
ON THE VAN DER WAALS THEORY OF SURFACE TENSION.

T. BODINEAU

Abstract. In this paper, the works on the justification of the van der Waals theory of
surface tension in the context of the Kac Ising models are reviewed. The second part of
the paper is devoted to a coarse grained definition of the surface tension for Kac Ising
models which is appropriate for the L

1 approach of phase coexistence.

1. Introduction

The microscopic model with long range interactions introduced by Kac [KUH] was
motivated by the van der Waals theory of liquid/vapor phase transition. This model
provided a justification from a microscopic point of view of the phase diagram obtained
from the van der Waals theory (including Maxwell’s rule). The program launched by
Kac was completed in the celebrated paper by Lebowitz and Penrose [LP]. Shifting from
the bulk properties to surface properties, several works were devoted during the last 10
years to a rigorous justification of the van der Waals theory of surface tension [vdW].
In this paper, we survey these results and explain the interplay between the mean field
representation of surface tension and its microscopic counterpart.

Beyond the justification of the van der Waals theory, the Kac model played also a key
role in the recent developments on the phase coexistence. The ambivalence of the model
which has been devised as a bridge between the microscopic systems and the continuous
models was certainly one of the reason for which progress have been made. For exam-
ple, the setting of the geometric measure theory was introduced in order to analyze the
Γ-convergence of the mean field functionals [ABCP, BCP]. The renormalization scheme,
which was developed to study bulk properties for the Kac Ising model with finite range
interactions appeared also to be an appropriate tool for the localizations of the mesoscopic
interfaces as well as to control the phase of the small contours and to obtain exponential
tightness estimates [BBBP, BBP]. A detailed account of the precise techniques would go
far beyond the scope of this paper. We will focus on the particular issue of the surface
tension and refer the reader to [BIV1] for a comprehensive discussion on the phenomenon
of phase coexistence.

This paper is divided into two parts. The first one is a review of the works on the van
der Waals theory of surface tension in the context of the Kac Ising model. The second
part is an attempt to define a robust notion of surface tension for finite range interactions
Kac Ising model. The main motivation is to devise a procedure which enables to prove
the existence of the surface tension as the thermodynamic limit of quantities defined only
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in terms of a coarse grained information. Let us come back to the problem of phase coex-
istence in order to stress the importance of a tractable concept of surface tension.

The L
1-theory (see [BIV1] for a review) is a general strategy to study the phase sepa-

ration. Its implementation relies only on coarse grained estimates and thus is not model
dependent. Nevertheless, this requires the existence of a priori coarse grained estimates
and of an appropriate definition of the surface tension which can be related to the coarse
graining. As a consequence the L

1 approach has been implemented mainly for models
which can be analyzed in terms of FK measures [Ce, B1, CePi1, CePi2, BIV2]. The gener-
alization to more realistic models (for example models in the Pirogov Sinai theory) would
require a different approach of the coarse graining and of the surface tension. We refer
to [B2] for a discussion on this issues (in particular for the coarse graining). In [B2], the
Wulff construction was derived in the context of the Kac Ising model without using the
FK representation. Nevertheless, the treatment of the surface tension was still relying on
ferromagnetic inequalities and on the spin flip symmetry. Contrary to the usual micro-
scopic definition of surface tension, the derivation of the surface tension proposed in the
second part of the paper is based only upon coarse grained estimates : as a consequence,
this derivation is compatible with the L

1 approach of phase coexistence and it does not
use ferromagnetic inequalities.

The understanding of surface tension for models with non symmetric pure phases re-
mains an open problem. In the case of the Dobrushin interface, we refer the reader to the
recent paper by Holicky, Kotecky, Zahradnik [HKZ] for a study of the surface tension and
of the horizontally invariant Gibbs states in a very general context.

We hope that the strategy implemented for the Kac Ising model could provide a step
towards the study of more complex systems. An interesting future prospect is the study
of phase coexistence for particles in the continuum interacting with Kac potentials. In a
recent breakthrough Lebowitz, Mazel, Presutti [LMP] proved the liquid/vapor transition
for this model. This system has a coarse grained structure similar to the Kac Ising model,
but the repulsive/attractive interactions prevent to use inequalities and the pure phases
are non symmetric.

2. Bulk properties of the Kac Ising model

2.1. Kac Ising model. The Kac Ising model is a ferromagnetic spin system with interac-
tions tuned by a scaling parameter γ. Let J be a non-negative smooth function supported
by [−1, 1] and such that

∫
Rd J(|r|) dr = 1. For any γ > 0, the Kac potentials are defined

by

∀i ∈ Z
d, Jγ(i) = γdJ(γ|i|) .

