
PHASE COEXISTENCE FOR THE KAC ISING MODELS

T. BODINEAU

Abstract. We derive the Wulff construction for Kac Ising models with long but fi-
nite range interaction in dimensions d > 2. Some open problems concerning the phase
coexistence for more general models are also discussed.

1. Introduction

During the last decade important progress has been made in the thorough understanding
of the phase coexistence phenomenon. The most precise quantification of the different
mechanisms at play and a sharp description of the phase boundaries has been obtained
in the context of the 2D Ising model with nearest neighbor interactions [DKS, Pf, ACC,
I1, I2, DS, ScS1, ISc, PV1, PV2, DH, Al]. For the 3D Ising model, the results are less
precise and the phase segregation is characterized by the concentration in L

1 of coarse
grained configurations to the equilibrium crystal shapes [ABCP, BCP, BBBP, BBP, Ce,
B1, CePi1, CePi2, BIV2]. For a comprehensive survey on the topic the reader is referred
to [BIV1] and the references therein.

In this paper a different approach is implemented in order to obtain the Wulff con-
struction for Kac Ising model with finite range interactions. The motivation behind this
strategy is to provide a step towards the understanding of the phase coexistence for a class
of models broader than the ferromagnetic Ising models. Before stating the main results
of the paper, we discuss some open problems and summarize the difficulties which hinder
the extension of the L

1 theory to more general models.

As will be explained later, the actual results on phase coexistence are valid for a limited
class of microscopic models, namely the random cluster model with finite range interac-
tions. The description of more subtle phenomena which occur in everyday life, or which
are observed in experiments, would require the investigation of more realistic models. One
of the most current examples of phase coexistence, the liquid/vapor coexistence, has no
rigorous counterpart (with the exception of the Widom Rowlinson model for which the
Wulff construction should be a straightforward consequence of the FK correspondence
[CCK, GLM]). In fact, even the primary issue of the liquid/vapor phase transition has
been derived only for a limited class of models. A discussion on the possible implications
of the recent breakthrough [LMP] on the liquid/vapor phase transition is postponed to re-
mark 2.1. More generally, the study of models governed by the Pirogov Sinai Theory would
shed light on interesting physical mechanisms which have still not been thoroughly ana-
lyzed. For example, for some multi-phase models without symmetric phases, one should
observe between two phases the occurrence of an intermediate layer of a third phase (see
[MMRS] for a discussion of this phenomenon in the case of the large q Potts model at
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the critical point). Nevertheless, even if the bulk properties are well understood in the
context of Pirogov Sinai Theory, the surface properties and, more precisely, a microscopic
derivation of the Wulff construction remain an open problem.

In the L
1 approach, the phase coexistence is analyzed by performing a series of localiza-

tions from the macroscopic level to the microscopic level in order to relate the macroscopic
equilibrium crystal shapes to the surface tension, which is defined in terms of microscopic
quantities. This strategy can be essentially implemented on a coarse grained level and
therefore does not rely on the microscopic structure of the model. Nevertheless, it re-
quires the validity of a coarse grained representation of the model which keeps track of
the local order parameter and ensures some decoupling properties. We refer to [BIV1] for
a presentation of the L

1 theory in a general framework.
This semblance of generality suffers from an important exception. Once the interface has

been localized on a mesoscopic level, the precise surface tension factor should be extracted
from some coarse grained information. Therefore, the structure of the coarse graining
becomes essential in order to relate the mesoscopic level to the microscopic information
which leads to the surface tension. The previous proofs of the phase coexistence for
Bernoulli percolation [Ce]; for finite range Ising model [B1, CePi1, BIV2]; and for Potts
model [CePi2] rely crucially on Pisztora’s coarse graining [Pi]. This coarse graining is
a fundamental tool for the study of the Ising/Potts model in a non perturbative regime
(up to the slab percolation threshold). It describes the “backbone” of the Ising/Potts
spin configurations in terms of a cluster in the FK representation. Thus, in the previous
proofs, the surface tension was redefined in terms of the random cluster model in order to
be related to the coarse graining.

This approach would seem to limit the generalization to models for which the FK
correspondence does not hold. Furthermore, the previous proofs are based upon correlation
inequalities which are not satisfied by general models. Therefore, the analysis of phase
coexistence for models in the Pirogov Sinai theory would need to develop different tools
and to devise a more robust analysis of surface tension. It would be interesting to introduce
a tractable macroscopic definition of surface tension which does not rely on correlation
inequalities and on the FK representation.

In this paper more modest questions are addressed. First, an approach of the Wulff
construction is presented for the Ising model without using the FK correspondence. This
analysis is limited to low temperatures. Nevertheless, since it is mainly based on the
Peierls condition, parts of it should be easy to transpose in other contexts. In a final
section, this method is generalized in order to derive the Wulff construction for Kac Ising
models.

The first step is to introduce a new coarse graining appropriate for the L
1 theory.

Then we deduce from a general exponential tightness theorem the phenomenon of phase
segregation, i.e. the fact that phase coexistence does not occur by the creation of many
small droplets of one phase scattered in the other, but by a macroscopic phase separation.
Alternatively, this phenomenon manifests itself by surface order large deviations (see [Sc,
Pi]). This first part is only based upon the Peierls condition and should be straightforward
to generalize (even in the case of multi-phase models).

In a second step, the equilibrium crystal shapes are derived. The proof follows the
general scheme of the L

1 theory, but it is implemented with the new coarse graining
directly on the spin level. At this stage, the existence of surface tension (known from
correlation inequalities) and the symmetry between the phases (spin flip) come into play.
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In the last part, the previous strategy is updated to the context of the Kac Ising mod-
els with long but finite range interactions. The first derivation of the Wulff construction
for Kac Ising models was obtained by [ABCP, BCP] (see also [AlBe] for anisotropic in-
teractions). In these works, the interaction was rescaled with the number of particles
(N ∼ γ−1−ε) and the phase coexistence stemmed from the proof of the Γ-convergence of
functionals associated to the continuous limit of the model. The functional framework of
the L

1 theory was introduced in these papers and the importance of the geometric mea-
sure theory and of related compactness properties was emphasized. In [BBBP, BBP], the
prediction of the van der Waals theory of surface tension is recovered when the range of
the interaction diverges to infinity. More precisely, the probabilistic cost of a macroscopic
interface was proven to be exponentially small with a factor proportional to the perimeter
of the interface times the van der Waals surface tension. As a consequence, the equilibrium
crystal shapes converge to a sphere in the Lebowitz and Penrose limit. For finite range
interaction only a rough description of the crystals was obtained. Building on the previous
results, the present paper completes the Wulff construction for finite range interactions.
The main ingredient is the derivation of the surface tension from an approximate expres-
sion defined only on a coarse grained level. As a consequence of [BBBP], the sequence of
surface tensions defined for any range of the interaction 1

γ converges to the isotropic van

der Waals surface tension.

2. Models and results

2.1. Ising model. Let Λ be a finite domain of Z
d, for d > 2. Each site i in Λ indexes a

spin σi which takes values ±1. The spin configurations {σi}i∈Λ have a statistical weight
determined by the Hamiltonian

H σ̄(σ) = −
1

2

∑

i,j∈Λ

J(i − j)σiσj −
∑

i∈Λ,j∈Λc

J(i − j)σiσ̄j ,

where σ̄ = {σ̄i}i∈Λc are the boundary conditions outside Λ and J are ferromagnetic finite
range coupling constants, i.e. J > 0 and there is R > 0 such that J(i) = 0 if ‖i‖∞ > R.

The Gibbs measure associated to the spin system with boundary conditions σ̄ is

∀σ = {σx}x∈Λ, µσ̄
β,Λ(σ) =

1

Z σ̄
β,Λ

exp
(
−βH σ̄(σ)

)
,

where β is the inverse of the temperature (β = 1
T ) and Z σ̄

β,N is the partition function. If

the boundary conditions are uniformly equal to 1 (resp −1), the Gibbs measure will be
denoted by µ+

β,Λ (resp µ−
β,Λ).

Let DN be the subset {−N, . . . , N}d of Z
d. There is a critical value βc above which a

breaking of symmetry occurs in the thermodynamic limit

∀β > βc, lim
N

µ+
β,N (σ0) = − lim

N
µ−

β,N (σ0) = m∗
β > 0 . (2.1)

Furthermore, in the thermodynamic limit the measures µ+
β,N and µ−

β,N converge to two

distinct Gibbs measures µ+
β and µ−

β which are measures on the space {±1}Z
d
. Each of

these measures represents a pure state.

We are going to define the surface tension. Let ~n be a vector in S
d−1 such that ~n·~e1 > 1√

d
.

Let ΛN = {i = (i1, . . . , id) ∈ Z
d | ∀k > 2, |ik| 6 N} and ∆N be a sequence of finite
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subsets of ΛN such that

{i ∈ Z
d | |~n · i| 6 f(N)} ⊂ ∆N ,

for some function f such that f(N) diverges as N goes to infinity. The mixed boundary
conditions σ̄ are defined as

∀i ∈ ∆c
N , σ̄i =

{
+1, if ~n · i > 0,

−1, if ~n · i < 0.

The partition function with mixed boundary conditions is denoted by Z±
β,∆N

(~n) and the

one with boundary conditions uniformly equal to 1 by Z+
β,∆N

.

Definition 2.1. The surface tension in the direction ~n ∈ Sd−1, with ~n · ~e1 > 0, is defined
by

τβ(~n) = lim
N→∞

−
(~n,~e1)

Nd−1
log

Z±
β,∆N

(~n)

Z+
β,∆N

. (2.2)

For β > βc, the surface tension is uniformly positive on S
d−1 and its homogeneous

extension on R
d

∀x ∈ R
d, τβ(x) = ‖x‖2 τβ

(
x

‖x‖2

)
, τβ(0) = 0 ,

is convex. The previous properties of surface tension, as well as its existence are derived
by using ferromagnetic inequalities. The reader is referred to [MMR] for a comprehensive
discussion on surface tension.

