetization inside the
phase coexistence region. In higher dimensions, we are going to use the large devia-
tion estimates of the L1-theory and the Hausdorff stability of the random interface
on the macroscopic scale in order to extend the results of [Ma].

The upper and lower bounds derived in higher dimensions on the spectral gap
are expressed in terms of variational principles for which (contrary to the two-
dimensional) the solution is not explicit. For this reason, we cannot prove that
the lower and upper bound coincide as it was shown in the two dimensional case
[Ma]. A more complete discussion on the interplay between the metastability and
the wetting is postponed to Subsection 3.2.

Apart from being dependent on the validity of Pisztora coarse graining (c.f. Sub-
section 2.2) our proof of the interface stability relies on strict convexity of surface
tension. The analysis of the spectral gap asymptotics for the Glauber dynamics re-
quires an additional assumption on exponential mixing properties of the underlying
FK measures. Both assumptions are described and discussed in Subsection 2.5 and
are expected to hold for a wide range of sub-critical temperatures.

While completing this paper, we learnt about the recent work by N. Sugimine
[Su1, Su2] on upper and lower bounds for spectral gap for the three dimensional low
temperature Ising model with mixed +/∅ boundary conditions.

2. Notations and Assumptions

2.1. The microscopic model. We consider the nearest neighbor ferromagnetic
Ising model in dimension d > 2. For any domain ∆ ⊂ Zd and boundary conditions
η outside ∆, the Gibbs measure on {±1}∆ at inverse temperature β will be denoted
by µη

β,∆. Thus, given σ ∈ {±1}∆,

µη
β,∆(σ) =

1

Zη
β,∆

exp {−βHη
∆(σ)} ,
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where the nearest neighbour Hamiltonian Hη
∆ is given by

Hη
∆(σ) = −1

2

∑

i∼j∈∆

σiσj −
∑

i∈∆
j∈Z

d\∆

ηjσi.

There exists a critical value βc such for any β > βc a phase transition, characterized
by symmetry breaking, occurs. Throughout the paper, we always consider an inverse
temperature β for which the system is in a phase coexistence regime and, we denote
by m∗(β) the spontaneous magnetization in the + phase.

It will be convenient to work with an alternative representation of the microscopic
system, namely the FK representation. Given ∆ ⊂ Zd let Ed

∆ be the set of bonds, i.e.
the pairs of nearest neighbor vertices in Zd, with at least one end-point belonging
to ∆. The percolation configuration ξ on Ed

∆, or with an abuse of notation on ∆, is

an element ξ ∈ Ξ∆
∆
= {0, 1}Ed

∆. We shall suppress the domain sub-index and write
Ξ whenever ∆ = Zd.

Given ξ ∈ Ξ and a bond b ∈ Ed, we say that b is open if ξ(b) = 1. Two sites of
Z

d are said to be connected if one can be reached from another via a chain of open
bonds. Thus, each ξ ∈ Ξ splits Zd into the disjoint union of maximal connected
components, which are called the open clusters of Ξ. Given a finite subset B ⊂ Zd

we use cB(ξ) to denote the number of different open finite clusters of ξ which have
a non-empty intersection with B.

Below we give a general definition of FK measures which are related to the finite
volume spin Gibbs states on ∆ ⊂ Zd. We use a provisional notation intended to
illustrate the connection between the Gibbs states and the FK measures. A more
precise notation will be introduced later for particular cases which show up in the
main body of the paper.

The set of bonds connecting ∆ to ∆c will be denoted by E∂∆. The boundary
conditions are specified by a frozen percolation configuration π ∈ Ξ \Ξ∆ and by the
collection p ∈ [0, 1 − e−2β]E∂∆, which describes the ”activity” of the bounds on the
boundary of ∆.

We write ξ ∨ π for the joint configuration in Ξ and define the finite volume FK
measure on ∆ with the boundary conditions π and p as:

Φπ,p
∆ (ξ)

∆
=

1

Zπ
∆

(∏

b

(
1 − p(b)

)1−ξb
(
p(b)

)ξb

)
2c∆(ξ∨π)(ξ) , (2.1)

where, for a bond b = (i , j) with (i , j) ∈ ∆, we set p(b) = p(β, b) = 1 − exp(−2β);
otherwise if b is in E∂∆ the corresponding percolation probability p(b) = p(b). The
two extreme configurations such that p(b) ≡ 1 − exp(−2β) and π ≡ 1 and, respec-
tively, p(b) ≡ 0 or π ≡ 0 for all b in E∂∆ lead to the FK measures with wired Φw

∆

or free Φf
∆ boundary conditions respectively. The intermediate values of p have

a natural interpretation as a magnetic boundary field. This enables to represent
the Gibbs measures for which the boundary conditions η have only non-negative
components.
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If η has only non negative coordinates, the Gibbs state µη
β,∆ can be reconstructed

as follows (see [ES]): First for any b = (i , j) ∈ E∂∆ with j ∈ ∆c set p(b) =
p(β, η, b) = 1 − e−2ηjβ. Next sample a bond configuration ξ ∈ Ξ∆ from the FK
measure Φw,p

β,∆, and paint with 1 all the clusters of ξ connected to the regions of the
boundary where ηi > 0, whereas all the remaining clusters of ξ are to be painted
into ±1 with probability 1/2 each. The corresponding joint bond-spin probability
measure is denoted by P

η
β,∆.

P
η
β,∆(σ, ξ) = P η,ξ

∆ (σ) Φπ,p
β,∆(ξ) ,

where P η,ξ
∆ denotes the painting measure. The Gibbs state µη

β,∆ is then recovered as
the σ-marginal of P

η
β,∆.

The representation for more general boundary conditions which correspond to
sign changing η will be discussed later.

2.2. Scales and coarse graining. All scales are binary. The running microscopic
scale will be N = 2n and the associated renormalization scale K = 2k. We shall
work either with fixed finite scales K or else we shall explicitly relate K to N as
K = Na, where the fixed positive number a = a(n) (the dependence on n is only in
order to be compatible with the binary notation) satisfies

0 < a1 6 a 6 a2 < 1/d. (2.2)

All our computations go through if instead of K = N a we choose the mesoscopic
scale K = C logN for C large enough.

We introduce now the mesoscopic partitions of DN = {1, . . . , N}d. At each fixed
mesoscopic scale K = 2k we split the microscopic domain DN into the disjoint union

of shifts of the mesoscopic box BK
∆
= {−1

2
K + 1, . . . , 1

2
K}d. These shifted boxes are

centered at the lattice points from the rescaled set DN,K
∆
= K

(
DN/K − (1/2, . . . , 1/2)

)
:

DN =
∨

i∈DN,K

BK(i), (2.3)

where BK(i)
∆
= i+ BK = (i + BK) ∩ Zd.

As explained in the introduction a key tool to understand the interface behavior is
a renormalization procedure. In this paper we will use a coarse graining implemented
by Pizstora [Pi] by means of the FK representation. We recall below the main
features of this coarse graining.

First of all we shall set up the notion of good box on the K-scale which charac-
terizes a local equilibrium in a pure phase

Definition 2.1. Let us say that a K-box BK(i) ⊂ DN , centered in i, is good with
respect to the percolation configuration ξ ∈ Ξ if
(1) There exists a crossing cluster C∗ = C∗(B2K(i)) connected to all the faces of the
inner vertex boundary of the 2K-box B2K(i).
(2) Any FK-connected cluster of vertices of B2K(i) which has a diameter larger than
K/10 is necessarily connected to C∗.
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Fundamental techniques developed by Pizstora in [Pi] imply that there exists B
a subset of ]βc,∞[ for which the following holds: for any β ∈ B, there is a constant
c > 0, such that for all scales K > K0 large enough (and, in particular, for our basic
scale K = Na),

inf
π

Φπ,p
B2K (i) (ξ is a good configuration in BK(i)) > 1 − exp(−cK) , (2.4)

uniformly in the boundary conditions π, boundary bond activities p and in i ∈ DN,K.

The important point is that the set B is defined in a non perturbative way (see
[Pi]). In particular, it is conjectured to coincide with ]βc,∞[.

2.3. Equilibrium setting. In equilibrium, our result on the localization concerns
primarily interfaces imposed by mixed boundary conditions. We also investigate the
consequences of the localization on the structure of the mesoscopic droplet when two
phases coexist. We define below the two corresponding frameworks.

2.3.1. Pure boundary conditions. The Gibbs measure on the set DN = {1, . . . , N}d

with + boundary conditions will be denoted by µ+
N and the corresponding FK mea-

sure by Φw
N .

An important quantity to study phase coexistence is the surface tension which we
now introduce. Let ~n ∈ Sd−1 be a unit normal and assume for the definiteness that
(~n,~ed) > 1/

√
d. Let Z+

N and Z±
N(~n) be the partition functions on {−N, . . . , N}d with

respectively “+” and mixed boundary conditions, the latter being defined by σi =
sign((~n, i)), with sign(0) = 1. The bulk surface tension in the direction orthogonal
to ~n is

τ(~n)
∆
= lim

N→∞
− (~n,~ed)

(2N)d−1
log

Z±
N(~n)

Z+
N

(2.5)

The equilibrium crystal shape of volume a > 0 is the Wulff shape Ka defined by

Ka =

(
a

|K|

)1/d

K, where K =
⋂

~n

{
x ∈ R

d, (x · ~n) 6 τ(~n)
}
. (2.6)

For our purpose, it will be more convenient to recall the phase coexistence The-
orem directly in the FK coarse grained setting. For any configuration ξ in ΞDN

, we
partition the set DN,K into 3 sets (not necessarily connected)

DN,K = C+
N(ξ)

∨
C0

N(ξ)
∨

C−
N(ξ) , (2.7)

where C+
N(ξ) denotes the set of good boxes BK for which the unique crossing cluster

(see Definition 2.1) is connected to the boundary of DN , C−
N(ξ) denotes the set of

good boxes BK for which the crossing cluster is not connected to the boundary of
DN and C0

N (ξ) the boxes which are not good.
The phase coexistence will be imposed by a volume constraint at the mesoscopic

level defined by

VN,a =

{
ξ;

∣∣C−
N(ξ)

∣∣ > a
Nd

Kd

}
.
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This is the set of configurations for which there is a density at least a > 0 of good
blocks detached from the boundary (i.e. of the − phase in the spin language).

The L1-approach (see [CePi, BIV1]) implies that for any β ∈ B there is a sequence
(δN) vanishing to 0 such that

lim
N→∞

Φw
N


 ⋃

i∈DN,K

{
ξ;

∣∣ (Zd ∩ (i + Ka(N/K)d)
)
∆C−

N

∣∣ < δN
Nd

Kd

}∣∣∣ VN,a


 = 1 ,

where ∆ denotes the symmetric difference of the sets in DN,K and | · | the cardinal
of a set.

2.3.2. Mixed boundary conditions. Let Ld be the lattice half-space {i ∈ Zd : id > 0}.
The exteriour boundary of DN = {1, . . .N}d in Ld will be denoted by ∂extDN . The
bottom face of DN is denoted by ∂int

b DN = {1, . . . , N}d−1 ×{1}. We consider mixed
boundary conditions equal to 1 in ∂extDN and to −1 outside Ld. The corresponding
Ising measure will be denoted µ±

N accordingly.

The FK representation of the mixed boundary conditions requires some care.
Consider the graph

(
Ld,Ld

)
, where the edge set Ld consists of all (unoriented) pairs

of nearest neighbour vertices (i, j) ⊂ Ld . Let Ld
N denote the set of bonds of Ld

which have a non-empty intersection with DN .
It happens to be convenient to augment the graph (Ld,Ld) with a ghost site g

connected to all the sites in the bottom layer ∂ int
b DN . In this way the edge set for

the model is given by

Ld
N,±

∆
= Ld

N

⋃ {
(i, g)

∣∣ i ∈ ∂int
b DN

}
.

