Large deviations in the van der Waals limit
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Abstract. In this paper we extend the analysis in [3] by proving a strong large de-
viation principle for the empirical distribution of Ising spins in d > 2 dimensions when
the interaction is determined by a Kac potential and the temperature is below the critical

value.

1. Introduction.

Large deviations theory is the natural setup for studying the structure and the geometry
of the interfaces. At a phase transition the cost (i.e. the logarithm of the Gibbs probability)
of having a deviation from equilibrium in some given region inside the system may be
“only” proportional to its surface and not to its volume, as customary when there is no
phase transition, because the deviation may involve just a change of the phase in the given
region. The process then looks atypical only in a neighborhood of the interface, hence the
cost is proportional to its surface. The rate function of the large deviations quantifies the
cost of an interface and gives the probability of its appearence. Moreover with the help of a
strong large deviation principle (LDP) we can, for instance, determine the interface which
realizes a given constraint, by relating this to the solution of the corresponding variational
problem with the rate function. The best known example is the Wulff problem about the
optimal shape of the interface once the volume fraction of the two phases has been fixed.

The d = 2 dimensional, nearest neighbor, ferromagnetic Ising system is the most remark-
able example where all this has been developed, see [10], [12], [13], [16], [17]. Unfortunately
not many other models have been worked out. Here we study and solve the problem un-
der a simplifying feature, namely we consider the d > 2 ferromagnetic Ising system with
Kac potentials. As proposed by Kac, Uhlenbeck and Hemmer, [14], and Lebowitz and
Penrose, [15], we consider after the thermodynamic limit (L — oo) also the scaling limit
v — 0, where v > 0 is the scaling parameter of the Kac potential (Kac parameter). In [14]
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and [15] it is shown that this procedure yields a rigorous derivation of the van der Waals
theory. In [3] a weak LDP is proved, showing that the rate function is the perimeter of
the interface times the van der Waals surface tension. Here we prove a strong LDP which
allows for instance to characterize the optimal shape of the interface under a general class
of constraints.

The order of the limits is very important, we emphasize that the scaling limit v — 0
is done here after the thermodynamic limit L — oo; the simultaneous limit with L and
v suitably related has been examined earlier in [2], [4], [1] where it is solved together
with the proof that the non local van der Waals excess free energy functional I'-converges
to the perimeter functional (times the van der Waals surface tension). Our analysis is
intermediate between this case and the other one with only L — oo and v > 0 maybe very
small but fixed, like in [8], [6], [5], [7] where the goal was to prove phase transitions at
fixed v > 0. Unfortunately our techniques do not allow to extend the analysis to the large
deviations at fixed v > 0, but we hope they may provide a step forward in this direction.

2. Basic notation and main results.
We use the same notation as in [3] that we recall briefly here for the reader’s convenience.

Microscopic, mesoscopic and macroscopic representations of the Ising system

We consider in this paper the Ising spin system with configuration space {—1, 1}Zd,
d > 2, its elements being denoted by o = {o (i), i € Z?}, (i) the spin at the site i. As the
spin configurations o give a complete description of the state of the system we will refer
to this as to the “microscopic representation” of the system. We will actually restrict to
tori A of Z% of side L = 2", n € N, and use the following notation: for any subset A of
72, oa € {—1,1}2 denotes the restriction of o to A.

The macroscopic state of the system is instead determined by an order parameter which
specifies the phase of the system (we will be working at a fixed temperature for which there
are just two pure equilibrium phases, i.e. two extremal, translationally invariant Gibbs
states, see below). It is convenient to choose the order parameter u in such a way that at
the two equilibrium phases u has the values +=1. The two pure phases are then represented
by the two functions u(r) constantly equal to 1 and to —1. We will suppose that the
macroscopic region where our system is confined is the unit torus 7 in R? with center
the origin. Then r € 7 and u(r) = 1 means that at r there is the phase +1. Our goal
is to investigate the structure of macroscopic states u(-) where the order parameter takes
both the value +1 and —1, but we will also consider states where it takes non equilibrium
values (not in {£1}). As we will see, these states are much less probable than the others.
Thus the order parameter ranges in some interval [—A, A], A > 1 and the macroscopic
configurations are elements of

X =LY (T;[-A, A)]) (2.1)
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with ||u|| denoting the L!(7) norm of u. The L! norm reflects the choice that two macro-
scopic configurations will be considered close to each other if their difference is small except
possibly for a small fraction of the volume. The macroscopic observables are then elements
of C(X).

