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Constant Proportion Portfolio Insurance

Black & Jones (1987) Rouhani (1986)

Ingredients:

Risky asset S: fund, index

Guarante: value of fund at maturity VT must be VT > N

Reserve asset: bond Bt (here: zero coupon with maturity

T )

Self-financing strategy whose goal is to leverage the

returns of a risky asset (traded fund or index) through

dynamic trading while guaranteeing a fixed amount N of

capital at maturity T .



Rule-based trading strategy

A fraction of the wealth is invested into the risky asset St

and the remainder is invested in bonds (ex: zero-coupon

bond with maturity T and nominal N) Bt. Denoting the

value of the fund by Vt,

• if Vt > Bt, the exposure to the risky asset (wealth

invested into the risky asset) is given by

mCt ≡ m(Vt − Bt), where Ct is the ’cushion’ and

m > 1 is a constant multiplier.

• if Vt ≤ Bt, the entire portfolio is invested into the

zero-coupon.



CPPI: Black Scholes model

dSt

St
= μdt + σdWt

dBt

Bt
= rdt

Cushion Ct = Vt − Bt satisfies

dCt

Ct

= (mμ + (1 − m)r)dt + mσdWt,

CT = C0 exp

(
rT + m(μ − r)T + mσWT − m2σ2T

2

)
.

VT = N + (V0 − Ne−rT ) exp

(
rT + m(μ − r)T + mσWT − m2σ2T

2

)



VT = N + (V0 − Ne−rT ) exp

(
rT + m(μ − r)T + mσWT − m2σ2T

2

)
Interpretation: in the Black-Scholes model with

continuous trading, a CPPI strategy is equivalent to a

long position in a zero-coupon bond with nominal N to

guarantee the capital at maturity and investing the

remaining sum into a (fictitious) risky asset which has m

times the excess return and m times the volatility of S

and is perfectly correlated with S.

No risk, expected returns increasing with leverage m:

E[VT ] = N + (V0 − Ne−rT ) exp(rT + m(μ − r)T ).



CPPI: stochastic volatility case

dSt

St

= μtdt + σtdWt
dBt

Bt

= rdt

Cushion Ct = Vt − Bt still satisfies

dCt

Ct
= (mμt + (1 − m)r)dt + mσtdWt = dXt,

so Ct = C0E(X) where X is a continuous semimartingale.

In particular Ct > 0: no risk of going below the floor.



Stochastic exponentials

X semimartingale, Y0 > 0

Yt = Y0E(X)t ⇐⇒ dYt = Yt−dXt

Solution:

Yt = Y0 exp(Xt − 1

2
[X]t)

∏
0<s≤t

(1 + ΔXs)e
−ΔXs

If X continuous ⇒ Y continuous and Yt > 0

X discontinuous: Y > 0a.s. ⇐⇒ [∀s > 0,ΔXs > −1]a.s.



Model setup

dSt
St−

= dZt and
dBt
Bt−

= dRt,

where Z Lévy process with Lévy measure ν, R continuous
semimartingale.

Ex. Rt = rT

Ex. 2 Vasicek model drt = (α− βrt)dt+ σdWt

Bt = B(t, T ) = E[e−
∫ T

t
rsds] follows

dBt
Bt

= rtdt− σ
1 − e−β(T−t)

β
dWt.

S > 0 so ΔZt > −1 almost surely.



CPPI strategy: discontinuous case

Time at which floor is reached τ = inf{t : Vt ≤ Bt}.
CPPI is self-financing: for t ≤ τ

dVt = m(Vt− − Bt)
dSt

St−
+ {Vt− − m(Vt− − Bt)}dBt

Bt

,

Cushion Ct = Vt − Bt

dCt

Ct−
= mdZt + (1 − m)dRt,



Dynamics of the cushion

Solution by change of numeraire: C∗
t = Ct

Bt

Ito formula:

dC∗
t

C∗
t−

= m(dZt − d[Z,R]t − dRt + d[R]t), (1)