The sample space for finite volume FK states on DN is given by

ΞN,±
∆
= {0, 1}Ld

N,±.

Define the FK percolation event JN ⊂ ΞN,± as

JN
∆
=
{
ξ ∈ ΞN,±

∣∣∣ g 6↔ ∂ext
DN

}
, (2.8)

and set

Φ±
N ( · ) = Φw

N

(
·
∣∣JN

)
.

2.4. Dynamical setting: boundary fields. In the second part of the paper, we
are going to study the slow relaxation of the Glauber dynamics which occurs when
magnetic fields are applied on the faces of DN . Let h = (h1, . . . , h2d) be a vector
with non negative coordinates. The Gibbs measure with each boundary magnetic
field hi applied on the ith-face of the cube DN is denoted by µh

N . In this way free
boundary conditions correspond to h = (0, . . . , 0), whereas pure + boundary con-
ditions correspond to h = (1, . . . , 1). As we shall explain below our results on the
relaxation speed are non-trivial only when the boundary magnetic fields h1, . . . , h2d

are in the partial wetting regime, which is the case for example for free boundary
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conditions, but not for the pure + ones.

In a metastable regime, the rescaled evolution of the system can be described
by an energy landscape which is related to equilibrium thermodynamic quantities.
Therefore we first proceed in recalling the basic framework of equilibrium phase
coexistence (we refer to [BIV1] for a detailed review). A heuristic discussion of
the interplay between the equilibrium properties and the dynamics is postponed to
subsection 3.2. The basic thermodynamic quantities in this context are the bulk
surface tension (2.5) and the boundary free energy.

The influence of a magnetic field h ∈ R applied along the boundary leads to a
specific surface energy. Consider the partition functions Z−,h

N and Z+,h
N with “−”

and “+” boundary conditions on Ld \ DN and h outside Ld. The boundary free
energy ∆h is defined as the difference between the interfacial free energies of the
coexisting phases:

∆h
∆
= lim

N→∞

1

Nd−1
log

Z+,h
N

Z−,h
N

. (2.9)

We refer the reader to [FP1] and [FP2] for a detailed study of the boundary surface
tension as well as related phenomena.

On the macroscopic level the equilibrium phase coexistence is governed by a vari-
ational principle involving the bulk surface tension and the wall free energies ∆hi

.
As it has been realized in [ABCP] the appropriate macroscopic setting is that of
the functions of bounded variations and we shall repeatedly refer to [EG] for the
necessary background.

The microscopic system is embedded in the continuous domain D̂ = [0, 1]d. A

macroscopic distribution of phases in D̂ is represented by a signed indicator function
u taking values {±1} according to the local equilibrium. Let O be an open smooth

neighborhood of D̂. For non negative boundary fields, it is enough to consider
functions u taking values in the set of bounded variation functions BV (O, {±1})
and equal to 1 outside D̂.

Let Pi be the ith-face of the cube D̂. The boundary of D̂ is denoted by P = ∪iPi.
The interfacial energy associated to u is defined by

Wh(u) =

∫

∂∗u\P

τ(~nx)dH(d−1)
x +

2d∑

i=1

∆hi

∫

∂∗u∩Pi

dH(d−1)
x , (2.10)

where ∂∗u is the reduced boundary [EG] of {u = −1}. In the particular case of
boundary magnetic field acting only on one of the faces of DN the probability of
observing spin configurations which are close (in the L1 sense) to some macroscopic
configuration u was proven to decay exponentially fast with the order N d−1Wh(u)
(see [BIV2]).

Finally, the optimal interfacial energy under a volume constraint is defined as

Fh(m) = inf
u∈BV

{
Wh(u)

∣∣
∫

bD

u(x) dx =
m

m∗

}
. (2.11)
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2.5. The assumptions. There are two main assumptions. The first one is of geo-
metric nature and will play a crucial role in the localization of the interface. The
second assumption is a mixing property for the FK measure and will be only used
in the estimation of the spectral gap.

2.5.1. Strict convexity of the surface tension. Recall that a d-dimensional simplex
is the convex envelop S = S(u1, . . . , ud+1) of (d + 1) points u1, . . . ud+1 ∈ Rd in
general position. The latter means that S has a non-empty interiour. Given such
a d-dimensional simplex S let F1, . . . , Fd+1 be its faces and ~n1, . . . , ~nd+1 the corre-
sponding outer normals. By the Gauss-Green theorem [EG],

d+1∑

k=1

|Fk|~nk = 0. (2.12)

Given an axis direction ~ed let us say that a simplex S = S(u1, . . . , ud+1) is ~ed-oriented
if:

(i) u1, . . . , ud ∈ {x ∈ Rd : xd = 0},
(ii) ud+1 ∈ {x ∈ R

d : xd > 0}.
We shall always number the faces of ~ed-oriented simplices S in such a way that

F1 ⊂ {x ∈ Rd : xd = 0} or, equivalently, ~n1 = −~ed. Thus, for a given ~ed-oriented
simplex S, (2.12) yields a representation of ~ed as a non-trivial linear combination

|F1|~ed =

d+1∑

k=2

|Fk|~nk.

We say that the surface tension τβ is strictly convex at ~ed if the following strict
inequality

|F1|τ(~ed) <

d+1∑

k=2

|Fk|τ(~nk) (2.13)

holds for any ~ed-oriented simplex S = S(u1, . . . , ud+1). In [DS2] (2.13) is called
Strong Simplex Inequality. It is shown to be equivalent to the following fact (Lemma 3.5
in [DS2]): Assume that ~v1, . . . , ~vd are d vectors in general position, and assume that
~ed lies in the interiour of the positive cone spanned by ~v1, . . . , ~vd, that is there exist
positive numbers λ1, . . . , λd, such that ~ed =

∑d
k=1 λk~vk, then,

τ(~ed) <
d∑

k=1

λkτ(~vk). (2.14)

Assumption (SC): τ is strictly convex at ~ed.

This assumption is of course true at low enough temperatures when the Wulff
shape exhibits a flat facet in the ~ed direction. Presumably it is true for every β > βc

since, at least on the heuristic level, kinks on the boundary of the Wulff shape would
correspond to pathological large interface fluctuations. We could have avoided this
assumption by simply considering a direction which is orthogonal to smooth portions
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of the Wulff shape. This would not mend the situation and we prefer this assumption
for the notational simplicity and in order to stress the existing flaws in the theory.

This assumption (SC) is related to the stability properties of the associated vari-
ational problem. In Section 5, we are going to consider more general boundary
conditions which would lead to a different variational problem. We proceed now in
discussing this new framework and show how assumption (SC) enables to control
the stability of the new variational problem. This will be useful only for Section 5,
thus the reader is invited to skip this discussion on a preliminary run-through.

We consider the macroscopic domain D̂ = [0, 1]d. The faces of D̂ are denoted as

follows; the top face ∂ext
t D̂ = {xd = 1}, the bottom face ∂int

b D̂ = {xd = 0} and

the remainder which are the side faces ∂ext
s D̂. A boundary magnetic field equal

to 1 is applied on ∂ext
t D̂, a boundary magnetic field equal to −1 on ∂ int

b D̂ and an
ε > 0 boundary field on the sides. This last field leads to a boundary surface tension
denoted by ∆ε. We refer to the subsection 5.1, for the explicit microscopic definition.
We are going to check that this modification of the boundary fields has no impact
on the stability of the variational problem.

Define the modified Wulff shape

Kε ∆
= K ∩ {x : |xi| 6 ∆ε ∀ i = 1, . . . , d− 1}, (2.15)

and let τ ε be the support function of Kε.

Let O be an open smooth neighborhood of D̂ = [0, 1]d. We consider the boundary

condition g ∈ BV
(
O \ D̂, {±1}

)
specified by

g(x) =

{
1, if xd > 0 ,

−1, if xd 6 0 .

Given a ±1-valued function u on D̂ define

u ∨ g(x) =

{
u(x) if x ∈ intD̂ ,

g(x) if x ∈ O \ D̂ .
(2.16)

It is well known [EG] that u ∨ g ∈ BV(O, {±1}) whenever the phase function

u ∈ BV(intD̂, {±1}). For any v in BV(O, {±1}), there exists a generalized notion
of the boundary of {v = −1} called reduced boundary [EG] and denoted by ∂∗v. If
{v = −1} is a regular set, ∂∗v coincides with the usual boundary ∂v. Given a phase

function u ∈ BV(intD̂, {±1}) we use ∂∗gu to denote the reduced boundary of u in
the presence of the b.c. g:

∂∗gu = ∂∗(u ∨ g) ∩ D̂ = ∂∗(u ∨ g) \ ∂∗g. (2.17)

Finally define the functional Ŵε(·|g) on BV(intD̂, {±1}):

Ŵε

(
u
∣∣ g
)

=

∫

∂∗
g u

τ ε(~nx)dH(d−1)
x ,

where τ ε is the support function of Kε (see (2.15)).
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Proposition 2.1. Assume that (SC) holds, that is τ is assumed to be strictly convex

at ~ed. Then, u = 1I(·) is the unique minimum of Ŵε(·|g) on BV(intD̂, {±1}).

The proof of Proposition 2.1 is relegated to the Appendix.

Corollary 2.1. In the notation above define the functional Wε(·|g) on BV(intD̂, {±1})
via

Wε

(
u
∣∣ g
)

=

∫

∂∗
g u\∂s

bD

τ(~nx)dH(d−1)
x + ∆ε

∫

∂∗
g u∩∂s

bD

dH(d−1)
x .

Then u = 1I(·) is the stable minimum of Wε(·|g) in the following sense: For every
ν > 0 there exists c2 = c2(ν) > 0 such that

Wε

(
u
∣∣ g
)

6 Wε

(
1I
∣∣ g
)

+ c2(ν) =⇒ ‖u− 1I‖1 6 ν. (2.18)

Proof. Proposition 2.1 and standard compactness considerations imply that the

functional Ŵε

(
·
∣∣ g
)

is stable in the above sense. On the other hand

Ŵε

(
·
∣∣ g
)

6 Wε

(
·
∣∣ g
)
,

and, of course, both functionals attain the same value on u = 1I. In particular, any
function u which satisfies the left hand side of (2.18) automatically satisfies the very

same inequality with Ŵε

(
·
∣∣ g
)

instead of Wε

(
·
∣∣ g
)
. �

2.5.2. Mixing property. The localization of the interface will be derived on a coarse
grained level. Throughout the paper we will assume that β belongs to B so that
Pisztora’s coarse graining holds.

The analysis of the dynamics will require an assumption on the exponential mixing
of a pure phase. It is well known (see [Gri]) that for all β (except possibly for a
countable number) there is no phase transition in the FK representation, i.e. that
the limiting FK measures Φf

Zd and Φw
Zd coincide. We will need an enhanced property

of uniqueness and will suppose that the boundary effect vanishes exponentially fast.
We introduce ΛN,M = {−N, . . . , N}d−1×{−M, . . . ,M} and consider two types of

FK measures on this set with different boundary conditions. We denote by Φw,f,f
ΛN,M

(resp Φw,f,w
ΛN,M

) the measure with wired boundary conditions on the face {xd = M}
(resp on the faces {xd = ±M}) and free elsewhere.

Definition 2.2. Let B1 be the subset of B containing the inverse temperatures β for
which there exists c1 = c1(β), c2 = c2(β) > 0 such that

∀(N,M), ∀b ∈ ΞΛN,M/2
,

∣∣∣Φw,f,f
ΛN,M

(ξb) − Φw,f,w
ΛN,M

(ξb)
∣∣∣ 6 c2 exp

(
− c1M

)
.

Assumption (MP): We will suppose that β ∈ B1, i.e that the mixing property
holds.

