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ABSTRACT. In this paper we prove the Wulff construction in three and more
dimensions for an Ising model with nearest neighbor interaction.

1. INTRODUCTION

The problem of phase separation for two dimensional Ising model and the study
of the equilibrium shape of crystals (Wulff shape) has been initiated by Dobrushin,
Kotecky and Shlosman [DKS]. Among other things, they proved that if at very
low temperatures we decrease the averaged magnetization in the + pure phase,
we observe the creation of a macroscopic droplet of the — phase which has a
deterministic shape on the macroscopic scale.

The proof has been first simplified by Pfister [Pf] and then extended to the
whole of the phase transition region by Ioffe [I1], [I2] (see also [SS] and [PV]). Re-
cently, Ioffe and Schonmann [IS] have completed the DKS theory up to the critical
temperature and greatly simplified the original proofs. Moderate deviations in the
exact canonical ensemble are also studied in [IS].

In two dimensions, the proofs have been based on duality arguments and on a
coarse graining procedure (skeleton). These arguments do not seem to apply in
higher dimensions.

For more than two dimensions, an alternative procedure has been proposed by
Alberti, Bellettini, Cassandro and Presutti [ABCP], [BCP] for Ising systems with
Kac potentials. They rephrase the whole problem in terms of L' theory and prove
large deviations for the appearance of a droplet of the minority phase in a scaling
limit when the size of the domain diverges not much faster than the range of the
Kac potentials. This amounts to a weak large deviation principle which is obtained
by proving I'-convergence of a functional associated to the spins system [ABCP].
A large deviation principle has then been proved via a tightness property [BCP].

Their approach has been generalized by Benois, Bodineau, Butta and Presutti
[BBBP], [BBP] by taking first the thermodynamic limit and then letting the range
of interaction go to infinity. The first paper [BBBP] was devoted to the proof
of a weak large deviation principle for the macroscopic magnetization which is
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equivalent to the computation of surface tension. The main idea has been to
introduce a coarse graining in order to use the L! setting. Namely, events in L'
were related to mesoscopic quantities by an argument which we will refer to later
as minimal section argument. An exact expression of surface tension was difficult
to recover from coarse grained estimates and surface tension was only derived in
the Kac limit, i.e. when the range of interactions tends to infinity. The second
step [BBP] consisted of proving a tightness property by using the compactness in
L' of the set of functions of bounded variation with finite perimeter.

Waulff construction for three dimensional independent percolation has been pro-
ven by Cerf [Ce| using a procedure similar to the one of [BBBP| and a novel
definition of surface tension. In this case, the dependence on boundary conditions
is weaker and, the minimal section argument enables to prove directly a weak
large deviation principle by using this appropriate definition of surface tension.
As percolation occurs in an infinite volume, there is an extra difficulty and differ-
ent compactness arguments have been required.

In this paper we proceed as in [BBBP]. The main difficulty is to recover surface
tension from a constraint on the averaged magnetization. The surface tension is
defined as log (ZZ+—+—) where the partition functions are computed with 4+ boundary
conditions and with mixed boundary conditions (4 at the top and — at the bot-
tom), see for instance the paper of Messager, Miracle-Solé and Ruiz [MMR]. To
use directly this definition, one would have to find in the bulk surfaces of + spins
or of — spins which in fact may not exist. A way to circumvent this problem is to
prove that surface tension can be produced by averaging the boundary conditions,
choosing the spins with respect to the + pure phase and to the — pure phase.

For Ising model with nearest neighbor interaction, the coarse graining developed
by Pisztora [Pil] will play an analogous role to the one used for Kac model. Pisz-
tora’s coarse graining is one of the most profound and powerful technique for the
study of the Ising (Potts) model, it provides an accurate description of the Ising
model in a non perturbative regime up to a temperature T, which is conjectured to
agree with the critical temperature. In the following, we will mention which of our
results hold up to T,. As Pisztora’s coarse graining is defined via the FK represen-
tation, several quantities need to be rewritten in terms of the FK representation.
In particular, our approach to the surface tension (Section 4) is built upon the
FK representation and, is motivated by the corresponding construction in [Ce].
This is a key to obtain precise surface order estimates on the logarithmic scale.
This is also the only point at which we refer to [Ce|, the core philosophy of our
proof is based on the renormalization ideas of [BBBP] and [BBP], including the
appropriate setup of the geometric measure theory. The coarse graining schemes
of the latter works, however, depend on specific properties of Kac potentials and,
one of our main technical tasks here is to develop a relevant modification of these
renormalization procedures in the nearest neighbor context. A step further in the
understanding of the surface tension will be to prove a phase separation theorem
for Kac model with finite range interactions by using a coarse graining defined
only in terms of the Gibbs measure [Bo].
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After introducing the main notation, we state in Section 2 the results and an
overview of the paper (see subsection 2.3).
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2. NOTATION AND RESULTS

For simplicity, notation and results are stated in three dimensions, but they are
valid for any dimension larger or equal to three.

2.1. Notation. We introduce the following norms on Z3

3 3
Ve eZ®,  lalhi=3"lail  and s = >0 ml”
i=1 1=1

Two vertices x,y in Z? are nearest neighbors if ||z — y||; < 1 and we denote it by
2 ~ vy. For any finite subset A of Z3, we define its boundary by

ON={zeAN|yeA, z~y}

and denote its cardinality by |A|.

We consider the Ising model on Z? with nearest neighbor interaction. Each spin
0;, attached at the lattice site ¢ in Z3, can take values £1. For any integer N, we set
Ay = {1, N}® and denote the space of configurations in Ay by Ya, = {£1}2~,
Let oa, be the spin configuration restricted to Ay. We introduce the Hamiltonian
associated to oa, with boundary conditions oga

1
H(oay |0oay) = ~3 Z 00 — Z 0i0;.

inj inj
ijEAN i€EAN,jEBAN

The Gibbs measure on ¥, at inverse temperature 3 > 0 is

po.an(Oay [0oay) = exp (— BH(oay | oaay)),

1
Zp(09ay)
where the partition function Zg(oga, ) is the normalizing factor. When the bound-
ary conditions opa, are identically equal to 1, we simply write p; Ay- There is a
critical value 3, > 0 and for all 3 larger than f3,, there exists mg > 0 such that

dim_pf 5, (00) = mg > 0.

The Gibbs measure ,ug on Y73 obtained by taking the thermodynamic limit of
,u;, Ay 18 called the + pure phase and myg is the equilibrium value of the magneti-
zation.
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2.2. Surface tension. Let us recall the definition of surface tension and related
results which can be found in [MMR].

The set of unit vectors in R® is denoted by S? We fix 7 a vector in S? and
€1, €3 two vectors orthogonal to 7. Let h be a positive constant and N — f(N) a
positive function which diverges as N goes to infinity. For any integer N, we denote
by A(hN,hN, f(N)) the parallelepiped of R® centered at 0 with faces parallel
to the axis (€3, €3,7) such that the lengths of the sides parallel to (€1,é3) are
hN,hN and the ones parallel to 7 is f(N). We introduce Ay the set of vertices
A(RN,hN, f(N)) N Z3. The boundary OAy is split into 2 sets

Ay = {i€dAy|ia>0},
0" Ay = {iedAy|ii <0}

We call 0t Ay the upper and 0~ Ay the lower part of dAy. We fix the boundary
conditions outside Ay to be equal to 1 on 0TAy and to —1 on 0~ Ay. The
corresponding partition function on Ay is denoted by Z,".

Definition 2.1. The surface tension in the direction 7t € S? is defined by

1 Zo"

=\ . _ AN
m(7) = Jim =z log Z

The surface tension defined above coincides with the one defined in [MMR] (see
Appendix 8.1). It depends neither on A nor on f as proven in [MMR] (Theorem
2). Let us extend 7 by homogeneity

Vi € R® — {0}, %(ﬁ):||ﬁ||27<ﬁ> and  7(0) = 0. (2.1)

The pyramidal inequality proven in Theorem 3 of [MMR] ensures that 7 is convex.
As 7 is locally bounded and convex, it is continuous. It was proven by Lebowitz
and Pfister [LP] that for all § larger than ., the surface tension 7(7i,) in the
direction 7y = (1,0,0) is positive. From the symmetries and the convexity of 7,
we check that 7 is uniformly positive on S2.

The spin configuration ¢ should be seen as a microscopic representation of the
system. The macroscopic state of the system is instead determined by the value
of an order parameter (the averaged magnetization) which specifies the phase of
the system. As [ is fixed, it is convenient to replace the order parameter by a
parameter v with values &=1. We suppose that the macroscopic region of R* where
our system is confined is 7 = [0, 1]>. We denote by BV(T, {+1,—1}) the set of
functions of bounded variation in 7 with values 1 (see [EG] for a review). The
fact that u, = 1 for some 7 in 7 means that locally at r the system is in equilibrium
in the phase +mg. The precise correspondence between o and functions on 7 is
described in Section 3, where we approximate o by a coarse graining procedure,
introducing a mesoscopic scale.