Define Lt ≡ Zt − [Z,R]t − Rt + [R]t

C∗
t = C∗

0E(mL)t, t ≤ τ

For t > τ , C∗ remains constant so

C∗
t = C∗

0E(mL)t∧τ ,

Vt

Bt

= 1 +

(
V0

B0

− 1

)
E(mL)t∧τ . (2)



Gap risk

C∗
t = C∗

0E(mL)t, t ≤ τ L = Z − [Z,R] −R + [R]

Since L is discontinuous, C can go negative as soon as ΔLt < −1/m

Proposition 1 The probability of going below the floor is given by

P [∃t ∈ [0, T ] : Vt ≤ Bt] = 1 − exp

(
−T

∫ −1/m

−∞
ν(dx)

)
.

Proof: since E(mL)t does negative as soon as mΔLt < −1,

τ ≤ T ⇐⇒ ∃t ≤ T,ΔLt < − 1
m

The number of jumps of the Lévy process Lj in the interval [0, T ],
whose sizes fall in (−∞,−1/m] is a Poisson random variable with
intensity Tν((−∞,−1/m]).



Example: Kou model

ν(x) =
λ(1 − p)
η+

e−x/η+1x>0 +
λp

η−
e−|x|/η−1x<0. (3)

Loss probability is then given by

P [∃t ∈ [0, T ] : Vt ≤ Bt] = 1 − exp
(
−Tpλ (1 − 1/m)1/η−

)
.



Expected loss

Proposition 2 Assume ∫ ∞

1

xν(dx) <∞.

Then

E[C∗
T |τ ≤ T ] =

λ∗ +m
∫ −1/m

−1
xν(dx)

(1 − e−λ∗T )(ψ(−i) − λ∗)
(e−λ

∗TφT (−i) − 1).

Proof: L = L1 + L2 where L2 is a process with piecewise constant
trajectories and ΔL2

t ≤ −1/m and L1 is a process with
ΔL1

t > −1/m.

L1 has Lévy measure ν(dx)1x>−1/m and L2 has Lévy measure
ν(dx)1x≤−1/m, no diffusion component

τ time of first jump of L2 = exponential random variable with
intensity λ∗ := ν((−∞,−1/m])



φt characteristic function of Lévy process log E(mL1)t and
ψ(u) = 1

t log φt(u).

C∗
T = E(mL1)τ∧T (1 +mL̃21τ≤T ) = E(mL1)T 1τ>T + E(mL1)τ (1 +mL̃2)1τ≤T .

(4)

Since L1 and L2 are Lévy processes, τ , L̃2 and L1 are independent.
Since

E[E(mL1)t] = φt(−i),
we have

E[C∗
T |τ ≤ T ] =

E[1 +mL̃2]
1 − e−λ∗T

∫ T

0

λ∗e−λ
∗tE[E(mL1)t]dt

= (λ∗ +m

∫ −1/m

−1

xν(dx))
1

1 − e−λ∗T

∫ T

0

e−λ
∗tφt(−i)dt.

and the result follows.



Expected gain conditional on success

Expected gain conditional on the fact that the floor is

not broken

E[C∗
T |τ > T ] = E[E(mL1)T ] = φT (−i)

= exp

{
Tmγ + Tm

∫
z>−1/m

zν(dz)

}
.

Like the Black-Scholes case, conditional expected gain in

an exponential Lévy model is increasing with the

multiplier, provided the underlying has a positive

expected growth rate.



Expected loss: Kou model

Hazard rate

λ∗ = c−(1 − 1/m)λ− ,

1 +
m

λ∗

∫ −1/m

−1

xνL(dx) = − m− 1
λ− + 1

,

Expected gain conditional on success

E[C∗
T |τ ≤ T ] = − (m− 1)(1 − e−λ

∗T+ψ(−i)T )λ∗

(λ− + 1)(1 − e−λ∗T )(λ∗ − ψ(−i)) .



Loss distribution

Idea: similar to Fourier method for option pricing.

Let X and X∗ be real-valued random variables with respective
distribution functions F and F ∗, characteristic functions φ and φ∗

and bounded densities. Then

F (x) − F ∗(x) =
1
2π

∫
e−iux

φ∗(u) − φ(u)
iu

.

