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Constant Proportion Portfolio Insurance

Black & Jones (1987) Rouhani (1986)

Ingredients:

Risky asset S: tund, index

Guarante: value of fund at maturity Vi must be Vo > N

Reserve asset: bond B; (here: zero coupon with maturity
T)

Self-financing strategy whose goal is to leverage the
returns of a risky asset (traded fund or index) through
dynamic trading while guaranteeing a fixed amount N of
capital at maturity 7.



Rule-based trading strategy

A fraction of the wealth is invested into the risky asset S;
and the remainder is invested in bonds (ex: zero-coupon

bond with maturity 7" and nominal N) B,;. Denoting the
value of the fund by V/,

e if V, > B, the exposure to the risky asset (wealth
invested into the risky asset) is given by
mCy = m(V, — By), where C} is the 'cushion’ and
m > 1 1s a constant multiplier.

o if V, < B,, the entire portfolio is invested into the

Z€Tro-coupon.



CPPI: Black Scholes model

dS; dB;
— = udt dW, —— =rdt
g, Mot g =
Cushion C, =V, — B, satisfies
dC
Ft = (mp + (1 —m)r)dt + modW,,
/
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Cr = Cyexp (TT—I—m(,u—T)T—FmJWT _ g ) .
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m2o?T
Vi=N+ (Vo — Ne ™) exp (rT—I—m(,u—r)T—l—maWT— 5 >
Interpretation: in the Black-Scholes model with
continuous trading, a CPPI strategy is equivalent to a
long position in a zero-coupon bond with nominal N to
guarantee the capital at maturity and investing the
remaining sum into a (fictitious) risky asset which has m
times the excess return and m times the volatility of S

and is perfectly correlated with S.

No risk, expected returns increasing with leverage m:

ElVy] =N+ (Vo — Ne ™) exp(rT +m(p — r)T).



CPPI: stochastic volatility case

dS dB
?tt — ,Utdt -+ O'tth ?tt = rdt
Cushion C, =V, — B, still satisfies
dC
Ft = (mpy + (1 — m)r)dt + mo, dW, = dX,,
/

so Cp = Cy&(X) where X is a continuous semimartingale.

In particular C; > 0: no risk of going below the floor.



Stochastic exponentials

X semimartingale, Yy > 0
Y, =Y, 8(X), <— dY, =Y, dX,

Solution:

1
Y, =Yoexp(X, — S[X]) [] (1+AX e

0<s<t

If X continuous = Y continuous and Y; > 0
X discontinuous: Y > Oa.s. <= |[Vs > 0,AX; > —1]a.s.



Model setup

dSy dB;

—— =d/; and —— =dR;,

S, t B, t
where Z Lévy process with Lévy measure v, R continuous
semimartingale.
Ex. Rt =T

Ex. 2 Vasicek model dry = (o — Bry)dt + odW;
B; = B(t,T) = E[e~ /¢ ™95 follows

dB, 1 — e PT—Y)
—— = pydt — dW,.
B, " 7Tp t

S > 0so AZ; > —1 almost surely.




CPPI strategy: discontinuous case

Time at which floor is reached 7 = inf{t : V; < B;}.
CPPI is self-financing: for ¢t < 7
dS dB
AV, = m(Vie = B)o— + {Vie =m(Vi — B)}—-,
St_ Bt
Cushion C, =V, — B;

d
dC _ mdZ; + (1 — m)dRy,
Cy_



Dynamics of the cushion

Solution by change of numeraire: C} = %
Ito formula:
dCy
o = m(dZ, —d[Z, R), = dR, + d[R],), (1)
t—

Define Lt — Zt — [Z7 R]t — Rt -+ [R]t
Cr=Co&(mL)y,t <7
For t > 7, C* remains constant so

Cr = C2E(mL)nrs

Vi Vo
— — Y 2
t =1+ <—BO — 1) g(mL>t/\T ( )



Gap risk
Cr = C:&(mL)y,t<T L=2Z-[Z R~ R+[R)|
Since L is discontinuous, C' can go negative as soon as AL; < —1/m

Proposition 1 The probability of going below the floor is given by

—1/m
Pt € [0,T]:V;, < By = 1 — exp (—T / y(dx)) |

— 00
Proof: since £(mL); does negative as soon as mAL; < —1,

1

T<T <— J<T AL < ——

m
The number of jumps of the Lévy process L’ in the interval [0, T,
whose sizes fall in (—oo, —1/m] is a Poisson random variable with

intensity Tv((—oo, —1/m]).



