1. Empirical Finance \& Portfolio Theory

J.P Bouchaud

LAPITALFUND MANAGEMENT『四

http://www.cfm.fr

Single asset returns: Stylized facts

- Returns statistics depend on observation frequency: $r_{t}^{(\tau)}=$ $\ln \left(P_{t+\tau} / P_{t}\right)$
- High frequency returns: very fat tails $P(r) \approx_{r \rightarrow \infty}|r|^{-1-\mu}$, $\mu \sim 3$
- Small linear correlations and small predictability
- Low frequency returns are more Gaussian, but slow convergence because of long memory in volatility fluct.; Slow vol. relaxation after jumps ('aftershocks')
- Leverage effect: $\sigma_{t^{\prime}}$ negatively correlated with r_{t} for $t^{\prime} \geq t$

APITALFUND ITANAGEITENT

Single asset returns: Stylized facts

- Complete description: multivariate distribution of successive returns:

$$
P\left(\ldots, r_{t-1}^{(\tau)}, r_{t}^{(\tau)}, r_{t+1}^{(\tau)}, r_{t+2}^{(\tau)}, \ldots\right)
$$

- Simplifying assumptions:

$$
r_{t}^{(\tau)}=\sigma_{t} \xi_{t} \quad\left\langle\xi_{t} \xi_{t^{\prime}}\right\rangle \sim \delta_{t, t^{\prime}}
$$

where

- σ_{t} is \sim log-normal or inverse Gamma, and long-range correlated (eg multifractal model)
- ξ_{t} still has fat-tails (jumps)

Single asset returns: Stylized facts

- Note: Simplest model is $\sigma_{t}=\sigma_{0}, \xi_{t}$ Gaussian $\rightarrow r_{t}^{(\tau)}$ Gaussian $\forall \tau$

Multivariate asset returns

- Complete description of simultaneous returns:

$$
P\left(r_{1 t}^{(\tau)}, r_{2 t}^{(\tau)}, \ldots r_{i t}^{(\tau)}, . ., r_{N t}^{(\tau)}\right)
$$

- Must describe correlations of the ξ_{i} 's and of the σ_{i} 's
- The simplest case: Gaussian multivariate

$$
P\left(\left\{r_{i}\right\}\right) \propto \exp \left[-\frac{1}{2} \sum_{i j} \sigma_{i} r_{i} C_{i j}^{-1} \sigma_{j} r_{j}\right] \quad(\langle r\rangle \approx 0)
$$

Maximum likelihood estimator of \mathbf{C} from empirical data:

$$
E_{i j}=\frac{1}{T} \sum_{t} \widehat{r}_{i t} \widehat{r}_{j t}
$$

Multivariate asset returns

- A more realistic description: on a given day, all vols. are proportional \rightarrow Elliptic distribution:

$$
P\left(\left\{r_{i}\right\}\right) \propto \int \mathrm{d} s P(s) \exp \left[-\frac{s}{2} \sum_{i j} \sigma_{i} r_{i} C_{i j}^{-1} \sigma_{j} r_{j}\right] \quad(\langle r\rangle \approx 0)
$$

- Example: Student multivariate: $P(s)=s^{\mu / 2-1} e^{-s} / \Gamma(\mu / 2)$ Maximum likelihood estimator of \mathbf{C} from empirical data:

$$
E_{i j}^{*}=\frac{T+\mu}{N} \sum_{t} \frac{\widehat{r}_{i t} \widehat{r}_{j t}}{\mu+\sum_{m n} \widehat{r}_{m t}\left(E^{*-1}\right)_{m n} \widehat{r}_{n t}}
$$

- When $\mu \rightarrow \infty$ for fixed T, Student becomes Gaussian and $\mathrm{E}^{*}=\mathrm{E}$

APITAL FUND mANAGEITENT

The large NT problem

- Determining C requires knowing $N(N-1) / 2$ correlation coefficients. Size of data: N series of length T / τ
- For $N T / \tau \gg N^{2} / 2$, this should work - but if $N T / \tau \ll N^{2} / 2$ there is a problem even when $T / \tau \gg 1$!
- Actually, when $T / \tau<N, \mathbf{E}$ has $N-T / \tau$ exact zero eigenvalues
- For $Q=T / N \tau=O(1)$, the correlation matrix is very noisy
- Going to high frequency ($\tau \rightarrow 0$): Beware the Epps effect C depends on τ !

