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Single asset returns: Stylized facts

• Returns statistics depend on observation frequency: r
(τ)
t =

ln(Pt+τ/Pt)

• High frequency returns: very fat tails P(r) ≈r→∞ |r|−1−µ,

µ ∼ 3

• Small linear correlations and small predictability

• Low frequency returns are more Gaussian, but slow conver-

gence because of long memory in volatility fluct.; Slow vol.

relaxation after jumps (‘aftershocks’)

• Leverage effect: σt′ negatively correlated with rt for t′ ≥ t
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Single asset returns: Stylized facts

• Complete description: multivariate distribution of successive

returns:

P(..., r
(τ)
t−1, r

(τ)
t , r

(τ)
t+1, r

(τ)
t+2, ....)

• Simplifying assumptions:

r
(τ)
t = σtξt 〈ξtξt′〉 ∼ δt,t′

where

– σt is ∼ log-normal or inverse Gamma, and long-range cor-

related (eg multifractal model)

– ξt still has fat-tails (jumps)
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Single asset returns: Stylized facts

• Note: Simplest model is σt = σ0, ξt Gaussian → r
(τ)
t Gaussian

∀τ
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Multivariate asset returns

• Complete description of simultaneous returns:

P(r
(τ)
1t , r

(τ)
2t , ...r

(τ)
it , .., r

(τ)
Nt )

• Must describe correlations of the ξi’s and of the σi’s

• The simplest case: Gaussian multivariate

P({ri}) ∝ exp



−1

2

∑

ij

σiriC
−1
ij σjrj



 (〈r〉 ≈ 0)

Maximum likelihood estimator of C from empirical data:

Eij =
1

T

∑

t

r̂itr̂jt
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Multivariate asset returns

• A more realistic description: on a given day, all vols. are

proportional → Elliptic distribution:

P({ri}) ∝
∫

dsP(s) exp



−s

2

∑

ij

σiriC
−1
ij σjrj



 (〈r〉 ≈ 0)

• Example: Student multivariate: P(s) = sµ/2−1e−s/Γ(µ/2)

Maximum likelihood estimator of C from empirical data:

E∗
ij =

T + µ

N

∑

t

r̂itr̂jt

µ +
∑

mn r̂mt(E∗−1)mnr̂nt

• When µ → ∞ for fixed T , Student becomes Gaussian and

E∗ = E
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The large NT problem

• Determining C requires knowing N(N − 1)/2 correlation co-

efficients. Size of data: N series of length T/τ

• For NT/τ ≫ N2/2, this should work – but if NT/τ ≪ N2/2

there is a problem even when T/τ ≫ 1!

• Actually, when T/τ < N , E has N−T/τ exact zero eigenvalues

• For Q = T/Nτ = O(1), the correlation matrix is very noisy

• Going to high frequency (τ → 0): Beware the Epps effect –

C depends on τ !
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The Epps effect

• Epps effect: Correlations grow with time lag: [FTSE, 1994-

2003]

〈ρi 6=j(5
′)〉 = 0.06; 〈ρi 6=j(1h)〉 = 0.19; 〈ρi 6=j(1d)〉 = 0.29

• Change of structure:

– Modification of the eigenvalue distribution

– Emergence of more special eigenvalues (‘sectors’) with

time

– Modification of the Mantegna correlation tree – market

as an embryo with progressive differenciation

– Weaker and shifted to higher frequencies since ∼ 2000
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The eigenvalue distribution on different time scales
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The daily correlation tree

OXYARCCHVMOB
XON

SLB
CGP HAL

BHI
HM

COL

FLR

AIG
CI

AXPFGMBS

XRX

TEK BC

TAN

MER

BAC
WFC

DD

MMM

DOW
MTC EK PRD

WY
IP

AA
CHA BCC

JPM

AGC

ONE

USB

WMT

KM

LTD
MAY

TOY

S

SUNW

CSC
ORCL

UIS
IBM

NSM

HRS
TXN HWP

INTC MSFT

RTNB
ROK

HON

MKG

UTX

BA

PEP

IFF

AVP
CL

PG

JNJ

BAX
BMY PNU

MRK

CPB

HNZ

AEP UCM
ETR
SO

BEL

AIT
T

GTE

GDVO CEN
MO

NT

DAL
FDX

DIS

NSC
BNIMCD

RAL

BDK

WMB

CSCO

KO

GE

Correlation tree constructed from the correlation matrix (From

Mantegna et al.)
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The high frequency correlation tree
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The Marcenko-Pastur distribution

• Assume C ≡ 1: no ‘true’ correlations and Gaussian returns

• What is the spectrum of E?

