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A microscopic derivation of 3D equilibrium crystal shapes

T. Bodineau

1. Phase coexistence for the Ising model

1.1. Phenomenological description. In equilibrium, the coexistence of two
phases (for example crystal/vapor) is quantified by the surface tension between
these phases. The analysis of equilibrium crystal shapes can be traced back to the
original work of Wulff [Wu], where crystal shapes were identified as the surfaces
which minimize the interfacial free energy. If the crystal occupies the region V C R?,
then the interfacial free energy W(V) is equal to the integral of the surface tension
7 over the (regular) boundary oV of V :

W) = /8 (i) d.

where 7 is an anisotropic function depending on the local orientation of the interface,
and H is the two dimensional Hausdorff measure.

If the crystalline phase, immersed in the vapor, has a given volume v then the
equilibrium crystal shapes are the minimizers of the Wulff variational problem, i.e.
they minimize WV under the volume constraint v. The solutions of this optimization
problem are obtained by dilatation of the Wulff shape W in order to satisfy the
volume constraint

(1.1) W= ({zeR z-agr@)},

es?
where S? is the unit sphere of R®.

We are going to review results on the microscopic derivation of the Wulff con-
struction in the context of the ferromagnetic Ising model. For a comprehensive
survey on the topic, we refer the reader to [BIV1] and references therein.
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1.2. Ising model. The phenomenon of phase segregation will be analyzed for
finite range ferromagnetic Ising models. Let Dy be the subset {—N, ..., N}% of Z¢,
with d > 2. Each site ¢ in Dy indexes a spin o; which takes values +1. The spin
configurations {o; }iepy have a statistical weight determined by the Hamiltonian

H"T(U):—1 o Ji-doioi— > Ji—j)oid;,
2

i,jeDy €Dy ,jEDg

where & = {0 }iepg, are boundary conditions outside Dy and J are ferromagnetic
finite range coupling constants, i.e. J > 0 and there is R > 0 such that J(i) = 0 if
llilloc > R.
The Gibbs measure associated to the spin system with boundary conditions &
is
_ 1 _

ag

Vo = {UE}EEDNa IU’IB,N(U) = ZgN €xp (_ﬁHJ(U)) )

where (3 is the inverse of the temperature (8 = %) and Z g’  is the partition function.
If the boundary conditions are uniformly equal to 1 (resp. —1), the Gibbs measure
will be denoted by uf x (resp. pg n)-

The phase transition regime occurs at low temperature and is characterized by
spontaneous magnetization in the thermodynamic limit. There is a critical value
(. such that

(1.2) V3 > 3., 1115nu;;,N(ao) = —liI{[nuE’N(ao) =mj>0.

Furthermore, in the thermodynamic limit the measures NE, ~ and pg o converge
(weakly) to two distinct Gibbs measures NZ;L and pz; which are measures on the
space {:I:l}Zd. Each of these measures represents a pure state.

Following the phenomenological description, we introduce the surface tension
in order to quantify the coexistence of the two pure states defined above. Due to
the lattice structure, the surface tension is anisotropic. Let 7 be a vector in S4~1
such that 7 - €1 > 0 and & be the following mixed boundary conditions

+1, if
-1, if

Vi € DS, (—,z.:{ -i20,

7
The partition function with mixed boundary conditions is denoted by Zg:’ N (7)
and the one with boundary conditions uniformly equal to 1 by Zg’ - The mixed
boundary conditions enforce the existence of an interface (a microscopic contour)
orthogonal in average to the direction 7.

DEFINITION 1.1. The surface tension in the direction @ € S, with i-&; > 0,
is defined by

+ —
-\ 1s (ﬁa €1) ZB,N(n)
(1.3) 73(7) —]\}1_1)%0 ~ N1 1 Z;N

General orientations 7 can be deduced by symmetry. We refer to [MMR] for
a more thorough analysis on surface tension.
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1.3. L' Theory. For simplicity, we consider only the dimension d = 3. How-
ever, the following statements hold also in any dimensions larger than 3.