The order parameter as a function of the spin configurations will be defined later via a
limit procedure which involves empirical averages. To this end it is convenient to represent
the Ising configurations as functions on R?. Let é € R? be the point with coordinates all
equal to 1/2 and D the partition into unit cubes C' with centers the points i +¢, i € Z%. A
face in common to two cubes is attributed to the one with the largest center, so that the
cube with center ¢ + é contains i. We also use the notation C(r) for the cube of D which
contains r. Finally D®), ¢ ¢ {2", n € Z}, denotes the partition into cubes C® of side ¢
obtained by scaling D by £ and given a bounded function f on R? we define the empirical
averages (coarse graining) of f as

FO@) = Eld /C " dr' £ (') (2.2)

The macroscopic region corresponding to the tori A of side L is always the unit torus
T. The spin configurations are then represented by functions s € L*°(T;{+1}) that are
D(/L)_measurable, i.e. constant on the cubes C(*/L) of D(I/L) The relation with the

microscopic representation is then given by
s(r) = o(4), Lr € C(i) (2.3)

where C(i) is the cube of D that contains 7. In this way the thermodynamic limit L — oo

is represented as a continuum limit with the mesh 1/L of the coarse graining going to 0.
In many instances it is convenient to work on an intermediate scale, the mesoscopic scale,

whose units are chosen so that the range of the interaction becomes 1. As we will see, in

1 where v, the Kac parameter, takes values in {27"}, we

microscopic units the range is vy~
will always restrict to the case L := L > 1. The mesoscopic space is then the torus L., 7T
of R? and the the mesoscopic spin configurations are the functions S € L*°(L,T;{+1})

which are D(1/Lv)-measurable, so that
S(z) = S(L§1w), L,=~L, S(x)=0(i), v 'zeC() (2.4)

To distinguish the points in the various spaces we write (when possible) r for macro-
scopic, z for mesoscopic and i for microscopic.

Kac interaction and Gibbs measures

For any v > 0 and any bounded set A in Z?, we define the energy of oa in interaction
with oac as

Hyoaloa) =3 Y Lie@ol)~ ¥ Lieel)  (25)
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where
Jy(6,5) =4I (yli—4)), Vi, jez (2.6)

and J is a nonnegative, smooth function supported by [0, 1] and normalized so that

/ dr J(r]) =1 (2.7)
Rd
The conditional Gibbs probability of oo given ogac is

iy, A(OA|oA) = Zy A(oac)  exp [ — BHy(oa|oAc)] (2.8)

Z A(0ac) being the partition function. The Gibbs measure on the torus A of side L will
be denoted by p r.

The infinite volume Gibbs measures p., are the probabilities on {—1, 1}Zd whose condi-
tional probabilities satisfy (2.8). In [8] and [6] it is shown that if 3 > 1 there is v > 0 so
that for all v < yg there are two distinct, translationally invariant Gibbs states ,uiyt, limits
of the finite volume Gibbs states with all +1 and, respectively, all —1 boundary conditions.
In [7] it is shown that these are the only extremal, translationally invariant Gibbs states.
Moreover their magnetizations, +mg ., converge when v — 0% to +mg, where mg is the
positive root of

mg = tanh{fmg} (2.9)

Large deviations

Our order parameter is the ratio of the magnetization density with its equilibrium value
mg,, and since the absolute value of the magnetization density cannot exceed 1, we take A
in (2.1) so that A > mE}y, for all v < 3. We will define the order parameter as a function
of the spin configurations by a limit procedure. Starting from a spin configuration o, we
first go to its macro representation s and then, recalling the definition (2.2) of the empirical
averages, we take as an approximation for the order parameter the (normalized) coarse
grained configurations s()/ mg . Our limit procedure is to first take the thermodynamic
limit L — oo, then € — 0 and eventually v — 0 (it would be much nicer if we could avoid
the last limit and keep v > 0 fixed). In Theorem 1.2 of [3] it is proved that for all v small
enough

