On the validity of van der Waals theory of surface tension
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Abstract. In this paper we prove a weak large deviation principle for the empirical
distribution of Ising spins in d > 2 dimensions when the interaction is determined by a Kac
potential and the temperature is below the critical value. We prove that the rate function
is proportional to the area of the interface by a factor which identifies the surface tension.
Its value is the same as that predicted by the van der Waals theory.

1. Introduction.

Lebowitz and Penrose have proved in [17] that in systems with Kac potentials the ther-
modynamic potentials, like the free energy and the pressure, converge, in an appropriate
limit, to the values predicted by the van der Waals theory. In this paper we continue their
program, shifting from the bulk to the surface properties of the system and proving the
analogous statement for the surface tension. As in [2] we start by relating the surface
tension to the rate function of large deviations and the main point will be the proof of a
weak large deviation principle.

We consider in the beginning a general Ising system in d > 2 dimensions at inverse
temperature (3, supposing that it has two extremal, translationally invariant Gibbs mea-
sures, 4 with magnetizations +mg, mg > 0. Let pup be the Gibbs measure on the torus
A of Z% of side L (for simplicity we take L € {2", n € N}). Then, for large L, u, is well
approximated by the 1/2-1/2 combination of 4 and u_ so that we may suppose that with
large pua-probability the configurations in A have empirical magnetizations either close to
+mg or to —mg. The probability of observing configurations where the magnetization
varies across a surface ¥ from —mg to +mg, namely the probability of observing mgu,
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where u is the function equal to +1 and to —1 in the two regions, separated by X, where
the phases are respectively +mg and —mg, is then expected to be

KA ({a R~ mgu}) ~ e POF (1.1)

where 0 F' is the excess free energy due to the interface at . In an isotropic case this

would be
0F = |E|T,3 (1.2)

where 73 is the surface tension (the dependence on § is made here explicit). In general
78 = 18(n), n = n(r) the unit vector normal to ¥, and

§F — /E A(dr)rs (n(r)) (1.3)

where A(dr) is the Hausdorff measure on X. If the diameter of ¥ is proportional to L,
the right hand side of (1.1) vanishes exponentially with exponent proportional to L2}, so
that the analysis of the left hand side of (1.1) becomes a large deviation problem with the
scaling factor L4~! (and not the usual volume factor L%, this is a feature related to the
analysis of large deviations in the presence of a phase transition).

A mathematical definition based on the above ideas has been proposed in [2] and will
be adopted here too. In macroscopic coordinates the torus of side L in Z% becomes T,
the unit torus in R? with center the origin. We identify a configuration o in the original
torus of Z4 of side L with a function s € L®(T;{+£1}) by setting s(r) = o(i), if Lr is
in the unit cube of center i. In macroscopic coordinates a spin configuration is a very
rapidly oscillating function, it is then natural to introduce a homogenization procedure
which leads to the coarse grained configuration s(®) € L°°(T;[—1,1]) (for simplicity we
take ¢ € {27", n € N}) defined by

1
)= —~ dr' s(r' 1.4
s\ (r) ICE ()] o) r's(r') (1.4)

where C(®)(r) is the atom containing r in the partition D) of R? made of cubes of side ¢
and such that one of its atoms has center 0. |C(*)(r)] is the volume of C(®)(r). ¢ is a small
parameter that eventually vanishes, but only after L — +o0, thus € should be thought of
as very large with respect to the lattice mesh L~!.

The coarse grained configuration is used to locate the phases: we will say that with
accuracy 0 and coarse graining € the cube C(®)(r) is in the + phase if |s(5)(r) — mg| < 6,
it is in the — phase if |s(®)(r) + mg| < 6. This is summarized by the variable 77536) €
L>°(T;{0,+£1}) defined as

) (r) = {il if |s(5)(.7"’) Fmg| <6 forallr’ € CO(r) (1.5)
0 otherwise



Then we will say that a macroscopic profile u € L®(T; {£1}) is recognized with accu-
racy 0 > 0 and coarse graining € by a spin configuration o if

s —ul <6 (1.6)

where || - || denotes hereafter the L'(T;dr)-norm. We are using the same § in (1.5) and
(1.6) only for notational simplicity. (1.6) with 6 small implies that for a large fraction of
points ¢ recognizes the & phase specified by u, namely the empirical average of o that
produces s(©) is close to +mg.

Recalling (1.1) and (1.2), the quantity

1 e
~ et g ({lln§? — ull < 5})

represents the excess free energy needed to create an interface described by u. To make
precise this notion we restrict u € BV (T;{£1}) and let Ju be the boundary of {u(r) = 1}.
It is proved in [12] that there is a subset 0*u of du, called the reduced boundary of u,
which is a regular, C! surface with a well defined unit normal n and full Hausdorff measure
A. We can then pretend that, measure theoretically, Ou is a regular surface with an area.
We next define the upper and lower functional for large deviations on BV (T;{+1}) by

setting
Fg(u) := — lim liminflim inf # log pa ({||?7§€) —ul < 5}) (1.7)

§—0t £—0t L—+oco

and
1
Fj(u) := — lim limsupli —— ©) <o 1.8
j (u) = = [Jim, lim suplim sup 75— OgMA({”% ul| < }) (1.8)
A weak large deviation principle holds if Fg(u) = Fg(u) =: Fg(u) for allu € BV (T;{+£1}).
The surface tension 75(n) is well defined if for all such u

Fa(u) = /8 AT (n(r) (1.9)

If we understand correctly the literature, the existing results, [10], [18], [15] [16], [19], on
the Ising model with nearest neighbor interactions in d = 2 dimensions imply the validity
of (1.7), (1.8) and (1.9).

