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Single asset returns: Stylized facts

e Returns statistics depend on observation frequency: rf) =

ln(Pt—I—T/Pt)

e High frequency returns: very fat tails P(r) ~r—oo |r|_1_“,
p~3

e Small linear correlations and small predictability

e Low frequency returns are more Gaussian, but slow conver-
gence because of long memory in volatility fluct.; Slow vol.
relaxation after jumps (‘aftershocks’)

e Leverage effect: oy negatively correlated with r; for t' >t
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Single asset returns: Stylized facts

e Complete description: multivariate distribution of successive
returns:

P(..., rgz)l, rt(T), rt(—Tl—)l’ rt(—T|—)2’ )

e Simplifying assumptions:

"“gT) = o0&t (§t&yr) ~ Oy pr

where

— oy IS ~ log-normal or inverse Gamma, and long-range cor-
related (eg multifractal model)

— & still has fat-tails (jumps)
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Single asset returns: Stylized facts

e Note: Simplest model is oy = ¢, & Gaussian — ry) Gaussian
YT
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Multivariate asset returns

e Complete description of simultaneous returns:

P(rg), rg), ...ri(tT), o fr'](\;t))

e Must describe correlations of the &;'s and of the o;'s

e [ he simplest case: Gaussian multivariate

P({r;}) o< exp

1 _
_QZUiriCijlo-jrj] ((7"> ~ O)
]
Maximum likelihood estimator of C from empirical data:

l—. .
Fij =+ zt:ritrjt
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Multivariate asset returns

e A more realistic description: on a given day, all vols. are
proportional — Elliptic distribution:

P({r;}) x /dsP(s) exp {_;Zairicijlajrj] ({r) = 0)
ij

e Example: Student multivariate: P(s) = s*/271e=5/(u/2)
Maximum likelihood estimator of C from empirical data:
T-I-MZ TitTjt

E¥ = — —
& N t M + > mn 7"mt(E*_1)mfrz7"mf

e When u — oo for fixed T, Student becomes Gaussian and
E*=E
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The large NT problem

Determining C requires knowing N(N — 1)/2 correlation co-
efficients. Size of data: N series of length T/t

For NT/r > N?/2, this should work — but if NT /7 <« N2/2
there is a problem even when T/7 > 1!

Actually, when T/t < N, E has N—T' /T exact zero eigenvalues

For Q =T/Nt = O(1), the correlation matrix is very noisy

Going to high frequency (7 — 0): Beware the Epps effect —
C depends on 7!
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The Epps effect

e Epps effect: Correlations grow with time lag: [FTSE, 1994-
2003]

(pij(5)) = 0.06;  (pj(1h)) = 0.19;  {p;;(1d)) = 0.2

e Change of structure:
— Modification of the eigenvalue distribution

— Emergence of more special eigenvalues (‘sectors’) with
time

— Modification of the Mantegna correlation tree — market
as an embryo with progressive differenciation

— Weaker and shifted to higher frequencies since ~ 2000
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The eigenvalue distribution on different time scales
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Eigenvalue distribution at different time scales for the FTSE.

J.Ph. Bouchaud



The daily correlation tree
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Correlation tree constructed from the correlation matrix (From
Mantegna et al.)
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The high frequency correlation tree
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Correlation tree constructed from the high frequency
correlation matrix (From Mantegna et al.)
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The Marcenko-Pastur distribution

e Assume C = 1: no ‘true’ correlations and Gaussian returns

e What is the spectrum of E?

e Marcenko-Pastur g =1/Q

VArg— (A +q—1)2

p(N) = (1= o)+

A€ [(1-v@)?, (1+va)?]

e Two sharp edges ! (when N — o)

e Results also known for E and E* in the Student ensemble
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Portfolio theory: Basics

e Portfolio weights w;,

e If predicted gains are g; then the expected gain of the port-
folio is G = > w;g;.