The previous assumption holds for β large enough. This can be easily derived
along the lines of the proof of Theorem 5.3 (c) of [Gri].
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We conjecture that the mixing property should be valid on ]βc,∞[. In fact (MP)
can be related to the notion of strong mixing which was introduced in the context
of Ising model by Dobrushin and Shlosman [DS3] (see also Martinelli and Olivieri
[MO] for the regular strong mixing property). The counterpart of this notion for
the FK model can be stated as follows: there exists c1(β), c2(β) > 0 such that for
any cube ∆ of Z

d, any pair of boundary conditions π, π′

∀b ∈ Ξ∆,
∣∣∣Φπ

∆(ξb) − Φπ′

∆(ξb)
∣∣∣ 6 c2 exp

(
− c1 dist(b, π ∧ π′)

)
,

where π∧π′ refers to the region where π and π′ differ. This property implies (MP)
and we conjecture that it holds for the parameters β for which the FK measure is
unique in the thermodynamic limit.

Finally, we stress the fact that (MP) does not apply directly to the Ising model,
nevertheless combined with the localization of the interface, it will have useful im-
plications on the mixing of the spin system. This will be discussed in Section 5.

3. The results

Throughout the paper, the dimension d is fixed larger or equal to 3 and β belongs
to B, the domain of validity of Pisztora’s coarse graining [Pi].

Theorem 3.3 and Theorem 3.5 hold for every β ∈ B. Results on Hausdorff stability
with respect to axis directions (Theorem 3.1 and Theorem 3.2) require an additional
assumption (SC), namely we need to assume that the surface tension τβ is strictly
convex at ~ed. These stability results play an important role in our proof of the lower
bound on the spectral gap (Theorem 3.4) which also relies on the mixing property
(MP).

3.1. The Hausdorff stability. As we have already mentioned the conjectured per-
colation of minority spins at moderately low temperatures [ABL] suggests that mi-
croscopic interfaces are not the appropriate objects to describe stability properties
of phase boundaries. In any case, however, the phases are characterized by the
order parameter (spontaneous magnetization) ±m∗(β) in the sense that local spin
averages, or local magnetization profiles, inside what is expected to be ”+” or ”−”
phases should converge, as the averaging scale grows, to m∗(β) or −m∗(β) respec-
tively. Our main stability result below is formulated in terms of phase boundaries
induced by local magnetization profiles on large finite scales.

Consider the decomposition (2.3). Given a small number ρ > 0 let us define phase
labels ũρ

N,K ∈ {0,±1}DN,K as follows:

ũρ
N,K(i) =





1 , if

∣∣∣∣∣∣
1

Kd

∑

j∈BK(i)

σj −m∗(β)

∣∣∣∣∣∣
6 ρ ,

−1 , if

∣∣∣∣∣∣
1

Kd

∑

j∈BK(i)

σj +m∗(β)

∣∣∣∣∣∣
6 ρ ,

0 , otherwise .

(3.19)
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Thus, ũρ
N,K uses the resolution ρ to label the proximity of the local magnetiza-

tion profile to the order parameter ±m∗(β) on the renormalization scale K = 2k.
For the spin model on DN with mixed boundary conditions described in Subsec-

tion 2.3.2 we shall (by abuse of notation) extend ũρ
N,K to the whole of Zd

K
∆
=

K
(
Zd − (1/2, . . . , 1/2)

)
as follows:

ũρ
N,K(i) =

{
1 if i ∈ Z

d
K \ DN,K and id > 0 ,

−1 if i ∈ Z
d
K \ DN,K and id < 0 .

It happens to be more convenient to work with the adjusted phase labels uρ
N,K:

uρ
N,K(i) = 1 (respectively −1) if ũρ

N,K(i) = 1 (respectively to −1) both at i and

at all ∗-neighbours of i in Zd
K . Otherwise, uρ

N,K(i) is set to be equal to zero. The
advantage of such adjustment is that any nearest neighbour path of vertices of DN,K

which connects regions with different phase labels is forced to contain a site with zero
phase label. Accordingly let us define the collection of phase boundaries induced by
uρ

N,K(i) as

∂ρ
N,K

∆
= {i ∈ DN,K : uρ

N,K(i) = 0}.
The set ∂ρ

N,K is in general disconnected and for fixed finite values of the renormaliza-
tion scale K contains (for entropic reasons) many small components even in the case
of pure boundary conditions. In the case of mixed boundary conditions, however
∂ρ

N,K contains a unique unbounded connected component which we shall denote as

∂ρ
N,K . By the construction ∂ρ

N,K contains an infinite flat double layer outside DN,K

and, in fact, all the non-trivial geometry of ∂ρ
N,K is confined to DN,K. Here is our

Hausdorff stability result in terms of phase labels uρ
N,K:

Theorem 3.1. Assume that β ∈ B and that the Assumption (SC) holds, that is
the surface tension τβ is strictly convex at ~ed. Then for any ν > 0 and ρ > 0 there
exists a finite scale K0 = K0(ν, ρ) and a positive constant c = c(ν, ρ) such that for
every K > K0 and for all N sufficiently large,

µ±
N

(
∂ρ

N,K ∩ {i : id > νN} 6= ∅
)

6 e−c(ν,ρ)N . (3.20)

The above statement asserts that on large enough, though still finite, renormal-
ization scales K the interface is macroscopically stable in the sense that the order of
its fluctuations is smaller than the linear size of the system N . Since the fluctuations
in question are expected to be of the logN -size for moderately low temperatures
and, at least for axis oriented interfaces, are known to be bounded for sufficiently
low ones [DS1], the result is far from being optimal and, in a way, it illustrates
limitations of the L1-approach.

The proof of Theorem 3.1 is based on the following result on the stability of the
FK interfaces. In the sequel we employ the notation introduced in Subsections 2.2
and 2.3.

Theorem 3.2. Assume that β ∈ B is such that (SC) holds. Let K = N a, where a
is chosen according to (2.2). Then for any ν > 0,

lim
N→∞

Φ±
N (There is a bad block in {i : id > νN}) = 0 . (3.21)
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More precisely, there exists c1 = c1(ν) > 0, such that uniformly in N large enough,

Φ±
N (g ↔ {i : id > νN}) 6 e−c1(ν)N . (3.22)

Notice that the second part of the statement implies that in the FK represen-
tation the interface is localized even on a microscopic level without any additional
renormalization procedures.

Let us now prove Theorem 3.1 as a consequence of inequality (3.22).

Proof of Theorem 3.1. Let us decompose the percolation event

TN,ν
∆
= {ξ ∈ JN : g 6↔ {i : id > νN}}

according to the realization of the maximal connected component C(g) of the ghost
site g. By the very definition,

C(g) ⊆ D
ν
N

∆
= DN ∩ {i : id < νN},

on TN,ν. Consequently, for every percolation event A which depends only on the
bonds connected to the upper sub-box DN \ Dν

N , the following decoupling bound
holds:

Φ±
N

(
A
∣∣TN,ν

)
6 max

π
Φπ

DN\D
ν
N
(A). (3.23)

We stress the fact that in this Theorem the coarse graining scale K is independent
of N , unlike in (3.21). As in [BIV1, BIV2] define the joint spin-bond label vρ

N,K =

vρ
N,K[σ, ξ] ∈ {0, 1}DN,K via:

vρ
N,K(i) =

{
1, if |uρ

N,K| = 1 and B2K(i) is ξ good ,

0, otherwise .
(3.24)

Clearly,
∂ρ

N,K ∩ DN,K ⊆ {i ∈ DN,K : vρ
N,K(i) = 0}.

On the other hand, it follows from (3.23) that the distribution of the field vρ
N,K

on {0, 1}DN,K\D
ν
N,K under P

±
β,DN

( · |TN,ν) stochastically dominates the Bernoulli site

percolation process P
Bern
p , where the probability p = p(β, ρ,K) of a particular site

to be occupied satisfies limK→∞ p(β, ρ,K) = 1, see Section 3.2 of [BIV2] for more
details and references. As a result, (3.20) follows from the exponential decay of
connectivities for the sub-critical site percolation once (1 − p) is sufficiently small
(or, equivalently, once K is sufficiently large). �

We turn now to the case of the Wulff shape for which the phase coexistence is
imposed in a more indirect way via a volume constraint. A straightforward modifi-
cation of the techniques which we shall employ for the proof of Theorem 3.2 yields
(see (2.7)):

Theorem 3.3. Assume that β ∈ B. Let K = N a, where a is chosen according to
(2.2). Then for any ν > 0,

lim
N→∞

Φw
N

( ⋃

i∈DN

{
(i+ Ka(1−ν)(N/K)d) ⊂ C−

N

} ∣∣∣ VN,a

)
= 1 .
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Notice that we made no additional assumptions on the strict convexity of τβ.
Indeed, directions v at which τβ is not strictly convex correspond to non-smooth
portions of the boundary ∂K which have zero surface measure.

Theorem 3.3 implies that there is no percolation of the + phase inside the interior
of the − droplet. In this way usual conclusion of the L1-theory is clearly upgraded.
On the other hand we are not able to establish a complete statement on the Hausdorff
localization, i.e. that there always exists i in DN such that

(i+ Ka(1−ν)(N/K)d) ⊂ C−
N ⊂ (i+ Ka(1+ν)(N/K)d) .

This would imply that the interface between C−
N and C+

N is always localized close to
the boundary of the Wulff shape. This limitation is due to our method of proof: we
are able to prove that large protuberances of the interface are not statistically favor-
able and therefore can be chopped. However, the volume constraint VN,a prevents
us to control the percolation of the − phase inside the + phase because erasing a
filament of − blocks might be in conflict with the volume constraint.

3.2. Spectral gap. We study the relaxation of the Glauber dynamics for the Ising
model in a finite domain with a boundary magnetic field. The metastable behavior
of the dynamics will be related to the equilibrium wetting phenomenon which occurs
for a certain range of the magnetic field.

The evolution of the system is given by the Glauber dynamics. The Dirichlet
form associated to the dynamics is

∀f ∈ L
2(µh

N), Eh
N(f, f) =

∑

x∈DN

µh
N

(
|f(σx) − f(σ)|2

)
,

where σx is the spin configuration deduced from σ ∈ {±1}DN by flipping the spin at
site x. The reader is referred to the lecture notes by Martinelli [Ma] and Guionnet,
Zegarlinski [GZ] for a precise definition and related results on the Glauber dynamics.
In the phase transition regime, the two phases segregate and the relaxation of the
system is related to the slow motion of the interfaces.

A convenient parameter to capture the signature of this slowing down is the
spectral gap of the dynamics defined as follows

SG(N,h) = inf
f

Eh
N(f, f)

µh
N

(
f − µh

N(f)
)2 . (3.25)

We first consider the case where a positive magnetic field h = (0, . . . , 0, hd, 0, . . . , 0)
is applied only on the face {i ∈ DN : id = 1} of the cube.

Theorem 3.4. Let β ∈ B is such that both the strict convexity Assumption (SC)
and the mixing Assumption (MP) hold. Then,

lim inf
N→∞

1

Nd−1
log SG(N,h) > − τ(~ed) + ∆hd

, (3.26)

where the wall free energy corresponding to the field hd is denoted by ∆hd
.
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For general fields h = (h1, . . . , h2d) with non negative components, we introduce
the functional

Gh(m) = Fh(m) −
2d∑

i=1

∆hi
, (3.27)

where Fh was introduced in (2.11). We get

Theorem 3.5. For any β ∈ B, the following asymptotic hold

lim sup
N→∞

1

Nd−1
log SG(N,h) 6 − sup

m∈]−m∗,m∗[

Gh(m) . (3.28)

Remark 3.1. Notice that the statement of Theorem 3.5 does not depend on As-
sumptions (SG) or (MP). In [Ma] only the free boundary conditions have been
considered, but, in view of the results of [PV], the proof pertains to the case of
boundary magnetic fields in the partially wetting regime. In dimension 2, Pisztora’s
coarse graining is not valid, but an alternative coarse graining for which the L1-
approach holds has been devised in [BoMa]. In particular, the proof of Theorem 3.5
goes through in two dimensions. Furthermore, since in 2 dimensions the Wulff shape
is always strictly convex the mixing property (MP) is known to be valid up to the
critical temperature, the conclusion of Theorem 3.4 is also valid in dimension 2 for
any β > βc.

