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Correlations, Spectral gap and Log-Sobolev inequalities for
unbounded spins systems.

T. Bodineau and B. Helffer

ABSTRACT. In this article, we would like to review recent results concern-
ing the links between the decay of correlations, the spectral gap and the
Log-Sobolev inequalities. This was motivated by various papers by Anto-
niouk&Antoniouk, B. Zegarlinski and N. Yoshida. We are mainly reporting on
contributions by Helffer-Sjostrand, Helffer, Yoshida and Bodineau-Helffer but
also present some new results.

1. Introduction and Preliminaries

In this paper we are going to study some relations between equilibrium prop-
erties and dynamics for the Gibbs measures. The results are expressed in terms of
finite size conditions for Gibbs measures defined on finite domains A C R?¢

VX = (z:)ien €RY, EA(dX) = % exp (=3 élwy) - W(X)) X,

J
where ¢ is the single spin phase and W is an interaction potential depending on
boundary conditions (see Section 2 for the precise definition).

The interplay between dynamics and equilibrium properties of the spins systems
has been thoroughly investigated during the past years. On the one hand, some
dynamics relax exponentially fast towards their equilibrium measures and therefore,
their behavior can be used to describe equilibrium properties. On the other hand,
the speed of convergence of the dynamics is related to equilibrium quantities, like
the correlation length.

During the last decade, the decay of correlations, the Poincaré inequalities and
the Log-Sobolev inequalities were singled out as relevant tools to describe the links
between the relaxation of the dynamics and the equilibrium measures. In this pa-
per we review some of the recent developments for unbounded spins systems. We
mainly focus on an analytical approach of the Glauber dynamics based on the use
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2 T. BODINEAU AND B. HELFFER

of the Witten Laplacian. For an overview of the wide range of the dynamics and
of the different relaxation modes we refer the reader to the accounts of Liggett [Li]
and Martinelli [Ma]. In the latter, the phase transition regime is also investigated.

In the theory of particles systems, finite size conditions play a key role. In
particular, this feature was emphasized by Dobrushin and Shlosman’s Theory of
complete analyticity [DS1, DS2] : they showed that the strong mixing condi-
tion, i.e. the exponential decay of correlations uniformly over the boundary condi-
tions and the domains, implies that the associated Gibbs measure is well behaved.
Aizenman and Holley [AH] proved in a discrete setting that the strong mixing
property implies that the operators associated to the Glauber dynamics have uni-
formly bounded spectral gaps and that the dynamics relax exponentially fast to
equilibrium. A more accurate description of the behavior of the dynamics can be
obtained by the hypercontractivity property and by its functional counterpart, the
Log-Sobolev inequality.

The Log-Sobolev inequality can be derived by different methods. For Gibbs
measures with continuous spins, it was proved by Bakry and Emery [BaEm)] that a
sufficient condition for Log-Sobolev inequality is the uniform strict convexity of the
hamiltonian. Nevertheless, there is a counter-example of a non-convex hamiltonian
such that the scheme of their proof fail even if the Log-Sobolev inequality holds
(see subsection 4.1). In this case, a more systematic method can be implemented,
provided one has a precise description of the Gibbs measure properties.

Log-Sobolev inequality can be easily deduced on product spaces by tensorizing
one-dimensional inequalities; this is no longer the case for Gibbs measures. Nev-
ertheless, in absence of phase transition, Gibbs measures can be considered as a
perturbation of product measures and the decay of correlations can play an analo-
gous role to the independence property. Such an observation was first implemented
by Zegarlinski to derive Log-Sobolev inequalities for one-dimensional spin systems
[Zel]. Following a similar approach, Stroock and Zegarlinski extended this result
in a series of papers [StZel, StZe2, StZe3]. They showed in the case of compact
phase spaces (discrete and continuous) that the strong mixing is equivalent to the
Poincaré and to the Log-Sobolev inequalities uniformly over the boundary condi-
tions and the domains. A step further was made by Martinelli and Olivieri [MO1],
[MO2] who introduced the regular complete analyticity and considered the notions
previously described only on cubes. This restriction enables them to provide re-
sults in a region of the phase diagram where the strong mixing does not hold. In a
discrete setting, alternative proofs by a martingale method were derived by Lu and
Yau [LuYa)] for Glauber and Kawasaki dynamics.