Example: Kou model

A(l — A
y(aj) — ( p) 6_5’3/77—1— 1:13>0 + _pe—|w|/n_ 1x<0° (3)
TH- -

Loss probability is then given by

P[Ft€[0,T]:V; < Byl =1 — exp (—Tp/\ (1— 1/m)1/"7—) .



Expected loss

Proposition 2 Assume

/100 zv(dx) < oo.

Then
—1/m

N+m [ zv(de)
(1 — e M) (h(=i) — A*)

Proof: L = L' + L? where L? is a process with piecewise constant

E[CiIr <T) = (e T (i) - 1).

trajectories and AL? < —1/m and L' is a process with
AL} > —1/m.

L' has Lévy measure v(dx)l,~ _; /m and L? has Lévy measure
v(dx)ly<_1/m, no diffusion component

7 time of first jump of L? = exponential random variable with
intensity \* := v((—oo0, —1/m])



¢; characteristic function of Lévy process log £(mL'); and

Y(u) = % log ¢¢(u).

C;Z': = g(le)T/\T(l + mfﬂngT) = g(le)TlT>T + g(le)T(l + miQ)lTST.
(4)

Since L' and L? are Lévy processes, 7, L2 and L! are independent.

Since
ElE(mLY):] = ¢¢(—),
we have
E|CT|Tr <T]= El[l 1;_77;,*[/;] /T e MUE[E(mLY))dt
- 0

= (A" + m/ zv(dx)) T / e N Ly (—i)dt.
-1 — € 0

and the result follows.



Expected gain conditional on success

Expected gain conditional on the fact that the floor is
not broken

E[CT|T > T] = E[€(mL")r] = ¢r(—i)

avlds) |

Like the Black-Scholes case, conditional expected gain in

—exp{va—I—Tm

z>—1/m

an exponential Lévy model is increasing with the
multiplier, provided the underlying has a positive
expected growth rate.



Expected loss: Kou model

Hazard rate

N = c_(1—1/m)*-,

Expected gain conditional on success

—1)(1 — — N T4y (—i)T A
BlCHr < 1] = - m =Dl ze )

A=+ DA —e M)A — (=)



Loss distribution

Idea: similar to Fourier method for option pricing.

Let X and X* be real-valued random variables with respective
distribution functions F' and F'*, characteristic functions ¢ and ¢*
and bounded densities. Then

27 MU

Define

3 1 [Ym o
(b - F/ ezulog(—l—m:c)y(daj)

— OO

denotes the characteristic function of log(—1 —mL?).

Proposition 3 Choose X* with characteristic function ¢*, where



E[|X*]] < oo and ol c g1y

Ttu]
3() 1
T+ ) o) < - (5)
/ Hog |1 + ma||v(dz) < oo (6)
R\[—¢&,¢]

for some e, then for every x < 0,
P[Cs < z|r < T] = P[—e* < z]

1 o iU log(—x) )‘*(5(“) 1 - 6_>\*T+¢(U>T . o (u) du.

or R AN —p(u)) 1—eMT iU



Data sets
Daily returns, December 1st 1996 to December 1st 2006
1. General Motors Corporation (GM)
2. Microsoft Corporation (MSFT)
3. Shanghai Composite index (SSE)

Series L o A D n n_

MSFT | —0.473 0.245 999 0.230 0.0153 0.0256
GM —0.566 0.258 104 0.277 0.0154 0.0204
SSE 0.101  0.161 39.1 0.462 0.0167 0.0175

Table 1: Kou model parameters estimated from MSFT, GM and

SSE time series.



— Kernel estimator

=== Kou model
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Figure 1: Logarithm of the density for MSFT time series. Solid line:
kernel density estimator. Dashed line: Kou model with parameters

estimated via empirical characteristic function.
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Figure 2: Probability of loss as a function of the multiplier.
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Figure 3: Expected loss over T' = 3 years as a function of the mul-
tiplier, for nominal N = 1000$ and r» = 0.04. Left: expected loss

conditional on a loss having occured. Right: unconditional expected

loss.
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Figure 4: Probability of loss of a given size as a function of loss size

(distribution function of losses).



Stochastic volatility

dsS
?tt = O'tth

has the same law as a time-changed Geometric Brownian

motion

t
o
Sy =e 2 W = E(W),,, where v, = / o2ds,
0



Stochastic volatility via time change

Time-changed Lévy process (Carr Geman Madan Yor
2007)

t
Sy =E(L)y,, o —/ o2ds
0

Example: CIR time change

do? = k(0 — o)dt + do,dWV. (8)
Key ingredient: Laplace transform of integrated variance v:
k20t
CXp (5—2> 202U
Lo, t,u):= FEle “"*|log =0 = exp | — 0
(o, u) = Ble™ oo = o] = p( b+ coth Z

with v 1= VEk2 + 262%u.