2.2. Kac Ising model. The Kac Ising model is a ferromagnetic spin system with interac-
tions tuned by a scaling parameter γ. Let J be a non-negative smooth function supported
by [−1, 1] and such that

∫
Rd J(|r|) dr = 1. For any γ > 0 the Kac potentials are defined

by

∀i ∈ Z
d, Jγ(i) = γdJ(γ|i|) .

For simplicity, γ is chosen as 2−g with g ∈ N. To emphasize the dependence on the scaling
parameter, the Gibbs measure on Λ at inverse temperature β and with boundary condi-
tions σ̄ is denoted by µσ̄

β,γ,Λ.

For any γ > 0, a critical temperature βc(γ) (corresponding to the non-uniqueness of the
infinite Gibbs measure) is associated to the system. It is proved in [CaPr, BZ] that

lim
γ→0

βc(γ) = βmf
c = 1 ,

where βmf
c denotes the critical temperature of the mean field system. For any β > 1, this

implies the existence of two distinct Gibbs measures µ+
β,γ and µ−

β,γ for sufficiently small γ.
In particular, the phase transition is characterized by a spontaneous magnetization

∀β > 1,∃γβ > 0,∀γ < γβ, µ+
β,γ(σ0) = m∗

β,γ > 0 . (2.3)

When γ vanishes, m∗
β,γ converges to the mean field magnetization m∗

β. In passing, notice

that a stronger result has been derived in [BMP]

Theorem 2.1. For any β > 1, there is γβ > 0 such that for any γ < γβ, any translation

invariant Gibbs measure is a convex combination of µ+
β,γ and µ−

β,γ.
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This assertion shows that, as in the van der Waals Theory, there are only two pure
phases for sufficiently long range interactions.

2.3. The functional setting. We consider a general ferromagnetic Ising model as defined
in Subsections 2.1 and 2.2. In order to enforce phase coexistence, the measure µ+

β,N

is conditioned by the event that the averaged magnetization is atypical, i.e.
{
MN =

1
(2N+1)3

∑
i∈DN

σi 6 m
}
, where m is a constant in ] − m∗

β,m∗
β[. The problem will be to

characterize the typical configurations of the conditional measure µ+
β,N

(
· |MN 6 m

)
.

Before stating the results, let us introduce the macroscopic setting.

On the macroscopic level, the system is confined in the cube D̂ = [−1
2 , 1

2 ]d of R
d and a

macroscopic configuration where the pure phases coexist is described by a function v taking
values {±1}. The function v should be interpreted as a signed indicator representing the

local order parameter : if vr = 1 for some r ∈ D̂, then the system should be locally at r in
equilibrium in the phase m∗

β.

To define the macroscopic interfaces, i.e. the boundary of the set {v = −1}, a conve-

nient functional setting is the space BV(D̂, {±1}) of functions of bounded variation with

values ±1 in D̂ and uniformly equal to 1 outside D̂ (see [EG] for a review). For any

v ∈ BV(D̂, {±1}), there exists a generalized notion of the boundary of the set {v = −1}
called reduced boundary and denoted by ∂∗v. If {v = −1} is a regular set, then ∂∗v
coincides with the usual boundary ∂v. The Wulff functional Wβ is defined in L1(D̂) as
follows

Wβ(v) =

{ ∫
∂∗v τβ( ~nx) dHx, if v ∈ BV(D̂, {±1}),
∞ , otherwise.

(2.4)

To any measurable subset A of D̂, we associate the function 1IA = 1Ac − 1A and simply
write Wβ(A) = Wβ(1IA).

Let m be in ] − m∗
β,m∗

β[. The equilibrium crystal shapes are the solutions of the Wulff
variational problem, i.e. they are the minimizers of the functional Wβ under a volume
constraint

min

{
Wβ(v)

∣∣∣ v ∈ BV(D̂, {±1}),
∣∣
∫

bD

m∗
β vr dr

∣∣ 6 m

}
. (2.5)

Let Dm be the set of minimizers of (2.5). The set of functions of bounded perimeter will
also play an important role in the following : for any a > 0, we set

Ca =
{
v ∈ BV(D̂, {±1}) | P({v = −1}) 6 a

}
, (2.6)

where P denotes the perimeter. This set is compact in the L
1 topology.

The microscopic Ising model is embedded in the continuous setting. Let D̂N = 1
N Z

d∩D̂.
For simplicity the microscopic size is chosen in the binary form N = 2n and the mesoscopic

scale is denoted by K = 2k. The cube D̂ is partionned into boxes B̂N,K, each of them

containing Kd sites of D̂N

j ∈ Z
d, x = j

K

N
∈ D̂N , B̂N,K(x) = x +

]
−

K

2N
,

K

2N

]d

.

Let BK(Nx) be the microscopic counterpart of B̂N,K(x), i.e. the sites of D̂N in B̂N,K(x).

These boxes are centered on the sites of D̂N,K = K
N Z

d ∩ D̂.
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Finally, the local magnetization is defined as a piece-wise constant function on the

partition {B̂N,K(x)}

∀y ∈ B̂N,K(x), MN,K(y) =
1

Kd

∑

i∈BK(Nx)

σi . (2.7)

The local order parameter MN,K characterizes the local equilibrium.

2.4. Main results. The following results describe the phenomenon of phase coexistence
with different accuracies. The system is analyzed on a coarse grained level in the L

1

topology.

The first result implies the occurrence of phase segregation (in a weak form), i.e. with-
out describing explicitly the limiting crystal shapes. This should be interpreted as an
intermediate step on the way to the Wulff construction. Let B be the set of inverse
temperatures for which the Peierls estimate holds : for any β in B, there is a constant
cβ > C(d) (where C(d) is a constant large enough depending on the dimension) such that
any spin contour Γ of length |Γ| has exponentially small probability (uniformly in N)

µ+
β,N

(
Γ) 6 exp(−cβ|Γ|) . (2.8)

Furthermore, cβ diverges as β goes to infinity.

Theorem 2.2. Let β be in B and m be in ]−m∗
β ,m∗

β[. There is a > 0 such that for every

δ > 0, there is a scale K0 = K0(β, δ) and

∀K > K0, lim
N→∞

µ+
β,N

(
1

m∗
β

MN,K ∈ V(Ca, δ)
∣∣∣MN 6 m

)
= 1 ,

where Ca has been defined in (2.6) and V(Ca, δ) is the δ-neighborhood of Ca in L
1

V(Ca, δ) =
{

v ∈ L
1
(
D̂
) ∣∣∃v′ ∈ Ca, ‖v − v′‖1 6 δ

}
.

This result implies that on a macroscopic scale, one observes macroscopic droplets with
phase boundaries of perimeter smaller than a. The proof of Theorem 2.2 is based on a
general approach developed in [BIV1] and on a new coarse graining. Notice that for Kac
Ising models, a similar result was already derived in [BBP].

The argument, implemented in this paper for the nearest neighbor Ising model at low
temperature, is robust and should also apply to models in the Pirogov Sinai Theory (pos-
sibly containing several phases). This rough description relies on Peierls type estimates.

Another characterization of phase segregation is the occurrence of surface order large
deviations (see [Sc, Pi]). This is a direct consequence of the proof of Theorem 2.2.

Corollary 2.1. Let β be in B and m in ] − m∗
β,m∗

β[. Then, there exists cβ > 0 such that

lim sup
N→∞

1

Nd−1
log µ+

β,N (MN 6 m) 6 − cβ .

The computation of sharp asymptotic with the exact surface tension factor enables to go
beyond the previous result and to prove the L

1 concentration of the local order parameter
MN,K to the minimizers of the variational problem (2.5). Let us state the result for the
Kac Ising model. For a given range of the interactions 1

γ , the magnetization is denoted by

m∗
β,γ (2.3), the surface tension by τβ,γ (2.2) and the set of the equilibrium crystal shapes

Dm,γ (2.5).
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Theorem 2.3. For any β > 1, let us fix γ ∈]0, γβ [ and m ∈] − m∗
β,γ ,m∗

β,γ [. For every

δ > 0, one can choose a scale K0 = K0(β, γ, δ) such that for any K > K0

lim
N→∞

µ
m∗

β

β,γ,N

(
inf

v∈Dm,γ

‖MN,K − m∗
β,γv‖1 6 δ

∣∣∣MN 6 m

)
= 1 .

The convergence of the surface tension τβ,γ to the anisotropic van der Waals surface
tension was proven in [BBBP]. This implies that the equilibrium crystal shapes converge
to spheres as γ vanishes (when the equilibrium crystal shapes are given by the Wulff
construction, i.e. for values of m close enough to m∗

β).

Remark 2.1. In a groundbreaking work Lebowitz, Mazel, Presutti [LMP] proved the liq-
uid/vapor transition for particles in the continuum interacting with Kac potentials. Their
proof is based on a renormalization procedure which enables to reduce the system to coarse
grained variables with properties similar to the ones of the coarse grained Kac Ising model.
Therefore, it is natural to hope that parts of the argument developed for the Kac Ising model
could be transposed in the framework investigated in [LMP]. For the moment the lack of
ferromagnetic inequalities and of symmetry between the phases are major difficulties for
the analysis of surface tension. These problems are also encountered for the derivation
of surface tension in the Pirogov Sinai Theory. Nevertheless, the basic phase segregation
phenomenon (see Theorem 2.2) follows in this context from the argument developed in
[BBP].

Remark 2.2. Theorem 2.2 could also have been stated for different types of boundary
conditions (free, mixed, ...).

3. The L
1 theory

In this section, the salient features of the proof are outlined. For simplicity, we focus on
the Ising model with nearest neighbor interaction at low temperature and postpone the
study of Kac Ising model to section 4. The basic assumption is the validity of the Peierls
estimate (2.8).

3.1. Phase segregation. Theorem 2.2 and corollary 2.1 are direct consequences of the
following exponential tightness theorem.

Proposition 3.1. Let β be in B. Then there exists a constant C(β) > 0 such that for all
δ positive one can find K0(δ) such that for K > K0

∀a > 0, lim sup
N→∞

1

Nd−1
log µ+

β,N

(
1

m∗
β

MN,K 6∈ V(Ca, δ)

)
6 − C(β) a,

where V(Ca, δ) is the δ-neighborhood of Ca in L
1(D̂).