In the same spirit, Zegarlinski showed in [Ze3] that Log-Sobolev inequalities
in the case of non-compact spin systems can be obtained from the decay of cor-
relations. This was further investigated by Yoshida [Yol, Yo3], who proved the
equivalence between the exponential decay, the Poincaré inequalities and the Log-
Sobolev inequalities (on finite size domains uniformly with respect to the boundary
conditions).

Finally, let us note that Log-Sobolev inequalities can be applied to derive
fine L°-controls of the relaxation of unbounded spin systems to equilibrium (see
[Ze3, Yo2]).
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In this paper, we focus on a more analytical approach of the above results,
which is based mainly on a representation of the correlations via the Witten Lapla-
cian. This formula was introduced by Helffer and Sjéstrand in [HeSj] and further
developed in [Sj]. As a consequence of this representation, exponential decay of
the correlations has been proven under various assumptions on the hamiltonian
[BaJeSj, Hel, He2, He3|. This representation also triggered several studies on
the massless free field, which we will not discuss here. In fact the approach used
in this context does not rely on the spectral properties of the Witten Laplacian
but on homogenization procedures for an infinite dimensional PDE [NS] or for an
alternative representation in terms of a random walk in a random environment
[DGI].

The method developed in [He3] in order to control the decay of correlations by
the Witten Laplacian, differs from the recursive procedure based on the Dobrushin
criterion (see [COPP] and [AA2]). Since this method is based on spectral esti-
mates, it enables us to control the correlations in terms of L? estimates. This may
be viewed as a generalization of the results of [A A2] which were dependent only
on L*-norm : in the case of unbounded spin systems the test functions might be
bounded in L? and not in L*°. The analysis of [A A 2] also holds for super-quadratic
interaction potential. In Section 3, we show that the techniques developed in [He3]
can be generalized to non-quadratic interactions and we derive a control of the
correlations in L2-weighted spaces. These results hold in a perturbative regime
under mild conditions on the potentials. Non-perturbative results on the decay of
correlations can be related to Poincaré inequalities for finite size domains. This
was proved in [Li, StZel, Yo3] by combining the exponential relaxation of the
dynamics with an argument of finite speed of propagation. Here, we propose an
alternative proof of similar results based on spectral theory and L? estimates.

Finally, in Section 4, we discuss the equivalence between the decay of correla-
tions, the Poincaré inequalities and the Log-Sobolev inequalities proven by Yoshida
[Yo3] (see [StZe3] for compact phase spaces). The control on the decay of corre-
lations previously mentioned enables us (see [BoHe]) to recover, in a perturbative
regime, the Log-Sobolev inequalities under weak assumptions on the potentials.

2. Notations

2.1. Gibbs measures. For any domain A of Z%, we consider the following
ferromagnetic Hamiltonian on the phase space R defined as follows

(2.1)
QA,M(X):ZM%)JF% Yoo V- +T Y. Vi — ),

jeA i,jEA , jri €A, JEA , j~i

where X = (z;)iea and w = (w;);ea- are the boundary conditions. Furthermore
the one particle phase ¢ is a C'* function on R such that

(2.2) /Rexp(—qﬁ(t))dt < 400,

the interaction coefficient J is positive and the interaction potential V' is an even,
convex, positive C* function satisfying, for a suitable constant C' > 0,

(2.3) V(s,t) ER®,  |V"(t—38)| < C(L+¢")>)F(1+¢"(s)%)7 .
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For simplicity, we restrict to nearest neighbor interaction (denoted by ¢ ~ j); nev-
ertheless the results hold for finite range potentials.

The Gibbs measure associated to the previous Hamiltonian is defined by

(2.4) dEM = i

exp (— @M (X)) dX ,

where ZM% is a normalization factor. We are going to analyze finite size conditions
and their implications on the thermodynamic behavior of the above Gibbs measures.
Our main assumption is an assumption of convexity at oo of the single spin phase
¢. We assume that there exists a bounded C™ function s such that ¢ := ¢ + s is
strictly convex. More precisely, there exists p > 0 such that

(2.5) (6+38)"t)>p>0, VteR.

The main model comes from the field theory and corresponds to the choice of
(2.6) V(uw) =u®> and ¢(z) = Azt + va? |
where the parameters \ and v satisfy
(2.7) A>0,veR.