For all v in BV(T,{+1,—1}), we denote by du the boundary of the set {u =
—1}. If the set Ou has finite perimeter, there exists a set 0*u, called the reduced
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boundary, such that one can define in each point x of 0*u the outer normal denoted
by 7. Let us introduce the functional F on L'(T, [—miﬂ, m%, )

Vu € BV(T, {+1,-1}),  F(u) = /6 7(1iy)dH, (2.2)

where dH is the 2 dimensional Hausdorff measure in R®. If v isin L'(7, [— miﬂ, miﬂ])
but not in BV(T, {+1,—1}) then we set F(u) = oo. To any subset A of T, we
associate the function T4 = 14 — 14 and simply write F(A) = F(14).

An important property is the lower semi-continuity of F with respect to L' con-
vergence. As 7 is convex (see (2.1)), the lower semi-continuity is a consequence of

a result by Ambrosio and Braides (see [AmBr] Theorem 2.1 and example 2.8).

The equilibrium crystal shape W,,, called Wulff shape, is a solution of the
following isoperimetric problem

min {F(u) | u € BV(T, {+1,-1}),  my /Tu dr <m}, (2.3)

where m belongs to |m*, mg[. We will restrict the parameter m so that, for m in
|m*, mg| the minimizers of the variational problems in 7 and R® are the same.
This enables us to avoid boundary problems. The shape W,, can be explicitly
constructed (the Wulff construction) by dilating the set

W= {zeR;  zi<(A)}
eS?

in order to satisfy the volume constraint mg [ Iy, () dr = m. As Wy, = A, W,
one has F(Wy,) = Ay F(W). Thus F(W,,) is continuous with respect to m.

Taylor [Ta] proved that W, is a closed convex surface and that all other mini-
mizers of (2.3) are deduced from W, by shifts. In the following, we suppose that
W, is centered in (3, 3, 3).-
2.3. Heuristics and Results. The total magnetization % Yicay 0i will be de-
noted by Ma,. A shift of the magnetization from its equilibrium value leads to
large deviations controlled by a surface order

Theorem 2.1. There is 3y positive such that for any 3 larger than By and m in
]m*’ mﬂ[

. 1
lim 5 logjifa, (May < m) = —F(Wy),

N—oo

where m* and W, were defined in (2.3).

More precisely, a phase separation occurs on the macroscopic level. In order to
describe it, we introduce an intermediate scale called mesoscopic : the magneti-
zation is locally averaged on boxes of size N* with « €]0,1] (1 < N* < N). For
any integer L, we define the sub-lattice

L L L
Ly, = {(Lm + §;L$2 + §,L$3 + 5) ‘ T = (21,29, 13) € Zs} : (2.4)
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We introduce also B(z, L) the box of length L centered in z in Ly,

B(s,L)={ye2®| Vie{1,23} —g <y—m< g}. (2.5)
To simplify the notation, we fix o in QNJ0, 1[ and suppose from now that N is of
the form 27" % where k and g are integers. The set Ay is partitioned into boxes
B(z, N®) of side length N® centered in x in Lya. For general values of N, one
would need to partition Ay with boxes which may have different sizes. This is a

standard technique and we refer the reader to Pisztora [Pil].
The local magnetization M is a piecewise constant function on 7

1 e L
Vr e T, Mr = W Z 0j if Vl, —5 < NI‘i — Xj S 5
jEB(z,N@)

=

As explained in the introduction, it is convenient to formulate the problem of
phase separation in terms of L' theory. For any function u in L*(T,[—=, -=]),

mg? mg
we denote by V(u, ) the é-neighborhood of u

V(u,d) = {v e L} (T, [—L L]) ‘ /|u,~ — v dr < 5}.

mg’ mﬂ

We can now state a theorem on phase separation which says that for § large
enough with u;’ A ( ‘MAN < m) -probability converging to 1, the function M is
close to some translate of the Wulff shape mgly,,.

Theorem 2.2. There is 3y positive such that for any 3 larger than By and m in
]m*v mﬂ[

M
- + -
Vo > 0, A}gréo Hg Ay (m—g € Tger(]Ime’d) ‘MAN < m) =1,
where m*, W, were defined in (2.3) and T'={r €T | W, +r CT}.

This result is far less sharp than those obtained in the 2 dimensional case (see [IS]).

We will follow the scheme of [BBBP] and deduce Theorems 2.1 and 2.2 from
the following statements.

Proposition 2.1. Let 8 be large enough. Then for all u in BV(T,{+1,—1}) such
that F(u) is finite

C 1 M

lim lim sup Nz 10g 115 A, (m—ﬂ € V(u, 5)) < —F(u).

=0 Nooo

Proposition 2.2. For 8 large enough and m in |m*, mg|

6—0 N—oo 2

TP M
lim lim inf FloguE,AN(m—ﬂ € V(]Iwm,é)) > —F W),

where m* and W, were defined in (2.3).



THE WULFF CONSTRUCTION IN THREE AND MORE DIMENSIONS. 7

Since Proposition 2.1 is only a weak large deviation principle, we need to
strengthen it by proving an exponential tightness property which is similar to
the one in [BBP]. For any a positive, the set

K, ={ueBV(T,{+1,-1})| F(u) <a}

is compact with respect to convergence in measure : As F is lower semi-continuous,
K, is closed and as the surface tension 7 is larger than a positive constant 7y, the
set K, is included in the compact set of functions of bounded variation in 7 with
perimeter smaller than * (see [EG] Section 5.2.3).

Proposition 2.3. We fix 8 large enough. Then there exists a constant Cg such
that for all a and § positive

1 M
lim sup N2 logu“ﬂL’AN (m—g € V(Ka,é)c) < —Cpa,

N—oo

where V(K,, §) is the §-neighborhood of K, in L'(T,[—=, =]).

mg’ mg

The proofs of Theorems 2.1 and 2.2 are based on well known large deviations ar-
guments (see [DS]). For completeness we prove Theorem 2.1, the proof of Theorem
2.2 is similar
Proof of Theorem 2.1.

In order to prove the upper bound, we fix § positive and split the closed set

F = {uELl(T [_m—g mig])| mg /TUTdrgm}

into 2 sets
“E’AN(mﬁﬁ € F) < Whay (mﬂﬁ eFn V(Ka,é)) + ME’AN(% € V(Ka,(s)c).

We choose a such that Cgza is much larger than F(W,,), then Proposition 2.3
enables us to bound the last term in the RHS. Let us fix € positive. Since K, is
compact, we cover it with a finite number £ of neighborhoods V(u;, €;), where each
¢; belongs to ]0,¢] and is chosen such that Proposition 2.1 implies

_ M
hzl\?—?olip N2 log 5, AN( o € V(uz,sz)) < —F(u;) +e.

For ¢ small enough, we cover F' N V(K,,d) with the above neighborhoods which
intersect F. Since u; belongs to V(F,¢), we get from Lemma 2.1.2 of [DS]

1
lim lim supmlog,u;,AN(mMﬂ € FﬂV(Ka,5)) < —lim inf F(u)< — inf F(u).

-0 Nooo e>0ueV(F,e) ueF
As W,, minimizes the variational problem (2.3), the upper bound holds.

To prove the lower bound, we fix € positive and check that {m% eV(ly, .,0)}
is included in {Ma, < m} for ¢ small enough. Proposition 2.2 implies

R | M
lim lim inf — N 5 log pg AN( ™ e V(lw,,_ 5,5)) > —F Whm—e)

—0 N—oo

Letting € go to 0, we complete Theorem 2.1. O
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Let us comment on Propositions 2.2, 2.1 and 2.3. A shift of the averaged
magnetization can be realized by 2 competing effects. The first one, which consists
of producing a large droplet of — inside the bulk, is controlled by surface tension
(Propositions 2.2 and 2.1). The second one consists of increasing homogeneously
the number of small — contours. This requires a lot of energy, but may be favored
by entropy. This effect is ruled out by Proposition 2.3 which is a combination of
an estimate in the phase of small contours with a Peierls type estimate for large
contours. In fact, the underlying phenomena are more subtle and it was shown
by [IS] in the case of dimension 2, that on the level of moderate deviations the
second effect may be the most important.

We start by defining a coarse graining on the mesoscopic scale which keeps more
details of the microscopic structure than M. This is done, in Section 3, via the FK
representation by using Pisztora’s results [Pil]. This coarse graining procedure
imposes that § is larger than a critical value 3, related to the slab percolation
threshold (see [Pil]) and to condition (3.3). It is conjectured that (. equals the
critical value .. In Section 4, motivated by [Ce|, we use an alternative definition
of surface tension in terms of the FK representation. We prove the equivalence of
several expressions for surface tension which will enable us to compare different
boundary conditions.