Probability of loss

By first conditioning on the volatility process we obtain

Plds € [t,T]: Vs < B4|F| =1 — Elexp

[

\

)\*

Ve

_WT[

—1/m

oo

v(dx)

)

/

1 — L(0y, T —t,\)

If the initial loss probability was 5%, and the volatility

increases by a factor of 2, the loss probability changes to

about 19%, leading to a much bigger cost for the bank in

terms of regulatory capital.



Adjusting the leverage

(my) continuous process adapted to the filtration
generated by the volatility process (o;). Then

Cr=£& (/ deLUS) , 17=inf{t > 0: mAL, < —1},
0 TNT

and by conditioning on the trajectory of the volatility

process

i T —1/my
Plr <T)|=1—-F |exp (/ dt af/ V(d:E))
0 —00




The random time 7 is thus characterized by a hazard rate
A given by

1 /ma
A = o / U(dz) (10)

@)

To maintain a constant exposure to gap risk we can

choose the leverage m; as

—1/mt _1/m0
Uf/ v(dr) = (78/ v(dr),

@) @)

which leads to decreasing leverage when volatility

lIncreases.



Loss distribution

Can be computed by Fourier inversion of

: ) iulog(—C7T)
E[@ZUIOg(_CT)‘T < T, ft] _ E[e T 1T§T’Ft]

Pt <T|F]

~

_ ()L = L(op, T —t, A" —1h(u)))
(A = (u)(L = L(oe, T — £, %))




Pricing and hedging the gap risk

* The bank arranging the deal usually insures the client
against the gap risk and has to reimburse the loss if
the fund breaks the floor.

* The payoff of this insurance is equal to Cr1, <.

* |ts cost is given by the expected loss computed under
risk-neutral probability calibrated to market-quoted
option prices, because an approximate hedge with
OTM puts may be constructed.

Portfolio insurance strategies: from CPPI to CPDO — p.75/80



Hedging the gap risk

* First, we show that in a discretely rebalanced CPPI, a
perfect hedge with OTM puts can be constructed.

* Suppose that the portfolio is rebalanced n times, and
that at each date the market quotes puts with time to
maturity h = T'/n.

* We denote by C;" the discounted cushion at
rebalancing date k.

* The cusion is then given by

*

S *
Cpl'y = mCy" (kil)h +(1-m)C;" =C" (m (kil)h +1— m) .
Skh Skh




Hedging the gap risk

* The cusion becomes negative if 53, , ,, < mel S,

* To hedge this risk, we therefore buy put options with
strike =1¢"" Sy, expiring at date (k + 1)h.

. St *
* One such option has pay-off ¢S, (mT_l — @) ,
kh

Sff units, the discounted pay-off is

and if we buy

S*
exactly equal to C;" (m —1—m <k+1>h)

*
Sk:h

Portfolio insurance strategies: from CPPI to CPDO — p.77/80



Hedging the gap risk

* The discounted cushion in presence of hedging
satisfies

S* +
crn = (1 +m ( REDR 1)) ,
Skh

n—1 SEle-l)h +
it =Cp]] (1+m< G 1)) .

Portfolio insurance strategies: from CPPI to CPDO — p.78/80



Hedging the gap risk

* The cost of hedging is given by the sum of prices of all
put options necessary for hedging:

n—1 S +
Cost” = E? |C;" (—1 —m ( (gj:l)h — 1))
kh

k=0 L
- E°[C;"] - G,

Proposition: suppose the Léevy measure has no atom at
—1/mand [~ 2™v(dx) < co. Then,

lim C*" = Cil,»r as.and lim Cost” = —EY[Ch1, 7).

n—aoo n—oo

Portfolio insurance strategies: from CPPI to CPDO — p.79/80



Conclusions

e Taking into account price jumps leads to substantially different
and more realistic conclusions when discussing issues like
hedging and portfolio insurance: hedge ratio # sensitivity,

impact of leverage on portfolio risk,...

e Jump-diffusion models can allow for computationally tractable

solutions to such problems.

e In many instances where diffusion models (unrealistically)
indicate a zero risk for various hedging and portfolio
management strategies, jump-diffusion models allow, to analyze
the residual risk of such strategies and compare various

alternatives quantitatively.