We will also consider non-quadratic interaction. A typical example (which was
proposed by Antoniouk & Antoniouk [A A2]) is given by :

(2.8) d(z) = Aa® +va? .
where the parameter X is positive and v may be negative, and
(2.9) V(u) =u*.
Then the condition (2.3) is satisfied; there exists C' > 0 such that :
(t—s)? < CL+t2)i(1+s'2)7 .

2.2. Laplacians. Let A be a finite domain of R* and w be the boundary
conditions outside A. We set
(2.10) JjEA, X;j=Vj=(0z;1, " »0e;n)
and denote by X7 its adjoint in L?(R*, E*+)
(2.11) Xr=-V;+(V;e*).

(0)
PA,w

VfECIRY),  ADlLf=—Anf+Va®M Vaf =) X;X,f.
JEA

The operator A is defined as the unique selfadjoint extension of

Notice that A

oA 18 the Laplacian associated to the Dirichlet form on L2(RM ) M),

The spectral gap of A©

PA,w
of AgJA),m and is denoted by S(A,w). The dynamics associated to the semigroup

(Pt = exp(—tAg],z,w))DO generated by Ag],z,u is called the Glauber dynamics.

is defined as the gap between the two first eigenvalues
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Let us denote by Ag,z,w the corresponding natural Laplacian on 1-forms at-
tached to the variables . It can also be identified to a Witten Laplacian. We
recall that if F' = (f;)iea (identified with the 1-form F' =}, fidxz;) then

1 62(I,A,u

2.12 AY B =STXE X =S
(2.12) (AgawF)i Z J ]fl+2j€A Oz;0x; "’

JEA

In the following, we identify the notations df and V. In particular, the L2-
norm associated to 1-forms will be denoted by

IIdAfIIf);,z = (drf - daf)aw =Y _((BiF))rw »

i€A

where ( - ) ., denotes the mean value with respect to the measure dE*“. Notice
also that

dA(AQ L) = A0 dnf = AL VAT

3. Decay of correlations

3.1. The representation formula for the correlations. The covariance
associated to f,g € Cffmp(RA) is defined by

3.1) EY(f;9) == Covaw(f,9) = ((f = (Naw)(g = (9rw))aw »

where Cf%,,,(R) is the space of C* functions with polynomial growth.

The following representation of the correlations was introduced by Helffer and
Sjostrand in [HeSj, Sj]

(3.2) EN(f;9) = (AU )Y f - dag)aw -

Several inequalities can be derived from (3.2), in particular generalizations of
the Brascamp-Lieb inequality [BL] were studied in [Hel, He2]. By using this
formula, Helffer proved in [He3] the exponential decay of the correlations

THEOREM 3.1. If the previous assumptions are satisfied and if |V"| is bounded,
then there exists Jop > 0, ¢ > 0 and A > 0 such that the following inequality holds,
for all functions f and g in C,, (RY),

emp

(33)  [EM(f;9)l < Xexp (—ed(Sy,Sy))lldafllgre ldagllgre ,

uniformly with respect to the other parameters A C Z%, w € de, J €10, Jo).

Here Sy is the support of the function f defined as the smallest set ¥ in A such
that f can be written as a function of the variables x,, £ € 3.

We stress the fact that (3.3) involves only L? estimates. So that (3.3) implies
that the spectral gap is greater than some constant % uniformly with respect to
A,w (take f=g).
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3.2. Non quadratic interactions. In this subsection, we are mainly inter-
ested in the perturbative regime (J small). If V' is unbounded, we shall prove the
following extension of Theorem 3.1.

THEOREM 3.2. Under the general assumptions, there exists C > 0, Jp > 0
such that, for any A C Z? , any J € [0,J0), any w € de, and any tempered
functions f and g on RM,

1
B4 B0 £ O exp (= 5d(1,5,) ) 10+ dflye 10+ daglaye

with
(3.5) (O(X))jk = (¢"(z) + C) ™26 .

Here the choice of C is in particular determined by the condition that

(3.6) ¢"(z)+C>1.

Note that it is not a new assumption, but only a weak consequence of our assump-
tion of convexity at oo.