For N large, the typical configurations under “Z?L, n are almost in the + pure
phase and the locally averaged magnetization is close to mj (see (1.2)). In or-
der to enforce phase coexistence, the measure ,u; n is conditioned by the event
that the averaged magnetization is shifted from its expected value, i.e. {MN =
m Y ieny i < m }, where m is a constant in ] —mj, mj[. The problem will be
to characterize the typical configurations, as N diverges, of the conditional measure
HE,N(' My <m).

The phenomenon of phase segregation will be described on the macroscopic level
in terms of concentration in the L!-norm of the locally averaged magnetization.
Before stating the result, let us introduce the macroscopic setting and rephrase
more generally the variational problem.

On the macroscopic level, the system is confined in the cube D= —%, %]3 of
R?® and a macroscopic configuration where the pure phases coexist is described by
a function v taking values {£1}. The function v should be interpreted as a signed
indicator representing the local order parameter : if v, = 1 for some r € ]]A]J, then
the system should be locally at 7 in equilibrium in the phase mj.

To define the macroscopic interfaces, i.e. the boundary of the set {v = —1},
a convenient, functional setting is the space BV(D, {£1}) of functions of bounded
variation with values +1 in D and uniformly equal to 1 outside D (see [EG] for
a review). For any v € BV(H/J\),{iI}), there exists a generalized notion of the
boundary of the set {v = —1} called reduced boundary and denoted by 0*v. If
{v = —1} is a regular set, then 0*v coincides with the usual boundary dv. The

Wulff functional Wj can be extended on L! (]f))) as follows

_ [ [, Te0%) dH,,  if veBV(D,{x1}),
(1.4) Walv) = { o, otherwise.

To any measurable subset A of ]ﬁ), we associate the function T4 = 14 —14 and
simply write Wg(A) = Ws(14). The Wulff variational problem can be rephrased
in this new setting,

(1.5) min{Wg(v) ‘ v E BV(]ﬁ),{il}), | /ﬁmg vrdr| < m}.

Denote by D,, the set of minimizers of (1.5). It has been proven by [Ta, F, FM]
that in R® the minimizer is unique up to translations and given by dilatation of the
Wulff shape (1.1). The constraint that the minimizers should fit in I may lead to
different equilibrium shapes if the shift of the magnetization mj —m is too large
(we refer to [ScS2] for a detailed analysis of the constrained variational problem in
2D). However, from the point of view of microscopic theory, the precise shape or the
uniqueness of the minimizers will be irrelevant for the analysis of phase segregation.

The microscopic Ising model is embedded in the continuous setting. Let Dy =
5 Z3ND. For simplicity the microscopic size is chosen in the binary form N = 2"

and we will consider intermediate scales K = 2¥. The cube D is partionned into
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boxes I@N, K, each of them containing K 3 sites of ]ﬁ)N

K K1°
2N’ 2N

, K = =
J€Z3,.CL'=_7N€]D)N, IBN,K(.’E)Z.’L'—}—]

Let Bk (Nz) be the microscopic counterpart of By g (z), i.e. the sites of Dy in

IBN,K (CL‘)
The local magnetization is a piece-wise constant function on the partition

{By,x (2)}

~ 1
Yy € By k(z), Mni(y) = 7 > o

i€BK (Nz)

The thermodynamic prediction of phase separation can be recovered on a coarse
grained level in the L! topology. The system will no longer be described by the
microscopic configurations but instead by the local order parameter My k which
characterizes the local equilibrium. This description of phase segregation holds for
inverse temperatures 3 in B C]f,, o[, where B is the domain of validity of Pisztora’s
coarse graining [Pi]. It is actually conjectured that B =]8,, ool.

THEOREM 1.2. Let 3 be in B and m €] — mj, mj[. For every § > 0, one can
choose a scale Ko = Ko(83,0) such that for any K > Ko

Jim b (vig%)fm M~ miollr <8 | My < m) 1

The theorem can be rephrased as follows : under the soft canonical constraint
{Mpy < m}, for every small § > 0 there is a coarse grained scale K (d) such that for
any mesoscopic resolution K > Kj, the locally averaged magnetization My g is,
with an overwhelming probability, é-close to one of the minimizer of the variational
problem.