The functional Gh should be interpreted as an energy landscape parametrized by
the averaged magnetization. The time for a configuration starting in the − phase
to relax to the + phase provides an estimation of the spectral gap. This explains
why the supremum is taken over the values of m in ] −m∗, m∗[. The supremum of
Gh is related to the energy of the bottleneck and Theorem 3.5 asserts that if it is
positive then the system has a metastable behavior and evolves extremely slowly.
In this case the system has time to equilibrate and equilibrium parameters should
be relevant as well to describe the influence of the boundary field on the dynamics.
We expect that inequality (3.28) is, in fact, an equality. For appropriate choices of
h, an explicit upper bound can be obtained. In particular for nearest neighbor Ising
model in two dimensions and h = (0, h2, 0, 0), one can check that the RHS of (3.26)
and the LHS of (3.28) coincide. In general, estimating the supremum of Gh boils
down to solve a difficult variational problem involving subtle boundary effects. For
general values of h = (h1, . . . , h2d), this seems to be out reach for the moment.

Moreover the situation is far from being understood even in the case of a cube with
free boundary conditions : in dimension d > 3, the solutions of the isoperimetric
problem (2.11) are not known for general volume constraints. In the particular case
of isotropic surface tension and for a volume constraint which is the half of the
volume of the cube, it was only recently proven by Barthe and Maurey [BaMa] that
the solution is the half cube. We refer the reader to the review by Ros [Ro] for
further discussions on this issue.

This explains why, contrary to the two-dimensional case, we cannot derive precise
asymptotics of the logarithm of the spectral gap.
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We turn now to a more physical interpretation of our results. The behavior
of the dynamics is very sensitive to the boundary conditions. In dimension two,
Martinelli showed that for free boundary conditions or, equivalently, in the case of
zero boundary magnetic fields h ≡ 0, log SG(N,h) scales like −Nτ(~ed). Instead,
when at least one side of the square has all + boundary conditions and the other
sides free boundary conditions (i.e. h = (0, . . . , 0, 1)), then for any ε > 0 and N
large enough

log SG(N, h) > −N 1/2+ε(� −Nτ(~ed)) .

In this case the spectral gap is conjectured to decay polynomially fast. An appealing
interpretation of this result would be to relate the dynamics of the Ising model to
an effective model evolving in a one well potential (+ bc) or a two well potential
(free bc): the positive magnetic field h enforces a unique ground state whereas the
transitions between two symmetric wells on the energy landscape in the case of the
free boundary conditions have to cross the saddle point whose height scales like the
logarithm of the inverse spectral gap.

Following the seminal work of Martinelli, various other types of boundary con-
ditions have been investigated to understand better the crossover between the two
regimes. Alexander [A] showed that small (at least logarithmic) modifications of
the boundary conditions at the corners of a two dimensional cube leads to drastic
changes in the scaling of the spectral gap. Alexander and Yoshida [AY] investi-
gated the influence of an alteration of the + boundary conditions by an arbitrary
small density of spins. Roughly speaking, they showed that in two dimensions if the
boundary conditions have an average magnetization less than 1, there exists some
inverse temperature β0 large enough above which the dynamics exhibits a metastable
phase. Our result was originally motivated by [AY]; the magnetic field h < 1 can be
interpreted as an effective boundary condition after averaging the spins. For sim-
plicity, let us focus on the case h = (0, . . . , 0, hd, 0, . . . , 0). Extrapolating the results
of [AY] to this setting, one can state that in two dimensions and for any hd in [0, 1[,
there exists β large enough such that the spectral gap decays exponentially fast.
Theorems 3.4 and 3.5 will enable us to interpret these results in a more qualitative
way. In order to do so, we first recall some statements on the wetting transition.

It was derived in [FP2] that ∆hd
∈ [−τ(~ed), τ(~ed)]. In fact there exists a critical

value hc 6 1 such that if hd < hc then ∆hd
< τ(~ed). The critical value hc char-

acterizes the influence of the boundary field on the thermodynamic properties of
the Gibbs measure. More precisely, one should also distinguish the partial drying
regime (0 6 hd < hc) from the partial wetting regime (0 > hd > −hc). We refer to
Pfister, Velenik [PV] or to [BIV1] for further discussions on the equilibrium issues.

The previous Theorem shows that hc is also related to the metastable behavior of
the system and thus it also plays the role of a critical value in the dynamical setting.
Nevertheless, for any hd > 0, the Gibbs measure is unique in the thermodynamic
limit. This confirms the fact that the dynamical properties cannot be deduced simply
from the bulk properties, but that the metastability is related to surface properties
(the picture of the effective magnetization evolving in a one well potential was too
simplistic).



18 T. BODINEAU AND D. IOFFE

4. Hausdorff localization: Proof of Theorem 3.2

4.1. FK phase labels. We use the notation introduced in Subsections 2.2 and 2.3.
Define the following dependent percolation process on DN,K:

XFK
N,K(i) =





1, if B2K(i) is FK good and C∗(B2K(i)) is connected to ∂ext
DN

−1, if B2K(i) is FK good and C∗(B2K(i)) is not connected to ∂ext
DN

0, if B2K(i) is FK bad
(4.29)

We recall the choice K = Na for some a ∈]0, 1/d[.

Exactly as in [BIV1] the stability assumption implies:

Lemma 4.1. For every α > 0 there exists a positive constant c4 = c4(α), such that

Φ±
N


 ∑

i∈DN,K

XFK
N,K(i) 6 (1 − α)

(
N

K

)d

 6 exp

(
−c4

Nd−1

Kd−1

)
, (4.30)

for all N large enough.

Recall that the total number of mesoscopic boxes in DN is Nd

Kd .

4.2. Logic of the proof. Back to Theorem 3.2 we shall use Lemma 4.1 in the
regime 0 < α � ν � 1. We argue that on the event



ξ ∈ ΞN,± :

∑

i∈DN,K

1I{XFK
N,K (i)6=1}(ξ) 6 α

(
N

K

)d



 (4.31)

νN -long fingers of the minority phase are improbable in the sense that one is always
able to find a horizontal layer where such finger can be amputated at a substantial
energetic cost. The argument is just a careful computation along the lines of the
minimal section method introduced in [BBBP].

4.3. Fingers and finger labels. The excitations of the interface on the coarse
grained level will be named fingers. We stress the fact that this terminology does
not refer only to the low dimensional excitations.

Given a configuration ξ ∈ ΞN,±, let us define the associated finger FN,K ⊂ DN,K

as

FN,K =
{
i ∈ DN,K : XFK

N,K(i) = 0 or − 1
}
.

For every mesoscopic layer l = 1, 2, . . . define the finger label

f l
N,K = #{i : id = (l − 1

2
)K, i ∈ FN,K}.

With ν fixed set R = [νN/K] + 1. To simplify the notation we shall assume that
R = 2r. Given a collection

~fN,K =
(
f 1

N,K, . . . , f
R
N,K

)
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of strictly positive finger labels we shall use F( ~fN,K) to denote the set of all those
percolation configurations ξ ∈ ΞN,± which are compatible with f l

N,K in each of the
mesoscopic layers l = 1, 2, . . . , R. Evidently,

{ξ ∈ ΞN,± : g ↔ {i : id > νN}} ⊆
∨

~fN,K

F [~fN,K], (4.32)

where the disjoint union is, of course, over all strictly positive finger labels. A large
fluctuation of the interface occurs when bad blocks percolate on a distance larger
than νN .

4.4. The target estimate on the probability of F( ~fN,K). Our proof of Theo-
rem 3.2 relies on the following uniform upper bound:

Theorem 4.1. There exists c5 = c5(β) > 0 such that

Φ±
N

(
F [~fN,K]

)
6 e−c5νN (4.33)

uniformly in strictly positive finger labels ~fN,K and in N sufficiently large.

Since the total number of different finger labels (recall the choice of scales K = N a)
is bounded above as

((
2N

K

)(d−1)
)R

6 exp
{
c5(d)νN

1−a logN
}
, (4.34)

Theorem 3.2 instantly follows.

4.5. Splitting of LN,± with respect to l-th mesoscopic layer. Given a meso-
scopic layer l = 1, 2, . . . , R define the following mesoscopic sets:

H
−,l
N,K

∆
= {i ∈ DN,K : id 6 (l − 1

2
)K},

H
l
N,K

∆
= {i ∈ DN,K : id = (l − 1

2
)K},

H
+,l
N,K

∆
= {i ∈ DN,K : id > (l − 1

2
)K}.

Their microscopic counterparts are denoted by H−,l
N,K,Hl

N,K and, respectively, H+,l
N,K,

where

H−,l
N,K =

⋃

i∈H
−,l
N,K

B2K(i), Hl
N,K =

⋃

i∈H
l
N,K

B2K(i) and H+,l
N,K =

⋃

i∈H
+,l
N,K

B2K(i).

Accordingly, we split the set of all edges Ld
N,± into the disjoint union

Ld
N,± = E−,l

N,K

∨
E+,l

N,K,

where

E−,l
N,K

∆
=
{

(i , j) : either i or j belong to H−,l
N,K ∪ g

}
,

and E+,l
N,K = Ld

N,± \ E−,l
N,K.
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The induced notation for the splitting of the percolation configurations ξ ∈ ΞN,±

is ξ = ξl
− ∨ ξl

+ with

ξl
− ∈ Ξ−,l

N,K
∆
= {0, 1}E−,l

N,K and ξl
+ ∈ Ξ+,l

N,K
∆
= {0, 1}E+,l

N,K .

Given a percolation configuration ξ l
− ∈ Ξ−,l

N,K, we use C−,l
N,K(g) to denote the connected

cluster of the ghost site g inside H−,l
N,K .

4.6. The event Al(~fN,K). Let ~fN,K be a collection of strictly positive finger labels.

For each mesoscopic layer l, we define the associated event Al(~fN,K) ⊂ Ξ−,l
N,K :

Al(~fN,K) =



 ξl

− ∈ Ξ−,l
N,K

∣∣∣∣∣∣

(i) g 6↔ ∂ext
DN inside H−,l

N,K

(ii) #{∂int
t H−,l

N,K ∩ C−,l
N,K(g)} 6 f l

N,K(2K)d−1





where
∂int

t H−,l
N,K

∆
= {u ∈ H−,l

N,K : ud = (l + 1/2)K}
is the top layer of the box H−,l

N,K .

Notice that if ξ = ξl
− ∨ ξl

+ ∈ F(~fN,K) then, necessarily, ξl
− ∈ Al(~fN,K). Indeed,

the connected cluster C−,l
N,K(g) is capable of hitting the top layer ∂ int

t H−,l
N,K only from

within the set ⋃

i∈FN,K∩H
l
N,K

B2K(i).

4.7. Surgery in l-th mesoscopic layer. Given a percolation configuration ξ l
− ∈

Ξ−,l
N,K define a new configuration ξ̄l

− as

ξ̄l
−(b) =





0, if b = (u, v) with u ∈ ∂int
t H−,l

N,K ∩ C−,l
N,K(g)

and vd = ud + 1,

ξl
−(b), otherwise.

(4.35)

In other words, the surgery ξl
− 7→ ξ̄l

− cuts off all the vertical bonds which emerge

from those points of the top layer ∂ int
t H−,l

N,K which are ξl
−-connected (inside H−,l

N,K)
to the ghost site g.