REMARK 3.3. When f = g, we recover some weak form of the Brascamp-Lieb
inequality [BL].

REMARK 3.4. This theorem is inspired by the study in [AA2] of uniformly
strictly convex function ¢. These authors propose an estimate with an L°-norm
and thus assume that f and g have bounded derivatives. The constant C' before
the exponential in (3.4) becomes in this case dependent of the size of the support.
Note also that an unpublished result by J.-D. Deuschel [De] leads to a proof of the
decay with also L°-norms.

Proof.

We follow [He3] and focus mainly on what has to be modified, if V" is unbounded.
All the proof was detailed in [He4], for uniformly bounded V". This is essentially
an a priori estimate, which is reminiscent of the proof of Brascamp-Lieb inequality
in [Hel].

We define the matrix ©(X) by

(3.7) (O(X)) =071(X).

Let u be the solution of

(3.8) F={rw=A2000u,  (urw=0.
Then

(3.9) daf =AY dau.

We define also

(3.10) Mjx = 8k p(j)

where

(3.11) p(€) :==exp ( — Kd(¢, Sy)) .

Here k > 0 will be chosen independently of any parameter A, w and f.
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A direct consequence of the representation formula (3.2) is the following in-
equality
(312)  [EM(fi9)] = (dau-daghaul < [OM daulgus - |0Mdxgllgre -
Thus, the proof of (3.4) is reduced to the proof of
~ 1 —1
(3.13) 16 - M~ dullgsz < CIO© - M dp fllgre -

By computing the diagonal coeflicients, one gets the exponential decay.
In fact (3.13) will be a straightforward consequence of
1 - .
(3.14) (M7Ydpf)-0)rw > =||O0 ||?21,2 — CJ||G)U||?21,2 ,
C 2 2
with 0 = M ~tdsu . In order to see this, we apply (3.14) with 7 small and get
. B B 1 -
(315)  160llgye - 10M " dafllgye > [(Mdaf) - )a] = 221107 2y,
Therefore the bound (3.13) holds.

We are now going to prove (3.14). The first step is to write
(3.16) M~ dyf =AY o+ Al oM — AL o

The last term in the RHS depends only on the off-diagonal part of Ag,),,w, namely
on the |A| x |A| matrix Hess ®* defined by

—V”(.’L'j—l'k), ifj,keA,ij,

i
Hess &j; = { 0, otherwise .

We would like to show that, there exists a constant C such that, for any 1-form
v, we have

(3.17) (Hess ®'v - v, < C||(:)U||?2}I,2 .

Using (2.3), we observe that, for any X, any v =}, v;dz; and for (j, k) € A? such
that j ~ k,

V" (25 — z)vs(@)op ()] < CL+ (" (2)2)7 (1 + 8" (z4)[2)7 v ()] - [vk ()]

¢ (418" @) oy @ + (14 16" (o)) e (@)]?)
€ ((6v);(2)* + (Bu)u()?) -

This permits to show (3.17) easily. Choosing k small enough, we see that

(3.18) WA R M =AY D)o ayn| <TC 1903, -

REMARK 3.5. In [BaJeSj], similar results are obtained but the control of the
interaction involves (1 + |¢'|?) instead of (1 + |¢"]?).

The second step is to decompose AY) | as follows

(I)A,w

(3.19) <A$12,w‘7 O Aw = Z((Xjak)z)l\,w + Z( 3’1 ‘7]2'>A,w + J (Hess d'o - T)Aw
Jsk J



8 T. BODINEAU AND B. HELFFER

where ¢; is the effective spin phase at the site j € A
(3.20) $i(t) = d(t) + T Y _ V(t— i) .

kv
Here we observe that due to the convexity of V and the assumption that J > 0,
the family of phases ¢; satisfies (2.5) uniformly. Moreover, we have the uniform
inequality
(3.21) 1) > 6').
From (3.19) and the assumption on convexity (2.5), we get the following lower
bound for some J small enough
(3.22)

<AEI)1ANO' OVAyw 2 E 10 Aw + T (Hess @0 - 0)p 0 > C“@U”QLZ —C'lo 2 5
P
JEA

where C,C’ are constants.
On the other hand, using the spectral gap of single phase Laplacian (see [He3]),
we obtain from (3.18) and (3.19) that

(3.23) (A3duo 0w 2 AVl , — OT 602 |

where A(1) is a lower bound of the first eigenvalue of the operators (Ag{)j} )jeA-
Combining (3.22) and (3.23), we see that

A 1
ClOolgss < (AGRuo-0)aw +C'llollfse

Cl
(1 + W) <A<(I>1‘2’“’U . U)A,w

IA

/\(1) j“G)U“Ql 2 -

Choosing J small enough, this concludes the proof.