The theorem was first derived in [B1] for 3 large enough and mesoscopic scales
Ky growing with N. Cerf and Pisztora [CePil] proved the Theorem for inverse
temperatures in B. The L' description for finite mesoscopic scales was obtained
by Bodineau, Ioffe, Velenik [BIV1]. More precisely, it was shown that the L!
concentration of the magnetization holds uniformly for any scale in [Ko(3,9), N¥]
(for any v < 1/d). Finite range models are considered in [BIV2].

In section 2, we briefly review the results obtained for the 2D Ising model and
the 3D results for the Kac-Ising model and percolation. Finally in section 3, we
outline the structure of the L' approach and discuss some perspectives.

2. Rigorous results on phase segregation

2.1. 2D results. The rigorous investigation of phase separation under a ca-
nonical constraint started with two seminal papers of Minlos and Sinai [MS]. A
breakthrough occurred with the complete microscopic derivation of the Wulff con-
struction by Dobrushin, Kotecky and Shlosman [DKS] for the low temperature 2D
Ising model.

The strategy followed in [DKS] is based upon low temperature expansions,
nevertheless it provides a comprehensive mathematical theory of phase segregation
which pertains to the whole of the phase transition region. The phase separation,
enforced by a canonical constraint on the magnetization, was described on the
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microscopic level by a direct analysis of the microscopic phase boundaries and
sharp uniform local limit estimates.

Alternative simplified proofs based on 2D duality were derived by Pfister [Pf]
for the low temperature Ising model and by Alexander, Chayes, Chayes [ACC] for
2D Bernoulli percolation down to the percolation threshold 1/2. In both proofs the
canonical constraint was relaxed.

Generalizing the previous results, Ioffe [I1, I2] proved the validity of the Wulff
construction in the whole of the phase coexistence region. Some of the basic esti-
mates of [I1, I2] were simplified by Schonmann and Shlosman [ScS1, ScS2], and
the integral version of the two-dimensional DKS theory has been essentially com-
pleted in [PV2]. Pfister and Velenik [PV1, PV2] also investigated the effect of a
boundary magnetic field (Winterbottom construction).

Finally, by strengthening the estimates in the phase of small contours, Ioffe and
Schonmann [ISc] derived a local limit theorem in the phase of small contours. This
enabled them to complete the non-perturbative picture of the full DKS Theory.
Furthermore, fluctuations of the 2D phase boundaries were studied by Dobrushin
and Hryniv [DH] and Alexander [Al].

2.2. 3D results. The basic philosophy of the L' approach was originally de-
veloped in the context of the Ising systems with Kac potentials. Elements and ideas
of the theory already appeared in [ACC], [Pi], [I2] and [PV 2].

The core of the ! theory is robust and can be stated in a general context. Nev-
ertheless, it relies crucially on coarse grained estimates which provide the necessary
model-dependent information. In particular, the FK renormalization estimates
established by Pisztora [Pi] are of fundamental importance for the analysis of per-
colation and Ising model, whereas the coarse grained estimates for Kac potentials
were derived by [CaPr, BMP, BZ] (see also [B2]).

The embedding into the continuum and the approximation procedures were
introduced by Alberti, Bellettini, Cassandro and Presutti [ABCP, BCP] in the
framework of geometric measure theory. They derived the phase coexistence phe-
nomenon by proving I'-convergence of the functionals associated to the Kac-Ising
model (in a suitable scaling) and also by means of compactness arguments.

The analysis of Kac potentials with range independent of the size of the sys-
tems required additional steps, amongst which appear a coarse-grained approach
to embed the microscopic model in L!; surgery procedures to confine interfaces;
and exponential tightness arguments to reduce the complexity of the rescaled prob-
lem. In this way, exact bounds for the surface tension were obtained by Benois,
Bodineau, Butta and Presutti [ BBBP, BBP] in the Lebowitz Penrose limit. This
implied an approximate description of phase segregation at long but finite range
interaction.