In Section 5, Proposition 2.1 is proven along the lines of the argument devel-
oped in [BBBP]. It states that the most likely configurations in {mM[, € V(u, 5)}

are those for which the + and — phases coexist along the boundary of Qu, this
coexistence induces deviations proportional to a surface order. The L' constraint
{mMB € V(u, (5)} imposed on the magnetization is not strong enough to localize the

interface close to du : there might be mesoscopic fingers of one phase percolating
into the other. Following [BBBP], we prove by the minimal section argument that
one can chop off these fingers without changing too much the probability of the
event. The renormalization is an essential feature in the previous procedure. Once
the interface is localized on the mesoscopic level, the main problem is to identify
surface tension. Note that in the case of percolation [Ce], the minimal section
argument enables to cut the microscopic fingers which connect the domains sep-
arated by du. Therefore, one can identify the surface tension factor, because for
independent percolation it is defined as the probability that no cluster connects
one domain to the other. In the case of spin systems, one would need to find a
microscopic surface of + spins on one side of du and another one of — spins on
the other side in order to use directly the definition of surface tension. This would
seem difficult to achieve because mesoscopic contours enable only to control the
averaged magnetization and do not ensure the existence of such microscopic sur-
faces. We proceed differently and use an alternative definition of surface tension
in terms of the FK measure. This requires 3 to be large.

Proposition 2.2 is proven in Section 6 under the condition that (3 is larger than
f3.. The coarse graining is only useful to get the lower bound up to . and it could
be avoided if one considers only ( large, in which case, a direct proof without
using the FK representation is possible.
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Section 7 is devoted to the proof of Proposition 2.3. Besides its probabilistic
interpretation, i.e. the proof of an exponential tightness property, Proposition 2.3
deals with a physical phenomenon of a different nature than the surface tension :
it states that the occurrence of many small contours is unlikely. The production
of surface tension supposes a balance between energy and entropy. It is a general
feature of DKS theory that energy is the dominant factor which rules out the
occurrence of small contours. The techniques developed in [SS]| and [IS] to con-
trol the phase of small contours, for the two dimensional Ising model, are robust
enough to be extended to higher dimensions provided Peierls estimate holds. This
observation was used in [BBP]. For § large enough, one could have proceed as in
[BBP] and worked only with the Gibbs measure. We use an alternative approach
borrowed to [I2] and deduce directly estimates on the phase of small contours from
Pisztora’s results [Pil]. Thus Proposition 2.3 holds as soon as 3 is larger than B..

As noticed in the papers on Ising model with Kac potentials, the strategy de-
scribed above can be applied in any dimension larger or equal to three. As a final
remark, we stress the fact that the above results could be easily extended to prove
a large deviation principle for the measures ME, Ay With action functional F. This
setting was developed in [BBP] and also used for percolation [Ce]. This requires
a modification of Proposition 2.2 which is described in remark 8.3 at the end of
subsection 8.3.

3. COARSE GRAINING AND MESOSCOPIC SCALE

3.1. The FK representation. We describe now the FK representation of Ising
model. For a review of FK measures, we refer the reader to [Pil], [Gri] and

[ACCN].

The set of edges is E = {{x,y} | x ~ y} For bond percolation, the config-

urations w belong to Q@ = {0,1}*. An edge b in E is open if w, = 1 and closed
otherwise. To any subset A of Z3 and 7 included in JA, we associate a set of edges

A7 ={{z,y} |z ~y, s €A, yeAUT),

and the space of configurations in A is QF = {0, 1},

Let w be a configuration in €, an open path (z1,...,z,) is a finite sequence of
distinct nearest neighbors zy,..., %, such that on each edge wis; 4,3 = 1. We
write {A <> B} for the event such that there exists an open path joining a site
of A to one of B. A x-connected path (z1,...,z,) is a finite sequence of distinct
vertices such that ||z — Tg41]|2 is smaller than /3 for all k.

The connected components of the set of open edges of w are called w-clusters.
The w-cluster associated to the site i is denoted by C;(w).

Let us now describe the FK representation of the Ising model (see Edwards and
Sokal [ES]). Let A be a finite subset in Z* and 7 a subset of JA. The first step is
to introduce a measure on 2%. A vertex z of A is called 7w-wired if it is connected
by an open path to m. We call w-clusters the clusters defined with respect to the
boundary condition 7 : a m-cluster is a connected set of open edges in 2} and we
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identify to be the same cluster all the clusters which are w-wired, i.e. connected
to m. For a given p in [0, 1], we define the FK measure on Q} with boundary
conditions 7 by

™ 1 —Wp )W ™ (w
(I)A’p(w) = ZX:P ( H (1 _p)l ‘P b) 27 )’

belAlZ

where Z}* is a normalization factor and ¢"(w) is the number of clusters which are
not m-wired.

If 7 = OA then the boundary conditions are said to be wired and the corre-
sponding FK measure on QY is denoted by ®Y*. If 7 = @, we write ®%P for the
measure on €2} . For any subset A of A, we denote by F5 the o-field generated by
finite dimensional cylinders associated with configurations in QY /€Y, then strong
FKG property (see [Pil]) implies that for every increasing function g supported
by QL

DY —as,  BP(g) < BYP(g| FL) < BNP(g). (3.1)
In particular, one has
P (g) < BP(g) < BYP(g) < BXP(g). (3.2)

In order to recover the Gibbs measure ,ug’ A, we fix the percolation parameter
pg = 1 — exp(—f) and generate the edges configuration w in QY according to the
measure ®,"”.

Given w, we associate to the wired cluster the sign +1 and equip randomly each
w-cluster with a color £1 with probability % independently from the others. This
amounts to introduce the measure P¥ on {—1,1}* such that the spin o; = 1 if
C;(w) is m-wired and to be the chosen color of C;(w) otherwise. The Gibbs measure
/155 can be viewed as the first marginal of the coupled measure Py (0)®," (w)

Vor €Sh  mialon) = [ PRo)OR (dw).
b} Q‘;\V
By abuse of notation, the joint measure will be also denoted by u; A
As a consequence of this representation one has
mg = lim pf s (00) = lim &3 ({0 < 0Ay}) = ©.
In the following, we use mg or © depending on the context.
In Theorems 2.1 and 2.2, we consider only the case 3 large. The first reason to

do so is to satisfy the hypothesis of Theorem 5.3 of [Gri] which implies that for 3
large enough

lim 0% ({0 ¢ 0AN}) = lim @37 ({0 > 0Ay}) = ©. (3.3)

Throughout the paper we suppose that (3.3) holds. The assumption § large will
also be useful for technical reasons in the proof of Lemma 4.3.
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3.2. Coarse graining. We recall the renormalization procedure introduced by
Pisztora [Pil], [DP] for the FK measure. For our purposes, it is preferable to use
an alternative construction of the coarse graining [Pi2]. The results of this section
hold for 3 larger than 8., where 3, was defined in [Pi1] in terms of slab percolation
threshold. Let (3, be the smallest value such that (3.3) is satisfied and B, > ﬂc It
is conjectured that ﬁc coincides with the critical value ..

Let v = % and o = % + 3. In fact v could be any positive parameter small

enough. As in subsection 2.3, we partition the domain Ay = {1, N}? into disjoint
boxes B(z, N*) of length N centered in z in Ly« (see (2.4) and (2.5)). For
each z in Lya, we consider also the bigger box B(z, 2N®) containing B(z, N®).
Note that if z and y are *-neighbors in Ly the boxes B(z, 2N*) and B(y, 3N?)
overlap. Following [Pil], we introduce events which occur on the box B(z,2N®)
for each z in Lye

U, = {w € Qx, ‘ there is a unique crossing cluster C* in B(z, ZN"‘)} .
A crossing cluster is a cluster which intersects all the faces of the box.
R, = U,() {w € QX ‘ every open path in B(z, ZNO‘) with diameter
larger than N7 is contained in C*},
where the diameter of a subset A of Z? is sup,, ¢ 4 ||z — yll1. We also define

0O, = R, ﬂ {w € QX ‘ C* crosses every sub-box of side length N7

5
contained in B(z, ZN")}.

Finally, we consider an event which imposes that the density of the crossing cluster
is close to © (see (3.3)) in B(z, N*) with accuracy ¢ > 0

vi=UN{weax, |IC e®=¢0+( BN}

In the following, parameters «,y will be fixed, therefore we omit the dependence
on these parameters in notation. We will only consider different coarse graining
for different values of (.

Each box B(z, N®) is labelled by the random variable Y,$(w) depending only on
the configuration w in QY

Yiw) = 1 if weO0,NVE,
Yiw) = 0 otherwise.

Let {z1,...,x¢} be vertices in Lya not x-neighbors of z, then [Pil] implies that
there is an integer N such that

VN> Ne,  OaP(YVE=0]Y5,...,YS) < exp(—cN7) + exp(—cN®),
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where c¢; depends only on ¢ and c is a constant. From [LSS] (Theorem 1.3), we

deduce that for N large enough, the random variables {Y,$} are dominated by a
Bernoulli product measure 7,,

Ton (X =0) = py < exp(—ccN7), (3.4)

where ¢, is a positive constant. A similar result was already stated in [Pil].