For every l = 1, 2, . . . , R and for each ~fN,K the map ξl
− 7→ ξ̄l

− leaves Al(~fN,K)

invariant and is at most 2f l
N,K (2K)d−1

to 1 on the latter set.
Furthermore, given ~fN,K , a mesoscopic layer l and a percolation configuration

ξl
− ∈ Al(~fN,K), the concatenation ξ = ξ̄l

−∨η belongs to JN = {ξ ∈ ΞN,± : g 6↔ ∂DN}
for every η ∈ Ξ+,l

N,K. In particular, given any event B ⊂ Ξ+,l
N,K and any ξl

− ∈ Al(~fN,K),

Φ±
N

(
B
∣∣ ξ̄l

−

)
6 max

π
Φπ

E+,l
N,K

(B ) , (4.36)

where Φπ
E+,l

N,K

is the FK-measure on Ξ+,l
N,K with wired boundary conditions on the

lateral sides and on the top of H+,l
N,K and, respectively, with π boundary conditions
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on the bottom side of H+,l
N,K. Thus, the surgery operation (4.35) effectively decouples

the percolation configuration ξl
+ on the edges E+,l

N,K of the upper box H+,l
N,K from the

global constraint JN .

4.8. Upper bound in one mesoscopic layer. Given a mesoscopic layer Hm
N,K

and a percolation configuration ξ ∈ ΞN,±, let us define the site percolation process
Y m

N,K on Hm
N,K as:

Y m
N,K(i) =





1 , if B2K(i) is good and C∗ ↔ ∂ext
DN in Hm

N,K ,

−1 , if B2K(i) is good and C∗ 6↔ ∂ext
DN in Hm

N,K ,

0 , if B2K(i) is bad ,

where C∗ denotes the crossing cluster of B2K(i) (see Subsection 2.2).
Clearly, the percolation process (Y m

N,K) dominates the restriction of (XFK
N,K) to

Hm
N,K ∑

i∈H
m
N,K

1I{Y m
N,K (i)6=1} >

∑

i∈H
m
N,K

1I{XFK
N,K (i)6=1}. (4.37)

Lemma 4.2. There exists a positive constant c6 > 0, such that

max
π

Φπ
Em

N,K


 ∑

i∈H
m
N,K

1I{Y m
N,K (i)6=1} > f


 6 exp

(
−c6 min

{
fK, f

d−2

d−1Kd−1
})

, (4.38)

uniformly in positive integers f and N sufficiently large.

A section of a finger on the layer m leads to an exponential decay of order fK if it

contains at least f
2

blocks with label 0 or of order f
d−2

d−1Kd−1 if it contains at least f
2

blocks with label −1. The claim of the lemma follows from (2.4) via a straightforward
modification of the argument presented in the Appendix A in [BIV1].

We stress the fact that the scaling K = N a will be used only in the derivation of
(4.38).

4.9. Upper bound on F( ~fN,K). We shall consider only even mesoscopic layers

m = 2, 4, . . . , R. For every such m and every positive collection ~fN,K of finger
labels, define the event Bm, which depends only on the percolation configuration
inside the slab Hm

N,K:

Bm = Bm(~fN,K) = {ξ :
∑

i∈H
m
N,K

1I{Y m
N,K (i)6=1} > fm

N,K}.

Given an even mesoscopic layer l = 2, 4, . . . , R,

F(~fN,K) ⊆
R⋂

m=l+2

Bm(~fN,K)
⋂

Al(~fN,K).
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We will compute the balance between the energetic cost of chopping a finger at
the section l and the gain of erasing this finger above the level l. Consequently, the
estimates (4.36) and (4.38) imply:

Φ±
N

(
F(~fN,K)

)
6 Φ±

N

(
R⋂

m=l+2

Bm(~fN,K)
⋂

Al(~fN,K)

)

=
∑

ξl
−
∈Al

Φ±
N

(
R⋂

m=l+2

Bm(~fN,K) ; ξl
−

)

6 ec7f l
N,KKd−1

∑

ξ̄l
−

: ξl
−
∈Al

Φ±
N

(
R⋂

m=l+2

Bm(~fN,K) ; ξ̄l
−

)

6 ec7f l
N,KKd−1

max
π

Φπ
E+,l

N,K

(
R⋂

m=l+2

Bm(~fN,K)

)

6 exp

(
c7f

l
N,KK

d−1 − c6

R∑

m=l+2

min
{
fm

N,KK, (f
m
N,K)

d−2

d−1Kd−1
})

.

(4.39)

4.10. Proof of Theorem 4.1. We claim that there exists a positive constant c8 > 0,
such that

min
2 6 l 6 R/2

{
c7f

l
N,KK

d−1 − c6

R∑

m=l+2

min
{
fm

N,KK, (f
m
N,K)

d−2

d−1Kd−1
}}

6 − c8N ,

(4.40)

uniformly over all strictly positive collections ~fN,K of finger labels which comply

with the volume bound (4.31), which we rewrite in terms of ~fN,K as:

R∑

l=2

f l
N,K 6 α

(
N

K

)d

. (4.41)

In view of (4.30) a substitution of (4.40) to (4.39) yields the target bound (4.33).

Let us turn to the proof of (4.40). The percolation of bad blocks between the
layers R/2 and R produces an energy cost of an order at least N . Therefore, it is
enough to examine the layers below R/2 and to prove that

min
2 6 l 6 R/2



f

l
N,KK

d−1 − c6
c8

R/2∑

m=l+2

min
{
fm

N,KK, (f
m
N,K)

d−2

d−1Kd−1
}


 6 0 . (4.42)
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Set n = R/8. Suppose that (4.42) is violated then either there exists a sequence of
even numbers 2 6 l1 < l2 < · · · < ln 6 R/2 such that for every i = 1, . . . , n− 1;

Kd−1f li
N,K >

c6
c7

n∑

j=i+1

Kf
lj
N,K , (4.43)

or there exists a sequence of even numbers 2 6 m1 < m2 < · · · < mn 6 R/2 such
that for every i = 1, . . . , n− 1;

f li
N,K >

c6
c7

n∑

j=i+1

(
f

mj

N,K

) d−2

d−1 + 1. (4.44)

The constants c6 and c7 do not depend on the values of ν in R = [νN/K] + 1
and α in (4.41). We claim that under an appropriate choice of 0 < ν � α � 1
(see (4.49) below) both (4.43) and (4.44) contradict the volume constraint in (4.41).
The latter is a consequence of the following two elementary numeric lemmas:

Lemma 4.3. Fix χ > 0. Assume that a sequence of positive integers a1, . . . , an

satisfies:

ai > χ
n∑

j=i+1

aj (4.45)

for every i = 1, . . . , n− 1. Then
n∑

i=1

ai > (1 + χ)n−1 − 1 − χ

χ
. (4.46)

Lemma 4.4. Fix χ > 0. Set γ = (d−2)/(d−1). Assume that a sequence of positive
integers a1, . . . , an satisfies:

ai > χ

n∑

j=i+1

aγ
j + 1 (4.47)

for every i = 1, . . . , n− 1. Then there exists c9 = c(χ, d) > 0, such that
n∑

i=1

ai > c9n
d. (4.48)

The inequality (4.43) corresponds to the choice of χ = K2−dc6/c7 in (4.45) and,
consequently, the estimate (4.46) yields in this case:

R/2∑

l=2

f l
N,K > exp

{
c10ν

N

Kd−1

}
,

which, by the choice of K = Na; a < 1/d, is clearly incompatible with (4.41).

On the other hand, the inequality (4.44) corresponds to the choice of χ = c6/c8
in (4.47) and, consequently, the estimate (4.48) yields:

R/2∑

l=2

f l
N,K > c11

(
νN

K

)d

.
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Thus, the volume constraint (4.41) is violated whenever

νd >
α

c12
, (4.49)

which defines the appropriated choice of α and ν.

4.11. Proof of Lemma 4.3. Consider the sequence ā0, . . . , ān−1 given by:

ā0 = 1 and āi = χ

i−1∑

j=1

āj for i > 1. (4.50)

The system (4.50) is exactly solvable:

āi = χ(1 + χ)i−1 for i > 1.

A look at the conditions of Lemma 4.3 reveals that ai > ān−i for every i = 1, . . . , n.
Hence (4.46).

4.12. Proof of Lemma 4.4. For some c > 0, consider the sequence ā0, . . . , ān−1

given by

āi = (1 + ic)1/(1−γ) = (1 + ic)d−1.

By convexity:

āi+1 − āi 6 (d− 1)c (1 + (i + 1)c)d−2

6 (d− 1)c(1 + c)d−2 (1 + ic)d−2 = (d− 1)c(1 + c)d−2āγ
i .

Let us choose c = c(χ, d) according to (d− 1)c(1 + c)d−2 = χ. Then,

āi 6 χ
i−1∑

j=0

āγ
j + 1,

for all j = 1, . . . , n − 1. Comparing with (4.47) we readily infer that (1 + ic)d−1 =
āi 6 an−i and, consequently, (4.48) follows with, for example,

c9 =
1

dc
min
n>1

(1 + c(n− 1))d

nd
.

5. Exponential mixing

The analysis of the spectral gap will rely on two properties of the equilibrium
measure: the localization of the interface and the mixing of the system to a pure
phase away from the interface. These estimates will be used in Subsection 6.1 in a
specific framework, slightly different from the one of Theorem 3.2.

In this Section we establish the technical estimates which will be necessary for the
derivation of the lower bound of the spectral gap. First, we formulate the localization
property in the appropriate setting (see Subsection 6.1). Then the mixing property
(MP) of the FK measure (see Definition 2.2) is combined with the localization in
order to derive a control on the Gibbs measure.
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5.1. A new setting. Let δ = 2−m be the relative height of the new domain

D
δ
N

∆
= {i ∈ L

d : 1 6 ik 6 N, k = 1, . . . , d− 1, 0 6 id 6 δN} . (5.51)

We use ∂extDδ
N to denote the exteriour boundary of Dδ

N in Ld. This boundary
consists of two parts: ∂extDδ

N = ∂ext
s Dδ

N

∨
∂ext

t Dδ
N , where t stands for top and s stands

for sides. The bottom face of Dδ
N is denoted by ∂int

b Dδ
N .

We are going to established the Hausdorff stability of the interface when a negative
(respectively positive) magnetic field is applied on ∂ int

b Dδ
N (resp ∂ext

t Dδ
N) and a small

positive field ε > 0 is applied on the faces of ∂ext
s Dδ

N . This amounts to consider the

Hamiltonian on {±1}D
δ
N which is given by

HN,ε(σ)
∆
= −1

2

∑

(i , j)⊂D
δ
N

σiσj −
∑

(i , j)
i∈D

δ
N ,j∈∂ext

t D
δ
N

σi − ε
∑

(i , j)
i∈D

δ
N ,j∈∂ext

s D
δ
N

σi

+
∑

i∈∂int
b Dδ

N

σi,

(5.52)

where the first three sums are over (subsets of ) nearest neighbour bonds (i , j). Fol-
lowing notation introduced in Subsection 2.3, we denote by µ+,ε,−

N the corresponding
Gibbs measure and by Φ±

N,ε the FK measure.

The counterpart of Theorem 3.2 in this context relies also on the strict convexity
assumption of the surface tension (SC).

Theorem 5.1. Assume (SC) and let δ > 0, ε > 0 be fixed. For any β ∈ B and any
ν > 0 there exists c1 = c1(ν) > 0, such that uniformly in N large enough,

Φ±
N,ε (g ↔ {i : id > νδN}) 6 e−c1(ν)N . (5.53)

The proof is similar to the one of Theorem 3.2.

5.2. Screening. Combining the localization of the interface (Theorem 5.1) and the
mixing assumption (MP), we obtain a screening property for the Gibbs measure.