For simplicity, γ is chosen as 2−g with g ∈ N.
Let Λ be a finite domain of Z

d, for d > 2. Each site i in Λ indexes a spin σi which takes
values ±1. The spin configurations {σi}i∈Λ have a statistical weight determined by the
Hamiltonian

H σ̄
γ,Λ(σ) = −

1

2

∑

i,j∈Λ

Jγ(i − j)σiσj −
∑

i∈Λ,j∈Λc

Jγ(i − j)σiσ̄j ,

where σ̄ = {σ̄i}i∈Λc are the boundary conditions outside Λ.
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The Gibbs measure associated to the spin system with boundary conditions σ̄ is

∀σ = {σx}x∈Λ, µσ̄
β,γ,Λ(σ) =

1

Z σ̄
β,γ,Λ

exp
(
−βH σ̄

γ,Λ(σ)
)
,

where β is the inverse of the temperature (β = 1
T ) and Z σ̄

β,γ,Λ is the partition function. If

the boundary conditions are uniformly equal to 1 (resp −1), the Gibbs measure will be
denoted by µ+

β,γ,Λ (resp µ−
β,γ,Λ).

For any γ > 0, a phase transition occurs above the critical parameter βc(γ). It is proved
by Cassandro, Presutti [CaPr] and Bovier, Zahradnik [BZ] that

lim
γ→0

βc(γ) = βmf
c = 1 ,

where βmf
c denotes the inverse critical temperature of the mean field system. For any β > 1,

this implies the existence of two distinct Gibbs measures µ+
β,γ and µ−

β,γ for sufficiently small

γ. In particular, the phase transition is characterized by a spontaneous magnetization

∀β > 1,∃γβ > 0,∀γ < γβ, µ+
β,γ(σ0) = m∗

β,γ > 0 . (2.1)

When γ vanishes, m∗
β,γ converges to the mean field magnetization m∗

β.

The complete characterization of the translation invariant pure phases was obtained by
Butta, Merola and Presutti

Theorem 2.1. [BMP] For any β > 1, there is γβ > 0 such that for any γ < γβ, any

translation invariant Gibbs measure is a convex combination of µ+
β,γ and µ−

β,γ.

2.2. Coarse graining. The analysis of phase transition and the description of the pure
phases are obtained as consequences of a renormalization procedure which provides a
complete characterization of the of the bulk properties. The renormalization procedure
which has been developed in [CaPr, BZ] enables to control the local order parameter on
mesoscopic scales of the order γ−1. At the scale γ−1, the renormalized system behaves
like an Ising model with effective inverse temperature proportional to γ−d and a Peierls
type estimate can be derived.

This result has been enhanced by Butta, Merola, Presutti [BMP], who proved the
exponential relaxation to equilibrium of the Gibbs measure with boundary conditions
which are only statistically pure. The bulk estimates are recalled below; they will play a
crucial role in the analysis of the thermodynamic limit of the surface tension.

For any integer K and x in Z
d, the box of side length K centered in x is defined as

BK(x) = x +

]
−

K

2
,
K

2

]d

.

The local magnetization in BK(x) is denoted by

MK(x) =
1

Kd

∑

i∈BK(x)

σi . (2.2)

We introduce two intermediate scales depending on the range of interaction γ−1 = 2g.
Let L = 2−`γ−1 = 2g−` and H = 2hγ−1 = 2g+h, where `, h ∈ N. In the following, ` will
be fixed and γ will go to 0 thus ` 6 g. By construction each box BH is partioned into
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smaller boxes BL. Given ε > 0 and γ > 0, the phase labels ηε
H at the mesoscopic scale H

are defined as follows : the box BH(x) centered in x in HZ
d is labelled by

ηε
H(x) =

{
±1, if |ML(y) ∓ m∗

β| 6 ε, ∀BL(y) ⊂ BH(x) ,

0, otherwise .

The parameter ε quantifies the deviation of the averaged magnetization from the mean
field magnetization m∗

β.

A region Λ (measurable wrt the partition at the scale H) has + boundary conditions

in averaged if the phase labels η
ε/2
N,H associated to σΛc are uniformly equal to 1. This set

of boundary conditions is denoted by G+,ε(Λ) ⊂ [−1, 1]Λ
c
. In the same way, the set of −

boundary conditions in averaged is denoted by G−,ε(Λ).

For the renormalized contours (defined in terms of phase labels), the following Peierls
type estimate has been proven in [CaPr, BZ]

Theorem 2.2. There exist functions ε∗(β) > 0, `(β, ε), h(β, ε) ∈ N, c(β, ε) > 0, c′(β, ε) >
0 such that the following holds. Let γ > 0, β > 1 and ε < ε∗. Then for any region Λ
(measurable wrt the partition at the H-scale) and any generalized contour Γ in Λ

∀σΛc ∈ G+,ε(Λ), µβ,γ,Λ

(
Γ
∣∣σΛc

)
6 c′(β, ε) exp

(
−

c(β, ε)

γd
|Γ|

)
, (2.3)

where |Γ| denotes the number of H-boxes in the contour Γ.

Furthermore, the Gibbs measures with almost pure boundary conditions relax exponen-
tially fast to the corresponding pure phase.