e Risk: variance of the portfolio returns
2 __ (o -
]
where aiz is the variance of asset ¢ and C;; is the correlation
matrix.
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Markowitz Optimization

e Find the portfolio with maximum expected return for a given
risk or equivalently, minimum risk for a given return (G)

e In matrix notation:

C_lg
WC == G
gl'C-1g

e \Where all returns are measured with respect to the risk-free
rate and o; = 1 (absorbed in g;).

e Non-linear problem: Y, |w;| < A — a spin-glass problem!

e Related problem: find the idiosyncratic part of a stock
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Risk of Optimized Portfolios
e Let E be an noisy estimator of C such that (E) =C

o ‘In-sample”’ risk

5 T G2
R = wrEwrpr =
e [rue minimal risk
G2
R2 = WTCW —
true C C gTC_lg

e "Out-of-sample” risk
G2glE-1CE1g
(gTE-1g)?

2 A— —
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Risk of Optimized Portfolios

e Using convexity arguments, and for large enough matrices:

2 2 2
Rin < Rtrue < Rout

e Importance of eigenvalue cleaning:

wi oo YN TVEVEg =g, + Y O = DVFVSg;
k) kj

— Eigenvectors with A > 1 are suppressed,

— Eigenvectors with A < 1 are enhanced. Potentially very
large weight on small eigenvalues.

— Must determine which eigenvalues to keep and which one
to correct
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Quality Test

e Out of Sample quality of the cleaning: Rizn/Rgut as close to
unity as possible for a random choice of g.

e For example, when g is a random vector on the unit sphere,

B2 _ G2 2 _ G°TrE-1CE!
N TrE-1 out ™ (TrE-1)2

e Example: In the MP case,
> > > R?
Ry, = Rtrue(l —q) Ryt = e

(from:

1 z
Gyp(z — 0) & +
1—-q (1-¢)3

—TrE~ 1 —2TrE~2)
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Matrix Cleaning
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Cleaning Algorithms

e Shrinkage estimator

E.=aE+ (1 - o)l e AN =14+a(lF-1)

e Eigenvector cleaning
AN=1-5 if k < kmin

AP =2k if k> kmin
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Effective Number of Assets
e Definition: (Hirfindahl index)

N —1
Ne — Z ’UJZQ
1=1

— measure the diversification of a portfolio

— equals N iff w; =1/N

e Optimization

N N N
max{ > wwCyii 4+ ¢ Z piw; + (2 Z wzz}

i,j=1 i=1 1=1

— same as replacing C;; by Cj; + (205
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RMT Clipping Estimator Revisited

e \Where is the edge? Finite size effects, bleeding.

e In practice non trivial on financial data:
— Fat tails (u =3 7),
— Correlated volatility fluctuations,

— Time dependence.

e Is there information below the lower edge?
— Inverse participation ratio is high (localized),

— Pairs at high frequency.
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Other measures of risks

e Risk of an hedged option portfolio:

ol = %Z I_Z'r?;2 + > Tido;
1 1

e Correlation matrices for squared returns and for change of
implied vols.

e Extreme Tail correlations:

Cij(p) = P(|rl; > Ripllrl; > Rjp)  with  P(|r|; > R;p) = p, Vi

e For Gaussian RV, C;i(p —0) =0



Other measures of risks

e For Student RV (or any elliptic power-law), C;;(p — 0) =
Z(0)/Z(rw/2) with:
/2

p = sino; Z(0) = /77/4_9/2 du cos*(u)

e Empirically, all these non-linear correlation matrices have a
very similar structure to Ez-j
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More General Correlation matrices
e Non equal time correlation matrices
_1 XX
Ly = ;Z ’

t 010y

N x N but not symmetrical: ‘leader-lagger’ relations

e (General rectangular correlation matrices

1< t vt
1"/=
N ‘input’ factors X; M ‘output’ factors Y

— Example: Y! = X;"‘T, N=M

e [ he large N-M-T problem ! Sunspots and generalisation of
Marcenko-Pastur — See later
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