• Marcenko-Pastur q = 1/Q

ρ(λ) = (1−Q)+δ(λ)+

√

4λq − (λ + q − 1)2

2πλq
λ ∈ [(1−√

q)2, (1+
√

q)2]

• Two sharp edges ! (when N → ∞)

• Results also known for E and E∗ in the Student ensemble
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Portfolio theory: Basics

• Portfolio weights wi,

• If predicted gains are gi then the expected gain of the port-

folio is G =
∑

wigi.

• Risk: variance of the portfolio returns

R2 =
∑

ij

wiσiCijσjwj

where σ2
i is the variance of asset i and Cij is the correlation

matrix.
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Markowitz Optimization

• Find the portfolio with maximum expected return for a given

risk or equivalently, minimum risk for a given return (G)

• In matrix notation:

wC = G
C−1g

gTC−1g

• Where all returns are measured with respect to the risk-free

rate and σi = 1 (absorbed in gi).

• Non-linear problem:
∑

i |wi| ≤ A – a spin-glass problem!

• Related problem: find the idiosyncratic part of a stock

J.Ph. Bouchaud



Risk of Optimized Portfolios

• Let E be an noisy estimator of C such that 〈E〉 = C

• “In-sample” risk

R2
in = wT

EEwE =
G2

gTE−1g

• True minimal risk

R2
true = wT

CCwC =
G2

gTC−1g

• “Out-of-sample” risk

R2
out = wT

ECwE =
G2gTE−1CE−1g

(gTE−1g)2
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Risk of Optimized Portfolios

• Using convexity arguments, and for large enough matrices:

R2
in ≤ R2

true ≤ R2
out

• Importance of eigenvalue cleaning:

wi ∝
∑

kj

λ−1
k V k

i V k
j gj = gi +

∑

kj

(λ−1
k − 1)V k

i V k
j gj

– Eigenvectors with λ > 1 are suppressed,

– Eigenvectors with λ < 1 are enhanced. Potentially very

large weight on small eigenvalues.

– Must determine which eigenvalues to keep and which one

to correct
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Quality Test

• Out of Sample quality of the cleaning: R2
in/R2

out as close to

unity as possible for a random choice of g.

• For example, when g is a random vector on the unit sphere,

R2
in =

G2

TrE−1
R2

out =
G2TrE−1CE−1

(TrE−1)2

• Example: In the MP case,

R2
in = R2

true(1 − q) R2
out =

R2
true

1 − q

(from:

GMP(z → 0) ≈ 1

1 − q
+

z

(1 − q)3
≡ −TrE−1 − zTrE−2)
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Matrix Cleaning
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Cleaning Algorithms

• Shrinkage estimator

Ec = αE + (1 − α)1 so λk
c = 1 + α(λk − 1)

• Eigenvector cleaning

λk
c = 1 − δ if k < kmin

λk
c = λk

E if k ≥ kmin
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Effective Number of Assets

• Definition: (Hirfindahl index)

Ne =





N
∑

i=1

w2
i





−1

– measure the diversification of a portfolio

– equals N iff wi ≡ 1/N

• Optimization

max







N
∑

i,j=1

wiwjCij + ζ1

N
∑

i=1

piwi + ζ2

N
∑

i=1

w2
i







– same as replacing Cij by Cij + ζ2δij.
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RMT Clipping Estimator Revisited

• Where is the edge? Finite size effects, bleeding.

• In practice non trivial on financial data:

– Fat tails (µ = 3 ?),

– Correlated volatility fluctuations,

– Time dependence.

• Is there information below the lower edge?

– Inverse participation ratio is high (localized),

– Pairs at high frequency.
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Other measures of risks

• Risk of an hedged option portfolio:

δΠ =
1

2

∑

i

Γir
2
i +

∑

i

Υiδσi

• Correlation matrices for squared returns and for change of

implied vols.

• Extreme Tail correlations:

Cij(p) = P(|r|i > Rip||r|j > Rjp) with P(|r|i > Rip) = p,∀i

• For Gaussian RV, Cij(p → 0) = 0



Other measures of risks

• For Student RV (or any elliptic power-law), Cij(p → 0) =

Z(θ)/Z(π/2) with:

ρ = sin θ; Z(θ) =

∫ π/2

π/4−θ/2
du cosµ(u)

• Empirically, all these non-linear correlation matrices have a

very similar structure to Eij
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More General Correlation matrices

• Non equal time correlation matrices

Eτ
ij =

1

T

∑

t

Xt
iX

t+τ
j

σiσj

N × N but not symmetrical: ‘leader-lagger’ relations

• General rectangular correlation matrices

Gαi =
1

T

T
∑

t=1

Y t
αXt

i

N ‘input’ factors X; M ‘output’ factors Y

– Example: Y t
α = Xt+τ

j , N = M

• The large N-M-T problem ! Sunspots and generalisation of
Marcenko-Pastur – See later
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