A first complete picture of the higher dimensional L' Wulff construction has
been derived by Cerf [Ce] for super-critical 3-dimensional Bernoulli percolation. In
this context, the phase coexistence is modeled by the event that the cluster attached
at site 0 is conditioned to be anomalously large without touching the infinite cluster.
The strategy of the proof is similar to the L' approach as described above, but the
model-related input was provided by Pisztora’s coarse graining [Pi] rather than by
the Peierls type estimates of [CaPr]. The key point of [Ce] was the introduction
of an alternative ingenious definition of the surface tension, compatible with the
setup of the L' renormalization procedures.
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3. L! Theory

3.1. Outline of the proof. Contrary to the 2D microscopic description, the
L' approach provides only a mesoscopic picture of phase segregation under the soft
canonical constraint {My < m}. From the start, the microscopic configurations are
wiped out and the system is characterized by mesoscopic variables which quantify
only the local proximity to one of the pure phase. Therefore, the ! Theory hinges
on the validity of a coarse graining which will keep track of the local order parameter
and ensures good decoupling properties.

The salient features of the proof of Theorem 1.2 will now be outlined. Phase
segregation relies on an energy/entropy competition whose nature is twofold.

1. Phase of small contours :

Phase coexistence could be realized in two ways : either by saturating the bulk
with “small” droplets of the minority phase; or by creating a macroscopic droplet.
The former strategy maximizes the entropy of the droplets but is less favorable
energetically.

For the 2D Ising model, the statistical weight of each scenario is precisely
evaluated [ISc, DS]. It is proven that the first strategy occurs only in a regime of
moderate deviations (i.e. for shifts of the magnetization smaller than N%).

The 3D analysis of the phase of small contours is more crude and is performed
on a mesoscopic scale. It requires the validity of a coarse graining. The proof
is based upon the control of the total area of the interfaces between the meso-
scopic regions with different order parameters. Ideas developed in the 2D context
[I2, ScS1] can be implemented on a coarse grained level to prove an exponential
tightness property for the total perimeter of the interfaces. This rules out the occur-
rence of configurations with a density of small droplets and implies that My, k is
close in L' to functions of the type mp 1y, where V' is a set with bounded perimeter.

The argument is general and a procedure, which applies in an abstract setting, is
devised in [BIV1]. The finite scales estimates of Theorem 1.2 hinge on the uniform
controls obtained in [BIV1]. This generalizes the previous proofs for Kac-Ising
model [BBP] and for Ising [B1].

2. Surface tension :

Since the class C, of sets with perimeter smaller than a constant a is compact,
it will be enough to consider configurations which belong to a finite number of L
neighborhoods of functions mz;][v with V in C,.

For a given V in C,, the aim is to prove that the statistical weight of configura-
tions close to Iy in L' is of order exp(—N?Wg(V)). Starting from the macroscopic
constraint that the configuration is close (in L) to Ty, successive localization pro-
cedures are implemented in order to extract the surface tension factor (1.3). The
Waulff functional W3 will arise from the balance between the energetic cost and the
entropy of the interfaces associated to the different configurations.

In a first step, the boundary 9*V is regularized and attention is focused to
macroscopic regions close to 8*V. Then the ! volume constraint becomes effective
and by a surgical procedure on the mesoscopic level, the coarse grained interface is
localized along the boundary 9*V'.

Finally, one has to relate the localized coarse grained interface with the micro-
scopic expression of surface tension (1.3). Model-dependent estimates are required
only in this final step. In [B1, CePil], the mesoscopic description of the Ising
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model is based upon Pisztora’s coarse graining [Pi] which is defined in the FK
representation. Thus, the analysis of surface tension is performed in the FK rep-
resentation. The idea of combining Pisztora’s coarse graining with an appropriate
definition of surface tension originates in Cerf’s work [Ce] on Bernoulli percolation.
In the FK representation, the influence of the boundary conditions should be taken
into account. In [B1], the screening of the boundary conditions was implemented
at low temperature (this was also the only time where the low temperature assump-
tion was needed). A non perturbative analysis of the relaxation of FK boundary
conditions was developed in [CePil]. This implies the validity of Theorem 1.2 to
the range B of inverse temperatures.

3.2. Recent progress and future prospects. The Winterbottom construc-
tion describing a droplet on a substrate [Wi] is derived along the lines of the LL!
Theory in [BIV2]. Phase coexistence in the ¢g-Potts model is proven in [CePi2] by
using the correspondence with the FK-measure.

The generalization of the L' approach to models ruled by Pirogov Sinai Theory
would enable the description of a richer class of physical phenomena (see [B2] for
a discussion). Another complex issue would be to improve the previous results to
obtain a more accurate description closer to the 2D results.
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