The Epps effect

- Epps effect: Correlations grow with time lag: [FTSE, 19942003]

$$
\left\langle\rho_{i \neq j}\left(5^{\prime}\right)\right\rangle=0.06 ; \quad\left\langle\rho_{i \neq j}(1 h)\right\rangle=0.19 ; \quad\left\langle\rho_{i \neq j}(1 d)\right\rangle=0.29
$$

- Change of structure:
- Modification of the eigenvalue distribution
- Emergence of more special eigenvalues ('sectors') with time
- Modification of the Mantegna correlation tree - market as an embryo with progressive differenciation
- Weaker and shifted to higher frequencies since ~ 2000

The eigenvalue distribution on different time scales

Eigenvalue distribution at different time scales for the FTSE.

The daily correlation tree

Correlation tree constructed from the correlation matrix (From
Mantegna et al.)

The high frequency correlation tree

Correlation tree constructed from the high frequency correlation matrix (From Mantegna et al.)

The Marcenko-Pastur distribution

- Assume $\mathbf{C} \equiv 1$: no 'true’ correlations and Gaussian returns
- What is the spectrum of \mathbf{E} ?
- Marcenko-Pastur $q=1 / Q$

$$
\rho(\lambda)=(1-Q)^{+} \delta(\lambda)+\frac{\sqrt{4 \lambda q-(\lambda+q-1)^{2}}}{2 \pi \lambda q} \quad \lambda \in\left[(1-\sqrt{q})^{2},(1+\sqrt{q})^{2}\right]
$$

- Two sharp edges ! (when $N \rightarrow \infty$)
- Results also known for \mathbf{E} and \mathbf{E}^{*} in the Student ensemble

Portfolio theory: Basics

- Portfolio weights w_{i},
- If predicted gains are g_{i} then the expected gain of the portfolio is $G=\sum w_{i} g_{i}$.
- Risk: variance of the portfolio returns

$$
R^{2}=\sum_{i j} w_{i} \sigma_{i} C_{i j} \sigma_{j} w_{j}
$$

where σ_{i}^{2} is the variance of asset i and $C_{i j}$ is the correlation matrix.

Markowitz Optimization

- Find the portfolio with maximum expected return for a given risk or equivalently, minimum risk for a given return (G)
- In matrix notation:

$$
\mathbf{w}_{C}=G \frac{\mathbf{C}^{-1} \mathrm{~g}}{\mathrm{~g}^{T} \mathbf{C}^{-1} \mathrm{~g}}
$$

- Where all returns are measured with respect to the risk-free rate and $\sigma_{i}=1$ (absorbed in g_{i}).
- Non-linear problem: $\sum_{i}\left|w_{i}\right| \leq A-$ a spin-glass problem!
- Related problem: find the idiosyncratic part of a stock

LAPITALFUND MANAGEITENT

Risk of Optimized Portfolios

- Let \mathbf{E} be an noisy estimator of \mathbf{C} such that $\langle\mathbf{E}\rangle=\mathbf{C}$
- "In-sample" risk

$$
R_{\mathrm{in}}^{2}=\mathbf{w}_{E}^{T} \mathbf{E w}_{E}=\frac{G^{2}}{\mathbf{g}^{T} \mathbf{E}^{-1} \mathbf{g}}
$$

- True minimal risk

$$
R_{\text {true }}^{2}=\mathbf{w}_{C}^{T} \mathbf{C w}_{C}=\frac{G^{2}}{\mathbf{g}^{T} \mathbf{C}^{-1} \mathbf{g}}
$$

- "Out-of-sample" risk

$$
R_{\mathrm{out}}^{2}=\mathbf{w}_{E}^{T} \mathrm{Cw}_{E}=\frac{G^{2} \mathbf{g}^{T} \mathbf{E}^{-1} \mathbf{C E}^{-1} \mathbf{g}}{\left(\mathrm{~g}^{T} \mathbf{E}^{-1} \mathbf{g}\right)^{2}}
$$

Risk of Optimized Portfolios

- Using convexity arguments, and for large enough matrices: $R_{\text {in }}^{2} \leq R_{\text {true }}^{2} \leq R_{\text {out }}^{2}$
- Importance of eigenvalue cleaning:

$$
w_{i} \propto \sum_{k j} \lambda_{k}^{-1} V_{i}^{k} V_{j}^{k} g_{j}=g_{i}+\sum_{k j}\left(\lambda_{k}^{-1}-1\right) V_{i}^{k} V_{j}^{k} g_{j}
$$

- Eigenvectors with $\lambda>1$ are suppressed,
- Eigenvectors with $\lambda<1$ are enhanced. Potentially very large weight on small eigenvalues.
- Must determine which eigenvalues to keep and which one to correct