1
: (e) ) ==
Jim 1 (115 fmpy F 1 < 6) =

for all 6 > 0 and all € > 0. In the thermodynamic limit therefore the probability con-
centrates on the two pure phases where the order parameter is constantly equal to 1 or
to —1. Regarding the coarse grained configurations s(®) /mg , as elements of X, see (2.1),
we will prove in the next theorem a LDP in X for s(6) /mg_,. However, as the LDP holds
unchanged for s(¢)/ mg, we will rather state it for the latter, for notational simplicity.
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The rate function in the LDP is the following one. Setting K = BV (T;{+1}) and
denoting by P(u), u € K, the perimeter of the set {u = 1} and by 73 > 0 the van der
Waals surface tension, see (1.20) in [3], we define the functional Z on X as

o= {200 12 ex

Notice that Z is a good rate function in the sense that it is lower semicontinuous and its
level sets are compacts, as the sets

={ue K:P(u) <a} (2.11)

are compact in X, see [9].
Now we can state the main result of the paper, that is a strong LDP for s(¢) /mg.

Theorem 2.1 For any closed subset F' of X,

lim sup lim sup lim su lo m5;'s®) € F) < — inf Z(u 2.12
7—>0p 30 Lee BLAT 8 . (115 ) ueF () (2.12)
and for any open subset G of X,
.. .. .. (e) > _
11§Il_)l(1)lf111€ﬂ_)l(§lf11LH_l)£f ﬂLd - log p1q,1, (mﬁ s € G) ulrelgI( u) (2.13)

Recalling that in our scheme the observables are elements f of C(X) the physically most
interesting questions concern the events

{ueé\f’:\f(u)—c|<(5}

0 > 0, namely the probability that a measurement of f gives the value ¢ with tolerance J.
By Theorem 2.1, using the lower semicontinuity and compactness of the rate function Z(-)
we have, calling g = |[f — ¢/,

~14(e) ) —_
}1_1)1(1) %1_)1% il_I)I(l) ngr;o ,BLd - log p1y, L (g(mﬁ s\ <4 g(lu%f OI(u) (2.14)
(this is a shorthand for the statement that the right hand side is the limit both with all
limsup and all liminf on the left hand side). (2.14) thus states that the probability of having
g = 0 is reduced to the variational problem about the minimizer of the rate function under
the contraint {g = 0}. Our proofs actually show that we can interchange the limits § — 0

and v — 0, provided we change the normalization writing mEylvs(e) instead of mgls(s).
The special case where g(v) = ||u — v||, u € K = BV (T;{%1}), had already been worked

out in [3]. The case
v) = ‘/ dru(r) — s|,
T
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corresponds to the Wulff problem.

The lower bound (2.13) is a straight consequence of the weak LDP proved in [3], its
proof will be omitted. The upper bound follows from a proof that the coarse grained
magnetization s(¢) is exponentially supported by neighborhoods of the compact sets K,,
see Proposition 3.1. This is the main technical point in the paper that will be proved in the
next section, using contours and Peierls estimates. The upper bound (2.12) is proved in
Section 4 using the exponential tightness and the upper bound of the weak LDP established
in [3], the proof is classical and it is reported for the sake of completeness.

3. Exponential tightness

For any set A in L*(7) and any § > 0 we denote by A° the §-neighborhood of A in the
L'-norm, that is
5 _ 1y . _
A% = {u € LM(T): inf [lu—ol| < 5} (3.1)

In this section we will prove “weak exponential tightness” in the sense that:

Proposition 3.1 There is a constant ¢ > 0 such that for any a > 0 and 6 > 0

lim sup lim sup lim sup # log fty, 1. (mgls(e) ¢ Kﬁ) < —ca (3.2)

¥—0 e—0 L—oo

Outline of the proof. After recalling from [3] the basic definitions of the block spin
configurations 7 and of the corresponding contours I', we will use these notions to construct
+1 valued, random variables T'(z), € L, T, with the property that with large probability
for a large P(T) < aL3~" (P(T) the perimeter of the boundary of the set {T' = +1}). T
will be obtained from n by “erasing the small contours” and by putting 7" = +1 in the
“large contours” in some careful way that will be specified below. In Lemma 3.2 we will
then show that P(T') < aLz_1 with large probability for a large and in Lemma 3.3 that g
is super-exponentially close in L!-norm to T. With these ingredients we will then prove
Proposition 3.1 at the end of the section.