This proposition tells us that only the configurations close to the compact set Ca have
a contribution which is of a surface order.

Let us first deduce Theorem 2.2 and Corollary 2.1 from Proposition 3.1. There exists a
constant cd depending on the dimension such that

1

m∗MN,K ∈ V(Ca, δ) ⇒ MN =

∫

bD

MN,K(x) dx > m∗(1 − δ − cda
d/(d−1)) .
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Therefore the spin configurations in {MN 6 m} for m < m∗ belong as well to
{

1
m∗MN,K 6∈

V(Ca, δ)
}

for some a > 0 and δ > 0. An application of Proposition 3.1 leads to the surface
order deviations of Corollary 2.1.

To prove Theorem 2.2 it is enough to check that there is a constant c0 such that

lim inf
N→∞

1

Nd−1
log µ+

β,N (MN 6 m) > − c0 .

This follows from the Peierls estimate and the exponential relaxation in the pure phases
(for β ∈ B).

The derivation of Proposition 3.1 is based upon a coarse grained description of the
system and a theorem (valid for general coarse graining) which ensures the exponential
tightness (see [BIV1]).

Coarse graining :
This coarse grained description is obtained under the Peierls condition (2.8). It is

valid in any dimensions d > 2 and does not require correlations inequalities or the FK
representation.

The typical spin configurations are defined at the mesoscopic scale K = 2k. Let ∂BK =
BK+Kα \ BK be the enlarged external boundary of the box BK , where α is in (0, 1). The
parameter ζ > 0 will control the accuracy of the coarse graining.

Let x be in D̂N,K . For any ε = ±1, the box B̂N,K(x) is ε-good if the spin configuration
inside the enlarged box BK+Kα(x) is typical, i.e.

(P1) The box BK(x) is surrounded by at least a connected surface of spins in ∂BK(x)
with sign uniformly equal to ε.
(P2) The average magnetization MN,K(x) inside BK(x) is close to the equilibrium value
εm∗ ∣∣MN,K(x) − εm∗∣∣ 6 ζ . (3.1)

On the mesoscopic level, each box B̂N,K(x) is labelled by a mesoscopic phase label

∀x ∈ D̂N,K , uζ
N,K(x) =

{
ε, if B̂N,K(x) is ε-good ,

0, otherwise.

|MN,K − m∗| 6 ζ

+

K

Kα

d > 2

Figure 1. Coarse grained configuration with overlapping + good blocks.
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For large mesoscopic boxes, the typical spin configurations occur with overwhelming
probability.

Theorem 3.1. Let β be in B. Then for any ζ > 0, the following holds uniformly in N

∀{x1, . . . , x`} ∈ D̂N,K, µ+
β,N

(
uζ

N,K(x1) = 0, . . . , uζ
N,K(x`) = 0

)
6
(
ρζ

K

)`
, (3.2)

where the parameter ρζ
K vanishes as K goes to infinity.

Notice that the mesoscopic phase labels are far from being independent variables. In

particular, the enlarged boundaries of two neighboring boxes in D̂N,K overlap. This implies
that two neighboring boxes cannot be labelled by opposite signs. Let us first draw some
consequences of this construction. The proof of Theorem 3.1 is postponed to the Appendix.

This coarse graining describes the local order parameter. Given any δ > 0, one can
choose the accuracy ζ of the coarse graining and a scale K0(δ, β) such that for any meso-
scopic K > K0

lim
N→∞

1

Nd−1
log µ+

β,N

(
‖MN,K − m∗

βuζ
N,K‖1 > δ

)
= −∞ . (3.3)

In order to check this assertion, we first notice that the property (P2) implies

‖MN,K − m∗uζ
N,K‖1 6 ζ +

2Kd

Nd

∑

x∈bDN,K

1
uζ

N,K (x)=0
.

This estimate combined with Theorem 3.1 leads to

µ+
β,N

(
‖MN,K − m∗uζ

N,K‖1 > δ
)
6 µ+

β,N




1

|D̂N,K |

∑

x∈bDN,K

1
uζ

N,K (x)=0
>

δ − ζ

2




6 exp

(
−c1

Nd

Kd
log

(
δ − ζ

2ρζ
K

))
.

According to estimate (3.3) the local averaged magnetization can be controlled by the
mesoscopic phase labels and in particular the Proposition 3.1 follows from

Theorem 3.2. Let β be in B and ζ > 0. For every a > 0 and δ > 0 there exists a finite
scale K0(δ), such that for all K > K0

lim sup
N→∞

1

Nd−1
log µ+

β,N

(
uζ

N,K 6∈ V(Ca, 2δ)
)
6 − c(β,K)a , (3.4)

where c(β,K) is a positive constant.

This theorem amounts to control the phase of the small contours, i.e. to prove that the
macroscopic phase separation is the optimal scenario to shift the magnetization whereas
the creation of many small droplets does not contribute. The above theorem has been
derived in [BIV1] in an abstract setting (see also [BBP]). As the coarse graining satisfies
the hypotheses of Theorem 2.2.1 of [BIV1], the conclusion follows.

Remark 3.1. It should be noted that in the proof of [BIV1] the BK inequality was invoked
but a Peierls inequality for the coarse grained contours is sufficient.
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As noticed in [BIV2], a theorem similar to Theorem 3.2 can also be stated for phase
labels taking a finite number of values. Thus, similar results (coarse graining, exponen-
tial tightness) should be valid as well for multi-phase models which satisfy Peierls type
estimates.

3.2. Equilibrium crystal shapes. We are going to prove the analogue of Theorem 2.3
for the Ising model at low temperature. The proof relies on the previous coarse graining.
Nevertheless, it also uses model dependent arguments, namely the spin flip symmetry of
the Ising model and the existence of the surface tension.

Theorem 3.3. Let β be in B and m be in ] − m∗
β,m∗

β [. For every δ > 0, one can choose

a scale K0 = K0(β, δ) such that for any K > K0

lim
N→∞

µ+
β,N

(
inf

v∈Dm

‖MN,K − m∗
βv‖1 6 δ

∣∣∣MN 6 m

)
= 1 .

This theorem holds also for a larger range of temperatures ([CePi1, BIV1]), where B
is the domain of validity of Pisztora’s coarse graining [Pi]. It is actually conjectured that
B =]βc,∞[.

The concentration in L
1 of MN,K to the solutions of the variational problem requires

the derivation of precise logarithmic asymptotic. More precisely, we are going to check

that the probability that MN,K is close to a configuration m∗
βv (with v ∈ BV(D̂, {±1}))

decays exponentially with a surface order N d−1Wβ(v).

Proposition 3.2. Let β be in B and let v be in BV(D̂, {±1}), then one can choose
δ0 = δ0(v), such that uniformly in δ < δ0

lim inf
N→∞

1

Nd−1
log µ+

β,N

(
‖MN,K − m∗

βv‖1 6 δ
)
> −Wβ(v) − o(δ) ,

where the function o(·) depends only on β and v and vanishes as δ goes to 0.

Proposition 3.3. Let β be in B. For all v in BV(D̂, {±1}) such that Wβ(v) is finite, one
can choose δ0 = δ0(v), such that uniformly in δ < δ0

lim sup
N→∞

1

Nd−1
log µ+

β,N

(
‖MN,K − m∗

βv‖1 6 δ
)
6 −Wβ(v) + o(δ) ,

where the function o(·) depends only on β and v and vanishes as δ goes to 0.

Theorem 3.3 can be obtained by combining Propositions 3.1, 3.2, 3.3. We recall that
Ca is compact with respect to the L

1 topology (see [EG]). Thus the exponential tightness
property 3.1 enables us to focus only on a finite number of configurations close to Ca. The
precise asymptotic of these configurations is then estimated by Propositions 3.2, 3.3 (see
[B1] for details).

In the following sections, Propositions 3.2, 3.3 are implemented in the framework of
nearest neighbor Ising model at low temperature.
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3.3. Lower bound. In order to derive Proposition 3.2, it is enough to consider the typical
spin configurations which contain a microscopic contour in a neighborhood of the bound-
ary of ∂∗v.

Step 1 : Approximation procedure.

We first start by approximating the boundary ∂∗v by a regular surface ∂V̂ . A polyhedral
set has a boundary included in the union of a finite number of hyper-planes. The surface
∂∗v can be approximated as follows (see figure 2)

Theorem 3.4. For any δ positive, there exists a polyhedral set V̂ such that

‖1IbV
− v‖1 6 δ and

∣∣Wβ(V̂ ) −Wβ(v)
∣∣ 6 δ.

For any h small enough there are ` disjoint parallelepipeds R̂1, . . . , R̂` with basis B̂1, . . . , B̂`

included in ∂V̂ of side length h and height δh. Furthermore, the sets B̂1, . . . , B̂` cover ∂V̂

up to a set of measure less than δ denoted by Û δ = ∂V̂ \
⋃`

i=1 B̂i and they satisfy

∣∣∣
∑̀

i=1

∫

bBi

τβ(~ni) dH(d−1)
x −Wβ(v)

∣∣∣ 6 δ,

where the normal to B̂i is denoted by ~ni.

The proof is a direct application of Reshtnyak’s Theorem and can be found in the paper
of Alberti, Bellettini [AlBe].

Figure 2. Polyhedral approximation.

bUδ

~ni

bBj

bRi

{v = −1}

Using Theorem 3.4, we can reduce the proof of Proposition 3.2 to the computation
of the probability of {‖MN,K − m∗1IbV ‖1 6 δ}. According to (3.3) the estimates can be
restated in terms of the mesoscopic phase labels. It will be enough to show that : for any
δ > 0, there exists ζ = ζ(δ) and K0(δ) such that for all K > K0

lim inf
N→∞

1

Nd−1
log µ+

β,N

(
‖uζ

N,K − 1IbV
‖1 6 δ

)
> −Wβ(V̂ ) − o(δ), (3.5)

where the function o(δ) vanishes as δ goes to 0.