Proposition 5.1. Fix β ∈ B1. Then there is cβ > 0 such that for any function g
with support included in SN,δ =

{
i ∈ Dδ

N ; id = 1
2
δN
}
, the following holds uniformly

over the boundary conditions in ∂ int
b Dδ

N

∀η ∈ {±1}∂int
b D

δ
N ,

∣∣∣µ+,ε
N (g) − µ+,ε,η

N (g)
∣∣∣ 6 2Nd−1 ‖g‖∞ exp(−cβδN) , (5.54)

where µ+,ε,η
N is the Gibbs measure with η boundary conditions on ∂ int

b D
δ
N , + boundary

conditions on ∂ext
t Dδ

N and ε > 0 boundary conditions elsewhere. µ+,ε
N stands for the

measure with {ηi = 1}i.

If ηi = 0 for all i, the FK counterpart of the Ising measure will be denoted by

Φ
w/f
N,ε. In the proof of the Proposition, we are going to show that assumption (MP)

implies that for any β in B1, the probabilities that a site in SN,δ is connected to the
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wired boundary conditions under Φw
N,ε or Φ

w/f
N,ε are almost identical, i.e., there exists

c = c(β) > 0 such that

∀j ∈ SN,δ,
∣∣∣Φw

N,ε(j ↔ ∂D
δ
N ) − Φ

w/f
N,ε(j ↔ ∂ext

D
δ
N)
∣∣∣ 6 exp(−cδN) . (5.55)

We stress the fact that in general the screening property (5.54) for the Ising
measure is stronger than (5.55) since for β ∈ B1 a phase transition occurs for the
Gibbs measure instead the FK measure is unique in the thermodynamic limit. In
particular, if the + boundary conditions on ∂ext

t Dδ
N are replaced by the magnetic

field ε then (5.54) does not hold for small values of ε instead (5.55) remains valid
uniformly in ε (at least for large enough β). The behavior wrt a magnetic field will
be investigated in details in Subsection 6.1.

Proof. By definition of the total variation distance∣∣∣µ+,ε
N (g) − µ+,ε,η

N (g)
∣∣∣ 6 ‖µ̃+,ε

N − µ̃+,ε,η
N ‖tv ‖g‖∞ ,

where µ̃ denotes the projection of the measure on SN,δ. Furthermore, the total
variation can be rewritten as

‖µ̃+,ε
N − µ̃+,ε,η

N ‖tv = inf
Π

{∫
dΠ(σ, σ′) 1σ 6=σ′

}
,

where the infimum is taken over the joint probability measure Π on
(
{±1}SN,δ

)2
with

marginals µ̃+,ε
N and µ̃+,ε,η

N . As the measures are ordered wrt the boundary conditions,
there is a coupling Π which preserves this order.

‖µ̃+,ε
N − µ̃+,ε,η

N ‖tv 6 inf
Π





∫
dΠ(σ, σ′)


 ∑

j∈SN,δ

|σj − σ′
j|





 ,

6
∑

j∈SN,δ

µ+,ε
N (σj) − µ+,ε,η

N (σj) 6
∑

j∈SN,δ

µ+,ε
N (σj) − µ+,ε,−

N (σj) . (5.56)

In terms of FK representation, this leads to

‖µ̃+,ε
N − µ̃+,ε,η

N ‖tv 6
∑

j∈SN,δ

Φw
N,ε( j ↔ ∂ext

D
δ
N ∪ ∂int

b D
δ
N)

− Φ±
N,ε(j ↔ ∂ext

D
δ
N ) + Φ±

N,ε(j ↔ g) ,

where ∂extDδ
N ∪ ∂int

b Dδ
N is simply the boundary ∂Dδ

N of Dδ
N .

Let us fix ν = 1
4
.

‖µ̃+,ε
N − µ̃+,ε,η

N ‖tv 6
∑

j∈SN,δ

{
Φw

N,ε(j ↔ ∂D
δ
N )

− Φ±
N,ε

(
j ↔ ∂ext

D
δ
N ; g 6↔ {i : id >

1

4
δN}

)}

+Nd−1Φ±
N,ε

(
g ↔ {i : id >

1

4
δN}

)
.

(5.57)



27

We are going to use now the fact that the interface is localized. Conditioning wrt
the bond configuration ξ below {i : id = 1

4
δN}, we get

Φ±
N,ε

(
j ↔ ∂ext

D
δ
N ; g 6↔ {i : id >

1

4
δN}

)
> inf

ξ

(
Φw,ξ

D̃
δ
N ,ε

(
j ↔ ∂ext

D̃
δ
N

))

Φw
N,ε

(
g 6↔ {i : id > 1

4
δN}, JN

)

Φw
N,ε(JN)

,

where Φw,ξ

D̃
δ
N ,ε

denotes the FK measure on D̃
δ
N = D

δ
N ∩{i : id > 1

4
δN} with boundary

conditions ξ on the lower face of D̃δ
N . As a consequence of Theorem 5.1, we get

Φ±
N,ε

(
j ↔ ∂ext

D
δ
N ; g 6↔ {i : id >

1

4
δN}

)
> (1 − exp(−c1δN)) Φ

w/f

D̃
δ
N ,ε

(
j ↔ ∂ext

D̃
δ
N

)
,

(5.58)

where Φ
w/f

D̃δ
N ,ε

denotes the FK measure with free boundary conditions on the bottom

face of D̃δ
N and wired otherwise.

Combining (5.53), (5.57) and (5.58) we finally derive

‖µ̃+,ε
N − µ̃+,ε,η

N ‖tv 6
∑

j∈SN,δ

Φw
N,ε(j ↔ ∂D

δ
N ) − Φ

w/f

D̃
δ
N ,ε

(j ↔ ∂ext
D̃

δ
N)

+Nd−1 exp(−c2δN) .

By the FKG property of the random cluster measures,

Φw
N,ε(j ↔ ∂D

δ
N ) 6 Φw

D̃δ
N ,ε

(j ↔ ∂D̃
δ
N ) .

At this stage, it will be enough to apply the strong mixing inequality (5.55) to
conclude.

Finally, it remains to derive (5.55) from the mixing property (MP). First of all,
one has to modify the boundary conditions and to replace ε by 0. This rests on
the GHS ferromagnetic inequalities which are available only for the Ising measure
(see eg. [El]). Using the correspondence between the Ising and the FK measure, we
define

∀ε > 0, Ψ(ε) = µ+,ε,+

D
δ
N

(σj) − µ+,ε,0

D
δ
N

(σj) = Φw
N,ε(j ↔ ∂D

δ
N ) − Φ

w/f
N,ε(j ↔ ∂ext

D
δ
N) ,

where µ+,ε,+

Dδ
N

(resp µ+,ε,0

Dδ
N

(σj)) denotes the Gibbs measure on the set Dδ
N with bound-

ary conditions + on the top face ∂ext
t Dδ

N , ε on the sides ∂ext
s Dδ

N and + on the bottom
face ∂int

b Dδ
N (resp 0 on the bottom face).

By FKG inequality, the function ε → Ψ(ε) is non negative and we are going to
check that it is non increasing. Deriving wrt the parameter ε, we get

Ψ′(ε) =
∑

i

µ+,ε,+

D
δ
N

(σj; σi) − µ+,ε,0

D
δ
N

(σj; σi) ,
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where the sum is restricted to the sites i which interact with the boundary field
on the sides ∂ext

s Dδ
N of the box. The GHS inequality ensures that the two point

truncated correlation function is a decreasing function of the field (for non negative
fields), i.e. Ψ′(ε) 6 0.

Thus, the derivation of (5.55) can be reduce to the case ε = 0 and it is enough to
prove that

Ψ(0) = Φw
N,ε=0(j ↔ ∂ext

t D
δ
N ∪ ∂int

b D
δ
N)−Φ

w/f
N,ε=0(j ↔ ∂ext

t D
δ
N) 6 exp(−cδN) . (5.59)

As ε = 0, the magnetization of σj is simply related to the FK connection of j to the
top (and possibly to the bottom) face of Dδ

N .
The mixing property (MP) enables us to compare only the probability of events

which are locally supported, this is not the case in the previous inequality, thus we
need more work to reduce to events with supports independent of N . Let BδN/10(j)
be the box centered at j, then Pisztora coarse graining implies that if j is connected
to the boundary of BδN/10(j) then with probability at least 1 − exp(−cδN) the site
j is connected also to the top face of Dδ

N . Define the set of bond configurations

A =
{
ξ, j ↔ ∂BδN/10(j)

}
.

Then

Φw
N,ε=0(j ↔ ∂ext

t D
δ
N ∪ ∂int

b D
δ
N ) − Φ

w/f
N,ε=0(j ↔ ∂ext

t D
δ
N)

= Φw
N,ε=0(A) − Φ

w/f
N,ε=0(A) + o

(
exp(−cδN)

)
.

The previous FK measures are ordered (in the FKG sense). We can consider the
joint measure νN(ξ, ξ′) such that the first marginal is Φw

N,ε=0, the second marginal is

Φ
w/f
N,ε=0 and the measure is supported by the configurations ξ > ξ ′. By construction

Φw
N,ε=0(A) − Φ

w/f
N,ε=0(A) = νN

(
1A(ξ) − 1A(ξ′)

)
6

∑

b∈BδN/10(j)

νN

(
ξb 6= ξ′b

)

=
∑

b∈BδN/10(j)

νN

(
ξb − ξ′b

)
=

∑

b∈BδN/10(j)

Φw
N,ε=0(ξb) − Φ

w/f
N,ε=0(ξ

′
b) .

For any bound b, the probability on the LHS can be estimated thanks to the mixing
property (see Definition 2.2)

Φw
N,ε=0(A) − Φ

w/f
N,ε=0(A) 6 Nd exp(−cδN) ,

for some c > 0. This completes the derivation of (5.55). �

6. Spectral gap estimates

6.1. Lower bound. We turn now to the derivation of the lower bound (3.26) on the
spectral gap. The proof follows closely the strategy developed by Martinelli [Ma] in
the two dimensional case. We will briefly recall the main steps of the proof as they
are exposed in the Chapter 6 of [Ma] and focus only on the changes. This comprises
a more careful analysis of the boundary effects to take into account the boundary
surface tension and a repeated use of Proposition 5.1, whose proof is based on the
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localization of the interface.

Step 1. The first step is to reduce to a block dynamics in order to estimate the
spectrum of the single site Glauber dynamics in DN = {1, . . . , N}d.

For a given δ > 0, we consider the following covering of DN by the overlapping
slabs

Ri =

{
x ∈ DN ,

i

2
[δN ] 6 xd < (

i

2
+ 1)[δN ]

}
.

The total number of sets {Ri}i is independent of N and denoted by L = L(δ). The
sets Ri are simply shifts of the set D

δ
N introduced in (5.51). The block dynamics is

defined in terms of the generator

∀f ∈ L
2(µh

N), Lh
N,δf(σ) =

∑

i

(
µh,σ

Ri
(f) − f(σ)

)
.

We recall that the single site dynamics on each Ri has a spectral gap larger than
exp(−cβδNd−1) (for some cβ > 0). Therefore, according to Proposition 3.4 of [Ma],
the following bound holds for some Cβ > 0

SG(Lh
N ) > exp(−CβδN

d−1) SG(Lh
N,δ) , (6.60)

where SG(Lh
N,δ) denotes the spectral gap of the block dynamics.

Step 2. Thanks to (6.60), it is enough to derive

Lemma 6.1. Let h = (0, . . . , 0, hd, 0, . . . , 0). Then, for any δ > 0,

lim inf
N→∞

1

Nd−1
log SG(Lh

N,δ) > − τ(~ed) + ∆hd
.