Theorem 2.3. [BMP] For any β > 1, ∀ε ∈]0, ε∗(β)[ there exists γ(β, ε) > 0, c(ε) >
0 such that the following holds. For any subset ∆ of Z

d, for any K ⊂ ∆, one has
∀γ 6 γ(β, ε),∀(σ∆c , σ′

∆c) ∈ G+,ε(∆)
∣∣∣µβ,γ,∆

(
σK
∣∣σ∆c

)
− µβ,γ,∆

(
σK
∣∣σ′

∆c

)∣∣∣ 6 |K| exp
(
− c(ε) γ2 dist(K,S)

)
,

where S is the subset of ∆c where σ and σ′ differ.

3. On the validity of the van der Waals theory of surface tension

In this section, we review several derivations of the van der Waals surface tension theory
which are obtained from different microscopic limits : the mean field N ∼ 1

γ ; the scaling

N ∼ γ−1−a (with a small) and the limit N → ∞, γ → 0.

3.1. The mean field approach. The main technical feature of the Kac model is his
ability to interpolate between a microscopic structure (as presented in Section 2) and
some continuous limit.

Let us consider DL = [−L,L] ⊂ R
d, for some L > 0. This domain is partioned into

cubes of side length γ and therefore it contains (L/γ)d cells. These cubes are indexed by
the subset DL,γ of Z

d. As the number of particles is scaled proportionally to the range of
the interaction, the limiting regime corresponds to the continuous mean field picture. In
particular, one can define a functional FL such that for m in L∞(DL, [−1, 1])

FL(m) =

∫

x∈DL

dx
(
fβ(m(x)) − fβ(mβ)

)
+

1

4

∫ ∫

DL×DL

dx dx′ J(|x − x′|)
(
m(x) − m(x′)

)2
,
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where fβ is a double well potential with distinct minimizers ±mβ if β > 1. As γ vanishes,
the Gibbs measure can be approximated as follows

µβ,γ,DL,γ

(
·
)
∼ exp

(
−βγ−d

(
FL(·) + o(γ)Ld

))
. (3.1)

We refer to the book of Presutti [Pr] for a detailed account on this approximation proce-
dure.

The previous approximation procedure does not hold if L = ∞, nevertheless the func-
tional makes sense and we simply denote it by F . In order to define the surface tension,
we restrict to d = 1 and consider Iβ the subset of functions m ∈ L∞(R, [−1, 1]) such that

lim
x→+∞

m(x) = m∗
β and lim

x→−∞
m(x) = −m∗

β .

According to the van der Waals theory of surface tension

τ∗
β = inf

m∈Iβ

F(m) . (3.2)

A thorough analysis of τ ∗
β was accomplished in the case of a d dimensional cylinder by

De Masi, Orlandi, Presutti, Triolo (see [DOPT1]). The infimum is attained on a unique
(modulo translations) function m̄ which satisfies the mean field equation [DOPT1]

m̄ = tanh(βJ ? m̄) ,

where J ? m̄ is the convolution of the functions J and m̄. The instanton m̄ should be
understood as the optimal profile for a domain wall on a mesoscopic scale. Further results
on the stability of the instanton are also derived in [DOPT2].

The model obtained in the continuous limit is isotropic therefore the van der Waals
surface tension is defined as τ ∗

β for any directions. We refer the reader to [AlBe, Pr] for a
treatment of the anisotropic case.

For particles in the continuum, a similar mean field picture holds [LMP]. Nevertheless
the study of the surface tension and more precisely of the minimizers is much more dif-
ficult due to the attractive/repulsive nature of the interactions. As a consequence, the
instanton is no longer an increasing function and artifacts (oscillations ...) appear in some
regions of the phase diagram. We refer to Gayrard, Presutti, Triolo [GPT] for a complete
investigation of these phenomena.

3.2. Relation with Γ-convergence. Fix the dimension d > 2. For domains DL, where
L is properly scaled wrt γ, the approximation formula (3.1) remains valid. Following
[ABCP], we consider the scaling L = γ−a, for some a > 0 small enough.

In order to discuss the limiting procedure, some notation have to be introduced. The

sets DL,γ = {−γ−1−a, . . . , γ−1−a}d are embed in D̂ = [−1, 1]d which is divided in a grid
with mesh γ/L. The local parameter (2.2) is now defined as a piecewise constant function

on D̂

∀x ∈ D̂, ML,K(x) =
1

(K/γ)d

∑

i∈bB K/γ
L/γ

(x)

σi ,

where B̂ε(x) = {y ∈ D̂ | |y − x| 6 ε} for ε > 0. The results recalled in section 2 ensure

that for K large enough, ML,K concentrates to m∗
β in L

1(D̂) with probability µ+
β,γ,DL,γ

converging to 1 as γ goes to 0.
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Instead of defining the surface tension for every directions, we proceed as in [ABCP]
and state a more global result on the interfacial energy of an arbitrary crystal. Let V be

a set in D̂ with smooth boundary. The occurrence of a crystal of shape V with one phase
surrounded by the other phase is represented by the spin configurations in {−1, 1}DL,γ

such that

‖ML,K − m∗
β1V + m∗

β1V c‖1 6 ε ,

where the parameter ε controls the accuracy of the description in L
1(D̂). More general

crystals can be considered : to any function of bounded variation u in D̂ taking values ±1,
one can associate the volume V = {u = −1} for which a generalized notion of boundary
can be defined (∂V = ∂{u = −1}).