3.3. Equivalence between spectral gap and decay. Throughout this sec-
tion, we suppose that ||V is finite. In the proof of Theorems 3.1 and 3.2,
estimates on the Witten Laplacian Ag,z,w were obtained by using only spectral
quantities related to 1-point Witten Laplacians. In order to derive non perturba-
tive results, we decompose the Witten Laplacian on A into Witten Laplacians with
a large number of variables. This enables us to replace the microscopic estimates
by a control on mesoscopic scales which is supposed to be valid in a wider range of
temperatures. Such a procedure is reminiscent of the regular complete analyticity
which was described in the introduction.

Let us first introduce some notation. Let N' = (ny,...,nq) be a collection of
integers and denote by Bar(z) the box centered in z and of side lengths A/
By (z) = {(y1,.--,y4) € 2| —ni <yi—x; <ng}

If NV = (N,...,N), we simply write By. Let B(Np) be the set of boxes with
minimum side length Ny (see also [Yo1]). The spectral gap (see Subsection 2.2) on
boxes in B(Np) is related to uniform decay of correlations.

THEOREM 3.6. If there exists co > 0 and Ny such that uniformly for N > Ny
VA € B(N), S(A) =inf S(A,w) > ¢y,
w
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then there exists A\,c > 0 and Ny such that the following inequality holds for all
functions f and g in C5S,,,(RY)

(324)  [EM(fi9)l < Aexp (—cd(S;,S,)) lldafllgz2 ldaglloze |

uniformly with respect to the other parameters N > Ny, A € B(N) and w € RZ”.

In fact this result can be strengthen and it will be clear from the proof that a
softer assumption allowing a slow decay of the spectral gap with respect to the size
of the cubes would lead to the same conclusion (see [StZe4] for similar results on
Log-Sobolev constants). Namely,

THEOREM 3.7. We assume that V" is bounded. Let Sy = infyep(nyw S(A,w).
If
(3.25) lim SNN =00,
N—oc0

then there is cog > 0 and No such that
VN > Ny, Sy >c¢.

REMARK 3.8. Notice that a stronger assumption on positivity of the spectral
gap uniformly over every domains would lead to a decay of correlations uniformly
over every domains.

Before proving the theorems, let us first introduce some more notations and
give a preliminary important estimate. The sub-lattice NZ? will be denoted by
L. Let A be a finite domain of B(M), where M is an integer which will be chosen
very large. For a given N < M, we partition A into disjoint sub-domains

U BN (z + k),
k€L N

where BA (z +k) = AN By(z + k). The set of edges on the boundaries of B (-) is
defined by

OBN(z) = {{i,j} €A | i~j, s. t. Ik, with i € Bn(z+k), j € Bn(z+k)}.
Let Fo = (fi)iea be a function supported by A. By using (2.12), we can decompose
(AEI},)‘,WFA - FA)a,, as follows

<A$2,WFA - Fa)Aw 2 Z <Ag1%(z+k)FB§(m+k) © Fa (o4k))Aw
keLn

82(1)A,u)
+ <6 —— fi fi)Aw -

{i.i}€0By (z)

Summing over all the z in By (0), one obtains

1 1 1
(AN Py - Fa)aw > Na > > (A%Z%(EJF,C)FBQ(ZH) * Fpa (atk) ) A
z€BN(0) KELN

1
- > > (mfifj)zx,w

z€BnN (0) {4,j}€0BA (z)
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As V" is bounded, this leads to

1
(Afﬁﬁw FA> > Nd Z Z Agg(erk)FBA (z+k) FBJQ,(m+k))A,w
xEBN(O)kELN
Nd-1

(3.26) _204dj N Z ]-ZNJ |fz f]l)l\wa

{i,j}EA

where a4 depends on the dimension d and on ||V ||«
The above inequality will be useful to derive Theorem 3.7.
Proof of Theorem 3.7 : We first note that
S(A,w)du - druhay < (Aghow))aw = (Aglodru - daua,