The above definitions need to be modified when studying the Kac potentials because the
range of the interaction is long and eventually diverges, the interface being correspondingly
thick. We first recall the basic definitions of Ising systems with Kac potentials. X :=
{-1, 1}Zd denotes the space of all the spin configurations ¢ and for any subset A of Z¢,
on € Xp = {—1,1}" is the restriction of o to A. « > 0 is the Kac parameter (for
simplicity, v € {27, n € N}), py.a(+|oac) is the Gibbs distribution in the finite region A
with boundary conditions opc, A¢ the complement of A:

piy A(OAloA) = Zoy a(oae) " exp [ — BHy(oa|opc)] (1.10)
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Z~ a(0Ac) is the partition function,

Hy(oAloae) =-3 Z Jy(i,4)o Z Jy (3, 5)o(i)o(4) (1.11)

Z#JeA €A, JEAC

Jy(i,9) =T (yli — §),  Vi,jez? (1.12)

J is a nonnegative, smooth function supported by [0, 1] and normalized so that

/Rdduqm —1 (1.13)

In [6] and [4] it is shown that if 5 > 1 there is yg > 0 so that for all v < g there are two
distinct translationally invariant Gibbs states ,u$, limits of the finite volume Gibbs states
with all +1 and, respectively, all —1 boundary conditions. In [5] it is shown that these are
the only extremal, translationally invariant Gibbs states. Moreover their magnetizations,
+myg -, converge when v — 07 to the van der Waals values £mg (see (1.19) below).

As before we consider the Gibbs measure on a torus A of Z¢ of side L and denote it for
simplicity by py,a. We define the lower functional for Kac potentials on BV (T;{%1}) by
setting

Fj (u) := — lim hmmfhmlnfm log f1y A ({”77((S ) _ ul| < 5}) (1.14)

6—0t g0t L—+oo

The upper functional Fj (u) is defined analogously. The factor 4~1L31 represents the
scaling factor of the volume (in lattice units) of a neighborhood of the interface of thickness
v~1, which by (1.12) is the range of the interaction.

In the simultaneous limit L — +o00 and v — 01 (actually L = y~172, @ > 0 and small)
it is proved, [2], (see [1] for an extension to non isotropic interactions) that the limit upper

and lower functionals, Fg(u) and Fg(u), are identical:

Fg(u) = Fg(u) = 78 P(u) (1.15)

where P(u) is the Hausdorff area of 0*u and the limit surface tension, 73, is found to have
the value predicted by the van der Waals theory, as we briefly recall. We start from the
excess free energy van der Waals functional Fj(m), A a measurable set in R? (or in a
torus), m € L*(A,[—1,1]),

Fatm) = [ s [(n(s)) - fma)] + 5 [ [drdy 1o =y mio) —m@)])*  (1.16)

A AxA

— g~ ti(m) (1.17)



) 1—-m 1-m 1+m 1+m
i(m) = — 5 log 5 T3 log 5 (1.18)

mg = tanh{fmg} (1.19)

The convex envelope of f(m) is the limit free energy of the Ising system after first the
thermodynamic limit and then the scaling limit v — 0%, [17].

Take now A in (1.16) to be the cylinder with axis the first coordinate r;-axis and
section the unit torus in R¥~1. Denote by M, the set of m € L*(A,[—1,1]) such that
lim,, s 4o m(r) = £mg. Then, according to the van der Waals theory the surface tension
is

T8 = mlenl\f/IA Fa(m) (1.20)

7g in (1.20) is the same as 75 in (1.15). In [9] it is also proved that the inf in (1.20) is a
minimum attained on a unique (modulo translations) function m which depends only on
the coordinate r; and which satisfies the mean field equation

m = tanh{BJ x m} (1.21)

where J x m is the convolution of the two functions J and m. Under the assumption
L = y~17% of [2], one can exploit the structure of the Kac potentials and prove that the
probability of a coarse grained configuration s(¢) is (L., := vL below)

pya () ~ exp { - 7‘dﬁfLJ(s(€)(L7-))} (1.22)

The approximation is strong enough to yield

1
Fé(u) = — lim limsup ——

inf  Fp_r(m(L, 1.23
50% Ly yoo LI~ {lm—mgul| <5} 7 (m{Ley)) (1.23)

where the inf is over all m € L(T;[—1,1]). An analogous expression holds for the upper
bound.

To make easier the comparison with [2], we call L, = ¢!, € here is not the same ¢ as
in (1.22), observe also that v in (1.23) appears only through L,. Then —F} and —Fy are
the I'-upper and lower limits, [7], as ¢ — 0%, of the family of functionals {F ()} defined
on LY(T,[-1,1]) as

FO(u) = —eTVF i (mgu(e™ ) (1.24)

In [2] and [3] it is proved that {F ()} I-converges to 75 P(-), where P(u) is the perimeter of
wif u € BV(T;{£1}) (more precisely the perimeter of the set {u = 1}) and P(u) = +o0
otherwise.