The interfacial energy of a crystal, i.e. the surface tension integrated along the boundary
can be computed from the probabilistic cost of the spin configurations constrained to be
close to the crystal.

Theorem 3.1. [ABCP] For any function u of bounded variation in D̂ taking values ±1,
there is a sequence εγ which vanishes as γ goes to 0 and such that for L = γ−a

lim
γ→0

−
γd

Ld−1
log µ+

β,γ,DL,γ

(
‖ML,K − m∗

βu‖1 6 εγ

)
= βτ∗

βP (u) ,

where τ ∗
β is the van der Waals surface tension (3.2) and P (u) is the perimeter of the

interface ∂{u = −1}.

Let us briefly comment on the proof. On a macroscopic level, a rescaled version of the
van der Waals functional is defined as

∀v ∈ L∞(D̂, [−1, 1]), F̃ε(v) =
1

ε
F1/ε

(
v(ε·)

)
.

The main point in the derivation of the theorem above is the proof of the Γ-convergence of
the sequence of functionals F̃ε to the functional τ ∗

βP (·) as ε vanishes. The strategy involves
a microscopic reduction to the variational problem as well as arguments of geometric
measure theory.

For the same scaling, a similar result was obtained by [AlBe] in the case of anisotropic
interactions. In the latter case, the limiting surface tension is anisotropic.

3.3. The thermodynamic limit for vanishing γ. The thermodynamic limit as goes
to infinity while γ is kept fixed has been investigated in [BBBP]. For any function of
bounded variation u, we define two approximations of the interfacial energy by

Fβ,γ(u) = lim
ε→0

lim
K→∞

lim inf
L→∞

−
γd

Ld−1
log µ+

β,γ,DL,γ

(
‖ML,K − m∗

βu‖1 6 ε
)

,

Gβ,γ(u) = lim
ε→0

lim
K→∞

lim sup
L→∞

−
γd

Ld−1
log µ+

β,γ,DL,γ

(
‖ML,K − m∗

βu‖1 6 ε
)

.

In [BBBP], it was proved that both quantities converge to the van der Waals surface
tension as γ vanishes.

lim
γ→0

Fβ,γ(u) = lim
γ→0

Gβ,γ(u) = βτ ∗
βP (u) .

As L diverges and γ is kept fixed, the approximation of the Gibbs measure by the functional
(3.1) is no longer valid. Therefore, the core of the proof is to define a mesoscopic notion of
interface and to localize it in regions where the estimates of subsection 3.2 can be applied.
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In fact, it was then derived in [B2] that

Fβ,γ(u) = Gβ,γ(u) = β

∫

∂{u=−1}
τβ,γ(~nx) dH(d−1)

x ,

where τβ,γ is the anisotropic surface tension for finite range interactions (see definition
4.1). Combined with the previous results this implies that τβ,γ converges to the van der
Waals surface tension τ ∗

β when the range of the interactions diverges.

4. A coarse grained approach of surface tension

4.1. A microscopic definition. For finite range models, the lattice structure induces, in
general, an anisotropic surface tension. For simplicity, let us recall the usual microscopic
definition of surface tension in the direction ~ed = (0, . . . , 0, 1).

Let ΛN,M = {i = (i1, . . . , id) ∈ Z
d | ∀k < d, |ik| 6 N, |id| 6 M}. The mixed

boundary conditions σ̄ are defined as

∀i ∈ Λc
N,M , σ̄i =

{
+1, if id > 0,

−1, if id < 0.

The partition function with mixed boundary conditions is denoted by Z±
β,γ,ΛN,M

(~ed) and

the one with boundary conditions uniformly equal to 1 by Z+
β,γ,ΛN,M

.

Definition 4.1. The surface tension in the direction ~ed is defined by

τβ,γ(~ed) = lim
N→∞

lim
M→∞

−
1

Nd−1
log

Z±
β,γ,ΛN,M

Z+
β,γ,ΛN,M

. (4.1)

The reader is referred to [MMR] for a discussion on the properties of surface tension.
In particular, it is proved that the height M of the box can be scaled with N and a
straightforward extension of this result implies that the limits with respect to N and M
can be interchanged (see also [BLP] for a similar statement).

The derivation of the limit (4.1) relies on ferromagnetic correlations inequalities (FKG).
Thus the representation of the surface tension is not robust; in the sense that any modifica-
tion of the boundary conditions would prevent a direct application of the FKG inequality.
Notice that in the vicinity of an interface a much more complex microscopic structure
would be observed : the boundary conditions are in averaged close to the pure phases.