The random variables Y¢ are only related to w, therefore the next step is to
define a family of random variables which depend on (o,w). We denote by M,
the averaged magnetization in the box B(z, N)

1
M, =M=z = i 3.5
N N3a ieBgNa)o- ( )

Pisztora’s results [Pil] give a control of the deviation of the averaged magnetization
from its equilibrium values +mg in the boxes B(x, N®). If Y, = 1, this deviation
comes from the random coloring of the small clusters (those of diameter less than
N7) included in B(z, N*) : this random coloring is independent of the boxes
around B(z, N®). Let ¢ be positive and define the new random variables {Z§}
which depend on the joint law of (o, w)

Z5(o,w) = sign(C*) if  YSw)=1 and |M, —sign(C*)myg| < 2¢,
Z5(o,w) = 0 otherwise.
Combining results of [Pil] and [LSS], we check that there is N, such that for

all N larger than N, the random variables {|Z¢|}, taking values in {0,1}, are
dominated by a Bernoulli product measure 7,

gy (X = 0) = ply < exp(—e( V), (36)
where ¢, is a positive constant depending only on (. Since the setting is different

from [Pil], we sketch the proof in Appendix 8.2.

3.3. Mesoscopic scale. In subsection 2.3, we already used a homogenization
procedure on the mesoscopic scale N¢. We introduce now a different mesoscopic
representation which takes into account more details of the microscopic structure.

For a given ( positive, we associate to any configuration (o,w) in Xa, X Qx,
the piecewise constant function 7¢ on T

L L
VreT, TS(0,w) = Z(0,w) if Vi, -5 < Nr;—z; < 5 (3.7)

If (o,w) is close to an equilibrium phase on a mesoscopic scale then T¢ has the
sign of this phase. The 2 pure phases are represented by functions T¢ constantly
equal to 1 or —1. From (3.6), one knows that for § larger than 3,

: + ¢ —
Sim A ({Tr =1, VreT}h =1

The next lemma proves that a knowledge of the asymptotic of T¢ is sufficient to
control the local magnetization M. Therefore to prove Propositions 2.1, 2.2 and
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2.3, it will be enough to replace M by T¢. The accuracy of the approximation
depends on the parameter ( which controls the coarse graining.

Lemma 3.1. For any 0 positive, we set ( = ié, then

1
- + ¢ _
A}l_lgomloguﬂ,AN ([r ‘mgTT — M, |dr > (5) = —00.

Proof. One has

Ny 3
drg(W> 3 ‘mﬂzg—MmL

B(z,N*)

/T ‘mng - MT

this implies

a

N 3
dr S (W) Z 1Z§:0 + ZC

B(z,N%)

/7_ ‘mﬂTf - MT

Since ( is small enough

0 -«
o ) 2 (520 ).

where #{Z$ = 0} is the number of boxes with label 0. Therefore the lemma above

will be a consequence of

Lemma 3.2. For any 6 and ( positive

i ! 3(l—a
Jim —log i, (#(26 = 0} > 6N = oo,

Proof. One has

(1-a)
1hay (#{25 =0} > GN*1=)) < NSZ whay (#{25 =0} = k).

k=6N3(1—a)

The random variables |Z¢| are dominated by independent variables (3.6), thus for
N large enough

e (#{Zg =0} > 5N3(1_a)) < N exp(—c dN3=a+my,
This implies
/LZ’L,AN (#{Z§ =0} > 5N3(1_a)) < exp (1n2N3(1—a) _ CC(;N2+%7)_

As 3(1 — «) < 2, the entropic factor is negligible and the Lemma follows. O
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4. SURFACE TENSION

As explained in the introduction, the main problem to derive Wulff construction
is to recover surface tension from general boundary conditions. In this section we
rewrite the surface tension in terms of the FK measure and prove that this new
expression depends weakly on boundary conditions. This expression is reminiscent
to the one introduced by Cerf [Ce] in the context of percolation.

We keep notation of subsection 2.2. Throughout this section, we fix the direction
7 and without loss of generality, we set h = 1. We also suppose that ; f ( ) dlverges
to infinity as N goes to infinity.

4.1. First step. The next lemma will be useful to prove Proposition 2.2

Lemma 4.1. Let {0"An<p» 0" An} be the event such that there is no open path
inside [An]Y joining 0T Ay to 0~ An. Then
— 1 3 —
7(7i) = Jim —— log &} ({0" An<b 07 An}). (4.1)
Note that the event {0TAyx<» 0~ Ax} takes only into account the paths inside
Ax and not the identification produced by wired boundary conditions.

Proof. We rewrite the quantities in terms of the FK representation. A well known
argument implies that for pg = 1 — exp(—0)

Z H €xXp (ﬂ(éam,ay - ) Z H 1 _ pﬁ 1 Wbp‘gb2cw(w)’

TEXA N <z Y>E[AN]Y weQy = be[AN]Y

where ¢"(w) is the number of clusters which are not wired.

We prove now an equivalent formula for

Z H exp (ﬂ(éam,ay - 1))7

TEXA y <zy>E[AN]Y
where boundary conditions are equal to 1 on A}, and to —1 on OA,. We get
Z H (1_pﬁ+pﬂ60’m70'y)?
0EXA N <zy>E[AN]Y
this gives

=2 X Hl—pﬁ””p‘é"’ II b0

UEEAN (.UEQ b=<z y>
wp=

Therefore

Zie = 2 M=) 3 1 desy

wEQW O'EEAN b=<z y>
wp=

The boundary conditions imply that configurations w containing a path joining
0TAn to 0" Ay are not taken into account. We keep the definition of wired
boundary conditions identifying all the clusters which touch the boundary 9Ay
+,— _ - wp o™
Z5T = 3" Lgrayd o-any (@) [J(1 = pp) ' rpie2e™ ).

wEQ‘[’\"N b
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+_

Taking the ratio we recover )77 ({6+AN<—|—> 8*AN}). O

Z+J
AN

4.2. Second step. In the following, we denote by A%y = A(N, N, 1 f(N))NZ?3 the
parallelepiped included in Ay.

Lemma 4.2. One has
— . ]' 3
(i) = Jim. ) log &) ({8+A' 4 0 A })

Proof. By definition {0t A/y<» 0~ Ay} is included in {0t An<p 0~ An}. Therefore,
Lemma 4.1 implies

7() < lim inf —Flog O ({0 A 0 A }).

Let us prove the reverse inequality. The event {07 Ay« 0~ Ay} is decreasing and
supported by [A]Y. Thus (3.2) gives

a2 ({0 Ay 07 ARY) > @322 ({07 Aysb 07 A, (4.2)
Since surface tension does not depend on the function f, Lemma 4.1 implies
1
7(ii) = Jim — < log @ P ({0 Ny 07 AR }).
—00

Thus using (4.2), the lemma is proven. O

4.3. Third step. Let <I> ¥ be the FK measure with wired boundary conditions
on the sides of An parallel to 77 and free on the sides orthogonal to 7.

Lemma 4.3. There is a constant 3y independent of i and f such that for any
larger than (B
B 1
7(71) = A}lngo —ﬁlogq)f{N ({8+A 4 07 A })
Proof. The event {0t Ay« 0~ A’y } is denoted by Sy. Applying (3.1), one observes
that ®%" (Sy) > @377 (Sy) so that Lemma 4.2 implies

7(i1) > limsup —

n N2 log @& ~(Sn). (4.3)

To prove the reverse inequality, we introduce the slabs Sly* and Sly™ in Ay

Syt = (A(N, N,%f(]\f)) + gf(N)ﬁ> Nz,
3

Sy~ = (/_X(N,N,%f(N)) - gf(N)ﬁ) N7,

For any w in €Y, , we call a vertex x white if w, = 1 for all edge b incident with
x and black otherwise. Let A} (resp Ay) be the event such that there is a surface
of white vertices which crosses the slab Sly™ (resp Sly~) and separates the two
sides of the slab orthogonal to 7. Equivalently, one can define A%° as the set of
configurations wy, which contain a *-connected path of black vertices intersecting
the 2 sides of Sly™ orthogonal to 7.
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One has
% (Sw) = @R (Sw N A% N Ay) + 8% (S 1 (AF N Ax)°)- (44)

First we estimate the last term in the RHS. It is enough to prove an upper
bound for (Dfxx (SN N A}C). The events Sy and A} have distinct supports, so
that we can take the conditional expectation with respect to dw, the configuration
outside Sly™

O (S N A%) = By <5N 2 | (A;C)).
Since A%° is decreasing, (3.1) implies

cI351 +(A+C) < (Ds’ll)ﬂ+(A+c)
where the free boundary conditions are outside the domain [Slx*]¥. In order to
control this term, we use a Peierls argument (see [Gri] p. 1486). By the comparison
result of Aizenman, Chayes, Chayes and Newman [ACCN] the above probablhty

is bounded by the percolation (product) measure @ . with pﬁ m

O (AFS) < B2

Sint

Sly +(A;c)

We choose 8 large enough so that pj is close to 1. Then Peierls estimate holds
and there is a constant ¢ > 0 such that the probability that a x-connected black
path joins 2 vertices z and y on both sides of Sly™ is less than exp(—5f(N)).