The fact that in (1.14) L — +oo with v > 0 fixed, prevents from using (1.22) which
is no longer valid. But, as we shall see, after suitable conditioning we will reduce to
computing probabilities of events in regions for which (1.22), or suitable modifications,
may be applied. In this way we will recover parts of the proofs in [2] that will be used in
the proof of the following main result of this paper:

5



Theorem 1.1
There are positive functions T4 and 75 such that for all w € BV (T;{£1})

Fj . (u) <75 P(u), Fg (u) > 75  P(u) (1.25)
and
. 5 e 7
71_1)I£1+ T3y = WlirglJr Th~ = T8 (1.26)

The bounds in (1.25) must be strict as for 4y > 0 the system is anisotropic and the
surface tension depends on the orientation of the surface. The true theorem that we can
only conjecture is that

P () = Fio0) = [ X@nyms s (nr) (1.27)

which, by our theorem, would imply that 75, — 75 as v — 0.

In the next section we will introduce the main notation and define the different scales
at which the system will be studied. Section 3 is devoted to the analysis of the typical
configurations of the periodic Gibbs state. We prove that for any v sufficiently small the
macroscopic magnetization is close to the equilibrium value mg_, (respectively —mg )
with ., a-probability 1/2.

Theorem 1.2
For any v and 6 > 0 small enough the following holds. For any € > 0 small enough,

. . 1
tim a5 = mgq | <) = 5

L—+oo

Finally we derive Theorem 1.1 by computing the limit as v goes to 0 of the lower and
upper functionals F é 7() and F 5’7 7(-), respectively in Sections 4 and 5. In an Appendix we
report the statement on the Peierls estimates proved in [6] and the proofs of some technical
lemmas that have been used earlier.

2. Basic notation and definitions.

Notations are particularly troublesome in this paper because we have three different
scales and according to the case it is better to work with one or the other. We thus
have basically the same object but with three different representations and this may be
confusing, as it is even to these authors. For this reason we have decided to devote the
present section to this issue.



The microscopic and the macroscopic levels

The basic space is the “microscopic space”, i.e. the lattice Z% whose elements are
denoted by i, j and so on. We actually restrict to tori A of Z%, d > 2, of center 0 and side
L and, for simplicity we take L = 2", n € N, we will prove Theorem 1.1 in this context.

The macroscopic region corresponding to any of the tori A is always the same unit torus
T of R? with center 0. We usually denote by r its points. The configuration o, in Xy is
mapped into a function s € L*>°(T;{x1}), by

s(r) = o (i), Lr € C(3) (2.1)

where C(i) is the unit cube of R? with center i.

Before going to the mesoscopic level it is convenient to introduce notation for the par-
titions of R*. We will denote by D = {C®}, £ > 0, the partition of R into cubes of
side £ with one of them having center 0. It is not important for the sequel to specify which
one of the opposite faces of a cube should be taken off to make the different C®) disjoint.
We drop £ when £ =1 and we also use the convention that C¥)(r) is the cube of D® that

contains 7.

The mesoscopic level: block spins and coarse graining

The mesoscopic level is determined by the range of the interaction. Points in R? are
here denoted by z, y and so on. At the mesoscopic level the spin configuration S €
L*(L,T;{£1}) is

S(z) = s(L;'z), Ly=~L, S(z) =o(i), v 'z eC() (2.2)

The block spins are better defined at this level. The coarse grain size is 27%, k € N,
and the coarse grained spin configuration $@™ ) € L(L,T;[-1,1]) is

@M (g = L

Given k and h in N, { > 0, we then define the block spin n € L*°(vA; {0,+1}) as

n(z) = { +1 if |S(2_k)(y) Tmg| < forallye Cc@ (z) (2.4)
0 otherwise

This is the same definition as in [6] and [5] but employing mesoscopic coordinates. As
in those papers k£ and h are “large” and ¢ “small”. We will also write, with an abuse
of notation, n; = n(z) if "'z € C(i). We also define the block spin 7(z) induced by a
function m € L*°(L,7T;[—1,1]) using the analogue of (2.4).

Observe that we are using the same symbol 1 (without subscript) with a different
meaning than in the introduction. No ambiguity should arise if the reader recalls that in
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the introduction n had a subscript, which is here missing and this, if not the same context,
will allow to distinguish the two. Using the same notation is not actually inconsistent
since n(x) = +1 means that the &+ phase is recognized with accuracy ¢ (in the sense of

the introduction, but working on the mesoscopic scale) in each cube C2™") contained in
C(2h)(x).

Islands and contours

The point z is correct, or, equivalently, n(z) is correct, if n(z) # 0 and n(y) = n(z) on
the cubes C") that are x-connected to C2")(z). = is incorrect if it is not correct.

The maximal connected components of the correct set are called islands. In an island
n(z) is constantly equal to 1 or to —1, accordingly the island is called a + island. The
boundary 0I of an island I is the set of cubes C") not in I but at distance 0 from 1.
17 = =1 on the boundary 0I of a + island.

Each maximal x-connected component of the incorrect set is the support of a contour,
the contour I' is defined by its support and by the values of the block spins on its support.
When there is no risk of confusion, we may denote by I' only its support. The boundary
OT of the contour I is the union of I N T over the islands, the + boundary, OI'F, is the
union of I NT" over the + islands 1.

On the torus there is a special class of contours, the “winding” contours: a contour in
the torus L, 7 is winding if its extension to R? has an unbounded connected component.

A collection of contours {I'1,...,['x} is compatible if it is produced by a spin con-
figuration and we write 0 = {I'1,...,[x}. We also write m = {I'y,...,I'x}, m €
L*(L,T;[-1,1]), if m induces {I'1,...,T'c}. A collection {I'1, ..., 'y} of compatible con-
tours is admissible if there is no connected path of cubes from some 8I‘;" to some 8I‘j_ in
the complement of the supports of I'y,...,T'x. The notion of an admissible collection of
contours is relevant because in this case we can apply the Peierls estimates, see the Ap-
pendix and in particular Theorem 6.1. Notice that a non winding contour is admissible,

which is not necessarily true for a winding one.