In the analysis of the equilibrium crystal shapes, the difficulty of considering the richer
structure of the boundary conditions was overcome by using the FK representation (see
[B1], [CePi1]; [CePi2] for the Potts model and [BIV2] for the boundary surface tension).
The FK measure is less sensitive to the boundary conditions because there exists only a
unique limiting measure independent of the choice of the boundary conditions, even in the
range of temperature for which there is a breaking of symmetry for the Ising model. As
a consequence, an alternative definition of the surface tension (independent of the choice
of the boundary conditions) was implemented in the FK representation. The drawback of
such an approach is that the FK representation is limited to a restricted class of models.
Notice also that the analysis of the surface tension via the FK correspondence heavily
relies on the symmetry of the model and on ferromagnetic inequalities.
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4.2. A mesoscopic definition. We would like to propose an alternative definition of the
surface tension which relies only on coarse grained estimates. The Kac Ising model is one
of the rare instances where a renormalization procedure in terms of the local magnetiza-
tion has been fully developed. The mesoscopic approach of the surface tension which is
presented below is implemented in the context of the Kac Ising model. Nevertheless, we
hope that such a strategy could be extended to a broader class of models.

In the following, the parameters γ and H are fixed such that the hypotheses of Theorems
2.2 and 2.3 are satisfied. The bulk estimates of section 2.2 are the key ingredients to control
the thermodynamics of the surface tension. To simplify the notation, the dependency on
the numerical constants wrt γ and H will be omitted.

We fix ~n ∈ S
d−1 such that (~n · ~ed) > 1√

d
. Define

ΛN,M(~n) =
{
i ∈ Z

d | ∀k < d, |ik| 6 NH, |i · ~n| 6 MH
}

.

By abuse of notation, ΛN,M (~n) denotes also the measurable version of the set above wrt
the H-partitions. For any M ′ > M , we define

Λ+
N,M ′,M(~n) = ΛN,M ′(~n) \ ΛN,M (~n)

⋂
{i · ~n > 0},

Λ−
N,M ′,M(~n) = ΛN,M ′(~n) \ ΛN,M (~n)

⋂
{i · ~n < 0} .

In order to localize an interface inside the slab ΛN,M (~n), we introduce the event SN,M (~n)
of spin configurations which contain a surface of + good (resp − good) blocks crossing
Λ+

N,M,M/2(~n) (resp Λ−
N,M,M/2(~n)) in the direction orthogonal to ~n (see figure 1).

For M,N large enough, let Gε
N,M (~n) be the set of triplets (∆, σ+, σ−) such that

• ∆ is a measurable set with respect to H-partitions and ΛN,M/2(~n) ⊂ ∆ ⊂ ΛN,M (~n).

• σ+ is a spin configuration in ∆c
⋂
{i · ~n > 0} such that all the blocks connected to

∆ have ηε
H phase labels equal to 1.

• σ− is a spin configuration in ∆c
⋂
{i · ~n < 0} such that all the blocks connected to

∆ have ηε
H phase labels equal to −1.

Let

F (N,M) = − inf
(∆,σ+,σ−)∈Gε

N,M (~n)

1

Nd−1
log

Zσ+,σ−

∆

(
SN,M/4(~n)

)

Zσ+,σ̃−

∆

,

where σ̃− is deduced from σ− by spin flip and Zσ+,σ−

∆

(
SN,M/4(~n)

)
is the constrained

partition function defined by

Zσ+,σ−

∆

(
SN,M/4(~n)

)
=

∑

σ∈{−1,1}∆

1{σ∈SN,M/4(~n)} exp
(
− βHγ,∆(σ |σ+, σ−)

)
.

In the same way, we set

G(N,M) = − sup
(∆,σ+,σ−)∈Gε

N,M (~n)

1

Nd−1
log

Zσ+,σ−

∆

(
SN,M/4(~n)

)

Zσ+,σ̃−

∆

.

In the following, we consider asymptotic such that M � N . Therefore the boundary
conditions on the sides of ∆ parallel to ~n will play no role and can be chosen arbitrarily.
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Figure 1. Hierarchy of the constraints SN,M in the domain Λ+
N,M .

Λ+
N,M,M/2

∆

σ+

M
2

M
4

B
+

(Γ+, S+)

Theorem 4.1. For any ~n ∈ S
d−1, the surface tension in the direction ~n can be obtained

as follows

τβ(~n) = lim
m→∞

lim
N→∞

F (N, 4m) = lim
m→∞

lim
N→∞

G(N, 4m) , (4.2)

where we restrict to values M = 4m.
Furthermore, we check that

τβ(~n) = lim
ε→0

lim
N→∞

F (N, εN) = lim
ε→0

lim
N→∞

G(N, εN) , (4.3)

where εN is of the form 4m.

The assumption on the choice of the parameters M can be relaxed. We set

F̃ (N,M) = − inf
(∆,σ+,σ−)∈Gε

N,M (~n)

1

Nd−1
log

Zσ+,σ−

∆

(
SN,m(~n)

)

Zσ+,σ̃−

∆

,

where m is the integer part of log(M/43).
Then

Theorem 4.2. For any ~n ∈ S
d−1, the surface tension in the direction ~n can be obtained

as follows

τβ(~n) = lim
M→∞

lim
N→∞

F̃ (N,M) = lim
ε→0

lim
N→∞

F̃ (N, εN) . (4.4)

Remark 4.1. It can be proven that this mesoscopic definition of the surface tension co-
incides with the microscopic definition 4.1.