Define

φ̃ :=
1
λ∗

∫ −1/m

−∞
eiu log(−1−mx)ν(dx)

denotes the characteristic function of log(−1 −mL̃2).

Proposition 3 Choose X∗ with characteristic function φ∗, where



E[|X∗|] <∞ and |φ∗(u)|
1+|u| ∈ L1. If

|φ̃(u)|
(1 + |u|)|λ∗ − ψ(u)| ∈ L1 (5)∫

R\[−ε,ε]
| log |1 +mx||ν(dx) <∞ (6)

for some ε, then for every x < 0,

P [C∗
T < x|τ ≤ T ] = P [−eX∗

< x]

+
1
2π

∫
R

e−iu log(−x)
(

λ∗φ̃(u)
iu(λ∗ − ψ(u))

1 − e−λ
∗T+ψ(u)T

1 − e−λ∗T − φ∗(u)
iu

)
du.

(7)



Data sets

Daily returns, December 1st 1996 to December 1st 2006

1. General Motors Corporation (GM)

2. Microsoft Corporation (MSFT)

3. Shanghai Composite index (SSE)

Series μ σ λ p η+ η−

MSFT −0.473 0.245 99.9 0.230 0.0153 0.0256

GM −0.566 0.258 104 0.277 0.0154 0.0204

SSE 0.101 0.161 39.1 0.462 0.0167 0.0175

Table 1: Kou model parameters estimated from MSFT, GM and
SSE time series.
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Figure 1: Logarithm of the density for MSFT time series. Solid line:
kernel density estimator. Dashed line: Kou model with parameters
estimated via empirical characteristic function.
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Figure 2: Probability of loss as a function of the multiplier.
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Figure 3: Expected loss over T = 3 years as a function of the mul-
tiplier, for nominal N = 1000$ and r = 0.04. Left: expected loss
conditional on a loss having occured. Right: unconditional expected
loss.
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Figure 4: Probability of loss of a given size as a function of loss size
(distribution function of losses).



Stochastic volatility

dSt

St
= σtdWt

has the same law as a time-changed Geometric Brownian

motion

St = e−
vt
2

+Wvt = E(W )vt , where vt =

∫ t

0

σ2
sds,



Stochastic volatility via time change

Time-changed Lévy process (Carr Geman Madan Yor

2007)

S∗
t = E(L)vt, vt =

∫ t

0

σ2
sds

Example: CIR time change

dσ2
t = k(θ − σ2

t )dt + δσtdW. (8)

Key ingredient: Laplace transform of integrated variance v:

L(σ, t, u) := E[e−uvt |σ0 = σ] =
exp

(
k2θt
δ2

)
(
cosh γt

2 + k
γ sinh γt

2

) 2kθ
δ2

exp

(
− 2σ2

0u

k + γ coth γt
2

)

with γ :=
√
k2 + 2δ2u.



Probability of loss

By first conditioning on the volatility process we obtain

P [∃s ∈ [t, T ] : Vs ≤ Bs|Ft] = 1 − E[exp

⎛
⎜⎜⎜⎝−vT

λ∗︷ ︸︸ ︷∫ −1/m

−∞
ν(dx)

⎞
⎟⎟⎟⎠]

= 1 − L(σt, T − t, λ∗) (9)

If the initial loss probability was 5%, and the volatility

increases by a factor of 2, the loss probability changes to

about 19%, leading to a much bigger cost for the bank in

terms of regulatory capital.



Adjusting the leverage

(mt) continuous process adapted to the filtration

generated by the volatility process (σt). Then

C∗
t = E

(∫ ·

0

msdLvs

)
τ∧T

, τ = inf{t ≥ 0 : mtΔLvt ≤ −1},

and by conditioning on the trajectory of the volatility

process

P [τ ≤ T ] = 1 − E

[
exp

(
−
∫ T

0

dt σ2
t

∫ −1/mt

−∞
ν(dx)

)]
.