Block spins and contours.
We start from the coarse grained spin configuration S27%) ¢ oo (LyT;[-1,1]), k € N,
see (2.2). Given k and h in N, ¢ > 0, we then define the block spin n € L*>°(L,T;{0,+1})
as

. —k h
n(z) = {il if |S(2 . )(y) ¥ mg| <¢ forallye C@")(z) (3.3)
0  otherwise

We also define the block spin 7 induced by a function m € L%°(A;[—1,1]) using the
analogous of (3.3)



The point z is called correct, or, equivalently, n(x) is correct, if n(z) # 0 and n(y) = n(x)
on the cubes C2") that are «-connected to C(")(z). = is incorrect if it is not correct.

Each maximal x-connected component of the incorrect set is the support of a contour,
the contour I' is defined by its support and by the values of the block spins on its support.
When there is no risk of confusion, we may denote by I' only its support. We denote
by #I' the number of block cubes C®") in the spatial support of I' and by |T'| its length
(|IT] = 2M4T). Ext(T) is the largest connected component of I'® and Int(T") = Ext(I')¢;
finally vol(I') the number of block cubes C") in Int(T'). If T is a contour produced by
a spin configuration o, we write 0 = I' and we say that {I'y,...,T'x} is a collection of
compatible contours if there is a spin configuration which produces all of them. In the
same way, we write m = I" when the block spin 7 is induced by m € L*°(A;[-1,1]).

Non local excess free energy functional, Peierls estimates.

Let A be a measurable set in R? (or in a torus) and m € L>®(A,[~1,1]). The excess
free energy Fa(m) of m in A is defined by the formula (A.1) in the appendix, we do not
need its explicit expression here. As a consequence of the Peierls estimates it is shown in
Lemma 6.5 of [3] that if I = {T'y,...,T'x} is a collection of compatible contours, then

Yoy L (a;@) < exp [ By~ dz( inf 7, ( )—07(1)\r,.|)] (3.4)

where 0,(1) vanishes with . Moreover, by Theorem 6.2 of [3], there is a constant o > 0
(a depends on ¢ and k and can be chosen as a = ¢(?27%4) such that for any contour T

iifr Fr(m) > a#I’ (3.5)

Therefore
" (1
—d . hd
log fiy. 1, (a = E) < —pBy El <§ mlgfl."z Fr,(m) + (/2 — 0,(1)2"%) #Fi) (3.6)
We fix ¢’ > 0 and for A C L,7T, m € L>(A;[—1,1]) we consider

O, () = {—1 if $1(z) < —myg + ¢’ (3.7)
1 otherwise

We will prove in the Appendix that there is ¢ > 0 dependent only on (’, such that
NE(m) < ¢Fp(m) (3.8)

where N*(m) is the number of pairs of cubes C in A which are connected and where ®,,
has opposite signs.



The set of small contours and the random variable T(z).

We denote by Q°, b € (0,1/d), the set of all the contours with length less than L’ and
we define T'(z), z € L, T, as follows. If z belongs to Int(T"), where I' € Q° is maximal
in QY (it is not contained in the interior of any other contour of QP), then T(z) = +1
according to the sign of the cubes in Ext(I") x-connected to the boundary of I'. If z is not
in a contour, we set T'(x) = n(z) and finally, if z belongs to a contour ' ¢ Q°, we consider
a minimizer m* of inf,,—r Fr(m) and put T'(z) = Py« (). We also define ¢(r) = T'(Lr).