In order to prove the convergence (4.2), we will proceed as follows. First, we deduce
the existence of the thermodynamic limit F (N,M) as N goes to infinity. For a fixed M ,
this follows from a standard argument of subadditivity which ensures the convergence of
a d − 1 dimensional partition function. Then the parameter M is taken to infinity. The
next step is to compare G(N,M) and F (N,M) in order to identify their limits. This
procedure follows the argument introduced in [B2] and requires only the bulk estimates
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of subsection 2.2. At the first sight, the order of the limits (first N → ∞ then M → ∞)
might be considered as unphysical because this does not take into account the (arbitrarily
large) fluctuations of the interface. In a final step, we derive (4.3) which implies that
the limiting procedure (4.2) gives rise to the right physical quantities. In particular, the
analysis of the equilibrium crystal shapes and the identification of the interfacial energy
can be obtained from (4.3). We refer the reader to [B2] for a concrete implementation of
formula (4.3) in the context of the Wulff construction.

Proof of Theorem 4.1 :
The vector ~n is chosen with rational coordinates. For general directions ~n, the value of

the surface tension can be deduced by continuity. In the following, the vector ~n is fixed
and the dependency on ~n is omitted in the notation.

Step 1 :
Let us check that

∀M > 0, F (M) = lim
N→∞

F (N,M) . (4.5)

This will follow from the standard argument used for the derivation of the thermodynamic
limit of the free energy (see [Ru]).

Let R be a constant large enough such that for all N , the set Λ2N+R,M can be split

into 2d−1 translates of the set ΛN,M and another set Λ′
2N+R,M which contains less than

Nd−2RMHd sites. Let (∆, σ+, σ−) be the triplet for which the infimum is attained in the
definition of F (2N + R,M). The intersections of ∆ with the 2d−1 translates of ΛN,M are

denoted by ∆1, . . . ,∆2d−1
.

−(2N + R)d−1F (2N + R,M) = log
Zσ+,σ−

∆

(
S2N+R,M/4

)

Zσ+,σ̃−

∆

,

>

2d−1∑

i=1

log
Z

σ+
i ,σ−

i

∆i

(
SN,M/4

)

Z
σ+

i ,σ̃−

i

∆i

− Cβ RNd−2MHd ,

where σ±
i is the restriction of σ± to the boundary of the set ∆i and Cβ is a constant

depending on the interaction potential.
This implies that

−(2N + R)d−1F (2N + R,M) > − (2N)d−1F (N,M) − Cβ RNd−2MHd .

As F is uniformly bounded from below and above, subadditivity implies that the limit
(4.5) holds.

Step 2 :
We are going to check that the limit of the sequence F (4m) exists as m diverges. For

any spin configuration in SN,M/4 = SN,m−1, the crossing surfaces of + good blocks and −

good blocks which are the closest to Λc
N,M/4 are denoted by Γ+,Γ− (see figure 1). For a

given triplet (∆, σ+, σ−), we have

Zσ+,σ−

∆

(
SN,M/4

)
> Zσ+,σ−

∆

(
SN,m−1

⋂
SN,m−2

)
.
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Decomposing the partition function with respect to (Γ+,Γ−), we get

Zσ+,σ−

∆

(
SN,m−1

⋂
SN,m−2

)
=
∑

Γ+,Γ−

∑

S+⇒Γ+

S−⇒Γ−

Zσ+,S+
ZS+,S−(

SN,m−2

)
ZS−,σ−

,

where S+ and S− are the spin configurations supported by Γ+ and Γ−. By construction,
they contain phase labels uniformly equal to 1 and −1.

Using the spin flip symmetry, we get

Zσ+,σ−

∆

(
SN,m−1

⋂
SN,m−2

)
>



∑

Γ+,Γ−

∑

S+⇒Γ+

S−⇒Γ−

Zσ+,S+
ZS+,S̃−

Z S̃−,σ̃−




inf
Γ+,Γ−

inf
S+,S−

ZS+,S−
(
SN,m−2

)

ZS+,S̃−
.

(4.6)

Let S̃N,m−1 = S̃N,M/4 be the set of spin configurations which contain two crossing

surfaces of + good blocks in Λ+
N, M

4
, M

8

and Λ−
N, M

4
, M

8

. By using the definition of F , inequality

(4.6) can be rewritten as

−F (N,M) > inf
(∆,σ+,σ−)∈Gε

N,M (~n)

1

Nd−1
log µσ+,σ̃−

∆

(
S̃N,m−1

)
− F (N,M/4) . (4.7)

It remains to check that uniformly over the boundary conditions

−Cβ2−m
6

1

Nd−1
log µσ+,σ̃−(

S̃N,m−1

)
6 0 . (4.8)

Once this is done, combining (4.7) and (4.8), we see that

F (m) 6 F (m − 1) + exp(−c1m) .

Thus for any integers (p,m), we have

F (m + p) 6 F (m) + c2 exp(−c1m) .

Taking p to infinity and then m

lim sup
p→∞

F (p) 6 lim inf
m→∞

F (m) .

As F is uniformly bounded from below and above, the limit τβ(~n) exists.

Let S̄N,m−1 be the event such that there exists a + surface crossing the slab Λ+
N, M

4
, M

8

(~n).