3. Typical configurations.

In this section we prove Theorem 1.2. We will be mainly working at the mesoscopic
level, considering the torus L7 of side L, = yL. We define the cornice

A =QL /34@0gL,)? \ QL /3—(log L,)? (3.1)

where (Qr denotes the closed cube in L, 7T of side 2R and center in the origin. We define
here a + circuit C as a connected, D" _measurable set where 7 is constantly equal to £1.
We also require that the complement of C has two connected components. We then call
K#* the set of configurations ¢ such that there is a & circuit C* inside A such that the two
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connected components of its complement contain Qr,_ /3—(10g L..)2 and L, T\Q L./3+(logL.)?
respectively.

If o ¢ K~ UKT there is a contour connecting the two boundaries of A, thus we
can bound the probability of the complement of K~ U KT by computing the probability
of a contour that connects the two boundaries. By the Peierls estimates proved in the
Appendix, see Lemma 6.5 and Theorems 6.2 and 6.3, there is ¢ > 0 so that for all v
sufficiently small

pya(K-UKT) >1— cLi_le_cfal(l(’g]‘“/)2 (3.2)

The factor L4~ comes from the number of cubes C (2") on the boundary while ¢ (08 L)

bounds the probability of having a contour I' that contains a given cube C") and such
that |T'| > (log L)%
By (3.2) and the spin flip symmetry of the model

1
1i K*) = - .
Lo o () 2 (3:3)

By (3.3) and using again symmetry it is then enough to prove that for v sufficiently small

Jlim o (ls = mg, |l <0 K¥) =1 (3.4)

We first observe that given any 6 > 0 for all € > 0 small enough and for all L large enough

{1~ mgpllao < 5} © {15 — ma | < 6

where A is the union of all the cubes C(¢L+) that are in L,7 \ A which have distance
greater than eL, from A. || -[|a0 is the L'-norm in L TAO.

Let Ct be the first + circuit in A coming from the outside and D the complement of
C*t. Then using the strong Markov property of the Gibbs measure ., o we have

€ 0 JKT e
o (159 = magllao < 5 [0} = B0 [ i (156 m o < 3

)
5 0'7—1C+

(3.5)

Theorem 1.2 will follow from (3.5) and Lemma 3.1 below. O

We denote in general by G*(A), A any bounded, D(")_measurable subset of Z%, the
set of configurations opc in Xpe such that n(z) =1 for all x € yA° with d(z,vA) < 1.

Lemma 3.1
For all v > 0 small enough the following holds. With the above notation, for any
U,ylec E G+(7_1D),

lim iy -1 (159 = mgyla0 < 6 ‘aw_lpc) —1 (3.6)

L—oo
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The same property holds for any arbitrary pair A® and D, with A° a D(LY) -measurable
set at distance greater than eL., from D¢, D a D" _measurable set.

Proof.
Let CéEL”), £=1,...,N, be the cubes that are in A%, by the definition of AY they have
distance greater than €L, from the complement of D. Then we need to prove

N
Jim g yoip (DO Fe > 0N | 0yipe) =0 (3.7)
=1
where,
~d
Fy = ‘ ] Yoooa0) |,  &0) =o(i) —mg, (3.8)
iey-1o{"t)
By the Tchebyshev inequality,
N 1 XN
iy Y Fe > 6N |oyipe ) < e 37 Bty (3.9)
=1 =1
Then
10 (D Fe > 6N [0y ) < = {Braamntin-o[p2] | (3.10)
=1 =1

In [5] it is proved that there are ¢; and co positive so that for all v > 0 small enough,
for any bounded, v~ 1D2")-measurable region A and any oac € G (A) and for any i and
7in A

‘EM,A(-IGAC)(&(iﬁ(j)) 5 (&(z’)&(j))‘ < c; exp(—coyidist({i, 5}, A9)) (3.11)

(recalling that p} is the extremal Gibbs measure with magnetization mg ) and there is
C, such that

3 B (5(0)5(i)) < Oy (3.12)

i€74
By (3.11) and (3.12) we obtain from (3.10)

N

N( C a2
r-1p (D2 Fe > 0L | 0yape ) < —{ iy eyt r} (3.13)
=1

hence (3.6). This completes Lemma 3.1. [
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4. Lower bound.

In this section we will prove that for any u € BV (T;{+1}) and any w > 0

liminf —Fj  (u) > —73P(u) — w (4.1)

v—0t

(From (1.14) and Lemma 6.6 we have

e et 5y .
_F/;’,y(“) = lim liminflim inf W log 14, A ({||s( ) _ mg.ul| < (5}) (4.2)

6—0*t -0+ L—+o0
By [13], for any § > 0 (and w > 0 as above) there is us € BV (T;{%1}) such that the

boundary dus is a C'°*° surface and

Plus) < P(u) + o', Jus —ul| < (4.3)

N S

where w’ is a coefficient that will be specified later. Let A be the torus of Z? of side L
where the spin system lives and L, = vL its side in mesoscopic units. We set

S* = {x €L,T: L 'ze 8U5} (4.4)
Denoting by d(x,¥*) the signed distance from ¥*, positive where us = 1, we define
m*(z) = m(d(x, E*)) (4.5)

where m(s), s € R, is the instanton defined in (1.21). In [8] it is proved that m(s) is an
increasing function that converges exponentially to =mg as s — F00. In the proof of the
I'-convergence in [2], it is shown that