Lemma 3.2 There is a constant ¢ > 0 such that for any a > 0

lim sup lim sup ﬁ log pty, (P(T) > aLi—l) < —ca (3.9)

¥—0 L—oo

Proof. Let T = {T'y,...,T'x} be the collection of long contours produced by a spin con-
figuration. We first remark from the definition of the variable 7" that we can bound its
perimeter P(T') proportionally to Y i, Nii. Nii is the number of couples of connected
cubes C™) in the support of I'; where ®,,» has opposite signs, m; being the minimizer of
inf,,—r, Fr,(m). So using (3.8), there is a constant ¢’ > 0 (depending only on (') such
that

pyn(P(T) > aLd™) < Y py (0 =T) (3.10)
Eegc’a
where G, is the set of all the collections of compatible contours I' = {I"y,...,T'x} such

that T; ¢ Q°, 3, Fr,(m}) > c'aL?~'. Notice that £ < L&" since the total length of the
contours can not exceed Lz. Then applying (3.6) for " € G/,

ot (> 1) € < ot (o, 02) ogm| o

=1

Thus for v small enough the r.h.s. of (3.10) is bounded above by

Ld—b
exp(—c'aﬁ'y_dLg_l/Q) {1—}- Z eXp(—cﬂ'y_dC22_(k+h)d|I‘|/2)-| (3.12)
I:|T|>L}

Moreover, using a well known combinatorial argument (see for instance Theorem 6.3 of
[3]), if 7y is sufficiently small, then the previous term is less than
d—b

L’Y

exp(—c'a,@'y_lLd_l/2) [1 + Lz exp(—c,BC22_(k+h)d'yb_dLb/8)} (3.13)

and the Lemma follows. [



Lemma 3.3 For any 6 > 0 and for v small enough,

lim sup T 1og piy, . (IT — 1| > (5L$) = —00 (3.14)

L—oo IBLd_l

Proof. From the definition of T', we get that

IT =l < 28413 " vol(T) +2 )~ |T| (3.15)
TeqQb regqQeb

By the Peierls estimates (3.6), for any 6 > 0

. 2
lim sup ATaT log ptq, 1. ( Z | > 5Lilr) = —00 (3.16)
L—oo rgab

provided <y is small enough. So we are reduced to study the cost of the event

B(6) := { 3" vol(T) > 5\L7|d} (3.17)

reqt

Let D® be the partition of L, 7 into cubes A; of side £ = 10(L,)® and let N = 4re
be the number of these cubes. We call d,B, a € R?, B C R?, the translate by a of B.

A geometric remark. There are n vectors {e;} such that the following holds. Let I
be a contour in Q¥ and T'N A; # 0. Then there is 7 € {1,...n} so that ' < dye; Ai, by
this meaning that T" is strictly contained in dpe; A; and the distance from the complement
of dge; A is > 2h+10 9k the side of the cubes in the definition of the block spins. As a

consequence,
DD > Yirad, anpvol(l) > Y vol(T) (3.18)

A; {e;}Teb Tenb

If we define for any vector e € R?

B.(8) := {Z 3" 1irea, agvol(T) > 5|7L\d} (3.19)
A; TeQb
then
B(a) C U Be, (c/n) (3.20)

It is therefore enough to prove that for any § > 0 and any e € R?

L—oo

. 2
lim sup ALt 10g iy, (Be(0)) = —o0 (3.21)
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For notational simplicity we take in the following e = 0, dropping when possible the
subscript 0 (e = 0).

For each cube A; we define a random variable & with values in {0,1} as follows. We
set & =1if

(T
> 1{F<A<}VO () >4d, = d (3.22)
reqQt l |AZ‘ 2

Otherwise we set &; = 0.
We want to prove that

Bo(6) C { 21{&_1} > 5} (3.23)

Calling M the number of i’s such that & = 1, we suppose, by contradiction, that M < §’' N
Then

‘dZ > Lrcagvol(D) < N(5'(N—M)+M) <4 (3.24)

1=1T'eQb

and (3.23) is proved.

Let 0A; be the union of all the blocks in A; connected to A and 0D the union of all
0A;. By conditioning on Ssp we get

N
py,L (Bo(9)) = B, . < Z LS aiseny H [y, L (Si =a;
=1

{a:}e{0, 1}V

Sap)) (3.25)

Thus

piy,2.(Bo(8)) <2V sup  sup [, = 1‘SBD (3.26)
! Sop {Za >§'N} {a,]zz[l} m ( )

Let B; be the intersection of A; and the union of all the contours that intersect 0A4;.
The set of spin configurations that give rise to B; is not in the o-algebra generated by
the spins in B; itself. We then define B; which is obtained as follows. We first add to
B; all the block cubes that are x connected to B; and then repeat the operation starting
from this new set, call B} this second set. We next consider all the block cubes that are
* connected to 0D, the union of this set and B} is the set B;.