This comes from the fact that the length of such a path is at least % f(NV)
=D c c
g+ (AF) < NP exp (= 15 (V).
One finally obtains
w Cc c W
e (Sy N ALS) < N?exp (- m FIN)) @R (Sw). (4.5)

We turn now to the estimate of @iz (SN NAL N Ay ) For a given w in A}, we

are going to define the surface ST (w) of white vertices which is the closest to the
“upper” side of Slx™.

First we construct the black set B¥(w) as follows : B*(w) contains the vertices in
the “upper” side of SIy™, i.e. the vertices at distance less than 2 of the hyperplan
parallel to (é1,€3) and centered in % f(N)7i. Furthermore B*(w) contains all the
black vertices linked by a *-connected path of black vertices to the boundary of
the “upper” side of Sly™. A vertex z is in S*(w) if it belongs to the boundary of
Bt (w) and if there is a path of vertices joining = to 0 without crossing BT (w). By
construction the vertices in S*(w) are white. In the same way we define S~ (w)
as the surface of white vertices which is the closest to the “lower” side of Sly~,
i.e. to the set of the vertices at distance less than 2 of the hyperplan parallel to
(€1, €3) and centered in — L f(N)7i.

The region between the surfaces ST and S~ is denoted by Sy and by construc-

tion A’y is included in Sy. Therefore we can consider the conditional expectation
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of Sy with respect to the configurations outside Sy (the measurability is discussed
in [Gri] p. 1487). Since ST and S~ contain only white vertices, one gets

BRY (SN Af N Ay) = &% (A% N Ay @527 (Sw)).
The event Sy is decreasing, thus strong FKG property (3.2) implies
O (Sy N AL NAy) <O (AL N Ay) B (Sy) < BY(Sy).  (4.6)
Combining (4.4), (4.5) and (4.6), we obtain
w w, c W
iy (Sw) < @R (Sw) + N exp (= 15/ (V) B0 (Sw).
Applying Lemma 4.2, we get

: . 1 w —
lim inf —— log Y (Sy) > 7(7).

The Lemma is completed. 0

4.4. Fourth step. Now, we will modify the boundary conditions and prove that
the surface tension remains unchanged. The following lemma will be important
in the proof of Proposition 2.1. It requires the assumption 3 large.

We denote by 0™PA’y (resp 0°°°Aly) the face of T A’y (resp 0~ A’y) orthogonal
to 7. Let {9 A<k 0*°'A} be the event such that there is no open path inside
[AN]Y connecting P A’y to AP°*A’y. Finally, we set

: f(N)
5=1 ,
Now N

and suppose that ¢ is finite.

Lemma 4.4. There is a constant (g independent of i and f such that for any 3
larger than 0

1 x
lim sup N log (sglrp e ({8t°pA'N<-|—> 8b°tA'N})) < —7(7) + g0,

N—oo

where the constant cs depends only on 3. The above inequality holds uniformly
over the boundary conditions m outside [An]Y.

Proof. As {0"™P A <p 0°°A'y} is decreasing, strong FKG property (3.1) implies
sup 877 ({9 Ayt 07" Ay}) < @377 ({0 Ay 9™ Ay }),

N
where the free boundary conditions are outside [Ay]|¥. Note also that
BN ({0 Ayt 0 Ay }) < 2O @RY ({9 P Ay o 07U ANY). (47)

We fix a configuration w in {90"PA’\<p dP°*A’y}. The inner boundary of Ay is
defined by

Ay ={z €Ay |y &Ay, y~a}
For any vertex x on the sides of 0*Ay parallel to 7, we modify the edges of w
incident with = into closed edges and denote by @ the new configuration. By
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construction @ belongs to {0 Ay« 0~ Aly}. Noticing that the number of edges
which have been modified is smaller than 50f(N)N and using (4.7), one has

B ({0 Ay <p 0" Aly}) < exp(eaf(N)N) B ({87 Ay<b 97 A }),

where cs depends only on 3. Using Lemma 4.3, we complete the proof. O

5. UPPER BOUND : PROPOSITION 2.1

Throughout this Section, we fix v in BV(7, {+1, —1}) such that F(u) is finite.
We split the proof into 3 steps.

5.1. Approximation. First we suppose that du is included in the interior of 7.
The general case will be treated in subsection 5.3. We approximate the boundary
of v with a finite number of parallelepipeds. Similar Theorems were already stated
in [ABCP] and [Ce]. The following result is proven in Appendix 8.3.

Theorem 5.1. For any § positive, there exists h positive such that there are £
disjoint parallelepipeds R',..., R included in T with cubic basis BY,..., Bt of
size h and height 6h. The basis B® divides R' in 2 parallelepipeds R** and R“~
and we denote by i1; the normal to B*. Furthermore, the parallelepipeds satisfy the
following properties

/ IXRi(r) —u(r)|dr < (5vol(RZ) and

D) dHy — F(u)| <6,
where xgri = 1pi+ — Lgi— and the volume of RZ is vol(R") = 6h3. The area [z dH,
of B* is h?.

We fix § positive. The approximation procedure implies

1
hm limsup — NE log  phay (mﬂg € V(u,(;/)) <

=0 Nooo
0

1 . .
limsupmlogungN (M €N V(RZ,Qévol(RZ))),

N—oo msg =1
where the e-neighborhood of R? is
iy 1 ,
V) = (v e (T L) | [ o)~ x)lar <<

According to Lemma 3.1, there is ( small enough, depending on ¢ and A, such
that
¢

1 . .
lim Sup log “EJL,AN (mﬂg €N V(R’,Q(SVO](RZ))) <

N—oo i=1

1
11msupN 108 115 A (T € ﬂ V(R', 3(5vol(RZ)))

N— =1

Therefore to prove Proposition 2.1, it is enough to show that

lim sup - N2 log 1 4, (T¢ € ﬂ V(R 30v0l(RY))) < —F(u) + Cpud,
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where the constant C3,, depends only on 3 and u. Each box can be labelled by

3 values 0,£1, thus the number of configurations 7¢ is less than 3NN Ag
3(1 — a) < 2, this term has no entropic effect. Thus it remains to check

) 1
imsup i 1og (w0 i, (1)) € -F@ 4 Oud. ()
where U® denotes N, V(R?, 36vol(R?)) and {T¢} is the set of configurations (o, w)
which realize T¢.

5.2. Minimal section argument. The microscopic domain associated to R is

. = NR'NAy. We also set Ry = NR""NAy and Ry, = Ry /R%'. Let L be
the subset of boxes B(x, N®) intersecting Rjy. The number of boxes intersecting
Ry is

Nyt = N30-%y0l(RY) (; (N2<1—a>)>, (5.2)

where the error term o( N21~%)) goes to 0 as N increases. This error is due to the
fact that the partition may not be exact on the sides of Rﬁ’v+. A similar estimate
holds for N, ]i}*, the number of boxes intersecting Ré\’f

Let us fix T¢ in N, V(R?, 36vol(R?)). To any configuration (o,w) in {T¢}, we
associate the set of bad boxes which are the boxes in L% labelled by Z$ = 0 and
the ones intersecting R%" (resp R%) labelled by Z$ = —1 (resp Z¢ = 1).

We will now use the L'-constraint to derive bounds on the number of bad boxes.
The number of boxes in Lk not included in R} is smaller than 50h2N%(1~2)
therefore

|s-e) / TS~ 1ldr— Y [Z5—1]| < 100N,
BT B(z,N)nR £0

Since T belongs to V(R!, 3dvol(R?)), one gets from (5.2) that for N large enough
the number of bad boxes in Ry is smaller than 106N 5", In the same way, we
check that the number of bad boxes in R% is smaller than 106N}

Let R'' be the parallelepiped included in R’ with basis B’ and height gh.
Its microscopic counterpart is Rﬁvl. We will apply the minimal section argu-
ment introduced in [BBBP] and relate the expectation of {T°} to the one of
Nz {0"P Ry« O™ RY'}.

For any integer k, we set B%* = B’ 4+ 10—£.7,;. Let B?{,k be the microscopic
subset of R%,' associated to Bk

Nla

Byf ={jeRy |3reB*  |j-Nr[\<10}.
We define BF as the smallest connected set of mesoscopic boxes containing

{By,N*)eLiy |  B(y,N*)n By # 0}.
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By construction the B are disjoint surfaces of boxes. For k positive, let n; (k) be
the number of bad boxes in BF and define

oh
+ _ . + . - l—«a
n; —mln{ni (k); 0<k< 30N }
Call £* the smallest location where the minimum is achieved and define the min-
imal section as Bf+. For k non positive, we denote by B~ the minimal section in
R%™ and n; the number of bad boxes in B .