1
lim ——

F *)=18P 4.6
Ll LT (nt) = 7 Pu) (46)

Given k, h and (, let n* be the block spin configuration associated to m*, I' the union
of all its contours and Z of its islands; 6Z is the union of all the cubes C®") in T with
O-distance from I'. We then define the following subsets of X (denoting by n the block
spin configuration associated to o)

Bsz = {n =n" on 0T}, Br={n=n"onTl} (4.7)

We also denote by || - ||z the Ly norm on L '[Z\ 6Z].
By exploiting the regularity of dus, for any choice of k, h and ¢ there is L’ and for all
L > L' (calling m = mg ,u and ms = mg ,us)

iy (I15© = mll <8) > piya ({159 = msllz <6/44 N Boz N Br)  (48)
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We are going to show that given w’ there is ¢ > 0 so that, for all v > 0 small enough and
all L large enough,

! —17yd-—1
Hov.A (”s(s) —m|l < 5) > Py y1T <{||S(6) — mgllz < 6/4} N B5I> e~ BraP(w)+w)y 'L

(4.9)
To prove (4.9) we use the continuum approximation in terms of the van der Waals func-
tional, more precisely we condition on the complement of y~!T" and use (6.1). The condi-
tional probability is then bounded from below by

exp ( — 743 Trlbgfr Fr(m) — ¢(?y LA P(us) — o(*y)y‘lLd_lP(ug)&) (4.10)
The second term bounds

[ [y 3o =y mie) = 5O )’

In fact in Bsz N Br the square bracket is bounded by 2¢ and for L large, by the regularity
of dus, the integral becomes proportional to Lz_lP(u(5)4C2. ¢ in (4.10) is the smallest
number of the form n2", n € N, such that m(n2") > mg — (. Again for L large enough

0| < 2L " P(us)é

Recalling (4.6) and (4.3) we then obtain (4.9).
We will next prove that given § > 0 and w’ > 0 there are ¢’ > 0, L' > 0 and 7' > 0 so
that for all L > L', v < ~' and e < ¢’:

/I —1yd—1
,U'y,'y—ll'(BJI N {”8(6) - m5||1 S (5/4}) 2 6_ﬁw v L 'U”Y,’Y_II(stl-) (4.11)

Since the region Z is made of islands Z,, £ = 1,..,£*, then after conditioning on 6Z the
measure ji, ,-17 becomes a superposition of products of Gibbs measures over the spaces
X,,-17, with boundary conditions in G* and (4.11) follows from Lemma 3.1.

By using the spin flip symmetry we have

Hoy,y—1T (351) = Py y—1T (B;rl)

where Bgz, is obtained from Byz by changing all the minus constraints into plus constraints.
By repeating in reverse the argument that leads from (4.8) to (4.9) we then have

—lLd—l

Hy 7 (Big) > e tiy, (B7) (4.12)

because now the function m = mg on I is compatible with Bj.

Calling th), £=1,...,N, the cubes in 6Z, we then have to estimate

)=

NWA( {n="1on th)})

£

1
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We condition on the set
N
A=({n=10nC}
=2

and, by (6.3),

N | =

_ (2") —ey 4
/L%A\TlA({n_lon cy” '’} 0A> >1-ce¢ >

for all v small enough. Then

)=

N
pyn (=100 C}) > %um( Nin=10nc})
=2

L

1

By iteration we then get

DL

,U"y,A(

e ()

L

1

Since N < cLz_1 we get for v small enough

N
s (=1 n )

=1

By choosing 10w’ < w we then obtain (4.1). O

5. Upper bound.

In this section we prove that for any v € BV (T;{+1}) and any w > 0

limsup —Fj  (u) < —75P(u) + w
y—0t ’

(From the analogous of (1.14) for the upper functional and Lemma 6.6 we have

PY

— [’3’77(u) = lim limsuplimsup ——— log 4, A <{||3(6) —mg yul| < (5})

00t o0+ Lo+too BL

We split the proof into several steps.

Reduction to rectangles

(5.1)

(5.2)

First we want to reduce (5.1) to the computation of the magnetization on “rectangles”.
Let u € BV(T1,{£1}), we set m = mg_u. We report below Theorem D.2 of [2] based on

a theorem by Gromart, [14].

13



Theorem ([2])

For any 6 > 0, there is « > 0 and an integer ¢* such that the following holds. There
are ¢* disjoint parallelepipeds R1,..., Ry« with basis B, ..., By respectively and equal
height 2« such that

(5.3)

—Z / dr [xz, (r) — m(r)| < 6,

21—

o
> B - P
=1

where xp, = mﬁ,v(le - 1R;) with {RS, R, } the partition of R, defined by By.

As we will work only in the mesoscopic scale, we introduce Ry, B, and th, the images
in L, T of Ry, By and Rf respectively. Define now the sets

L
) 1 . :
Eﬁ:{ a7 dm\S<Lv)x) ()\35}, Es = () E (5.4)
=1

;From the previous theorem we know that {o : ||s(6) — m|| < §} C Eys so that we have
reduced the proof of (5.1) to

e*

log iy, (Bs) < =7 Y |Be| +w (5.5)
=1

lim sup lim sup ——
e—>0t L—+4o0 /BLd L

for 0 and + small enough.