Our assumption relies only on regular sets and a translate Ba (z + k) does not in

general belong to UN ~B(n); nevertheless for any vertex in A, there is at least g—:

=[5
translates of BA which are in UQL[ N ]B (n). Since a Witten Laplacian on any domain
—L2

is a positive operator, we can neglect the terms in (3.26) with Witten Laplacians on
boxes which are not in U —(y ]B(n). The other terms are bounded from below by

the assumption on the spectral gap. Noticing that 7 is finite, we get by replacing
Fp by dau in (3.26)

(3.27) (AN dau - dauae > (2L - 200T Yo ) S pen (k)2 A o

Thus, it remains to choose N large enough such that S% _ 2 aud g positive. I

We are going now to derive Theorem 3.6.
Proof of Theorem 3.6 : Choosing the same notation as in Subsection 3.2, we
can reduce the proof to

(3.28) (M7Ydrf) - o)aw > Clloldus

where 0 = M~'dpu and C is a constant. We start with the identity

(3.29)
(M7Ydnf) - 0)aw = (MTIAL MMV dpu - 0)a = (AY). Mo - M™'0)a,, .

We can rewrite (3.26) in the form
(AW Mo - M—1 A >

¢A w
: : ( *)‘ + 116 )BA z+k) (1\1 O)BA z+k )A w
Z B (z k) ~( ) ~ ( )/ A,
ZEBN(O) kel

2
24T S (o

i€A
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Since the coeflicients of the matrix M are slowly varying, we obtain

(A(l) Mo - M7'o)r, >

PA,w
1)
Z Z ASBA(Q:H)UB,A\,(ZM) * OBA (atk))Aw
z€BN(0) kELN

- (0 - expor) +0() ) ol -

The bound S N on the spectral gap cannot be used at this stage because o is not

an exact 1-form. Therefore, a technical Lemma (which we are going to prove later)
is required

LEMMA 3.9. Let D C A be two finite domains in Z%. Then, there ezists a
constant ag > 0 such that for any matriz p = (pi)icp with positive coefficients and
any function u € C5S.(RM) the following holds

temp

=2 A2
(AD pdpu - pdpu)s, > (S(D)% - ad(g—z - 1)) lpdpullgse -

where p = sup;cp p; and p = infiep p;.

Since the matrix M has slowly varying coefficients (3.10), the previous Lemma
enables us to conclude the proof of Theorem 3.6 by choosing first NV large and then
k small enough such that

coexp(—CakN) — aq(exp(CarN) — 1) + O(1 — exp(—k)) + 0(%) >0,

where Cy is a constant depending only on the dimension. |

Proof of Lemma 3.9 :
By using the identity (2.12), we see that

62‘1>A’w
(A(Dl)pdpu - pdpudp,, = Z pz||X du||le + = Z p,pJ d-u diudA . -
i,j€D i,j€D
This leads to
(Ag)pdpu - pdpudpr,, > P <Ag)dpu - dpuda
+ Z 32@ A din diu)aw
plpj 8 8

4,J€D
The lower bound on the spectral gap of A(I(,)) can be used now. There exists a
constant ag > 0 depending only on ||[V"|l and the dimension d such that the
following holds

(AS)PdDu - pdpu)p,m > p*S(D) ||dD“||?z}I;2 —aa(p® = p°) ”dDuH?Z}{z ’

This implies the Lemma. §
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4. Log-Sobolev Inequalities

We consider a measure! dy := exp(—®) dz on M = RV and want to analyze
the following inequality known as Log-Sobolev inequality

(4.1) /M PP fRdp— | FI2 I FI2 < © /M VP2 dp

We shall assume that p is a probability measure

(4.2) /M du=1.

The best constant such that (4.1) is satisfied (if it exists) will be denoted by Cr s..
This inequality can be seen as a control of the entropy, which is defined, for a non
positive function g such that E,(gln™ g) < +o0, in the following way :

(4.3) Ent,(9) = E.(9lng) — E,(g)InE,(g) .

Here we have used the notation : E,(g) = [ g du . We note that the entropy has
the following properties

(4.4) Ent,(9) >0 and Ent,(ag) =a Ent,(g), Va>0.