Step 2 : Localization of the interface.
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In order to impose the phase segregation, we will enforce the occurrence of a microscopic

interface along the boundary ∂V̂ . The images of V̂ , R̂i and Û δ in DN will be denoted by

VN , Ri
N and U δ

N . We split Ri
N into Ri,−

N and Ri,+
N which are the microscopic counterparts

of V̂ ∩ R̂i and R̂i \ V̂ .

���������������������������������������������
���������������������������������������������
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Figure 3. Microscopic interface localized close to Bi.

Uδ
N

Bi,+

R
i,+
N

Ai,−
R

i,−
N

~ni

First, we impose the microscopic constraint that there is a + surface of spins in the

upper half of Ri,+
N (see figure 3). Let Q̂i be the parallelepiped included in R̂i with basis

B̂i and height δh
2 . We define the microscopic region R

i,+
N as Ri,+

N \ Qi
N . Let Ai,+ be the

event that there is a surface of spins equal to 1 crossing R
i,+
N in the direction orthogonal

to ~ni. In the same way, we introduce the set R
i,−
N and the event Ai,− such that there is a

crossing surface of spins equal to −1. We set A =
⋂`

i=1 A
i,+ ∩Ai,−.

Finally, we define Bi,+ (resp Bi,−) the set of spin configurations such that the spins are

equal to 1 (resp −1) on the sides of Ri,+
N (resp Ri,−

N ) parallel to ~ni. In order to construct

a closed contour of spins surrounding VN , we define B as the set of configurations in Bi,+

and Bi,− such that the spins on one side of U δ
N are − and + in the other side (see figure 3).

Any spin configuration in A ∩ B contains a microscopic interface which decouples VN

from its complement. One has

µ+
β,N

(
‖uζ

N,K − 1IbV
‖1 6 δ

)
> µ+

β,N

({
‖uζ

N,K − 1IbV
‖1 6 δ

}
∩A ∩ B

)
. (3.6)

The spin configurations inside VN (resp V c
N ) are surrounded by − (resp +) boundary

conditions, so that they are in equilibrium in the − (resp +) pure phase. A proof similar
to the one of Theorem 3.2 implies that one can choose h small enough, ζ ′ = ζ ′(δ) and
K ′

0 = K ′
0(δ) such that

lim
N→∞

µ+
β,N

(∫

bV c

|uζ′

N,K(x) − 1| dx >
δ

2
or

∫

bV
|uζ′

N,K(x) + 1| dx >
δ

2

∣∣∣ A∩ B

)
= 0 ,

So that (3.6) can be rewritten for N large enough as

µ+
β,N

(
‖uζ′

N,K − 1IbV ‖1 6 δ
)
>

1

2
µ+

β,N (A∩ B) . (3.7)

Step 3 : Surface tension.
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The configurations in the event A∩ B contain + and − closed surfaces which split the
domain DN into 3 regions. Let Λ− be the region surrounded by the − surface, Λ+ be the
region outside the + surface. To ensure the uniqueness of the decomposition, we choose

the + surface (resp −) in each R
i,+
N (resp R

i,−
N ) as the closest surface from (Ri

N )c. By
definition, the configurations inside Λ− (resp Λ+) are surrounded by − (resp +) boundary
conditions. Finally ∆ = DN \ Λ+ ∪ Λ−.

We proceed now to evaluate the RHS of (3.7)

µ+
β,N (A∩ B) >

1

Z+
N

∑

Λ+,Λ−

Z+
Λ+Z−

Λ−Z+,−
∆ ,

where Zω
D denotes the partition function on the domain D with boundary conditions ω.

By using the spin flip symmetry we get

µ+
β,N (A∩ B) > min

∆

(
Z+,−

∆

Z+,+
∆

)
1

Z+
N

∑

Λ+,Λ−

Z+
Λ+Z+

Λ−Z+,+
∆ . (3.8)

The minimum is taken over the sets ∆ which can be obtained by the previous construction.
In particular, ∆ should contain the union of disjoint domains ∆i such that Qi

N ⊂ ∆i ⊂ Ri
N .

It remains to evaluate the two terms in the RHS.

The partition function Z+,−
∆ takes into account the interaction on both sides of U δ

N , as

well as inside each ∆i. As the former interaction involves only the spins in a neighborhood
of U δ

N , we obtain

min
∆

Z+,−
∆

Z+,+
∆

> exp
(
− βo(δ)Nd−1

) ∏̀

i=1

min
∆i

Z+,−
∆i

Z+,+
∆i

,

where the minimum is taken over the sets ∆i such that Qi
N ⊂ ∆i ⊂ Ri

N . Using the
definition (2.2), we know that

lim inf
N→∞

1

Nd−1
min
∆i

(
log

Z+,−
∆i

Z+,+
∆i

)
> −

∫

bBi

τβ(~ni) dH(d−1)
x . (3.9)

We used the fact that ∆i increases as N diverges.

In the last term in the RHS of (3.8), the constraint on the spins along the set U δ
N and

on the sides of Ri
N parallel to ~ni can be released up to a small cost wrt the surface order.

This comes from the fact that the event B is supported by at most c(d, δ)N d−1 edges where
c(d, δ) vanishes as δ goes to 0. Therefore the probability of B is negligible with respect to
a surface order.

1

Z+
N

∑

Λ+,Λ−

Z+
Λ+Z+

Λ−Z+,+
∆ > exp

(
− βo(δ)Nd−1

)
µ+

β,N

(
Ã
)
,

where Ã is the event deduced from A by spin flip symmetry, i.e. such that there are in

each set R
i,+
N and R

i,−
N a + surface of spins. Using the Peierls argument, we conclude that

µ+
β,N (Ã) is uniformly bounded from below in N .
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Thus inequalities (3.7), (3.8), (3.9) imply

lim inf
N→∞

1

Nd−1
log µ+

β,N (A∩ B) > −
∑̀

i=1

∫

bBi

τβ(~ni) dH(d−1)
x − o(δ) . (3.10)

This concludes the proof of Proposition 3.2.

3.4. Upper bound. The proof of Proposition 3.3 follows the general scheme of the L
1

Theory. The different steps will be recalled and modified in order to use only the spin
representation. First the boundary ∂∗v is approximated; this enables us to reduce the
proof to local computations in small regions. Then in each region we localize the interface
on the mesoscopic level by using the minimal section argument. Finally in the last step,
the surface tension factor is computed.

Step 1 : Approximation procedure.
We approximate ∂∗v with a finite number of parallelepipeds.

Theorem 3.5. For any δ positive, there exists h positive such that there are ` disjoint

parallelepipeds R̂1, . . . , R̂` included in D̂ with basis B̂1, . . . , B̂` of size h and height δh. The

basis B̂i divides R̂i in 2 parallelepipeds R̂i,+ and R̂i,− and the normal to B̂i is denoted by
~ni. Furthermore, the parallelepipeds satisfy the following properties

∫

bRi

|X bRi(x) − v(x)| dx 6 δ vol(R̂i) and
∣∣∣
∑̀

i=1

∫

bBi

τβ(~ni) dH(d−1)
x −Wβ(v)

∣∣∣ 6 δ,

where X bRi = 1 bRi,+ − 1 bRi,− and the volume of R̂i is vol(R̂i) = δhd.

The proof follows from standard arguments of geometric measure theory (see for example
[Ce, B1]). Theorem 3.5 enables us to decompose the boundary into regular sets (see figure
4) so that it will be enough to consider events of the type

{
1

m∗MN,K ∈
⋂̀

i=1

V(R̂i, δvol(R̂i))

}
,

where V(R̂i, ε) is the ε-neighborhood of X bRi

V(R̂i, ε) =

{
v′ ∈ L

1
(
D̂
) ∣∣

∫

bRi

|v′(x) −X bRi(x)| dx 6 ε

}
.

According to (3.3), the local averaged magnetization can be replaced by the mesoscopic
phase labels. Therefore Proposition 3.3 is equivalent to the following statement : for any
δ positive, there exists K0 = K0(δ, h), ζ0 = ζ0(δ, h) such that uniformly in K > K0, ζ 6 ζ0

lim sup
N→∞

1

Nd−1
log µ+

β,N

(
uζ

N,K ∈
⋂̀

i=1

V(R̂i, δvol(R̂i))

)
6 −Wβ(v) + C(β, v)δ. (3.11)

Step 2 : Minimal section argument.

Following, the notation of the subsection 3.3, we consider the partition (Ri,+
N , Ri,−

N ) of

Ri
N . At a given mesoscopic scale K, we associate to any spins configuration the set of bad

boxes which are the boxes BK intersecting Ri
N with label 0 and the ones intersecting Ri,+

N
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h

1

2
δh

{v = 1}

{v = −1}

~ni

bBibRi,+

bRi,−

Figure 4. Approximation by parallelepipeds.

(resp Ri,−
N ) labeled by −1 (resp 1). For any integer j, we set B̂i,j = B̂i + j cd

N
K ~ni and

define

Bi,j
N =

{
j′ ∈ Ri

N | ∃x ∈ B̂i,j, ‖j′ − Nx‖1 6 10
}
.

The sections Bi
j of the parallelepiped Ri

N are defined as the smallest connected set of boxes

BK intersecting Bi,j
N . The parameter cd is chosen such that the Bi

j are disjoint surfaces of

boxes. For j positive, let n+
i (j) be the number of bad boxes in Bi

j and define

n+
i = min

{
n+

i (j) : 0 < j <
δh

2cd

K

N

}
.

Call j+ the smallest location where the minimum is achieved and define the minimal sec-

tion in Ri,+
N as Bi

j+. For j negative, we denote by Bi
j− the minimal section in Ri,−

N and n−
i

the number of bad boxes in Bi
j− (see figure 5).

bad blocks

bad blocks

{v = −1}

{v = 1}

Bj−

i

Bj+

i

R
i,+
N

′

R
i,−
N

′

Figure 5. Minimal sections.
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For any spins configuration such that uζ
N,K belongs to

⋂`
i=1 V(R̂i, δvol(R̂i)), the number

of bad boxes in a minimal section is bounded by

n+
i + n−

i 6 δvol(R̂i)
2cd

δh

(
N

K

)d−1

6 2cdδh
d−1

(
N

K

)d−1

.