The random time τ is thus characterized by a hazard rate

λt given by

λt = σ2
t

∫ −1/mt

−∞
ν(dx) (10)

To maintain a constant exposure to gap risk we can

choose the leverage mt as

σ2
t

∫ −1/mt

−∞
ν(dx) = σ2

0

∫ −1/m0

−∞
ν(dx),

which leads to decreasing leverage when volatility

increases.



Loss distribution

Can be computed by Fourier inversion of

E[eiu log(−C∗
T )|τ ≤ T,Ft] =

E[eiu log(−C∗
T )1τ≤T |Ft]

P [τ ≤ T |Ft]

=
φ̃(u)(1 − L(σt, T − t, λ∗ − ψ(u)))
(λ∗ − ψ(u))(1 − L(σt, T − t, λ∗))

.



Pricing and hedging the gap risk

• The bank arranging the deal usually insures the client
against the gap risk and has to reimburse the loss if
the fund breaks the floor.

• The payoff of this insurance is equal to CT1τ≤T .

• Its cost is given by the expected loss computed under
risk-neutral probability calibrated to market-quoted
option prices, because an approximate hedge with
OTM puts may be constructed.

Portfolio insurance strategies: from CPPI to CPDO – p.75/80



Hedging the gap risk

• First, we show that in a discretely rebalanced CPPI, a
perfect hedge with OTM puts can be constructed.

• Suppose that the portfolio is rebalanced n times, and
that at each date the market quotes puts with time to
maturity h = T/n.

• We denote by C∗,n
k the discounted cushion at

rebalancing date k.

• The cusion is then given by

C∗,n
k+1 = mC∗,n

k

S∗
(k+1)h

S∗
kh

+ (1 −m)C∗,n
k = C∗,n

k

(
m
S∗

(k+1)h

S∗
kh

+ 1 −m

)
.

Portfolio insurance strategies: from CPPI to CPDO – p.76/80



Hedging the gap risk

• The cusion becomes negative if S∗
(k+1)h <

m−1
m
S∗
kh.

• To hedge this risk, we therefore buy put options with
strike m−1

m
erhSkh expiring at date (k + 1)h.

• One such option has pay-off erhSkh
(
m−1
m

− S∗

(k+1)h

S∗

kh

)+

,

and if we buy mCn

k

Skh

units, the discounted pay-off is

exactly equal to C∗,n
k

(
m− 1 −m

S∗

(k+1)h

S∗

kh

)+

.

Portfolio insurance strategies: from CPPI to CPDO – p.77/80



Hedging the gap risk

• The discounted cushion in presence of hedging
satisfies

C∗,n
k+1 = C∗,n

k

(
1 +m

(
S∗

(k+1)h

S∗
kh

− 1

))+

,

C∗,n
n = C∗

0

n−1∏
k=0

(
1 +m

(
S∗

(k+1)h

S∗
kh

− 1

))+

.

Portfolio insurance strategies: from CPPI to CPDO – p.78/80



Hedging the gap risk

• The cost of hedging is given by the sum of prices of all
put options necessary for hedging:

Costn =
n−1∑
k=0

EQ

[
C∗,n
k

(
−1 −m

(
S∗

(k+1)h

S∗
kh

− 1

))+
]

= EQ[C∗,n
n ] − C∗

0 .

Proposition: suppose the Lévy measure has no atom at
−1/m and

∫∞

1
xmν(dx) <∞. Then,

lim
n→∞

C∗,n
n = C∗

T1τ>T a.s. and lim
n→∞

Costn = −EQ[C∗
T1τ≤T ].

Portfolio insurance strategies: from CPPI to CPDO – p.79/80



Conclusions

• Taking into account price jumps leads to substantially different
and more realistic conclusions when discussing issues like
hedging and portfolio insurance: hedge ratio �= sensitivity,
impact of leverage on portfolio risk,...

• Jump-diffusion models can allow for computationally tractable
solutions to such problems.

• In many instances where diffusion models (unrealistically)
indicate a zero risk for various hedging and portfolio
management strategies, jump-diffusion models allow, to analyze
the residual risk of such strategies and compare various
alternatives quantitatively.