Quality Test

- Out of Sample quality of the cleaning: $R_{\text {in }}^{2} / R_{\text {out }}^{2}$ as close to unity as possible for a random choice of g.
- For example, when g is a random vector on the unit sphere,

$$
R_{\mathrm{in}}^{2}=\frac{G^{2}}{\operatorname{Tr} \mathrm{E}^{-1}} \quad R_{\mathrm{out}}^{2}=\frac{G^{2} \operatorname{Tr} \mathrm{E}^{-1} \mathrm{CE}^{-1}}{\left(\operatorname{Tr} \mathrm{E}^{-1}\right)^{2}}
$$

- Example: In the MP case,

$$
R_{\text {in }}^{2}=R_{\text {true }}^{2}(1-q) \quad R_{\text {out }}^{2}=\frac{R_{\text {true }}^{2}}{1-q}
$$

(from:

$$
\left.G_{M P}(z \rightarrow 0) \approx \frac{1}{1-q}+\frac{z}{(1-q)^{3}} \equiv-\operatorname{Tr} \mathbf{E}^{-1}-z \operatorname{Tr} \mathbf{E}^{-2}\right)
$$

Matrix Cleaning

CAPITALFUND MANAGEITENT

Cleaning Algorithms

- Shrinkage estimator

$$
\mathbf{E}_{c}=\alpha \mathbf{E}+(1-\alpha) \mathbf{1} \quad \text { so } \quad \lambda_{c}^{k}=1+\alpha\left(\lambda^{k}-1\right)
$$

- Eigenvector cleaning

$$
\begin{array}{lll}
\lambda_{c}^{k}=1-\delta & \text { if } & k<k_{\text {min }} \\
\lambda_{c}^{k}=\lambda_{E}^{k} & \text { if } & k \geq k_{\min }
\end{array}
$$

Effective Number of Assets

- Definition: (Hirfindahl index)

$$
N_{\mathrm{e}}=\left(\sum_{i=1}^{N} w_{i}^{2}\right)^{-1}
$$

- measure the diversification of a portfolio
- equals N iff $w_{i} \equiv 1 / N$
- Optimization

$$
\max \left\{\sum_{i, j=1}^{N} w_{i} w_{j} C_{i j}+\zeta_{1} \sum_{i=1}^{N} p_{i} w_{i}+\zeta_{2} \sum_{i=1}^{N} w_{i}^{2}\right\}
$$

- same as replacing $C_{i j}$ by $C_{i j}+\zeta_{2} \delta_{i j}$.

RMT Clipping Estimator Revisited

- Where is the edge? Finite size effects, bleeding.
- In practice non trivial on financial data:
- Fat tails ($\mu=3$?),
- Correlated volatility fluctuations,
- Time dependence.
- Is there information below the lower edge?
- Inverse participation ratio is high (localized),
- Pairs at high frequency.

Other measures of risks

- Risk of an hedged option portfolio:

$$
\delta \Pi=\frac{1}{2} \sum_{i}\left\ulcorner_{i} r_{i}^{2}+\sum_{i} \Upsilon_{i} \delta \sigma_{i}\right.
$$

- Correlation matrices for squared returns and for change of implied vols.
- Extreme Tail correlations:

$$
\mathcal{C}_{i j}(p)=P\left(|r|_{i}>\left.R_{i p}| | r\right|_{j}>R_{j p}\right) \quad \text { with } \quad P\left(|r|_{i}>R_{i p}\right)=p, \forall i
$$

- For Gaussian RV, $\mathcal{C}_{i j}(p \rightarrow 0)=0$

Other measures of risks

- For Student RV (or any elliptic power-law), $\mathcal{C}_{i j}(p \rightarrow 0)=$ $Z(\theta) / Z(\pi / 2)$ with:

$$
\rho=\sin \theta ; \quad Z(\theta)=\int_{\pi / 4-\theta / 2}^{\pi / 2} \mathrm{~d} u \cos ^{\mu}(u)
$$

- Empirically, all these non-linear correlation matrices have a very similar structure to $E_{i j}$

More General Correlation matrices

- Non equal time correlation matrices

$$
E_{i j}^{\tau}=\frac{1}{T} \sum_{t} \frac{X_{i}^{t} X_{j}^{t+\tau}}{\sigma_{i} \sigma_{j}}
$$

$N \times N$ but not symmetrical: 'leader-lagger' relations

- General rectangular correlation matrices

$$
G_{\alpha i}=\frac{1}{T} \sum_{t=1}^{T} Y_{\alpha}^{t} X_{i}^{t}
$$

N 'input’ factors X; M 'output’ factors Y

- Example: $Y_{\alpha}^{t}=X_{j}^{t+\tau}, N=M$
- The large N-M-T problem ! Sunspots and generalisation of Marcenko-Pastur - See later

CAPITALFUND MANAGEITENT