As
∑`

i=1 |B̂
i| = `hd−1 can be controlled in terms of the perimeter of ∂∗v, the total number

of bad boxes is bounded by

∑̀

i=1

n+
i + n−

i 6 δ C(v)

(
N

K

)d−1

. (3.12)

The previous estimate implies that a mesoscopic interface is mainly located between the
two minimal sections and that the fluctuations of the interface necessarily intersect the
bad boxes. Using this mesoscopic information, we are going to deduce the existence of a
microscopic interface crossing Ri

N in the direction orthogonal to ~ni. Once the microscopic
interface is localized, it will be possible to extract the surface tension factor (see Step
3). In order to achieve the localization, the previous proofs for Ising model [B1, CePi1]
used the properties of the FK representation and of Pisztora’s coarse graining [Pi]. In
the low temperature regime, the proof can be simplified thanks to the coarse graining
introduced previously which provides a direct correspondence between the microscopic
and the mesoscopic scales.

From the very construction of the coarse graining, the + spin surfaces associated to
overlapping boxes with label 1 are connected. As each minimal section contains mainly
+ good or − good blocks, there exist, in each minimal section, surfaces of + and − spins
which almost cross Ri

N . This implies that a microscopic interface is sandwiched between
the two minimal sections and that the large fluctuations of this interface can occur only
through the bad boxes. By modifying the spins configurations σ on the bad boxes, we will
localize the interface between the minimal sections.

More precisely, we associate to any configuration σ the configuration σ̄ with spins equal
to + (resp −) on the boundary of each bad box in the minimal section B i

j+ (resp Bi
j−) and

equal to σ otherwise. Let A be the image of the set
{

σ
∣∣∣ uζ

N,K(σ) ∈
⋂̀

i=1

V(R̂i, δvol(R̂i))

}

by this mapping. Inequality (3.12) implies that σ and σ̄ differ on at most δC1(v)Nd−1

sites, so that the cost of this surgical procedure can be estimated from above

µ+
β,N

(
uζ

N,K ∈
⋂̀

i=1

V(R̂i, δvol(R̂i))

)
6 exp

(
o(δ)C2(v, β)Nd−1

)
µ+

β,N

(
A
)
. (3.13)

The upper bound takes into account the energetic factor necessary to flip some spins
by force, as well as the combinatorial factor which stems from the choice of the minimal
sections. In a given box, there are less than N possibilities to locate the height of a
minimal section. Once this height is fixed, the number of configurations with different
locations of bad boxes is bounded by

(
(hN/K)d−1

δ(hN/K)d−1

)
6 exp

(
(hN/K)d−1

(
δ log δ + (1 − δ) log(1 − δ)

))
.

Summing over all the configurations leads to the upper bound (3.13).
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Remark 3.2. In the case of Kac Ising model, it is no longer possible to localize a mi-
croscopic interface. Therefore a more delicate analysis of surface tension is required (see
Section 4).

Step 3 : Surface tension estimates.
As a consequence of the previous step, any spin configuration in A contains micro-

scopic contours which cross each cube Ri
N . The statistical weight of such contours will be

estimated by the surface tension factor.

lim sup
N→∞

1

Nd−1
log µ+

β,N(A) 6 −
∑̀

i=1

∫

bBi

τβ(~ni) dHx + C4(β, v)δ. (3.14)

Combining the previous inequality with (3.13), we deduce (3.11). We now proceed in
deriving (3.14).

Let ∂topRi
N and ∂botRi

N be the two faces of Ri
N orthogonal to the vector ~ni. The face

contiguous to Ri,+
N will be denoted by ∂topRi

N . For any spins configuration in A, we define

the set of sites γi,+ as the support of the + crossing surface in Ri,+
N which is the closest to

∂topRi
N . In the same way, γi,− is the location of the surface of − spins crossing Ri,−

N which

is the closest to ∂botRi
N . Contrary to the proof of the lower bound, the localization of the

interfaces has been deduced from the L
1 constraint. As a consequence of this, we have no

control of the configurations outside the sets (Ri
N )i 6 `. This prevents us to conclude that

all the crossing interfaces merge into contours surrounding the connected components of
v as it was the case for the lower bound (see figure 6).

We first pin the interfaces on the sides of each Ri
N by imposing that the spins on the

boundary of each Ri,+
N (resp Ri,−

N ) parallel to ~ni are equal to 1 (resp −1). Since the height

of Ri
N is δh, this procedure requires to flip at most δhd−1Nd−1 spins. Therefore this has

no further impact on the evaluation of the statistical weights of the configurations because
the cost of flipping these spins is bounded by exp(δC(v)N d−1).

Let {Γj}j 6 k (with k 6 `) be the collection of the contours obtained by extending the
microscopic interfaces outside each Ri

N (see figure 6). To each Γj, we associate two sets of

sites (Γ+
j ,Γ−

j ) defined as follows : If Γj crosses the set Ri
N then the restriction of Γ+

j (resp

Γ−
j ) inside Ri

N coincide with γi,+ (resp γi,−). Outside ∪`
i=1R

i
N , the sets Γ±

j contain the

sites which support the ± spins of the contour Γj. Thus (Γ+
j ,Γ−

j ) should be interpreted as

a modified “contour” inflated in the regions Ri
N . Let ∆i

N be the domain in Ri
N between

γi,+, γi,−.

For simplicity, we first consider the case of a single contour Γ1. We suppose that Γ+
1

surrounds Γ−
1 and denote by ext(Γ+

1 ) the exterior of Γ+
1 and by int(Γ−

1 ) the interior of Γ−
1

(see figure 6). In this way, the domain DN is partionned by (Γ+
1 ,Γ−

1 ) into

DN = ext(Γ+
1 )
∨

int(Γ−
1 )
∨̀

i=1

∆i
N .



18 T. BODINEAU

Figure 6. Decomposition into contours.

C

int(Γ−

1 )

ext(Γ+

1 )

~n1

γ1,+

Γ2 = (Γ+

2 , Γ−

2 )

Γ1 = (Γ+

1 , Γ−

1 )

We are going to derive an upper bound for the probability of the configurations com-
patible with a given set (Γ+

1 ,Γ−
1 )

µ+
β,N (Γ+

1 ,Γ−
1 ) =

1

Z+
β,N

Z+

ext(Γ+

1
)

∏̀

i=1

Z±
∆i

N

Z−
int(Γ−

1
)

exp(−β|Γ1|) ,

where the length of the contour Γ1 outside the set ∪`
i=1R

i
N is denoted by |Γ1|. The last

term in the RHS takes into account the interaction across Γ1 outside the sets Ri
N . Using

the spin flip symmetry, we see that

µ+
β,N(Γ+

1 ,Γ−
1 ) =

Z+
ext(Γ+

1
)

∏`
i=1 Z+

∆i
N

Z+
int(Γ−

1
)

Z+
β,N

exp(−β|Γ1|)



∏̀

i=1

Z±
∆i

N

Z+
∆i

N


 . (3.15)

Let Γ̃1 be the set of spin configurations deduced from the ones compatible with (Γ+
1 ,Γ−

1 )
by flipping the spins inside int(Γ−

1 ). Equation (3.15) can be rewritten as follows

µ+
β,N (Γ+

1 ,Γ−
1 ) = µ+

β,N (Γ̃1) exp(−β|Γ1|)



∏̀

i=1

Z±
∆i

N

Z+
∆i

N


 .

By the definition of the surface tension, the last term in the RHS is bounded by

∏̀

i=1

Z±
∆i

N

Z+
∆i

N

6 exp

(
−Nd−1

[
∑̀

i=1

∫

bBi

τβ(~ni) dHx + o(N)

])
. (3.16)

Notice that in the particular case of the Ising model, the error term o(N) does not exists
(FKG property).

It remains to check that
∑

(Γ+

1
,Γ−

1
)

µ+
β,N (Γ̃1) exp(−β|Γ1|) 6 C(β)` , (3.17)
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where the summation is taken over the couples (Γ+
1 ,Γ−

1 ) compatible with the previous

construction. As the spin flip correspondence (Γ+
1 ,Γ−

1 ) ⇒ Γ̃1 is not a one-to-one the
evaluation of (3.17) requires some care.

First we consider the restriction of the spins configurations in each Ri
N , in this case,

the correspondence is a one-to-one because the spin flip occurs in regions delimited by
γi,+, γi,− which are defined unambiguously. For a fixed spin configuration in ∪`

i=1R
i
N , we

sum over the contours Γ1 attached to the boxes Ri
N . In this case the Peierls argument is

fully effective : by construction Γ1 stems from the boundary of the boxes Ri
N which means

that the contour is localized in space. Therefore the term involving |Γ1|, i.e. the area of
the contour outside ∪`

i=1R
i
N , is summable.

More precisely, for any σ compatible with (Γ+
1 ,Γ−

1 ), we write σ  (Γ+
1 ,Γ−

1 ). The image

of σ by the previous mapping will be denoted by σ̃. Let RN = ∪`
i=1R

i
N and set σRN

(resp
σRc

N
) the restriction of σ on RN (resp Rc

N ). For simplicity, γ will denote the restriction

of (Γ+
1 ,Γ−

1 ) on RN and C the restriction on Rc
N .

∑

(Γ+

1
,Γ−

1
)

µ+
β,N(Γ̃1) exp(−β|Γ1|) =

∑

(Γ+

1
,Γ−

1
)

∑

σ (Γ+

1
,Γ−

1
)

µ+
β,N(σ̃) exp(−β|Γ1|) ,

6
∑

C




∑

σRc
N
 C

∑

γ

∑

σRN
 γ

µ+
β,N (σ̃)


 exp(−β|Γ1|) .

From the one-to-one correspondence on RN

∑

σRc
N
 C

∑

γ

∑

σRN
 γ

µ+
β,N(σ̃) 6 1 .

Thus
∑

(Γ+

1
,Γ−

1
)

µ+
β,N (Γ̃1) exp(−β|Γ1|) 6

∑

C
exp(−β|Γ1|) 6 C`

β .