In order to check (4.8), it is enough to prove that S̄N,m−1 occurs with a probability larger

than exp(−N d−1Cβ2−m), in the + pure phase.

The slab Λ+
N, M

4
, M

8

(~n) is partitioned into disjoint translates of DM = ΛM2, M
8

(~n) which

are denoted by Di
M . The rest contains at most N d−1 R

8M Hd sites. Let A be the set of

spin configurations such that the blocks in Λ+
N, M

4
, M

8

(~n) \ ∪iD
i
M are equal to 1. As A is

supported by at most R
M Nd−1Hd sites

µσ+,σ̃−

∆ (A) > exp

(
−

cβR

M
Nd−1Hd

)
. (4.9)
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Let Di
M be the set of spin configurations such that there exists a + surface crossing D i

M
in the direction orthogonal to ~n. By the very construction

⋂

i

Di
M

⋂
A ⊂ S̄N,m−1 .

Thus

µσ+,σ̃−

∆

(
S̄N,m−1

)
> µσ+,σ̃−

∆

(
⋂

i

Di
M

⋂
A

)
.

The events Di
M are not independent, but after conditioning, the Peierls estimates imply

µσ+,σ̃−

∆


(D1

M )c
∣∣∣
⋂

i > 2

Di
M

⋂
A


 6 M2(d−1) exp

(
−

c

γd
M

)
.

By iterating this inequality, we obtain

µσ+,σ̃−

∆

(
⋂

i

Di
M

⋂
A

)
>


1 − µσ+,σ̃−

∆


(D1

M )c
∣∣∣
⋂

i > 2

Di
M

⋂
A




µσ+,σ̃−

∆


⋂

i > 2

Di
M

⋂
A


 ,

>

(
1 − M2(d−1) exp

(
−

c

γd
M
)) Nd−1

M2(d−1)

µσ+,σ̃−

∆

(
A
)
.

Combining this inequality with (4.9), we see that

1

Nd−1
log µσ+,σ̃−(

S̃N,m−1

)
> −

C

M
− exp(−

c′

γd
M) , (4.10)

where C, c′ are constant depending on β, γ,H. Noticing that 1/M = 2−m, inequality (4.8)
is complete.

Step 3 :
In order to check (4.2), let us prove that

∀(N,M) ∈ N, 0 6 F (N,M) − G(N,M) 6 C2 exp(−C1γ
2M) , (4.11)

where C1, C2 are positive constants. The event SN,M/4 decouples the interface from the
boundary conditions and thus (4.11) can be derived by using only bulk estimates. More
precisely, the boundary conditions are screened and the system relaxes to the pure phases
in ΛN,M/2 \ ΛN,M/4.

The proof follows the interpolation scheme introduced in [B2]. We consider two slabs
of width 10 blocks (see figure 1)

B+ = Λ+
N, 3M

8
, 3M

8
+10

and B− = Λ−
N, 3M

8
, 3M

8
−10

.

The spin configurations inside (B+,B−) are interpolated by the constant configuration
(m∗

β,−m∗
β)

∀s ∈ [0, 1],∀i ∈ B+, σi(s) = sσi + (1 − s)m∗
β ,

∀i ∈ B−, σi(s) = sσi − (1 − s)m∗
β .

Outside (B+,B−), the spins are unchanged. For a given triplet (∆, σ+, σ−), let Zσ+,σ−

∆,s (SN,m−1)

be the partition function depending on the spins σ(s). The configurations of the partition
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function in the denominator are interpolated in (B+,B−) by the configuration (m∗
β ,m∗

β)

and the corresponding partition function is denoted by Zσ+,σ̃−

∆,s .

Let (∆, σ+, σ−) and (D,ω+, ω−) be two boundary conditions in Gε
N,M (~n), we introduce

Φ(s) = log
Zω+,ω−

D,s (SN,M/4)

Zω+,ω̃−

D,s

− log
Zσ+,σ−

∆,s (SN,M/4)

Zσ+,σ̃−

∆,s

. (4.12)

When s = 0, the spin configurations in B+ and B− decouple the configurations into
three independent systems.

Φ(0) = log


Zω+,m∗

Zω+,m∗

Zm∗,−m∗

ΛN,3M/8
(SN,M/4)

Zm∗,m∗

ΛN,3M/8

Z−m∗,ω−

Zm∗,ω̃−


− log


Zσ+,m∗

Zσ+,m∗

Zm∗,−m∗

ΛN,3M/8
(SN,M/4)

Zm∗,m∗

ΛN,3M/8

Z−m∗,σ−

Zm∗,σ̃−


 .

The symmetries of the model imply the cancellation of all the terms and thus Φ(0) = 0.
Assertion (4.11) will follow if one can prove that

|Φ′(s)| 6 c2N
d−1 exp(−c1γ

2M) , (4.13)

where the constants are independent of the choice of the boundary conditions.
To simplify the notation, we set

νs = µσ+,σ−

β,γ,∆,s ; ν̃s = µσ+,σ̃−

β,γ,∆,s ; ν ′
s = µω+,ω−

β,γ,D,s ; ν̃ ′
s = µω+,ω̃−

β,γ,D,s ,

where the subscript s means that the measure has been modified by the interpolation
introduced above.