The proof boils down to check that the semi-group associated to Lh
N,δ is a con-

traction for some time T , i.e. that there is rN > 0 such that for all N large enough

sup
η

∣∣E
(
f(ση

T )
)∣∣ 6 (1 − rN)‖f‖∞ , (6.61)

for any f such that µh
N(f) = 0. In our context rN will be such that

lim
N→∞

1

Nd−1
log rN = −τ(~ed) + ∆hd

. (6.62)

Iterating (6.61), we get for any f

∀t > 0,
∥∥E
(
f(ση

t )
)
− µh

N(f)
∥∥
∞

6 ‖f‖∞ exp

(
−rN

[
t

T

])
. (6.63)

This L∞ contraction and (6.62) imply Lemma 6.1.

We turn now to the derivation of (6.61). For technical reasons, it will be con-
venient to replace the free boundary conditions by a small coupling ε > 0 and to
consider the evolution of the Glauber dynamics associated to the generator which
takes into account the new boundary conditions. Let us denote by µh,ε

N the corre-

sponding Gibbs measure and by Lh,ε
N,δ the new generator. The effect of ε is to select
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the + phase. The two block dynamics are comparable by using the Radon Nykodim
derivative; thus as ε vanishes, we recover the result for the original dynamics

lim inf
N→∞

1

Nd−1
log SG(Lh

N,δ) = lim
ε→0

lim inf
N→∞

1

Nd−1
log SG(Lh,ε

N,δ) .

Fix a function f such that µh,ε
N (f) = 0. Let f0 be the image of f at time t = 1 if

only the block R0 has been updated at the random time t0

f0(η) = E
(
f(ση

t=1) ; 0 < t0 6 1 < t1
)

= pµh,ε,η
R0

(f) ,

where p = 1
L
P(t0 < 1 6 t1) is the probability that R0 is the only update. Further-

more, µh,ε,η
R0

denotes the Gibbs measure on R0 with boundary conditions hd on the
bottom face {i ∈ DN : id = 0} of R0, ε on the sides and η at the top face. Notice
that p depends on L but not on N .

By construction f0 satisfies 3 important properties :

(1) f0 depends only on the spins in DN \R0.
(2) ‖f0‖∞ 6 p‖f‖∞.

(3) µh,ε
N (f0) = pµh,ε

N (f) = 0.

Using the Markov property at time t = 1 (see [Ma] page 162), we get

sup
η

∣∣E
(
f(ση

t=2)
) ∣∣ 6 (1 − p)‖f‖∞ + sup

η

∣∣E
(
f0(σ

η
t=1)

) ∣∣ .

Thus (6.61) will follow if one can derive that for any ψ which does not depend on

the spins in R0 and has zero mean under µh,ε
N ,

sup
η

∣∣E
(
ψ(ση

t=1)
) ∣∣ 6 (1 − rN,δ)‖ψ‖∞ , (6.64)

where rN,δ satisfies the asymptotic similar to (6.62)

lim
δ→0

lim
N→∞

1

Nd−1
log rN,δ = −τ(~ed) + ∆hd

.

Replacing ψ by f0, we complete Lemma 6.1.

Step 3. We turn now to the derivation of (6.64) for any function ψ which does not
depend on the spins in R0.

We consider a specific evolution up to time t = 1 with exactly L + 1 updates
occurring at the random times (ti)0 6 i 6 L (see [Ma] page 159). During the time
interval [0, 1], the blocks R0, R1, . . . , RL are successively updated at times (ti)0 6 i 6 L

such that 0 < t0 6 t1 6 . . . 6 tL 6 1 < tL+1. The kth-update amounts to modify
the spin configuration in the slab Rk, thus we introduce the following mappings on
the space of configurations

T σk
k (σ) =

{
σk(x), x ∈ Rk,

σ(x), x 6∈ Rk,

To quantify the successive updates, one has to bound

sup
η

∣∣∣∣
∫

dµη
R0

(σ0) . . .

∫
dµ

ηj−1

Rj
(σj) . . .

∫
dµ

ηL−1

RL
(σL) ψ(ηL)

∣∣∣∣ ,
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where ηk = T σk
k ◦ · · · ◦ T σ0

0 (η). In words, this means that at the jth update the
configuration in σj is chosen wrt the Gibbs measure on Rj with boundary conditions
equal to σj−1 in Rj−1 and η in Rj+1.

We define

∀j 6 L, gj(η) =

∫
dµη

Rj
(σj) . . .

∫
dµ

ηL−1

RL
(σL) ψ(ηL) ,

where this time ηk = T σk
k ◦ · · · ◦ T σj

j (η) for k > j. Thus it is enough to estimate

supη |µh,ε,η
R0

(g1)|, where the boundary conditions are hd on ∂int
b R0, η on ∂tR0 and ε on

the sides. The influence of the boundary condition η will be related to the stability
property of the interface and, unlike [Ma], we resort to the FK representation. Let

P
h,ε,η
R0

be the joint FK measure associated to µh,ε,η
R0

P
h,ε,η
R0

(σ, ξ) = P ξ,h,η
R0

(σ) Φh,w
R0,ε(ξ | Cη) .

The previous formula reads as follows. First a bond configuration is chosen wrt the
conditional FK measure; the conditioning Cη imposed by the boundary conditions
η is such that ξ can not connect regions of the boundary with different signs. For
a given bond configuration ξ, the spin configuration σ is obtained by a random
coloring compatible with the bond configuration ξ and the boundary conditions.
The random coloring is chosen according to the measure P ξ,h,η

R0
.

As ψ does not depend on the spins in R0, the support of g1 is included in SN,δ ∪
(R0 ∪ R1)

c, where SN,δ =
{
i ∈ R0; id = 1

2
δN
}
. We consider the event Aη which

decouples the spins in SN,δ from the boundary conditions η outside R0

Aη =
{
ξ
∣∣ {η = −1} 6↔ {i : id 6

3

4
δN}

}
.

The domain R0 is the analog of Dδ
N viewed upside down and {η = −1} = {i; ηi =

−1} replaces g (see Section 5). For any η, we write

µh,ε,η
R0

(g1) = Φh,w
R0,ε(Aη | Cη) P

h,ε,η
R0

(
g1 | Aη

)
+ P

h,ε,η
R0

(
g1 1Ac

η

)
.

This leads to the following decomposition
∣∣∣µh,ε,η

R0
(g1)

∣∣∣ 6 Φh,w
R0 ,ε(Aη | Cη)

∣∣∣Ph,ε,η
R0

(
g1 | Aη

)
− µ+,ε,η

R0
(g1)

∣∣∣
+Φh,w

R0,ε(Aη | Cη)
∣∣µ+,ε,η

R0
(g1)

∣∣+ Φh,w
R0,ε(Ac

η | Cη)‖ψ‖∞ , (6.65)

and µ+,ε,η
R0

denotes the Gibbs measure on R0 where the boundary magnetic field hd

on ∂int
b R0 has been replaced by +1. In order to complete the evaluation of (6.65),

we have to derive the following inequalities :

• A bound involving the surface tension

inf
η

Φh,w
R0,ε(Aη | Cη) > exp

(
−Nd−1(τ(~ed) − ∆hd

+O(ε))
)

= rN,ε . (6.66)

• A characterization of the screening

sup
η

∣∣∣Ph,ε,η
R0

(
g1 | Aη

)
− µ+,ε,η

R0
(g1)

∣∣∣ 6 Nd−1 exp(−cδN)‖ψ‖∞ . (6.67)
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• A proof of the much “faster” relaxation of the dynamics in the + phase.
This boils down to check that

sup
η

∣∣µ+,ε,η
R0

(g1)
∣∣ 6 Nd−1 exp(−cδN)‖ψ‖∞ . (6.68)

Combining the 3 previous estimates, there is c > 0 such that

sup
η

∣∣∣µh,ε,η
R0

(g1)
∣∣∣ 6 Φh,w

R0,ε(Aη | Cη)N
d−1 exp(−cδN)‖ψ‖∞ + Φh,w

R0,ε(Ac
η | Cη)‖ψ‖∞ ,

6
(
1 − rN,ε(1 −Nd−1 exp(−cδN))

)
‖ψ‖∞ .

This concludes the proof of (6.64).

6.1.1. Derivation of inequality (6.66). The event Aη ∩ Cη is supported by the set of
bonds E∆ generated by ∆ =

{
i ∈ R0, id >

3δ
4
N
}
, i.e. E∆ =

{
(i, j) ∈ E , i ∈ ∆

}
.

Since Aη ∩ Cη is decreasing, we have

Φh,w
R0,ε(Aη | Cη) =

Φh,w
R0,ε(Aη ∩ Cη)

Φh,w
R0,ε(Cη)

>
Φw

∆,ε(Aη ∩ Cη)

Φh,w
R0,ε(Cη)

.

In the spin language, it can be rewritten as

Φw
∆,ε(Aη ∩ Cη)

Φh,w
R0 ,ε(Cη)

=
Z+,ε,η

∆

Z+,ε,+
∆

Zh,ε,+
R0

Zh,ε,η
R0

>
Z+,ε,−

∆

Z+,ε,+
∆

Zh,ε,+
R0

Zh,ε,−
R0

,

where we used in the last inequality that the the ratio Z+,ε,η
∆

/
Zh,ε,η

R0
is an increasing

function of η.
As in e.g. Lemma 2.1 and Lemma 2.2 in [BIV2] we, taking the thermodynamic

limit, recover the surface tension and the surface energy (recall that δN is the height
of the box R0 and that the magnetic filed ε is applied on the lateral sides only):

lim
δ→0

lim inf
N→∞

1

Nd−1
inf
η

log Φh,w
R0,ε(Aη | Cη) > − τ(~ed) + ∆hd

. (6.69)

This conclude (6.66).

6.1.2. Derivation of inequality (6.67). Let R̃0 be the set R0 ∩ {i : id 6 3
4
δN}.

The domain R̃0 is the counterpart of the domain D̃δ
N introduced in the proof of

Proposition 5.1. An intermediate step is to estimate the total variation distance
between the measures P̃

h,ε,η
R0

(·|Aη) and µ̃+,ε

R̃0
which are the projections of the measures

P
h,ε,η
R0

(·|Aη) and µ+,ε

R̃0
on the spin variables in the domain SN,δ. Before applying (5.56),

we need to check that the measure P̃
h,ε,η
R0

(·|Aη) is stochastically dominated by µ̃+,ε

R̃0
.

Let ψ be an increasing function supported by {±1}SN,δ

P̃
h,ε,η
R0

(ψ|Aη) =
1

Φh,w
R0,ε(Aη | Cη)

∑

σ,ξ

P ξ,h,η
R0

(σ) Φh,w
R0,ε(ξ | Cη)1Aη(ξ)ψ(σ) .



33

Let us decompose ξ into (ξ ′, ξ′′), where ξ′ is the restriction of ξ to R̃0. Conditioning
wrt ξ′′, we get

P̃
h,ε,η
R0

(ψ|Aη) =
1

Φh,w
R0,ε(Aη | Cη)

Φh,w
R0,ε

(
1Aη

∑

σ,ξ′

P ξ,h,η
R0

(σ) Φh,w
R0,ε(ξ

′ | ξ′′)ψ(σ)
∣∣∣ Cη

)
.

As ξ′′ belongs to Aη, the coloring measure P ξ,h,η
R0

does not take into account the
constraint imposed by η. Thus one can write

∑

σ,ξ′

P ξ,h,η
R0

(σ) Φh,w
R0,ε(ξ

′ | ξ′′)ψ(σ) =

∫
mξ′′(dω)µh,ε,ω

R̃0
(ψ) .

where mξ′′ is a measure on the boundary conditions ω outside R̃0. As the RHS of
the previous inequality is always smaller than µ̃+,ε

R̃0
the stochastic domination holds.