The set of spin configurations that give rise to B; is in the o-algebra generated by the
spins in B;. Moreover if I' < A; then I' N B; = 0.

After conditioning in (3.26) on Sz, we use the Chebishev inequality and get

Py, L (fz‘ = 1‘SBi) < 51 Z |‘j‘| Z Liccns(r)} by, L (F‘Séi) (3.27)
CCA\B; T
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where by an abuse of notation the sum is over all x-connected sets I' with || < L? and

such that I' C A; \ B;; C is a block cube and p., 1, (I“S Bi) is the probability that I' is the
spatial support of a contour.

Then
110] &
pre (6 =1]85,) < 5 A 2 M (r/sz,) (3.28)
' 1=4 TCA;\B;,|T|=l

By the Peierls estimate

1 -
Py, L (& = 1‘53) < yce_C 7 (3.29)
Then, from (3.26)
2c N 1 —dsi
My, L (BO((S)) S <y) e 7 oN (330)

recalling N = £~4L% £ =10L% and 0 < b < 1/d, we get (3.21) [

Lemma 3.4 For any a > 0 and § > 0,

limsup sup sup |lu—ov®| <5 (3.31)
e—=0 u€EK, ||lu—v||<6

Proof. Let u be a function in K,, then for any o > 0, there exists w, € BV (T;{£1})
such that the boundary of the set {w, = +1} is a C*° surface, ||u — wq|| < @ and
|P(u) — P(wg)| < a, [11]. We define the D()-measurable function @8 as +1 according
to the sign of the coarse grained 'w((f). Remark that since w, has a regular boundary, the
volume of the cubes C(¢) € D) where 17)((;:) # w, is going to 0 with ¢ and as a consequence
we have

limsup ||@$) — u|| < o (3.32)

e—0

Let v € LY(T) such that ||u — v|| <. As @) is DE)-measurable
[0 = @S| < flo — @] (3.33)
We deduce from this inequality that
lu = || < [lu— vl + 2[[@ - ul (3.34)
and from (3.32) that for any o > 0

limsup sup |lu—v®| <6+ 20 (3.35)
€20 Ju—v|<s
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The compactness of K, implies that the supremum over u € K, in (3.31) can be written
as a maximum over a finite number of elements of K,. Thus, the Lemma follows from
(3.35). O

Proof of Proposition 3.1. We first relate the mesoscopic coarse grained configuration S (2")
to the variable T: we observe that

R
||S(2 ) — m,BT“ < CL% + /dT 1{|S(2h)—mgT|2C} < CLz + ||77 - T“ (336)

Fix ¢ > 0 and § > 0, then, recalling that ¢(r) = T'(L,7),
) (mlgls(g) ¢ KO) < pyr.(P(t) > a) + M%L(ngls(e) —t|| > 6,P(t) <a) (3.37)

(From Lemma 3.4, there exists £(d) such that for any 0 < ¢ < &(J), the last term of the
r.h.s. of the previous inequality is bounded above by

_ h
pyz(lmgt 8@ — T|| > 612 /2) (3.38)
and using (3.36) with ¢ < mgd/4, we obtain
(I35 = ] > 6, P(6) < @) < i (In =TI > SmpLl/4)  (3.30)
Finally, by (3.37) and Lemma 3.3,

lim sup lim sup lim sup ,BLZ T log iy L (m,@ls(s) ¢ K(S)

¥—0 e—=0 L—oo

< lim sup lim sup —— log .1 (P(T) > aLg_l) (3.40)

¥—0 L—oo /BLd !

and Lemma 3.2 concludes the proof. [J

4. Upper bound

The upper bound (2.12) will follow from the exponential tightness (see Proposition 3.1)
if for any closed subset F' of Ll('T) and for any a > 0,

fin i suplin s s i og o (3 9 € (F 1 K)') < = T (4
iFrom the compactness of the level set K,, there exists a finite subset F(a,d) of FF N K,

such that
(FNK)’c |J B(u,20) (4.2)



where B(u,d) is the ball with center « and radius § for the L!-norm. Therefore

lim sup lim sup % log fi, L. (mgls(e) € (FNK,)?