The last bound follows from the Peierls argument and the fact that the contour C can be
divided in at most ` interfaces.

If the contour Γ1 is not unique, similar estimates can be performed for each contour.
Indeed, up to a combinatorial factor denoted α`, we associate to each of the k contours
the regions Ri

N it will cross. Then we perform the estimates independently and obtain

an upper bound depending only on β and ` : α`(Cβ)`. After renormalization, this factor
vanishes in the thermodynamic limit. Combining this final estimate with (3.17), we deduce
(3.14).

4. Kac Ising model

The previous strategy will be adapted to derive the phase coexistence in the Kac Ising
model. This requires to set up a multiscale analysis where the spin variables are replaced
by coarse grained variables. The proof relies heavily on the model-dependent estimates
derived in [CaPr, BMP].
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4.1. Coarse graining. The long range structure of the Kac Ising model prevents us from
using directly the coarse grained estimates of subsection 3.1.

In a first step, the system is renormalized on a scale proportional to the range of the
interaction γ−1. On this scale, the renormalized system behaves as an Ising model with
effective inverse temperature proportional to γ−d. Thus, these estimates enables us to
implement a second renormalization similar to the one introduced in subsection 3.1.

It should be stressed that the difficult estimates to construct this coarse graining were
already obtained in [CaPr, BMP].

Level 1.
We introduce two intermediate scales depending on the range of interaction γ−1 = 2g.

Let L = 2−`γ−1 = 2g−` and H = 2hγ−1 = 2g+h, where `, h ∈ N. In the following `
will be fixed and γ will go to 0 so that the condition ` 6 g will be always satisfied. By
construction each box BH is partionned into smaller boxes BL.

The averaged magnetization in the box BL(x) centered in x ∈ DN,L was introduced in
(2.7) and denoted by MN,L(x). Given ε > 0 and γ > 0, the phase labels ηε

N,H at the

mesoscopic scale H are defined as follows : the box BH(x) centered in x ∈ DN,H is labelled
by

ηε
N,H(x) =

{
±1, if |MN,L(y) ∓ m∗

β| 6 ε, ∀BL(y) ⊂ BH(x) ,

0, otherwise .

The parameter ε quantifies the deviation of the averaged magnetization from the mean
field magnetization m∗

β (and not m∗
β,γ (2.3)).

Following [CaPr, BMP], we introduce the renormalized notions of boxes, contours and
boundary conditions at the mesoscopic scale H.

• A box BH(x) is correct if ηε
N,H(x) = ±1 and if all the ?-neighboring boxes have

the same labels as BH(x).
• The support of a contour is a maximal ?-connected component of the incorrect

boxes. A contour is defined by its support and by the specification of the phase
labels on the support.

• Contrary to the low temperature Ising model, we are going to consider boundary
conditions which are only statistically pure. A region Λ (measurable wrt the
partition at the scale H) has + boundary conditions in averaged if the phase labels

η
ε/2
N,H associated to σΛc are uniformly equal to 1. This set of boundary conditions is

denoted by G+,ε(Λ) ⊂ [−1, 1]Λ
c
. In the same way, the set of − boundary conditions

in averaged is denoted by G−,ε(Λ).

For the renormalized contours, a Peierls estimate of the type (2.8) has been proven in
[CaPr]

Theorem 4.1. There exist functions ε∗(β) > 0, `(β, ε) ∈ N, h(β, ε) ∈ N, c(β, ε) > 0,
c′(β, ε) > 0 such that the following holds. Let γ > 0, β > 1 and ε < ε∗. Then for any
region Λ (measurable wrt the partition on the H scale) and any generalized contour Γ in
Λ

∀σΛc ∈ G+,ε(Λ), µβ,γ,Λ

(
Γ
∣∣σΛc

)
6 c′(β, ε) exp

(
−

c(β, ε)

γd
|Γ|

)
, (4.1)

where |Γ| denotes the number of boxes in the contour Γ.
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After the renormalization procedure, the effective temperature becomes c(β,ε)
γd . There-

fore, for γ small enough, the coarse grained system behaves as an Ising model in the low
temperature regime.

A more precise description of the pure phases has been derived in [BMP] (Theorem 2.4)
: the Gibbs measures with almost pure boundary conditions relax exponentially fast to
the corresponding pure phase.

Theorem 4.2. [BMP] For any β > 1, ∀ε ∈]0, ε∗(β)[ there exists γ(β, ε) > 0, c(ε) >
0 such that the following holds. For any subset ∆ of Z

d, for any K ⊂ ∆, one has
∀γ 6 γ(β, ε),∀σ∆c ∈ G+,ε(∆)

∣∣∣µβ,γ,∆

(
σK
∣∣σ∆c

)
− µ+

β,γ(σK)
∣∣∣ 6 |K| exp

(
− c γ2 dist(K,∆c)

)
.

Level 2.
The previous estimates are the building blocks for the next renormalization step. The

phase labels ηε
N,H quantify only the deviations of the averaged magnetization from m∗

β

instead of m∗
β,γ. Furthermore, the control of these deviations (4.1) induces a dependency

between the accuracy ε and the range of the interaction γ−1.
By analogy with Subsection 3.1, we will define a coarse graining at the mesoscopic scale

K � H. The phase labels ηε
N,H are going to play the role of the spins. This will enables

us to strengthen the control on the deviation of the magnetization in K-boxes from its
expected value m∗

β,γ with an arbitrary precision.

For β > 1, the parameters γ, ε, L and H are fixed such that Theorems 4.1 and 4.2 hold
and that the effective temperature is low enough. The parameter ζ > 0 will control the
accuracy of the coarse graining at the scale K = 2kH.

Let x be in D̂N,K and α be in (0, 1). The box B̂N,K(x) is + good if the spin configuration

inside the enlarged box of side length K + 2αkH is typical, i.e.
(P1) The box BK(x) is surrounded by a surface of boxes BH in ∂BK(x) with mesoscopic
phase labels ηε

N,H uniformly equal to 1.

(P2) The averaged magnetization MN,K(x) inside BK(x) is close to the equilibrium value
m∗

β,γ ∣∣MN,K(x) − m∗
β,γ

∣∣ 6 ζ . (4.2)

The − good boxes are defined in the same way.

On the mesoscopic level, each box B̂N,K(x) is labelled by a mesoscopic phase label

∀x ∈ D̂N,K , uζ
N,K(x) =

{
±1, if B̂N,K(x) is ± good ,

0, otherwise.

The typical behavior follows from

Theorem 4.3. Let β > 1 and fix γβ > 0 and ε > 0 such that the Theorems 4.1 and 4.2
are satisfied. For any γ < γ(β, ε), ζ > 0, the following holds uniformly for domains Λ
(measurable wrt K-partitions) and for any σΛc ∈ G+,ε(Λ)

∀{x1, . . . , x`}, µβ,γ,Λ

(
uζ

N,K(x1) = 0, . . . , uζ
N,K(x`) = 0

∣∣ σΛc

)
6
(
ρζ

γ,K

)`
, (4.3)

where the parameter ρζ
γ,K vanishes as K goes to infinity.
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The proof goes along the lines of Theorem 3.1; the Peierls argument is implied by
Theorem 4.1 and the decay of correlations by Theorem 4.2.

4.2. Structure of the proof. As explained in Section 3, the proof of Theorem 2.3 is
based upon coarse grained estimates. Therefore, the same strategy can be transposed to
the Kac Ising model by using the mesoscopic representation described above. The first
part of the proof is very similar to the approach introduced in [BBBP, BBP] and therefore,
we do not repeat the arguments of Section 3. Nevertheless, the derivation of the precise
surface tension factor requires further analysis.

In the case of nearest neighbor Ising model at low temperature, the localization of the
interface at the mesoscopic level by the minimal section argument implied directly, thanks
to the coarse graining, the localization at the microscopic level. Therefore the ratio of

partition functions Z±

Z+ (see (3.9) or (3.16)) arises from the very construction of the coarse
graining. This is no longer the case, both for the lower and the upper bound. Indeed,
the localization at the scale K implies only the occurrence of circuits of ± good boxes
at the intermediate scale H. As a consequence, the surface tension factor should now
be related to the asymptotic of the ratio of partition functions with statistically pure
boundary conditions at the scale H.

Let us give now a precise mathematical formulation of the problem. For N ∈ N and
δ > 0, we define Λδ

N = {i ∈ Z
d | |i1| 6 δN, k = 2, . . . , d, |ik| 6 N}. Let G±,ε(Λδ

N ) be the
set of mixed boundary conditions (σ+, σ−) such that the configuration σ+ is supported
by the domain {i1 > δN} and contains mesoscopic phase labels ηε

N,H uniformly equal to

1. Similarly, σ− is supported by the domain {i1 < −δN} and contains mesoscopic phase
labels ηε

N,H uniformly equal to −1. The partition function with boundary conditions in

G±,ε(Λδ
N ) is denoted by Zσ+,σ−

γ,Λδ
N

. Let σ̃− be the configuration deduced from σ− by spin

flip. In the derivation of the lower and the upper bounds, the surface tension should be
related to the following approximate quantities

log




Zσ+,σ−

γ,Λδ
N

Zσ+,σ̃−

γ,Λδ
N


 (4.4)

Ultimately the parameter δ will vanish and therefore the boundary conditions on the faces
of Λδ

N parallel to ~e1 can be chosen arbitrarily. For convenience we fix these conditions to
be equal to m∗

β.

The surface tension is defined for arbitrary directions and general domains (see (2.2)).
To simplify the notation, we will consider only the direction ~n = ~e1 and domains ∆δ

N . In
fact, the results also hold for arbitrary directions ~n and domains.

Remark 4.1. Notice that the mesoscopic phase labels on the scale K are now built with
blocks of spins at the scale H = 2hγ−1. Therefore the mesoscopic surgery involves blocks
of spins and the error term is of order exp( 1

γ ). This is actually not a problem because γ

is fixed and these terms disappear in the limit (δ → 0).