Using the property that the measures are ordered, we have according to (5.56)

‖µ̃+,ε

R̃0
− P̃

h,ε,η
R0

(·|Aη)‖tv 6
∑

j∈SN,δ

µ+,ε

R̃0
(σj) − P

h,ε,η
R0

(σj|Aη)

6
∑

j∈SN,δ

Φw
R̃0,ε

(
j ↔ ∂R̃0 ∪ ∂int

b R̃0

)
− Φh,w

R0,ε(j ↔ ∂extR0 | Aη ∩ Cη) .

By FKG inequality, this leads to

‖µ̃+,ε

R̃0
− P̃

h,ε,η
R0

(·|Aη)‖tv 6
∑

j∈SN,δ

Φw
R̃0,ε

(
j ↔ ∂extR̃0 ∪ ∂int

b R̃0

)
− Φ

h,w/f

R̃0 ,ε
(j ↔ ∂extR0) .

As β is in B1, the strong mixing property implies that for some c > 0

‖µ̃+,ε

R̃0
− P̃

h,ε,η
R0

(·|Aη)‖tv 6 Nd−1 exp(−cδN) . (6.70)

By Proposition 5.1, the total variation distance between the measures µ̃+,ε

R̃0
and µ̃+,ε,η

R0

is exponentially small, thus (6.67) is proven.

6.1.3. Derivation of inequality (6.68). The proof is based on a repeated use of the
screening property obtained in Proposition 5.1.

µ+,ε,η
R0

(g1) = µ+,ε,η
R0

(g1) − µ+,ε,η
R0∪R1

(g1) + µ+,ε,η
R0∪R1

(g1) .

As g1 is supported by SN,δ ∪ (R0 ∪ R1)
c, we can apply Proposition 5.1 to get

∣∣µ+,ε,η
R0

(g1) − µ+,ε,η
R0∪R1

(g1)
∣∣ 6 exp(−cδN)‖f‖∞ . (6.71)

Since µ+,ε,η
R0∪R1

(g1) = µ+,ε,η
R0∪R1

(g2), the previous argument can be iterated

µ+,ε,η
R0

(g1) =

L−1∑

i=0

(
µ+,ε,η

R0∪···∪Ri
(gi+1) − µ+,ε,η

R0∪···∪Ri+1
(gi+1)

)
+ µ+,ε

N (f) ,

where we used that f = gL+1 and DN = R0 ∪ · · ·∪RL. Using the fact that for i > 1,
the restriction of gi+1 to R0∪· · ·∪Ri+1 is measurable wrt R0∪· · ·∪Ri−1 an estimate
similar to (6.71) holds.
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For ε > 0, an argument similar to the one used in Proposition 5.1 implies
∣∣µ+,ε

N (f) − µh,ε
N (f)

∣∣ 6 exp(−cδN)‖f‖∞ .

By construction µh,ε
N (f) = 0. Summarizing the previous estimates, there exists

c > 0 such that

sup
η

∣∣µ+,ε,η
R0

(g1)
∣∣ 6 LNd−1 exp(−cδN)‖f‖∞ .

Thus (6.68) holds.

6.2. Upper Bound on the spectral gap. We turn now to the derivation of The-
orem 3.5. For any m ∈] −m∗(β), m∗(β)[, we set

Am =
{
σ ∈ {−1, 1}DN | MN 6 m

}
,

where MN denotes the averaged magnetization MN = 1/Nd
∑

i∈DN
σi. Applying

formula (3.25) to the test function f(σ) = 1{σ∈Am}, we get the following upper
bound on the spectral gap

SG(N,h) 6 (2N)d µh
N

(
∂Am

)

µh
N(Am)(1 − µh

N(Am))
, (6.72)

where ∂Am is the boundary of the set Am

∂Am =
{
σ ∈ {−1, 1}DN | ∃x ∈ DN , σ ∈ Am, σ

x 6∈ Am, or σ 6∈ Am, σ
x ∈ Am

}
.

Optimizing this inequality over m will enables us to bound the spectral gap in terms
of equilibrium quantities.

For any β in B, the measure µh
N converges to the pure phase µ+ in the thermo-

dynamic limit as soon as one of the coordinates of h is positive. As a consequence
µh

N(Am) vanishes as N goes to infinity for m in [−m∗(β), m∗(β)[.
The set Am contains the configurations in the − phase which can be associated,

on the macroscopic level, to the function u uniformly equal to −1. In this case
there is no interface in the bulk and the interfacial energy is concentrated along the
boundary. A straightforward adaptation of proposition 4.1 of [BIV2] implies

lim inf
N→∞

1

Nd−1
log µh

N(Am) > − Fh(−m∗(β)) = −
2d∑

i=1

∆hi
. (6.73)

Proposition 4.2 of [BIV2] implies the following upper bound

lim sup
δ→0

lim sup
N→∞

1

Nd−1
log µh

N

(
{MN ∈ [m− δ,m+ δ]}

)
6 −Fh(m) .

The previous inequality rests upon the lower semi-continuity of the functional Wh

which, for the sake of completeness, is proven in the Appendix.
For any δ > 0, ∂Am is included in the set {MN ∈ [m− δ,m + δ]}, thus

∀m ∈] −m∗(β), m∗(β)[, lim sup
N→∞

1

Nd−1
logµh

N(∂Am) 6 −Fh(m) . (6.74)

Combining estimates (6.73) and (6.74), we conclude Theorem 3.5.
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7. Appendix

7.1. Lower semi-continuity. By considering appropriate boundary conditions, we
are going to reduce Wh to a functional which does not explicitly take into account
the boundary field. We set

gh(x) =





|∆hi
|

2τ(~ei)
, if xi − 1/2 > max

j
{|xj − 1/2|} ,

|∆h2i
|

2τ(~ei)
, if xi − 1/2 6 min

j
{−|xj − 1/2|} .

To any function u of bounded variation, we associate Du the vector measure of its
first partial derivatives and |Du| the positive measure obtained by taking the total
variation of Du. Finally, we denote by ~n the vector function obtained as the Radon

Nykodim derivative of dDu
d|Du|

. For any function u in BV(intD̂, {±1}), one sets

Wh(u) =
1

2

∫

O

τβ(~nx) d|Du ∨ gh|(x). (7.75)

This functional is lower semi-continuous w.r.t. L1-convergence. Let si =
|∆hi

|

2τβ(~ei)
and

recall that P = ∪2d
i=1Pi denotes the faces of the cube D̂. This functional can be

rewritten as follows

Wh(u) =

∫

∂∗

gh
u\P

τβ(~nx)dH(d−1)
x

+
∑

i

(|Pi| − Si)(1 − si)τβ(~ei) + Si(1 + si)τβ(~ei) + C(O),

where Si stands for the Hausdorff measure of ∂∗{{u = −1} ∨ gh} ∩ Pi and C(O) is

the variation of g in O \ D̂. We recover Wh(u) up to a constant

Wh(u) = Wh(u) −
∑

i

|Pi| (τβ(~ei) − ∆hi
/2) − C(O). (7.76)

This implies that the functional Wh(u) is lower semi-continuous.

7.2. Proof of Proposition 2.1. .
We split the proof into several steps:

Step 1. If τβ is strictly convex at ~ed, then also τ ε
β is strictly convex at ~ed. Indeed,

define x = (0, . . . , 0, τβ(~ed)). Thus, x belongs to ∂K, it is just a point where the
~ed-orthogonal hyperplane touches ∂K. Of course, τ ε

β(~ed) = (x, ~ed) for every ε > 0.
The inequality (2.14) can be equivalently reformulated as follows: at least for one
of the vectors ~vk, τβ(~vk) > (x, ~vk), or, in other words,

{x ∈ R
d : (x− x, ~vk) = 0} ∩ int(K) 6= ∅.

Since the Wulff shape K is convex and has a non-empty interiour, the latter is
equivalent to

{x ∈ R
d : (x− x, ~vk) = 0} ∩ int(Kε) 6= ∅
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for every ε > 0. Hence τ ε
β(~vk) > (x, ~vk) as well.

Step 2. Below we use a simplified notation τ ≡ τ ε
β. Let E ⊂ {x : xd > 0}

be a bounded set of finite perimeter and positive volume (d-dimensional Hausdorff
measure). Let ∂∗E be the reduced boundary [EG] of E. Let us split it as ∂∗E =
A ∪ Σ, where

Σ = ∂∗E \ {x ∈ R
d : xd = 0} = ∂∗E \ A.

We claim that ∫

Σ

τ(~nx)dHd−1
x > Hd−1(A)τ(~ed). (7.77)

By the Gauss-Green formula [EG],

Hd−1(A)~ed =

∫

Σ

~nxdHd−1
x . (7.78)

In view of (2.14) it is enough to show that one can find a decomposition of Σ into
a disjoint union Σ = Σ1 ∪ · · · ∪ Σd, such that the vectors

~vk
∆
=

∫

Σk

~nxdHd−1
x k = 1, . . . , d, (7.79)

are in the general position. At this stage the positivity of the volume of E enters
the picture. By the continuity one can pick positive numbers 0 = a0 < a1 < · · · <
ad−1 < ad = ∞ such that

(i) mink 6 d Hd (E ∩ {x : ak−1 < xd < ak}) > 0.

(ii) mink 6 d−1 Hd−1 (E ∩ {x : xd = ak}) > 0.

Of course, E ∩ {x : ak−1 < xd < ak} is just the part of E which is chopped

out by ~ed-orthogonal hyperplanes through the points xk−1
∆
= (0, . . . , 0, ak−1) and

xk
∆
= (0, . . . , 0, ak) respectively. Since E is a set of finite perimeter we may in

addition assume that small perturbations of these hyperplanes retain both properties
above. Specifically, there exist positive numbers δ1, . . . , δd−1 > 0, such that the sets
(k = 2, . . . , d− 1)

Sk
∆
= E ∩ {x : (x− xk, ~ed + δk~ek) < 0 < (x− xk−1, ~ed + δk−1~ek−1)},

S1
∆
= {x : (x− x1, ~ed + δk~e1) < 0 < (x,~ed)} and Sd = E \ ∪d−1

k=1Sk, are disjoint and,
furthermore, each and everyone of the corresponding portions of their boundaries,
which we denote as Σk = Σ ∩ Sk; k = 1, . . . , d and

Ak = E ∩ {x : (x− xk, ~ed + δk~ek) = 0}; k = 1, . . . , d− 1,

has a positive (d− 1)-dimensional Hausdorff measure.
Subsequent application of the Gauss-Green formula on each of the sets S1, . . . , Sd

leads now to the following chain of equalities for the vectors ~v1, . . . , ~vd defined in
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(7.79):

0 6= ~vd = (~ed + δd−1~ed−1)Hd−1(Ad−1)

0 6= ~vd−1 = − (~ed + δd−1~ed−1)Hd−1(Ad−1) + (~ed + δd−2~ed−2)Hd−1(Ad−2)

· · ·
0 6= ~v1 = − (~ed + δ1~e1)Hd−1(A1) + ~edHd−1(A).

Recall that by (7.78)
∑d

1 ~vk = ~edHd−1(A). Consequently, ~v1, . . . , ~vd span Rd and
(7.77) follows.

Step 3. Finally we turn to the proof of Proposition 2.1 proper. Let u ∈ BV
(
int D̂, {±1}

)
.

Set E = {x : u(x) = −1}. As in Step 2, split ∂∗E = Σ ∪ A. The functional

Ŵβ,ε (u|g) can be then written (in the notation τ ≡ τ ε
β) as

Ŵβ,ε

(
u
∣∣ g
)

=

∫

Σ

τ(~nx)dHd−1
x +

(
1 −Hd−1(A)

)
τ(~ed).

By (7.77),

Ŵβ,ε

(
u
∣∣ g
)
> Ŵβ,ε

(
1I(·)

∣∣ g
)
,

as soon as Hd(E) > 0. But this is precisely the claim of the Proposition.
�
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