e—0 L—oo

. . 0 _1.(e)
< max limsuplimsup ———1lo mzts'®) € B(u, 26 4.3
~ u€F(a,0) -0 P L—)oop ,BLd_l & 'UI%L( B ( )) ( )

Let ug,5 € F(a,0) be the function for which the above maximum is obtained. Then using
again the compactness of K,, there are sequences of positive numbers §,, and 7 going to
0 such that ug_s, ~,
go to infinity . So, for any a > 0,

is converging in L' to some function u, € F N K, when k and then n

lim lim sup lim sup lim sup # log i I, (mgls(e) € (Fn Ka)5)

00 ~0 e—0 L—oo

< lim sup lim sup lim sup T log pi+,1. (mgls(s) € B(uq, @) (4.4)

v—0 e—0 L—oo Ld—1
Now, from the proof of the upper bound of the weak large deviation principle in [BBBP]

log fi~. 1, (mEls(e) € B(uq,@)) < —ZI(ug) < — inf Z(u)

lim lim sup lim sup lim sup _r L
ue

a—=0 ~,40 e—0 L—oco /BLd_l
(4.5)
This inequality together with (4.4) implies (4.1).

Appendix

In this appendix we will prove the inequality (3.8), the proof is similar to one in [5]. We
first recall that the excess free energy of m in A, A a D) measurable set in R? (or in a
torus) and m € L*°(A,[—1,1]), is

Fatm) = [do [f(m(a)) - Fmp)] + § [ [dody I(o = y)miz) - m@)” (A1)

A AxA
where
2
m 1.
Jm) = =" — 5~ i(m) (4.2
1—m 1—-m 1+m 14+m
= — I — I A.
i(m) 5 log — 5 log — (A.3)

Observe that f(mg) is the minimum of f(m) so that (A.1) is the sum of two non negative
terms.
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We fix ¢’ > 0 and for any function m € L*°(A,[—1,1]) we consider

-1 if SV (z) < —mg+ (A.4)

1 if SO(z) >mg — (¢’
\Ijm(m) =
0 otherwise

Notice that the function ®,, defined in (3.7) satifies ®,, = 1 if ¥,;, > 0 and ®,, = —1
if ¥,, = —1. We denote by N%(m) the number of cubes C in A where ¥,, = 0 and
by N7*(m) the number of pairs of cubes C in A which are connected and where ¥,, has
opposite signs. Then (3.8) is a straight consequence of the following lemma

Lemma A.1 There is a constant ¢ > 0 (depending on (') such that for any m €
L>(A,[-1,1))
NO(m) + Nt (m) < cFp(m) (A.5)

Proof. We start from a geometric remark. Let ey, ..., e, be the unit coordinates vectors
of R?, eg = 0 and d.D be the translate of the partition D by the vector e. If C; and C,
are two connected cubes in D), then there exists 0 < i < n and C € d,,D® such that
CiUCy € C and C € A. We denote by Dy, 0 <5 < d, the collection of all the cubes
of dejD(z) that are in A. We also denote by D(_;) the unit cubes in A. Finally we let
Nf (m), 0 < j < d, be the number of cubes in D;) where ¥,,, takes both values 1 and —1.
So

d
N (m) < 37 NFE(m) (4.6)

Then dropping out the interaction between cubes,
1 d
Fa(m) > dt2 Z Z Fe(me) (A.7)

j -1 CED(J)

where m¢ is the restriction of m to C. We define

xe () = /C dy J(z — ) (4.8)
and

Felm) = [daxo(a)[f(ma)) = Fmp)] + 7 [ [dody 3o = y)m(a) = m(w)]” (49
C

CxC
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Since x¢ < 1, Fo < Fc. Moreover F¢ is a lower semicontinuous functional for the weak
topology because

Folm) =-p [daxc@i(m@) -3 [ [dvdyI(z-y)mizm)-|C|f(ms) (A.10)
C CcxC

By convexity the first term is lower semicontinuous while the second one is continuous.
Therefore there is ¢/ > 0 depending only on ¢’ such that Fg(m) > ¢’ for any cube C in
D(_1) where ¥, = 0 and any cube C in D(jy where ¥, takes both values 1 and —1. O
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