Reduction to block spins

We introduce a piece of extra notation. Given a subset D of L,7, we denote by N I+, ,
Np, N, the number of cubes C" in D where n is respectively equal to +1, —1, 0. We
also call Np = N, + N + N2, the total number of cubes in D and we denote by S(P)
the average magnetization in D

S = ﬁ /D dy S(y) (5.6)

Lemma 5.1
Let a > 0,6 > 0 and for any L let A, C L, T with |Ar| > (aL,)?®. Then for any §' > 0
and v > 0 small enough, we have the superexponential estimate

1
Lh_)m T —— log puy a (N, + NR, > 0Na,, 1SAL) £ mg | <d') =—o0 (5.7)

14



Proof.

For simplicity we forget A in all the subscripts. We first estimate the probability of
having more than §N incorrect blocks in Ay. Let z1,...,zx be the centers of the spin
blocks included in Ayz. From Theorem 6.2 we know that there exists ¢ > 0 such that for
~ small enough and for any {iy,...,i,} C{1,..., N},

pyn (i) = 0, n(xs,) = 0) < exp(—cy™%n) (5.8)

so that, for any M > 0,
piy A (N® > M) < exp(—cy M /2)(1 + exp(—cry_d/2))N (5.9)
Taking M = 6*N and noticing that there is a constant a’ > 0 such that N > (a’27"L,)?,

we get

) 1
lim F log /,II’Y,A(NO > 5*N) = —0 (510)

L—oo

If |[S —mg | < ¢, there is a positive constant ¢ such that N~ < ¢6’N. We choose ¢’ such
that cd’ = 6/2, then the event in (5.7) is contained in the event N° > N§/2, hence (5.7)
follows from (5.10) So the lemma is proved. [

Let now
M = # {0(2">(a:) C RE, n(z) j:l} (5.11)

and consider the sets
e*
Ff={o: Mf <é27MLd, My <527"pd} and Fy=()Ff  (5.12)
=1

Then a straightforward consequence of the previous lemma is that the upper bound (5.5)
will be established if for any 6 and ~ small enough

e*
lim sup % log iy, A (F5) < —73 Z |Bg| + w (5.13)
L—o IBL /=1

In order to simplify notation, we consider for a while only one rectangle that we denote
by R and write RT, B and M*.

Minimal section

Call # the normal to B directed toward RT. Let B(*) be the shift of B by the vector
2kc(d)n, k a positive integer and c¢(d) a positive constant depending on the dimension d
which will be fixed later. We define (%) as the smallest connected set of cubes containing

{0(2") C Rt : C@) N Bw % (2)} (5.14)

15



There is a choice of ¢(d) such that
HEOANHE) =0 Ve £K
Let ny (k) be the number of cubes C@") in #® where 1 < 0. We introduce also
ny =min{n; (k) : K € Nand k < a27"L,/(2¢(d))} (5.15)

Call s, the location where the minimum is achieved and define the minimal section in R™
as

HT = p ) (5.16)
In the same way we denote by 2~ the minimal section in R~ and by n_ the number of

cubes C") in 2~ where 5 > 0. Then

Lemma 5.2
There is a positive constant ¢ such that, for any § > 0 and for any o € Fy,

ny +n_ < c62_h(d_1)Lﬁ§_1 (5.17)
Proof. For any o € Fj,

2Ly, < Mt < pamhdpd (5.18)

2(d) T = i '

JFrom the analogous results for the (—) case and the definition of ny, we get (5.17). O

Upper and lower interfaces

We call here a + circuit in the rectangle R with basis B any connected set C of cubes
in D") where n = 1, such that R\ C has two connected components and each of them
contains respectively the upper and lower faces of R parallel to B. A — circuit is defined
analogously.

Let F 5(3) be the subset of F (;(e) which contains a + circuit and a — circuit in R,. We
want to reduce the estimate (5.13) to a computation of the probability of Fs = ﬂﬁ;l F 5(0.

Lemma 5.3
There is a positive constant c; such that for any § > 0 and any ~ sufficiently small the
following holds

piy,A (F5) < exp [c17~ 6 log 6Ld_1} piy,A (Fs) (5.19)

Proof.

Once again, to simplify notation we take £* = 1. Let Fé‘" be the set of configurations
containing a + circuit which separates the basis B from the top of RT. First we want to
change the configurations ¢ in Fj into configurations & of F(;r .

16



We denote by I the set of “bad” cubes {n < 0} in the minimal section H*. ;From
Lemma 5.2, there is a positive constant co such that

#I =n, < c027 @D a1 (5.20)

We denote by F'(k,I) the set of configurations in Fjs such that the minimal section is
HT = H* and such that the set of “bad” cubes in this minimal section is given by I.

With an abuse of notation, we denote by o; any fixed configuration of the spins in the
set of cubes I such that n = 1 on I. We map every configuration o in F(x,I) to ¢ by
setting 6 (i) = o7 (i) for all i € y~1I and 7 (i) = o(i) elsewhere. Then there exists a positive
constant cg such that we get for any {x, I'}

pyn (F(r, 1)) <) exp [eany 2979 1y a(0) (5.21)
ocEF(k,I)

Now remark that for any o € F(k,I), 0 € F’(;r. Moreover, the map ojc — & is one to
one. So, splitting the sum over o € F(k,I) into the sum over ¢’ € F 5"' and the sum over
o € F(k,I) such that & = ¢/, we get, using also (5.20), that there is ¢4 > 0 such that

piyn (F(5, 1)) < exp(Sea2"y L4 Yoy a (Fy) (5.22)

. .. . . —h(d—1) yd—1
For a given minimal section, the number of sets I is at most (fj§2h(d,1)’zd,1 ) We sum

over all the different sets F'(k, ) and we get for some constant c5 > 0
piy A (Fs) < exp(csdlog 02"y L3 Yy o (F51) (5.23)
By applying the same procedure in R~ we derive the lemma. [

Energy estimates

Let o be a configuration with a + circuit and a — circuit in the rectangle R. Then there
is a + circuit C4 and a — circuit C_ such that there is no other circuit between them and
such that all the block spins c?") in C4+ UC_ are incorrect. So one can find a contour
I' which contains both C; and C_. Indeed there is a *-connected path of incorrect spin
blocks from C, to C_ since in the opposite case there should be circuit between C, and
C_.