4.1. Log-Sobolev inequalities in the strictly convex case. In this sec-
tion, we study the Log-Sobolev inequality under a condition of uniform strict con-
vexity of the phase ® defined on M = RN . More precisely we assume the existence
of A > 0 such that

(4.5) Hess ®(z) > A, Vz e M.
This assumption is a particular case of the Bakry-Emery criterion [BaEm)].
THEOREM 4.1. Under the condition (4.5), the following Log-Sobolev inequality
is satisfied :
2

(4.6) [ 1P wlsPdn - 18 wIAE <5 [ VSR,

M AJm
where dy is the probability measure exp(—®) dX.

Consequently, the best Log-Sobolev constant satisfies :

2
(4.7) Cr.s < 3
Theorem 4.1 will be obtained as a particular case of the following more general
theorem inspired by [AA1] (see also [He4])

THEOREM 4.2. Let ¥ be a function in C°([0,+oc[) N C°°(]0,+o0]) satisfying
the conditions

(4.8) " >0  and (1/e"M" <o,
and suppose that there exists a positive constant C' such that

(4.9) vt > C, V() <C.

10On a compact riemannian manifold M, this would be a measure of the type exp(—®) do
where do is the riemannian measure on M.
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Then under assumption ? (4.5), the following holds

(410) | wndn=w(| n<g [ v vk,

for any f > 0 in the class of the C functions with bounded derivatives.

The basic examples for which the above assumptions are satisfied are
e U(z) = 2% and this leads to Poincaré inequality, observing the inequality

(4.11) IVIFIT<IVE] a e .

e U(z) = rlnz and this leads (after a change of functions f = g?) to the
standard logarithmic Sobolev inequality,
o U(z)=2oP, withl<p<2.
For ¥ = zlnz, one can prove that the Log-Sobolev inequality is implied by the
following inequality

)‘/ e!l|Vu(@)[[* du < / e*(Vu - Hess® Vu) du
M M

(4.12) +Z/ e |8ul? du .
ij /M

If ® is strictly convex, the above inequality clearly holds. In order to understand
whether the condition (4.5) might be improved, one can start to study the one
dimensional case. We have indeed the property that if (4.12) is true on R with dy =
exp(—a(z)) dz, then the same inequality is true on RY for the N-product measure
duny = @ndp. So we are facing the simple question : Under which condition on ¢
do we have

A /R exp(u(t) — o)) u' () dt < /R exp(u(t) — B())d" (1) ' ()2 dt
(4.13) + /R exp(u(t) — ¢(t)) u" (t)* dt .

The complete answer to this problem seems open outside the case when & is strictly
convex. Let us just give here a counter-example®. We consider ¢g an even C* phase
convex at co but such that ¢{(0) < 0. Then there exists vy such that Inequality
(4.13) with ¢ = 7y¢g is not true when v > 9. We can indeed find u such that
u = —byt?/2 in the neighborhood of 0 and ¢ — u has a unique non degenerate
minimum at the origin giving the contradiction. Here b has to satisfy the condition
—¢3(0) < b < —2¢;(0). The contradiction comes through the use of the Laplace
integral method (with large parameter ) which shows that the RHS of (4.13) be-
comes strictly negative as v tends to infinity.

Nevertheless, as ¢, is convex at 0o, the corresponding logarithmic inequality is
satisfied. This property is implied by the lemma below (see for example [DeSt]).

LEMMA 4.3. If ® and ® are two phases such that

(4.14) d-d=235,

2Qur proof uses also other technical assumptions which will be mentioned later on the deriva-
tives of ® which are probably essentially technical.
3We thank M. Ledoux for motivating discussions around this problem.
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with S bounded, then

(4.15) Cr.s(M,exp —® do) < exp (2 sup |S($)|) Cr.s(M,exp —® do) .
zeM
More generally, it was noticed by Herbst (see [Le]) that a necessary condition
is the existence of C' > 0, D > 0 such that

(4.16) / exp(—®(z)) dz < C exp(—Dr?) ,
|z|>r
as r — +oo.