Φ′(s) =
∑

i∈B+,j∈∆ Jγ(i, j)
[(

ν ′
s

(
σj(σi − m∗

β)|SN,M/4

)
− ν̃ ′

s

(
σj(σi − m∗

β)
))

−
(
νs

(
σj(σi − m∗

β)|SN,M/4

)
− ν̃s

(
σj(σi − m∗

β)
))]

+
∑

i∈B−,j∈∆ Jγ(i, j)
[(

ν ′
s

(
σj(σi + m∗

β)|SN,M/4

)
− ν̃ ′

s

(
σj(σi − m∗

β)
))

−
(
νs

(
σj(σi + m∗

β)|SN,M/4

)
− ν̃s

(
σj(σi − m∗

β)
))]

.

At this point, the bulk estimates are crucial. In particular, Theorem 2.3 leads to

∑

i∈B+,j∈∆

Jγ(i, j)
∣∣ν̃ ′

s

(
σj(σi − m∗

β)
)
− ν̃s

(
σj(σi − m∗

β)
)∣∣ 6 D

Nd−1

γd
exp(−cγ2 M) .

This estimate holds uniformly over the boundary conditions in G ε
N,M(~n).

Remark 4.2. As pointed to us by E. Presutti, the Theorem 2.3 holds also for the inter-

polated measures (µσ+,σ̃−

β,γ,N,s)s∈[0,1].

The terms containing mixed boundary conditions cannot be estimated by a direct ap-
plication of Theorem 2.3. Nevertheless the event SN,M/4 screens the effect of the boundary

conditions. Thus, by conditioning the measure wrt the spin configurations S+ supported
by the + surface Γ+ which crosses Λ+

N,M/4,M/8, we get for all (i, j) in B+

∣∣νs

(
σiσj |SN,M/4

)
− µ+

β,γ,s(σiσj)
∣∣

6
1

νs(SN,M/4)

∣∣∣νs

(
1SN,M/4

(S+)
[
µσ+,S+

β,γ,s (σiσj) − µ+
β,γ,s(σiσj)

] )∣∣∣

6 exp(−cγ2M) ,
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where µ+
β,γ,s is the measure on the infinite stripe {i, |ij | 6 N, j = 2, . . . , d}. As the

same estimate holds for ν ′
s, inequality (4.13) is complete.

Step 4 :
The final step is the derivation of (4.3). We are going to check that for any integer

(k,M) and ε > 0

F

(
M

ε
,M

)
> F

(
k(

M

ε
+ R),M

)
+ o(ε) , (4.14)

where R is a constant. Taking k, then M to infinity, (4.2) and (4.14) will imply that

lim inf
M→∞

F

(
M

ε
,M

)
> lim

M→∞
F (M) + o(ε) = τβ(~n) + o(ε) . (4.15)

The same procedure applied to G leads to the converse inequality

lim sup
M→∞

G

(
M

ε
,M

)
6 lim

M→∞
G(M) + o(ε) = τβ(~n) + o(ε) . (4.16)

Furthermore, (4.11) implies that

0 6 F

(
M

ε
,M

)
− G

(
M

ε
,M

)
6 C2 exp(−C1γ

2M) . (4.17)

Therefore, combining (4.15), (4.16), (4.17), we obtain (4.3).

The derivation of (4.14) follows closely the argument of step 1. The slab Λk( M
ε

+R),M

is partioned into kd translates of ΛM
ε

,M and another set containing at most [k(M
ε +

R)]d−2kRMHd sites. Using notations of step 1, we get

−

(
k(

M

ε
+ R)

)d−1

F

(
k(

M

ε
+ R),M

)
> −

(
k
M

ε

)d−1

F

(
M

ε
,M

)
− Cβ HdRMk

(
k
M

ε

)d−2

.

This leads to

F

(
M

ε
,M

)
> F

(
k(

M

ε
+ R),M

)
− Cβ RHdε −

C ′R
kM

ε .

Thus (4.14) holds.

Proof of Theorem 4.2 :
For any M , there is m such that 4m 6 M < 4m+1. Then a proof similar to the derivation

of inequality (4.11) implies that

∀(N,M) ∈ N,
∣∣F (N, 4m−2) − F̃ (N,M)

∣∣ 6 C2 exp(−C1γ
2M) ,

This comes from the fact that F and F̃ depend both on the same constraint SN,4m−3 .
Thus, Theorem 4.2 follows from Theorem 4.1.
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[BMP] P. Buttà, I. Merola, E. Presutti, On the validity of the van der Waals theory in Ising systems with

long range interactions, Mark. Proc. and Rel. Fields 3, No.1, 63–88 (1997).
[CaPr] M. Cassandro, E. Presutti, Phase transitions in Ising systems with long but finite range, Mark.

Proc. and Rel. Fields 2, 241–262 (1996).
[Ce] R. Cerf, Large deviations for three dimensional supercritical percolation, Astérisque 267 (2000).
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