4.3. Lower bound.
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Proposition 4.1. Let β > 1 and fix γβ > 0, ε > 0 such that Theorems 4.1 and 4.2 hold.
For all γ < γβ,

lim
δ→0

lim inf
N→∞

1

Nd−1
inf

σ+,σ−
log




Zσ+,σ−

γ,Λδ
N

Zσ+,σ̃−

γ,Λδ
N


 > − τβ,γ , (4.5)

where the infimum is taken over the boundary configurations such that (σ+, σ−) belong to
G±,ε(Λδ

N ).

Proof. If the boundary conditions are σ+ = 1 and σ− = −1 then, by definition of the
surface tension, (4.5) holds. We are going to interpolate between the boundary conditions
(σ+, σ−) and (1,−1). For simplicity, the dependency on γ and δ will be omitted in the

notation and the partition function will be denoted by Zσ+,σ−

N .

First we are going to check that

lim inf
N→∞

1

Nd−1
inf

σ+,σ−

[
log

Zσ+,σ−

N

Zσ+,σ̃−

N

− log
Z+,σ−

N

Z+,σ̃−

N

]
> 0 . (4.6)

For a given boundary condition σ+, we define Λδ,+
N as the subset of {i1 > δN} containing

the sites i such that σ+
i = −1. For any i ∈ Λδ,+

N , we set

∀s ∈ [0, 1], σ+
i (s) = (1 − σ+

i )s + σ+
i

and by integrating

log
Z+,σ−

N

Z+,σ̃−

N

− log
Zσ+,σ−

N

Zσ+,σ̃−

N

=
∑

i∈Λδ,+
N ,j∈Λδ

N

∫ 1

0
ds Jγ(i, j)

(
µ

σ+(s),σ−

β,γ,N (σj) − µ
σ+(s),σ̃−

β,γ,N (σj)
)

.

The RHS can be split into two terms. The first one is non positive by FKG inequality

∑

i∈Λδ,+
N ,j∈Λδ

N

∫ 1

0
ds Jγ(i, j)

(
µ

σ+(s),σ−

β,γ,N (σj) − µ
σ+(s),+
β,γ,N (σj)

)
6 0 .

The second term
∑

i∈Λδ,+
N ,j∈Λδ

N

∫ 1

0
ds Jγ(i, j)

(
µ

σ+(s),+
β,γ,N (σj) − µ

σ+(s),σ̃−

β,γ,N (σj)
)

(4.7)

will be evaluated by using the exponential decay of correlations. We need to state a
result slightly stronger than Theorem 4.2, whose proof is implicitly contained in [BMP].
For a given domain ∆, the extended set of boundary conditions G+,ε(∆) contains the
configurations σ∆c such that

∀BL(y) ⊂ ∆c, MN,L(y) − m∗
β > −

ε

2
.

In particular, the boundary conditions uniformly equal to 1 belong to this set.

Theorem 4.4. For any β > 1, there exists γβ > 0 and ε∗β such that for ε ∈]0, ε∗β [ the

following holds. For any subset ∆ of Z
d, let (σ, σ′) be two configurations in G+,ε(∆c) then

for K ⊂ ∆, one has

∀γ 6 γβ,
∣∣∣µσ

β,γ,∆(σK) − µσ′

β,γ,∆(σK)
∣∣∣ 6 |K| exp

(
− c(ε)γ2 dist(K,S)

)
,
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where S is the subset of ∆c where σ and σ′ differ and c(ε) is a positive constant.

The boundary conditions (σ+(s), σ̃−) and (σ+(s),+) differ only in the lower part of
(Λδ

N )c, thus the exponential relaxation enables us to evaluate (4.7)

log
Z+,σ−

N

Z+,σ̃−

N

6 log
Zσ+,σ−

N

Zσ+,σ̃−

N

+
Nd−1

γd
exp(−cγ2 δN) .

This estimate holds uniformly over the boundary conditions. Letting N go to infinity, we
derive (4.6) .

It remains to check that

∀σ−,
Z+,σ−

N

Z+,σ̃−

N

>
Z+,−

N

Z+,+
N

. (4.8)

This follows from FKG inequality. By interpolating, we get

log
Z+,σ−

N

Z+,σ̃−

N

− log
Z+,−

N

Z+,+
N

=
∑

i∈Λδ,−
N ,j∈Λδ

N

∫ 1

0
ds Jγ(i, j)

(
µ

+,σ−(s)
β,γ,N (σj) + µ

+,σ̃−(s)
β,γ,N (σj)

)
,

where Λδ,−
N is defined in a similar way as Λδ,+

N . The spin flip symmetry enables us to
rewrite the RHS. As FKG inequality implies that the magnetization is increasing wrt the
boundary fields

∑

i∈Λδ,−
N ,j∈Λδ

N

∫ 1

0
ds Jγ(i, j)

(
µ

+,σ−(s)
β,γ,N (σj) − µ

−,σ−(s)
β,γ,N (σj)

)
> 0 .

Therefore the proposition is complete. �

Remark 4.2. A proof of the lower bound without using FKG inequality can be done
along the lines of the proof of the upper bound. Nevertheless, this would involve more
technicalities because another argument would be required to replace (4.10). This can be
achieved by considering rough minimal sections (S+,S−) instead of rigid ones.

4.4. Upper bound. For some boundary conditions in G±,ε(Λδ
N ), the quantity (4.4) is a

bad approximation of the surface tension. Some boundary conditions interact with the
interface and one should expect the following lower bound

lim
δ→0

lim sup
N→∞

1

Nd−1
sup

(σ+,σ−)∈G±,ε(Λδ
N )

log




Zσ+,σ−

γ,Λδ
N

Zσ+,σ̃−

γ,Λδ
N


 > −τβ,γ .

In order to screen the influence of the boundary conditions, one is lead to introduce a
different approximation of the surface tension. This is done by localizing the interface
away from the boundary with the help of two extra minimal sections which decouple the
interface and the boundary conditions.

Mimicking the argument used for the derivation of the upper bound (subsection 3.4), we
can find 4 minimal sections in each cube Ri

N of height δhN . Let us denote by Qi
N (s) the

parallelepiped included in Ri
N with basis Bi and height sN . There is a minimal section

in Ri,+
N ∩ Qi

N ( δh
4 N) and another in Ri,+

N \ Qi
N (3δh

2 N). By symmetry, there exist also 2

minimal sections in Ri,−
N .
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By applying the surgical procedure, we deduce from the L
1 constraint the existence

of 2 surfaces of + good blocks (resp −) at the mesoscopic scale H crossing the domains

Ri,+
N (resp Ri,−

N ). After conditioning wrt the ± surfaces which are the closest to (Ri
N )c,

it remains to consider a partition function with mixed boundary conditions and with the

constraint that there are also ± crossing surfaces in Ri,±
N ∩ Qi

N ( δh
4 N).

For simplicity, let us define the new constrained partition function on the domain Λδ
N .

Let S be the event such that there exist two crossing surfaces of good H-blocks. For any
spin configuration in S, the surface of + blocks included in {i ∈ Λδ

N | 0 6 i1 6
δ
4N} which

is the closest to {i1 = 0} is denoted by S+. In the same way, the surface of − blocks
included in {i ∈ Λδ

N | − δ
4N 6 i1 6 0} which is the closest to {i1 = 0} is denoted by S−.

The constrained partition function with mixed boundary conditions (σ+, σ−) ∈ G±,ε(Λδ
N )

is defined by

Zσ+,σ−

γ,Λδ
N

(S) =
∑

σ

1S(σ) exp
(
−βHγ

(
σ| (σ+, σ−)

))
.

The constraint S implies that the mesoscopic interface is localized inside the stripe {i ∈
Λδ

N | |i1| 6
δ
4N}. Thus, uniformly over the boundary conditions in G±,ε(Λδ

N ) the system
will relax to equilibrium in each region outside this stripe.

Proposition 4.2. Let β > 1 and fix γβ > 0, ε > 0 such that the Theorems 4.1 and 4.2
hold. Then, for all γ < γβ,

lim
δ→0

lim sup
N→∞

1

Nd−1
sup

σ+,σ−

log




Zσ+,σ−

Λδ
N

(S)

Zσ+,σ̃−

Λδ
N


 6 − τβ,γ , (4.9)

where the supremum is taken over the boundary configurations such that (σ+, σ−) belong
to G±,ε(Λδ

N ).

Proof. As before, the proof is based upon an interpolation which enables us to compare
the statistically pure boundary conditions with the mixed boundary conditions (1,−1).
Nevertheless, the method is quite different because it relies on the relaxation of the spin
configurations in the domains outside the stripe {i | |i1| 6

δ
4N}. Notice that

lim sup
N→∞

1

Nd−1
log

(
Z+,−

N (S)

Z+,+
N

)
6 lim sup

N→∞

1

Nd−1
log

(
Z+,−

N

Z+,+
N

)
= −τβ,γ .

We define 2 regions

B+ =

{
i, i1 ∈ [

δ

2
N,

δ

2
N +

10

γ
]

}
,

B− =

{
i, i1 ∈ [−

δ

2
N −

10

γ
,−

δ

2
N ]

}
.

The spins configurations inside (B+,B−) are interpolated by the constant configuration
(m∗,−m∗)

∀s ∈ [0, 1],∀i ∈ B+, σi(s) = sσi + (1 − s)m∗
β ,

∀i ∈ B−, σi(s) = sσi − (1 − s)m∗
β .
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Outside (B+,B−), the spins are unchanged. Let Zσ+,σ−

N,s (S) be the partition function

depending on the spins σ(s). The configurations of the partition function in the denomi-
nator are interpolated in (B+,B−) with the configuration (m∗

β,m∗
β) and the corresponding

partition function is denoted by Zσ+,σ̃−

N,s .

For given boundary conditions (σ+, σ−) ∈ G±,ε(Λδ
N ), we introduce

Φ(s) = log
Z+,−

N,s (S)

Z+,+
N,s

− log
Zσ+,σ−

N,s (S)

Zσ+,σ̃−

N,s

. (4.10)

When s = 0, the spin configurations in B+ and B− decouple the configurations into
three independent systems.