Therefore, from the previous step, we can associate a collection {T'q,...,T'x} of com-
patible contours to any configuration in Fjs so that in each rectangle R, there is a contour
I'; containing a + circuit and a — circuit in R,.

Then using Lemma 6.5, we know that

(o= {T1,..,T}) < exp [—m—d (Z Jnt Fr, (m) + of, . rhnm)] (5.24)

=1
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Surface tension

Lemma 5.4

Let {T'y,...,T'x} be a collection of compatible contours such that for any rectangle Ry
there is a contour I'; which contains a + circuit and a — circuit in Ry. Then, for L large
enough

K
> — .
Z;mlgfr Fr,(m Tﬁz |By| —o0(¢, 27 Z T (5.25)
1=
Proof.

It is enough to consider one of the rectangles, denoted by R with basis B, and to argue
with the restriction I’ to R of the contour. We will prove that

inf_Fr(m) > 75/B| — (¢, 27%)[T| (5.26)
m=I

where B denotes the basis of R.

Any configuration m compatible with T' takes values close to mg in a circuit of R and
close to —mg in another circuit. These two circuits make a partition of the rectangle into
three regions that we call Dy, D_ and AD. We denote by R the set of all magnetizations
m which satisfy m = mg in DN re,m= —mg in D_N I'® and such that m = +mg in all
the connected subsets of AD NT¢. Since we only have to pay for the interaction between
these new conditions and the boundary of T', we have

inf Fr(m) > inf Fr(m) — o(¢,27%)|T| (5.27)
m=T meR
The inf of Fr when m € R is studied in the section 4 of [2]. When proving the lower
bound for the I'-convergence, it is shown that

lim T
L—oo L

1nf fR(m) > 75| B (5.28)

This proves the lemma. ]

Conclusion

Let € be a positive parameter. Combining estimates (5.23), (5.24), Lemma 5.3 and
Lemma 5.4, we get for L large enough

Z Z eXP[CﬂSlog(SLd—l,y—l}

I4
pya (F5) < exp [—(1 —€)Brgy 'L |BY|
K,Zl Fl,...,FN

=1

X exp [— (e — o(¢, 27F) —o(y, ¢, 2_h))02’)’_d Z ‘Fz‘]
- (5.29)
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where the sum is taken over all the collections {I'q,...,T'x} which satisfy hypothesis of
Lemma 5.4. We take ¢, v small, k& and h large so that e — o((,27%) — o(v,¢(,27") > ¢/2.
Now let A; be the set of the contours I' satisfying |I'| > |By|. Then

> exp [—602/27 dZ\r |] < H <1+ > exp | 6037_d|f‘|]> (5.30)

k>1T,....Tx I'eA,

for some constant cg > 0. Following Theorem 6.3, we count the number of contours which
contain a given cube of R, so that there is a constant c4 > 0 such that

(1+ L%exp [ 664’7_1Ld_1:| )e* (5.31)

Z Z exp [—662/2’7 dZ\I‘|

lﬂ‘,>1 ].-‘1,

Combining the estimates (5.29), (5.31) and taking € small enough, we derive the upper
bound (5.5). O

Appendix

In this Appendix we first recall some basic theorems on the Kac potentials and then
prove some technical lemmas that have been used in the previous sections.

The first result, see for instance [6], is the basic estimate in the theory of Kac potentials
ruling the transition to the continuum. Let A be a bounded, D) _measurable region,
k € N. Then there is a function o(7y) that vanishes as v — 0 (o(y) can be taken of the
order of /) so that the following holds. For any v > 0 let A = {i € Z% : yi € A},
Ope € Xpe, and let T' be a D ") _measurable subset of configurations in A, then

—k
|10g 1y, (0= Tlone) + By~ inf Fa(mlSE )| < [Alo() (6.1)

where for any measurable set A and any m € L*°(A;[—1,1]) and m/ € L>®(A%[-1,1])

Fatmim') = Fam)+ 5 [ [ dedy (o - yDfmia) -m @] (©62)

Peierls estimates : known results
We first recall a result proved in [6] in the case of + boundary conditions. Let D be a
D(zh)-measurab’}e region and o,-1p. a configuration with =1 on {x € D°: d(z,A) < 1}.
Let A be a D2")-measurable region in D. Then

d

U,ylec) < 6_677 (63)

Py y—1D ({A is contained in a contour}
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where c is a constant (whose value depends on the choice of the parameters in the definition
of the block spins). We will discuss here the extension of the result to periodic boundary
conditions. We begin by some notation. Let I' be an admissible contour then we can give
a sign to each connected component of the complement of I' according to the sign of its
boundary. We define the map ¢r on the subsets of spin configurations compatible with I':
for such a subset A, its image ¢r(A) consists in the spin configurations obtained from A
by flipping the spins in all the — islands x-connected to I'.

