2. Classical RMT results

J.P Bouchaud
 [APITALFUND mANAGEmENT
 『四

http://www.cfm.fr

Spectral Transforms

- Stieltjes transform, Green and Blue functions
$-\rho(\lambda)=N^{-1} \sum_{i} \delta\left(\lambda-\lambda_{i}\right)$
- Stieltjes transform:

$$
\mathcal{S}(z)=\int \mathrm{d} \lambda \frac{\rho(\lambda)}{\lambda-z}=\frac{1}{N} \operatorname{Tr}\left[(\mathbf{H}-z \mathbf{I})^{-1}\right]
$$

- Green function:

$$
G(z) \equiv-\mathcal{S}(z) ; \quad \rho(\lambda)=\lim _{\epsilon \rightarrow 0} \frac{1}{\pi} \Im(G(\lambda-\mathrm{i} \epsilon))
$$

- Blue function: $B[G(z)]=z$

Spectral Transforms

- R-transforms and S-transforms
- R-transform: $R(z)=B(z)-z^{-1}$
- Properties:

$$
\begin{gathered}
R_{a H}(z)=a R_{H}(a z) \\
R(z)=\sum_{k=1}^{\infty} c_{k} z^{k-1} \quad c_{k}: \quad \text { Generalized cumulants }
\end{gathered}
$$

- S-transform:

$$
\eta(y) \equiv-\frac{1}{y} G\left(-\frac{1}{y}\right) ; \quad S(z)=-\frac{1+z}{z} \eta^{-1}(1+z)
$$

Spectral Transforms

- Example 1: Wigner semi-circle

$$
G(z)=\frac{z \pm \sqrt{z^{2}-4}}{2} \quad R(z)=z
$$

- Example 2: Marcenko-Pastur $Q=T / N, q=1 / Q$

$$
\begin{aligned}
& \rho(\lambda)=(1-Q)^{+} \delta(\lambda)+\frac{\sqrt{4 \lambda q-(\lambda+q-1)^{2}}}{2 \pi \lambda q} \quad \lambda \in\left[(1-\sqrt{q})^{2},(1+\sqrt{q})^{2}\right] \\
& G(z)=\frac{(z+q-1)-\sqrt{(z+q-1)^{2}-4 z q}}{2 z q}, R(z)=\frac{1}{1-q z}, S(z)=\frac{1}{1+q z}
\end{aligned}
$$

Four-ways to the semi-circle

- 1. From the full multivariate density. The GOE measure:

$$
P(\mathbf{H}) \propto \exp \left[-\frac{1}{2} \operatorname{Tr} \mathbf{H}^{2}\right] \rightarrow \rho\left(\lambda_{1}, \lambda_{2}, \ldots \lambda_{N}\right)=Z^{-1} \prod_{i<j}\left|\lambda_{i}-\lambda_{j}\right| \exp \left[-\frac{1}{2} \sum_{i} \lambda_{i}^{2}\right]
$$

- Transform Van der Monde determinant with Orthogonal Polynomials, compute $\rho(\lambda)$ by integrating over $N-1$ variables, take the large N limit $\rightarrow \rho(\lambda)=\sqrt{4-\lambda^{2}} / 2 \pi$
- Use the analogy with the partition function of a charged gaz with logarithmic interactions, confined by a parabolic potential. At equilibrium, force on each particle is zero:

$$
\lambda=\int \mathrm{d} \lambda^{\prime} \frac{\rho\left(\lambda^{\prime}\right)}{\lambda-\lambda^{\prime}}
$$

Four-ways to the semi-circle

Tricomi's equation, solved by Wigner's semi-circle

- Note: Dyson's Brownian motion: add a small Gaussian matrix and use second order perturbation theory and rescale to keep a fixed variance:

$$
d \lambda_{i}=\left[-\lambda_{i}+\sum_{j \neq i} \frac{1}{\lambda_{i}-\lambda_{j}}\right] d t+d B_{t}
$$

Four-ways to the semi-circle

- 2. From a recursion relation on the Green function $\mathrm{G}(z)=$ $(z 1-\mathbf{H})^{-1}$
- Start from an $N \times N$ sym. matrix with IID entries and add a row and a column of IID elements.
- Expand twice the inverse of a matrix in terms of minors. One easily gets:

$$
\frac{1}{G_{00}^{N+1}(z)}=z-H_{00}-\sum_{i j}^{N} H_{0 i} H_{0 j} G_{i j}^{N}(z)
$$

- Find a similar recursion for $G_{0 i}^{N+1}$ which shows that off diagonal elements are $O(1 / \sqrt{N})$ whereas diagonal elements are of order one.