For any configuration (o,w) in {T¢}, we will check that the total number of bad
boxes is bounded by

e
S nf +n; < C SN, (5.3)
i=1

where C, is a constant depending only on u. By definition, one has

@le" n < 2 1

< 106N
30 it
B(z,N*)NRY T £0

Z5#1

For N large enough, (5.2) implies that n;” < 103§h2N2(-2), Note that h? is in fact
the area of B?, therefore the approximation procedure implies that £h? is bounded
by a constant depending on the perimeter of du. Thus (5.3) holds.

We are now going to use all the previous estimates. We define
A= {u) € QX ‘ Jo such that (o,w) € {TC}}.

Any configuration w in A will be mapped into w by the following procedure. For
any bad box B(xz, N?) in the minimal sections, we change the open edges of w
located on the sides of the box B(z, 2N®) into closed edges. The new configura-
tion @ belongs to {9"PRy'ds» P Ry}, because any open path of w which joins
OP*Ri" to 0'PRi' intersects at least one of the minimal section on a bad block
and therefore is cut by the above procedure. Let C be an open path of w join-
ing 9"PRi to "' R, and suppose that C crosses the minimal sections without
intersecting a bad box. Then C intersects the boxes B(z™, N*) and B(z~, N%)
in Bf" and Bf” with labels Y%, = Y = 1. This would imply that the crossing
clusters of B(z+, N®) and B(z~, N®) are connected to C, so that Z5, = Z5_.
Therefore one of these boxes has to be a bad box.

Around the bad boxes, we change at most 20(n;” +n; ) N?® edges. From (5.3) the
total number of edges involved in the previous procedure is bounded by 100C,d N2.
Therefore we get

g (1) < 837 (A) < exp (CoudN?) @32 ( (ORY 5 9PRY),
i=1

where the constant Cg, depends only on  and u.
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Conditioning outside each domain R, and using Lemma 4.4, we derive

1
li]rglj;ip N2 log( sup d J’B({TQ)) < — Z/ 7(7;) dHy + Cpo 6 + cglh® 5,

where ¢z was defined in Lemma 4.4. Noticing that ¢h? is bounded in terms of the
perimeter of v and using Theorem 5.1, we derive (5.1).

5.3. Boundary conditions. Let U be the intersection of the reduced boundary
0*u and of 07 . Suppose that U has a positive 2 dimensional Hausdorff measure.
In this case we cannot approximate the surface U as in Theorem 5.1 with paral-
lelepipeds included in 7. We state a variant of Theorem 5.1 proven in Appendix
8.3

Theorem 5.2. For any § positive, there exist h positive and £ disjoint squares
B, ..., Bt in OT of size h and normal 7i; such that

7(71;) dH, —/ (7
i U

Furthermore, there are ¢ disjoint parallelepipeds R', ..., R® included in T such
that one of the face of R* is B* and the height of R® is 6h. The parallelepipeds also
satisfy

Hy| <.

Vi <4, 14w, |dr < 6 vol(RY).
Rz

The proof of the upper bound is based on local estimates in each parallelepiped,
thus we will simply explain how to adapt the previous proof to obtain

hm sup N2 10g 115 Ay (TC € ﬂ V(R 5V0](R’))) —/UT(ﬁw) dM, + Csu0, (5.4)

where Cj, is a constant and V(R dvol(R)) is
. . 1 1 ;
% AN 1 i
V(R', 6vol(RY)) = {v e L'(T,[- = ﬂ]) \ /R v, + 1| dr < 6vol(R )} .

Combining estimates (5.1) and (5.4), one derives Proposition 2.1 for any function
of bounded variation u in 7.

Let R be the microscopic set associated to R'. The set of bad boxes is the set
of boxes B(z, N%) intersecting R% and labelled by 0 or 1. Using the L' constraint,
we see that the number of bad boxes is smaller than 10623 N30~ Let R’ be
the parallelepiped included in R’ with height %h and such that one of its faces is
B?. The previous argument implies that the minimal section contains less than
1006R2N?(1=2) bad boxes. Therefore we can cut the wired open paths which cross
the minimal section and obtain for N large enough

ME’AN(TCEﬁV(Ri,évol(Ri)))<exp (CoudN?) D% (ﬂ{ampRz b 0" RY'}).
=1
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Let R’ be the union of R* and of the parallelepiped in 7 with height %h and one
of its faces is equal to B'. Denote by R the corresponding microscopic domain,
then by inequality (3.1) one has for any boundary condition 7 outside Rl

= T,W oppi ! ot pi ! f, op pi ! ot pi !
O ({0°P Ry b 0™ RY'}) < @37 ({9°PRY b 0™ Riy'}),

where @71;’?' is the gibbs measure with wired boundary conditions on the face of
N

RY; which coincides with Ay and 7 otherwise. This enables us to apply Lemma
4.4 and to recover (5.4).

6. LOWER BOUND : PROPOSITION 2.2

The proof rests only on Lemma 4.1, therefore Proposition 2.2 holds as soon as
B is larger than . (see subsection 3.2). The proof is divided into 2 steps.

6.1. Approximation procedure. We first state an approximation theorem which
will be proven in Appendix 8.3. We call polyhedral set, a set which has a boundary
included in the union of a finite number of hyperplans.

Theorem 6.1. For any 0 positive, there exists a polyhedral set W such that

0 o
Ly € V(ly,.3)  and F(W) = F(Wn)| < 5
For any h small enough there are £ disjoint cubes R, ..., R of size h with basis

B, ..., Bt included in OW. Furthermore, the squares B, ..., B* cover OW up to
a set of measure less than & denoted by U° = OW/ Ule B' and they satisfy

() dH, — ]—'(Wm)‘ <5

where the normal to B* is denoted by 7;.

We fix § positive and choose a set W approximating W,,,, then

{m% e V(T¥, g)}ﬂ {T¢ € V(ly, g)} C {mﬂﬂ € V(I d)}.

Lemma 3.1 implies that there exists ¢ such that the event {mﬂﬂ ¢ V(T¢, %)} has a
probability which vanishes exponentially fast, therefore

M 4
hm 1an log 1, AN< o € V(]Iwm,d)) > hm 1nfmlog,uﬂ An (TC € V(Iy, 3))

It remains to find a lower bound for the term in the RHS. For any ¢ positive, we
construct a shell around OW which splits 7 into 2 domains

S. = {r e T | dist(r,0W) < e}.
We set
Wr={reWe|dist(r,0W)>e} and W. ={re W |dist(r,0W) > ¢}.
Let W be the set of mesoscopic boxes included in NW* N Ay. We fix ¢ such

that the volume of S. is smaller than 2 15 and choose h smaller than .
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6.2. Exponential bound. The microscopic domain associated to the cube R
is denoted by Ry = NR' N Ay. We set Ay = N {07 Ry 0" RYy}. The

microscopic domain
Ud = {x € Ay | IreU° |lz—Nr|; < 10}

is an enlargement of the surface U’ defined in the approximation procedure. We
introduce By, the set of configurations with closed edges in U%. Hypotheses on
U? imply that By is supported by at most 105N? edges.

We decompose Ay N By into 2 disjoint sets
N;,AN (-AN N BN) = NZ’_,AN (AN N By N{VB(z, N*) C W:N UW, N3 |Z5| = 1})
+ 1hay(Av N By N {3B(z,N®) C Wiy UWoy;  Z5=0}).

We first estimate the last term in the RHS. By definition the events Ay N By
and {(o,w) | 3B(z, N*) C Wy UW_ y; Z$ = 0} have disjoint supports. Taking
the conditional expectation with respect to Ay N By and using the stochastic

domination (3.6) (see also remark 8.1), we get

15y ({EIB(x,Na) C Wiy UWoy; Z5 =0} ‘ Ayx N BN) < N3=9) exp(—c,N7).
Therefore, for N large enough

1hay (Av 0 By) < 2uf 0 (Ax 0By N {VB(z, N®) C Wiy UW,.y; |28 =1}).

By construction, no configuration w of Ay N By contains an open path joining
the 2 connected components of Ay / ( U, R U UI‘{,). Therefore any configuration
in Ay N By N{VB(z, N*) ¢ Wy UW_y; |ZS| = 1} contains 2 disconnected
microscopic crossing clusters. The cluster connected to dAy is denoted by C*
and the other one by C'~. The wired constraint imposes the sign 1 to C*. With
probability % we choose the sign of C~ to be —1. We define the event

CN(Ua QJ) = ANﬂBN ﬂ{VB(CC,Na) C WE—E_N; Z;g = 1}
({VB(z,N*) C W, n; Z§=—1}.

then uj A, (Ax NBy) < 4pj A, (Cy). Thus for any configuration (o,w) in Cy, the
function T¢(o,w) is equal to 1 on W and to —1 on W_ (see (3.7)). Since the

volume of &, is less than %, we have

)
Cy € {(o,w) | T(0,w) € V(I g)},
this leads to
0 1
'UJE,AN (TC(O',L()) € V(]IW, g)) 2 Z'UJZ;AN (.AN N BN)
As Ay N By depends only on the variable w, we replace the coupled measure by
the FK measure @X’Jsﬂ . The support of By contains less than 105 /N? edges, so that

S 1 I S
1hay (T¢ € V(Iw, g)) > Zexp(—cﬂ(sNQ)(I)A’Jsﬂ( N{0" Riv4» 0~ RN }),
=1
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where c¢g is a constant depending on 3. The events {0 R < 0~ R%} occur on
disjoint supports, taking the conditional expectation with respect to the configu-
ration Ow; outside Ry, we have

) exp(—cgdN?)
) > exp(—cpdV*)

uhay(TC € V(ly, y W"ﬂ(Hqﬁ% {0" Riy4» 0~ Ry })).