Φ(0) = log

(
Z+,m∗

N

Z+,m∗

N

Zm∗,−m∗

N (S)

Zm∗,m∗

N

Z−m∗,−
N

Zm∗,+
N

)
− log

(
Zσ+,m∗

N

Zσ+,m∗

N

Zm∗,−m∗

N (S)

Zm∗,m∗

N

Z−m∗,σ−

N

Zm∗,σ̃−

N

)
.

The symmetries of the model imply the cancellation of all the terms Φ(0) = 0.
All what remains to do is to control the derivative Φ′(s). We encounter two types of

terms in the sections B±

Φ′(s) =
∑

i∈B+,j∈Λδ
N

Jγ(i, j)
[(

µ+,−
β,γ,N,s

(
σj(σi − m∗)|S

)
− µ+,+

β,γ,N,s

(
σj(σi − m∗)

))

−
(
µσ+,σ−

β,γ,N,s

(
σj(σi − m∗)|S

)
− µσ+,σ̃−

β,γ,N,s

(
σj(σi − m∗)

))]

+
∑

i∈B−,j∈Λδ
N

Jγ(i, j)
[(

µ+,−
β,γ,N,s

(
σj(σi + m∗)|S

)
− µ+,+

β,γ,N,s

(
σj(σi − m∗)

))

−
(
µσ+,σ−

β,γ,N,s

(
σj(σi + m∗)|S

)
− µσ+,σ̃−

β,γ,N,s

(
σj(σi − m∗)

))]
.

By using the exponential decay of correlations (Theorem 4.4), we obtain

∑

i∈B+,j∈Λδ
N

Jγ(i, j)
∣∣∣µ+,+

β,γ,N,s

(
σj(σi − m∗)

)
− µσ+,σ̃−

β,γ,N,s

(
σj(σi − m∗)

)∣∣∣ 6 Nd−1

γd
exp(−cγ2 δN) .

This estimate holds uniformly over the boundary conditions (σ+, σ̃−) ∈ G+,ε(Λδ
N ).

Remark 4.3. Notice that Theorem 4.4 holds also for the interpolated measures (µσ+,σ̃−

β,γ,N,s)s∈[0,1].

This fact was pointed to us by E. Presutti. The interpolation by more regular configura-
tions can only improve the properties of the measure, thus modifying the interactions on
(B+,B−) does not alter the conclusion of the Theorem.

The minimal section becomes effective in order to estimate the other terms. We consider
the spin correlations in B+ (the same argument holds with B−). Theorem 4.4 provides
estimates for boundary conditions which are in G+,ε(Λδ

N ) and therefore cannot be applied
directly for mixed boundary conditions. Nevertheless the section S+ screens the effect of
the − boundary conditions. Thus the configurations in B+ relax to the + pure phase. Let
∆+

S be the domain above the surface S+. By conditioning, wrt the configuration σS+ in
the section S+, we have

µ+,−
β,γ,N,s

(
σjσi|S

)
=

1

µ+,−
β,γ,N,s(S)

µ+,−
β,γ,N,s

(
1S µ

+,σ
S+

β,γ,∆+

S
,s
(σjσi)

)
.
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According to Theorem 4.4 the previous expression can be replaced by the expectation in
the infinite stripe {i, |ij | 6 N, j = 2, . . . , d}.
∣∣∣µ+,−

β,γ,N,s

(
σjσi|S

)
− µm∗

β,γ,s(σjσi)
∣∣∣ 6 sup

σ
S+

∣∣∣µ+,σ
S+

β,γ,∆+

S
,s

(
σjσi

)
− µm∗

β,γ,s(σjσi)
∣∣∣ 6 exp(−cγ2δN) ,

where µm∗

β,γ,s is the measure on the infinite stripe. The same identity holds for µσ+,σ−

β,γ,N,s

(
σjσi|S

)
,

therefore
∑

i∈B+,j∈Λδ
N

Jγ(i, j)
∣∣µ+,−

β,γ,N,s

(
σj(σi − m∗) | S

)
− µσ+,σ−

β,γ,N,s

(
σj(σi − m∗) | S

)∣∣

6
Nd−1

γd
exp(−cγ2 δN) .

This concludes the proposition. �

Remark 4.4. The proof of theorem 4.2 does not use correlation inequalities.

5. Appendix : Theorem 3.1

The proof of the domination bound for the 0-blocks (3.2) is divided into 3 steps.

Step 1. Let us start with a single box. If B̂N,K(x) is not a good box then either there is
a contour of length at least Kα crossing the enlarged boundary or conditionally on the
event that the box BK(x) is surrounded by a surface of spins of sign εx, the magnetization
MN,K(x) is atypical. These two occurrences can be estimated separately. Applying the
Peierls estimate (2.8), we get

µ+
β,N

(
there is a contour crossing ∂BK(x)

)
6 Kd−1 exp(−cβKα) . (5.1)

Conditionally on the occurrence of a connected surface S of εx-spins surrounding the box
BK(x), the configurations inside BK(x) are decoupled from the exterior. We first use
Tchebyshev inequality

µ+
β,N

(
{|MN,K(x) − εxm∗| > ζ}

∣∣ S
)
6

1

ζ2K2d
µεx

β,int(S)


( ∑

i∈BK(x)

σi − εxm∗)2

 .

where int(S) is the region surrounded by S. As S has been chosen as the closest surface to
(BK+Kα)c, the magnetization inside the box BK(x) is measurable after the conditioning .
As a consequence of the Peierls estimates (low temperature expansions), the correlations
decay exponentially in the εx-pure phase, so that we obtain

µεx

int(S) ({|MN,K(x) − εxm∗| > ζ}) ≤
1

ζ2Kd
χ , (5.2)

where the susceptibility χ =
∑

i∈Zd µ+
β (σ0;σi) is finite.

Step 2. In order to evaluate the probability of the event
{

uζ
N,K(x1) = 0, . . . , uζ

N,K(x`) = 0
}

the lattice D̂N,K is partionned into cd sub-lattices (D̂
(i)
N,K)i 6 cd

such that two cubes of size

K + Kα centered on two sites of D
(i)
N,K are disjoint. By applying Hölder inequality, the



28 T. BODINEAU

estimate (3.2) is reduced to cubes which are not nearest neighbors.

µ+
β,N

(
uζ

N,K(x1) = 0, . . . , uζ
N,K(x`) = 0

)
6

cd∏

i=1

µ+
β,N

(
∀xj ∈ D̂

(i)
N,K, uζ

N,K(xj) = 0
) 1

cd .

Step 3. The event
{
uζ

N,K(x1) = 0, . . . , uζ
N,K(x`) = 0

}
can be decomposed into 2 terms :

on `′ boxes the density is atypical, whereas there are contours crossing the `− ` ′ enlarged
boundaries of the remaining boxes.

For a given collection of j boxes, we define

Aj = {The j boxes are surrounded by ± surfaces, but their averaged magnetizations

are non typical}

Bj = {There are contours crossing the j enlarged boundaries of the boxes} .

The probabilities of both events can be evaluated as follows. As the j boxes are disjoint
and the surfaces of spins decouple the configurations inside each box

µ+
β,N (Aj) 6

(
µ+

β,N(A1)
)j
6
(
αK

)j
,

where the constant αK = χ
ζ2Kd was introduced in (5.2).

µ+
β,N (Bj) =

j∑

i=1

µ+
β,N

(
{∃ i contours crossing the j enlarged boundaries}

)
.

We choose i blocks as starting points of these contours. Then we have to evaluate
∑

|Γ1|+···+|Γi| > jKα

µ+
β,N (Γ1, . . . ,Γi) ,

where the contours (Γ1, . . . ,Γi) have also to cross each boundaries of the j cubes.
Let nr be the number of boundaries crossed by the contour r

∑

|Γ1|+···+|Γi| > jKα

µ+
β,N (Γ1, . . . ,Γi) 6

∑

n1+···+ni=j

∑

(Γr ,nr)

µ+
β,N (Γ1, . . . ,Γi) .

If a contour crosses nr boundaries then it has a length at least nrK
α +(nr − 1)K because

the distance between the boxes is at least K. Thus

∑

|Γ1|+···+|Γi| > jKα

µ+
β,N(Γ1, . . . ,Γi) 6

∑

n1+···+ni=j

i∏

r=1

exp(−cβnrK
α − cβ(nr − 1)K)

6 exp(−cβjKα)

( ∞∑

n=1

exp(−cβ(n − 1)K)

)i

6 Ci exp(−cβjKα) .

µ+
β,N (Bj) 6

j∑

i=1

(
j

i

)
K(d−1)iCi exp(−cβjKα) 6 exp(−cβ jKα)(1 + CKd−1)j = (α′

K)j .

where the constant α′
K vanishes as K goes to infinity.



PHASE COEXISTENCE FOR THE KAC ISING MODELS 29

Combining both estimates, we obtain

µ+
β,N

(
uζ

N,K(x1) = 0, . . . uζ
N,K(x`) = 0

)
6
∑̀

`′=1

(
`

`′

)
µ+

β,N(A`′)
1/2µ+

β,N (B`−`′)
1/2 6

(
αK + α′

K

)`
.

This completes the proof.
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[CCK] J. Chayes, L. Chayes, R. Kotecký : The analysis of the Widom-Rowlinson model by stochastic

geometric methods, Comm. Math. Phys. 172, No.3, 551–569 (1995).
[CaPr] M. Cassandro, E. Presutti, Phase transitions in Ising systems with long but finite range, Mark.

Proc. and Rel. Fields 2, 241–262 (1996).
[Ce] R. Cerf, Large deviations for three dimensional supercritical percolation, Astérisque 267 (2000).
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[ISc] D. Ioffe, R. Schonmann, Dobrushin-Kotecký-Shlosman theory up to the critical temperature, Comm.
Math. Phys. 199, 117–167 (1998).

[LMP] J. Lebowitz, Mazel, Presutti, Liquid-vapor phase transitions for systems with finite-range interac-

tions., J. Stat. Phys. 94, No.5-6, 955–1025 (1999).
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