Theorem 6.1
Let I' = {I'1,...,I'x} be an admissible collection of contours in the torus L. 7. Then
for any subset A of spin configurations measurable with respect to the complement of T,

we have

Hoy A ({0 =L}n A) < ty,a (6 (A)) exp ( By~ dZ ( inf Fr,(m) - o(y, C,2‘h)IFiI))

(6.4)
where o(v,(,27") = o(y) + 0(27")¢? and |T;| is the volume of the support of T';.

The assumption that the collection I' is admissible is used to claim that if ¢ = I' then
we can divide the complement of the support of [' into connected regions Aq,..., A, so
that 7 is constant and non zero on 0A; (defined as the boundary of an island). Then the
spin flip arguments of [6] in the Peierls estimates can be reproduced.

The Peierls condition can be obtained by an analysis of the functional F (see [6]). For
A'in L,T, define B(A) as the set of all m € L*>°(L,T;[—1,1]) such that A is incorrect.

Theorem 6.2
There is ¢ > 0 such that

inf > ¢|A :
il Falm) 2 ¢4 (6.5)

A well known combinatorial argument (see [6], [11]) enables us to control the cost of

large contours,

Theorem 6.3
For any ¢ > 0 there is ' > 0 so that for all v < v/,
Z exp (—cy 4T|) < exp (—ey™?M/2) (6.6)
rsC,|r|>M

where the sum is taken over all the (x-connected) contours of length greater than a constant
M and which contain a given cube C.
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Technical lemmas

The collection of all the contours produced by a spin configuration is admissible so that
Theorem 6.1 applies. However, in the applications it often happens to have only a subset
of contours, the next lemma deals with the case of all the winding contours.

Lemma 6.4
The collection of all the winding contours in A produced by a spin configuration o is
admissible.

Proof.

Let {T'y,...,Tx} be the set of all the winding contours produced by a configuration o.
Let us suppose that there is a connected set in the complement of I'y U...U T, which is
connected to BF;F and 8I‘j_, we call it a path from F;r to I';". This path must cross a non
winding contour I'*, because it is included in the complement of all the winding contours.

Since I'* is non winding we can find a connected set of cubes where 7 is constant which
goes around I'*. Repeating the argument, we get a path where 7 is constant which connects
or; and oI';, which is a contradiction. Lemma 6.4 is proved. [

Lemma 6.5
We consider a collection of compatible contours I’ = {T'y,...,T'x}. For ~ sufficiently
small we have

piy,A (0 = T) §exp[ dﬂZ( inf, fp (m) + o(y )|rz-|> (6.7)

Proof.

We suppose that I'y,...,I'; are winding contours and I'j4i,...,I'; are not winding
contours. First we want to estimate the probability of the non winding contours. Since I',
is non winding, it is admissible, then applying Theorem 6.1, we get

,Uw,A(U = D <py, A (0 = {¢r,.(T1),...,¢r, (Fn—l)})

exp | <95 (it i, (m) + o0 )| ©9)

with an abuse of notation on ¢r,_.

As the contours are compatible, ¢r, (I'1), ..., ¢r, ([x—1) are still contours with the same
support as I'1,...,I'x—1. Moreover the mapping ¢r, does not modify the value of the
functional and we have infy,—r Fr(m) = inf,,, 4. () Fy._(r)(m). (From this by iteration
we get that

K

pya(oc=T) <pya(c=>T)exp |-y 48[ Y inf T, (m) + o(7)|T| (6.9)
i=j+1 ‘
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where we denote I = {I'} N...NI";} the images of the winding contours by all the previous
mappings.

Now using Lemma 6.4, we introduce some other winding contours I'1,...,T, such that
| TR S Ty,..., f‘;z are admissible:

pya(o=T) <) Z pya(o={T1, ..., T, T, ..., Th}) (6.10)

n>0p, . T

Since Ty, ..., f‘j, I,...,I", are admissible, we can use again Theorem 6.1 and get

piya(oc = 1) < ZGXP [ dﬁz < Hlf fr' (m) + 0(7)‘Fi|)]

n>0
n (6.11)

m=T

Z exp [—'y_dcl inf_ ff(m)}

where the last sum in the previous inequality is taken over all the winding contours T and
c is a constant. ;From Theorem 6.2 we know that there is co > 0 such that

inf_Fg(m) > co|T| (6.12)

m=T

So that it remains to get an upper bound for ) # exp(—fy_d|f‘|). We note that any winding
contour T satisfies \f‘\ > L.. So, using Theorem 6.3, there is a constant c3 such that,

Y exp(—ciey L)) < exp(—csy' L) (6.13)
faceh)

where the sum is taken over all the contours I’ which contain the fixed cube C(2h) and
such that |f‘| > L.. Summing over all the cubes c2") and taking L large enough, the
statement will follow. O

Lemma 6.6
For any e > 0,0 >0 and u € BV(T,{£1}) we have

{15 =mg ul] <62} {|In{¥—ull <26} and  {|In{"—ul] <6} € {||sD—mpul| < 36}
(6.14)
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Proof.

The first inclusion comes from

|héd'_1A|552/gdr1{b“wrrwna7uvnzé} (6.15)

and the Tchebychev inequality. The second one follows from

15 —mp ull <6+ 2/Td7‘ L5t (r)—mg u(r)|>6} < 0+ 2/Td7" L) (r)—u(r)| 20} (6.16)

and the lemma is proved. []
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