Since the events {07 R« 0~ R%} are non increasing, (3.1) implies

M;,AN (TC € V(]IW; g)) > M H <I> apﬂ ({8+R3V<-|—) 8_R3V})

Taking the limit as N goes to infinity and using Lemma 4.1, we obtain

hmlnfﬁloguﬂAN(T eV(]IW, Z/ () dHy — 6.

The proof is completed by letting § go to 0. O

7. EXPONENTIAL TIGHTNESS : PROPOSITION 2.3

In view of Lemma 3.1, Proposition 2.3 will be a consequence of

Lemma 7.1. Let (8 be larger than (. (see subsection 3.2), then there is Cyz such
that for any a positive

. 1 .
V(0> 0,  limsup < log ihay (T¢ € V(Ka,0)) < —Cpa.

A high density of small contours can be interpreted on the mesoscopic scale as
a high density of random variables Z¢ = 0. Such events are ruled out by Lemma
3.2. If T belongs to V(K,, )¢ and does not contain many boxes labelled by
Z¢ = 0, then there are mainly mesoscopic sets of constant sign. By definition of
the variables Z¢, two sets of different signs are disconnected on the microscopic
level and therefore are separated by a layer of boxes with label Z¢ = 0. The
problem is that the probability of the event {Z$ = 0} may only be of the order
of exp(—N7) which is much higher than the expected surface order exp(—N?%).
Thus we introduce another coarse graining in order to recover the surface order.
The scheme of the following proof was suggested by D. loffe.

Proof. As noticed in subsection 5.2, the number of configurations T is less than
37 Thus it is enough to fix T¢ in V(K,,4)¢ and to estimate 15 Ay ({T4}).
Lemma 3.2 enables us to consider only configurations 7¢ with a number of boxes
labelled by 0 smaller than 6 N31~%_ This amounts to say that

1 dr <. 7.1
/7. Té=0 0T = (7.1)

Each realization of T¢ splits 7 into 7 = 7. U 7_ U Ty, where T is constantly
equal to +1 on 7y and to 0 on 75. From (7.1), the measure of 7; is smaller
than 6. The microscopic counterparts of 7, and 7_ will be denoted by Ay, and



THE WULFF CONSTRUCTION IN THREE AND MORE DIMENSIONS. 25

Apy_. Moreover as T¢ belongs to V(K,, )¢, for any regular set A of T such that
T CACT\T:

/ dH, > a, (7.2)
dA

where [;, dH, is the perimeter of 0A. Note that for each configuration in V(K,, §)°
the set 7_ is not empty.

Let L be an integer large enough which divides N and is independent of N.
We partition Ay into boxes B(i, L) where 7 is in £;,. We also introduce the boxes
B(i, gL) and following subsection 3.2, define a coarse graining on the scale L.
Let {y;} be the family of random variables equal to 1 if the event O; (for the
box B(i,2L)) is satisfied and 0 otherwise. We define the microscopic set Ay as
the union of Ay _ and of the boxes B(i, L) labelled by 1 such that there is a
«-connected path of boxes B(j, L) labelled by 1 joining B(i, L) to Ay,_. For any
configuration (o,w) in {T¢} there is no microscopic path connecting Ay, U90Ay
to Ay,_. Therefore there is no *-connected path of boxes B(j, L) labelled by 1
connecting Ay 4 UOAy to Ay . This implies that

Ay— C Ay C AN\ An;.

We define also Gy = Ay \ le. Let Gy = Ule G v, be the decomposition of G x
into maximal connected components composed of boxes B(j, L). The components
Gy, such that |Gy ;| < N3* cannot intersect Ay, . We set

Ay = AN U Gn,i

|GN‘7:‘<N30¢

which satisfies Ay = C Ay C Ay \ Ay 4. To any Gy ; with cardinality larger than
N3® we associate the contour

"Gy, = {B(j, L)

B(j,L) C Gy and B(j,2L) N Ay # (z)}.

By construction 0*Gy,; is a connected set of boxes B(j, L) such that y; = 0.
Furthermore, whenever |Gy;| > N3¢
Ny ?
> — 7.3
> o(7) . (7.3

where ¢ is a universal constant. Finally, from inequality (7.2), we see that the
cardinality of the boundary Ay is larger than caN?, thus

> > ca (%)2 (7.4)

|G i|> N3
Stochastic domination (3.4) implies that for L large enough, a Peierls estimate
holds : there is a positive constant Cr, g such that the probability that a connected
surface S of boxes B(i, L) labelled by 0 contains more than n cubes is bounded
by

0" Gy

"Gy

@X’Jgﬂ (#S >n) < N? exp(—Crsn),
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where #S8 is the number of cubes in §. By definition the contours d*Gy; are
connected surfaces of boxes B(j, L) labelled by 0, so that using (7.3) and (7.4),
the proof is concluded by a standard Peierls argument. O

8. APPENDIX

8.1. Surface tension. In [MMR], the surface tension 7/ was defined by tilting
the boundary conditions outside the domain Ay, = {—M, M}3, where M is an
integer. For a given 7 in S? we denote by D), the intersection of [—M, M]* with
the hyperplan centered in 0 and orthogonal to 7i. The surface tension 7' is

1 Z5

P M
() = Jim —g o Z%

where Sy, is the area of D), and the mixed boundary conditions in 0Aj; are 0; = 1
if 7.7 > 0 and 0; = —1 otherwise. The boundary conditions above D, are equal
to 1 and to —1 below.

This definition coincides with definition 2.1. This is straightforward from the
argument developed by [MMR] (Theorem 2). We recall this argument for com-
pleteness. First, we show that

Zo
'(7) < liminf — A .
7' (7) < hNIri)1£f log Zi. (8.1)
Let M, N be 2 integers such that N < M. We shall write
Z5- 7z
F;, = —log % and F(Ay) =—log A+N ,
Z5,, Zxy

where the parallelepiped Ay was introduced in definition 2.1.

We tile Dy, with kys squares B' of side length AN and at distance 10 from
each others. These squares are chosen such that the area of D, not covered by
Ui B is smaller than C(M f(N) + kahN), where C is some positive constant
independent of M and N. If the center of B* does not coincide with a site on
the lattice, we translate B® at a distance smaller than 1 such that the center of
its translate B* belongs to Z®. Let A’ be the parallelepiped of basis B deduced
from Ay by translation. There is a choice of the squares B* such that all the
parallelepipeds A% are included in A,;. Note that F(AY) = F(Ay).

Inequality (C.2) of [MMR] implies

km
Fiy <Y F(Ay) + KC(Mf(N) + kyhN),
i=1
where K is some positive constant. Since | Sy — karh?N?| < C(M f(N) + kphN),
one gets as M goes to infinity

1 KC
) < ekl (An) + N
Letting N go to infinity, we obtain (8.1). The reverse inequality
7z
7'(7) > limsup — log ZA+N (8.2)
N—oo AN

(7




THE WULFF CONSTRUCTION IN THREE AND MORE DIMENSIONS. 27

is derived in the same way by choosing M <« N and by partitioning the basis of
Ay with translates of Dj;. Combining (8.1) and (8.2), we see that 7(77) = 7'(7).

8.2. Stochastic domination. The following result is a consequence of [I2] and
of the proof of Theorem 1.1 of [Pil], we sketch the proof for completeness

Theorem 8.1. For any ( positive, there is N¢ such that for all N larger than N,
the family of random variables |Z$| is dominated by a product Bernoulli measure

Ty, (see (3.6)).
Proof. According to [LSS], it is enough to check that
iy (1281 =0 128, =e1,..., |28, = &) < exp(—ccN),

where the vertices {z1, ..., z,} are not *-neighbors of x in Ly« and each ¢; belongs
to {0,1}. Using notation from subsection 3.1, one has

gy (128 = 0,128 =1, 128 | = &) <
OV (VE =15 P, (IM. — sign(C*)mg| > 2, |78, | = &1, |25, = &)

Z

+OAV (VE =0,V =er,... Y = PR (12 =e1,..., 125, = 20)).

b Ty

Because of stochastic domination (3.4), the last term in the RHS is bounded by
exp(—c,N7) “E,AN(|Z§1‘ =e1,...,|Z5,| = eg).