Another problem would be to understand more precisely how the Witten Lapla-
cian is related to the Log-Sobolev inequality. It will be explained in the next section
that the uniform positivity of the first eigenvalue of the Witten Laplacian implies
the decay of correlations and therefore the Log-Sobolev inequality for the spins
systems. Such an assumption on the first eigenvalue is clearly satisfied under the
strict convexity hypothesis (4.5). Therefore, we might wonder whether the for-
malism of the Witten Laplacian could provide an extension of the Bakry-Emery
criterion. In fact the following example shows that is probably not the case. Take
¢(z) = (1 + |z[2)%; then, for 6 > 1, the Poincaré inequality is true and the Log-
Sobolev inequality is false for 8 € [1, 2[ (see [DeSt] exercise 6.2.47).

In this case, we do not have a uniform lower bound (with respect to J and «)
for the family of Witten-Laplacian on 1-forms associated to the family of phases

1
b70=0¢+ §jdt2 —at.

When J = 0, one can easily get

(417 i (~ g + (0~ o + 36"®)) = 0(aF).

4.2. Finite size conditions. We are mainly concerned by a series of equiv-
alences between strong mixing, uniform Poincaré inequalities and uniform Log-
Sobolev inequalities.

THEOREM 4.4. Under the assumption that the single spin phase is super-convez
at 0o, that is that, for any m > 0, there exists a bounded C? function s such that,

(4.18) (¢+9)"(t) 2m,
and assuming that the interaction is convex with bounded second derivatives, then,
for any J > 0, the following conditions are equivalent :

1. Correlations decay exponentially fast

w 1
@19)  [BV(fi0)| < e (- (5750 laFlloge gl

uniformly with respect to A, w.

2. The Poincaré inequalities hold uniformly with respect to A,w, i.e. the spec-
tral gaps of the Laplacians Ag),z,w admit a uniform lower bound.

3. The Log-Sobolev inequalities hold uniformly.
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The above theorem is part of a more elaborate theorem by Yoshida [Yo3] (ex-
tending results of Stroock-Zegarlinski in the compact case [StZel, StZe2], see also
Liggett [Li]). Notice although that our assumptions differ slightly from those used
by Yoshida [Yo3].

Proof of Theorem 4.4

Some of the implications are standard. The second condition is simply a par-
ticular case of the first one (take f = g). The Log-Sobolev inequality implies the
Poincaré inequality with the same constant (see [Ro]).

From Theorem 3.6, we know that the second condition implies the first one. It
has been proved in [BoHe] (see also [Yo1]) that condition 1 implies condition 3. I

As explained in the introduction, the previous theorem is standard in the theory
of spins systems with compact phase spaces and was first extended to non-compact
spaces by Yoshida [Yo3]. The scheme of our proof differs from the one developed
in [Yo3]. Nevertheless, we stress the fact that the results in [Yo3] are stronger
because they do not rely on an iterative procedure : if for a given domain A, the
spectral gap is uniformly positive independently of the boundary conditions then it
is proved in [Yo3] that the correlations decay in A. Our method requires uniformity
of the spectral gap over the domains and the boundary conditions.

The equivalence of the two first points is true without using the convexity at co.
Of course the existence of a spectral gap implies that the bottom of the essential

() (which is always essentially selfadjoint when ® is C'°) is strictly

spectrum of Ay,

positive.

The statement that the second assertion implies, when (2.5) is satisfied, the
third assertion was given in [Ze8] without detailed proof when d > 1. A detailed
proof was then proposed by Yoshida [Yol] under the assumptions (4.18), quadratic-
ity of the interaction (assumption appearing also in [Ze3]) and other restrictive
technical assumptions on the single spin phase which were removed in [BoHe]. In
[BoHe], it was proven in the perturbative case, that for 7 > 0 small enough, the
3 conditions above hold under the weaker assumption (2.5) and the boundedness
of |V"|. In fact, the first assertion can even be obtained (see [Hel, He2, He3])
in the perturbative case under weaker conditions than (2.5); for example (4.19) is
true as soon as

d2
dt?

Finally, we would like to mention that for d = 1, Zegarlinski proved in [Ze3]
that the three assertions are true for any J > 0 under the assumption (4.18).
Our method do not enables us to take advantage of the dimension and we cannot
prove the decay of correlations for an arbitrary intensity of the interaction in a
one-dimensional model.

(4.20) + %(qﬁ" +5")>0.
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