In order to control the other term, we have to take into account the deviations
occurring from the random coloring of the small clusters, i.e. those of diameter
less than N7. We enumerate the small clusters Ci, ..., Cy, included in B(z, N®).
Their cardinals are denoted cy,...,ck, and their signs si,...,sk,. The random
variables sq, ..., s, are iid Bernoulli. For N large enough, one has

ko
N?**M,, —sign(C*)|C*| = ) sici| < gN?"".
i=1

This comes from the fact that all the clusters intersecting the boundary of B(z, N®)
and distinct from C* have length smaller than N7 when Y,¢ = 1. Thus the total
magnetization produced by these clusters is less than 6 N?*™7 and does not con-
tribute. By definition of the event V¢, the unique crossing cluster C* in B(z, N)
satisfies [mgN3* —|C*| | < (N3“. Therefore, we just need to prove large deviations
for P‘A"N(| Y, sicil > §N 30‘), for configurations w which satisfy Y,$(w) = 1. By

symmetry, it is enough to bound PX (ngl 8iC; > %ko), with kg > %N 3(a—) (note

that kg is always smaller than N3®). We follow the argument of [I2] (p. 325). For
all ¢ positive, Chebyshev’s inequality implies

P (kzosici > gko) < exp ( — t%) I Py (exp(tcisi)).
i—1 =1

1=

As each ¢; is smaller than N3, one has

1 ¢ ¢ 1 ¢ 3
— —ko) < —t= + — Y logcosh(te;) < —t= + logcosh(tN?7),
k() 2 k() i=1 2

ko
IOgPZN(ZSiCi > 9
i=1
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Let A* be the Legendre-Laplace transform of the Bernoulli measure £(6; 4+ 6_1).
There exists ¢, positive such that for N large enough
1 o [ ¢ S s
k—ologPAN<;s,-c,- > 5/%) < -—A ( ) <

Since kg > %N?’(a_”’), this leads to

ON3Y) = N6

ko ¢ ;
PXN(Z 8;C; > 5]{50) < exp < — CC§N3a_97)_
i=1
As v = %, we obtain the expected upper bound. 0

Remark 8.1. Let A be a subset of QX with support disjoint from the box
B(z, 2N?). Then the following holds for N large enough

gy (128 =0 A) < exp(—ccN),

This is straightforward from the previous arguments. From [Pil], we know that
®3P? (Y = 0) vanishes exponentially fast for arbitrary boundary conditions w
outside the box B(z,2N®). Furthermore, if the magnetization differs from its
equilibrium values £mg, the deviation occurs from the random coloring of small
clusters independent of A.

8.3. Approximation. Before proving Theorems 5.1 and 5.2, let us recall some
basic notions of geometric measure Theory. Throughout this section, we fix u
in BV(T,{+1,—1}) such that F(u) < oo and ¢ in |0,1]. As 7 is bounded, the
perimeter of du, which is [,., dH,, is also finite. The ball of radius r centered in
y will be denoted by B(y,r). For y in 0*u, we introduce the half-spaces

H'(y) = {z€R®| ,.(z—y) >0},
H(y) = {se®| i,.(z—y) <0},

where i, is the normal to 0*u in y. Let H(y) be the hyperplan H*(y) N H (y).

We fix ¢ positive. According to Theorem 2 (p. 205) of [EG], the reduced
boundary 0*u equals U;_; K; U N where the 2 dimensional Hausdorff measure of
N is less than ¢ and each Kj is a compact subset of a C'-hypersurface S;. For all
z in K;, the normal 77, is also normal to S; and there is rq > 0 such that uniformly
on Kz

Vi, Vr < 1y, Yy € K;, vol(B(y,r) N{u=-1}n H+(y)) < ¢r®, (8.3)
vol(B(y,r) N{u=+1}nN H_(y)) < ¢r.
In the decomposition of d*u, one can choose each set K; such that it is either
included in T or at a positive distance from 07 .

Proof of Theorem 5.1

We first approximate the compact sets K; which do not touch the boundary.
The following construction is the same for each S; so it is enough to present it for
one S;, that we shall denote by S (with corresponding K C S).
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As Sis C', we can find M pairwise disjoint open subsets X1, ..., X, of S which
cover S up to a set of measure less than ( and such that each ¥; is congruent
to the graph of a real function f; : U; — R of class C!, where U; is a bounded
open set of R? and f; satisfies the bound |V f;| < {. To any z in U;, we associate
the point g;(z) = (z, fi(z)) of S. Let K; be the compact subset of U; such that
9i(K;) = K N%;. We choose h in |0, 1¢[ (see (8.3)) arbitrarily small and cover Uj;
with pairwise disjoint cubes C? C U; of side h up to a set of measure less than %

For each cube CY centered in z; and intersecting K;, we denote by BJ the
translate of C7 centered in g;(z;). The parallelepiped R’ is defined as R/"* U R/,
where both parallelepipeds R/t and R’ have a common face B’ and height gh
(one above and the other below B?). Let y be in C?N K;. The parallelepiped R/ is
included in the ball B(g;(y), 10h). As |V f;| < (, the intersection of the hyperplan
H(gi(y)) and R’ is contained in {z € R® | dist(z, BY) < 2Ch}. Therefore (8.3)
implies that

/R xri(r) — u(r)| dr < 2¢h* +10°CR° < 104%v01(Ri). (8.4)

The upper bound of 7 is denoted by ||7||o. It remains to check that

g / (i) dHy — /KT(ﬁw) dH,

where 71; is the normal to B* and Cx depends on the Hausdorff measure of K.
Let C* be the union of cubes C? which intersect K;, then for h small enough the
measure of C'AK; (the symmetric difference) is smaller than = and one has

ClI7lloo
M

< [I7ll0 Ck €, (8.5)

<

?

/ () dHy — 7(7,) dHs
9:(C%)

9:(K3)

where 7/ is the normal vector to the surface S which coincides with 7 on K. The
normal n' is uniformly continuous on any compact. Theretore for 4 small enough,
the following holds for any cube C7 in U;

Vz,y € C7, ‘T(nlgq;(m)) - T(nlgi(y))‘ <.

Using the fact that |V f;| < ¢ on each U;, we derive (8.5).
Let us go back to the previous notation and denote by B, ... B¢ the collection
of sets which approximate the union of sets K; which are not in 0*u. We set also

U=0*uN0T. As 7 is bounded
_‘.'L' d T < N -
[ 7 dr, < |17t
We deduce from (8.5) that

V4
S [ ryar.— [ (@) it < Cu, (5.6)
=1

o*u/U

where C, depends only on the perimeter of u. From (8.4) and (8.6), we derive
Theorem 5.1 for ¢ small enough. O

Proof of Theorem 5.2
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We are going now to approximate the compact sets K; included in U = 07 No*u.
One can also suppose that each K, is included in one face of 7. Note that #-
almost surely for y in Kj, the normal i, is orthogonal to 97 .

For a given ( positive and A in |0, {§[ small enough, there is a covering of K;
with pairwise disjoint cubes B/ C T of size h up to a set of measure less than (.
We denote by R’ the parallelepiped in 7 with one face equal to B’ and height dh.
Let y be in B’ N K;. The parallelepiped R’ is included in the ball B(g;(y), 10h)
and (8.3) implies

/m 11+ u(r)|dr <103¢Ch? < 103%v01(Rj). (8.7)

Furthermore, for A small enough

é [ i) di, ~ [ () a,

< I7lloo € (8.8)

where 7i; is the normal to B*. Combining (8.7) and (8.8), we conclude the proof.
U

One could have also modified the proof of Lemma 6.4 [Ce] and replaced the
approximation in terms of balls, by cubes.

Proof of Theorem 6.1

Theorem 6.1 can be viewed as a consequence of a general approximation pro-
cedure developed by Alberti and Bellettini [AlBe|. We briefly recall their proof
and refer the reader to [AlBe| for details. Let u be a function of bounded vari-
ation, then general results of measure Theory imply the existence of a sequence
{un} of polyhedral functions converging to u in L'(7) and such that the vectors
measure of the partial first derivatives Du,, converge weakly to Du and also that
the perimeters of Qu,, converge to the one of Ju. Since 7 is continuous, a Theorem
of Reshetnyak (see [LM]) implies that F(u,) converge to F(u).

Therefore for any ¢ positive, there exists a polyhedral set W such that

o o

Iy € V(Iw,,5) and  |F(W) = FWn)| < 5.

For any h small enough, we approximate the polyhedral set W with disjoint cubes
R!,..., Rt of size h and basis B!, ... B’. The set W/ U‘_, B’ has arbitrarily small
area and is denoted by U’. As 7 is bounded, one has

l
;/ﬁ(ni) M, — }"(W)‘ <irllee [, dHe < 7l

This concludes the Theorem. O

Remark 8.2. Since we are only interested in approximating the Wulff shape, one
could have also used Aleksandrov’s Theorem (see [EG|) which ensures that the
boundary of a convex function has almost surely a second derivative.

Remark 8.3. As explained previously, Theorem 6.1 holds for any function u of
bounded variation. Thus following the arguments developed in Section 6, one can
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prove the lower bound (Proposition 2.2) for any function u of bounded variation.
This implies that a large deviation principle for the measures ,u;, A, Dolds.
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