Four-ways to the semi-circle

- Hence:

$$
\frac{1}{G_{00}^{N+1}(z)} \approx z-\sum_{i}^{N} H_{0 i}^{2} G_{i i}^{N}(z)+O(1 / \sqrt{N})
$$

- Since $H_{0 i}$ and $G_{i i}$ are independent, one can use the law of large numbers to get, for large N :

$$
\bar{G}^{-1}=z-\bar{G}^{-1} \rightarrow \bar{G}=\frac{1}{2}\left(z \pm \sqrt{z^{2}-4}\right)
$$

Four-ways to the semi-circle

- 3. The REPLICA method
- Use a Gaussian integral representation of the inverse:

$$
\mathbf{A}_{i i}^{-1}=\frac{\int\left[\Pi_{j} d \phi_{j}\right] \phi_{i}^{2} \exp \left[-\frac{1}{2} \sum_{j k} \phi_{j} A_{k j} \phi_{k}\right]}{\int\left[\Pi_{j} d \phi_{j}\right] \exp \left[-\frac{1}{2} \sum_{j k} \phi_{j} A_{k j} \phi_{k}\right]}
$$

The "Replica Trick" is to write this as:

$$
\mathbf{A}_{i i}^{-1}=\lim _{n \rightarrow 0} \int\left[\prod_{j a} d \phi_{j}^{a}\right] \frac{1}{n} \sum_{a=1}^{n} \phi_{i}^{a 2} \exp \left[-\frac{1}{2} \sum_{a=1}^{n} \sum_{j k} \phi_{j}^{a} A_{k j} \phi_{k}^{a}\right]
$$

- Use this with $\mathbf{A}=z \mathbf{1} \mathbf{- H}$, trace over i and average over Gaussian $H_{i j}$, leading to:

$$
G(z)=\lim _{n \rightarrow 0} \frac{2 \partial}{n \partial z} \int\left[\prod_{j a} d \phi_{j}^{a}\right] \exp \left[-\frac{z}{2} \sum_{a}^{n} \sum_{j} \phi_{i}^{a 2}+\frac{1}{4 N} \sum_{a, b}^{n} \sum_{i j} \phi_{i}^{a} \phi_{i}^{b} \phi_{j}^{a} \phi_{j}^{b}\right]
$$

Four-ways to the semi-circle

- 'Replica sym.' ansatz: Introduce two 'order parameters'

$$
q_{0}(z)=\frac{1}{N} \sum_{i} \phi_{i}^{a} \phi_{i}^{a}, \quad q_{1}(z)=\frac{1}{N} \sum_{i} \phi_{i}^{a} \phi_{i}^{b}
$$

enforced by two δ functions, expressed in Fourier transform. Integration over ϕ becomes Gaussian again.

- The remaining integral finally reads:

$$
\int d q_{0} d q_{1} d \lambda d \mu \exp \left[N n F\left(q_{0}, q_{1}, \lambda, \mu\right)\right]
$$

with:

$$
F\left(q_{0}, q_{1}, \lambda, \mu\right)=\left(\lambda+\frac{z}{2}\right) q_{0}+\mu(n-1) q_{1}-\frac{1}{2} \ln \lambda-\frac{1}{2 n} \ln \frac{\lambda+n \mu}{\lambda}+\frac{q_{0}^{2}}{4}+\frac{(n-1) q_{1}^{2}}{4}
$$

Four-ways to the semi-circle

- Work at finite n and let $N \rightarrow \infty$: saddle point calculation leading to the following equation:

$$
\lambda^{*}+\frac{z}{2}+\frac{q_{0}^{*}}{2}, \quad \lambda^{*} q_{0}^{*}=1, \longrightarrow G(z)=q_{0}^{*}=\frac{1}{2}\left(z \pm \sqrt{z^{2}-4}\right)
$$

Four-ways to the semi-circle

- 4. Free convolution (more below)
- If \mathbf{H}_{1} and \mathbf{H}_{2} are two IID large $(N \rightarrow \infty)$ Gaussian matrices, then:

$$
R_{H_{1}+H_{2}}(z)=R_{H_{1}}(z)+R_{H_{2}}(z)
$$

- But: $\mathrm{H}_{1}+\mathrm{H}_{2}={ }_{L} \sqrt{2} \mathrm{H}-$ Hence:

$$
R_{\sqrt{2} H}(z)=\sqrt{2} R_{H}(\sqrt{2} z)=2 R_{H}(z) \longrightarrow R_{H}(z)=a z
$$

- Generalized CLT

Four-ways to the semi-circle: pros and cons

- 1. Rigorous, access to multi-point correlations but specific (Gaussian ensemble) and relatively heavy
- 2. Makes explicit the CLT character of the semi-circle, can be extended to Lévy variables, no access to multi-point correlations
- 3. Non rigorous but very flexible, leads to solution for more complicated RM ensembles, can be extended to multi-point correlations
- 4. Elegant and powerful (see below) but no access to multipoint correlations and structure of eigenvectors

[^0]
Other classic RMT results

- 1. Structure of eigenvectors
- The GOE is invariant under rotations, hence there cannot be any localisation of eigenvectors. Therefore, the inverse participation ratio (Hirfindahl index) of any eigenvector is zero:

$$
\sum_{i} w_{i}^{\alpha 2}=\frac{1}{N}, \quad w_{i}^{\alpha}=|\langle i \mid \alpha\rangle|^{2}
$$

- More precisely, for a given α,

$$
P(w)=N \exp [-N w]
$$

(Porter-Thomas distribution)

LAPITALFUND MANAGEMENT

Other classic RMT results

- 2. Finite N results
- Note; The density of states is self-averaging
- Convergence of the averaged density of states for Gaussian elements:

$$
\left|E\left[\rho_{N}\right]-\rho_{\infty}\right| \leq \kappa N^{-2 / 3}
$$

Note: comes from the edge scaling spill-over:

$$
\rho_{N}(\lambda=2+\epsilon)=N^{-2 / 3} f\left(\epsilon N^{-2 / 3}\right)
$$

which itself can be guessed from: $\int_{2-\epsilon}^{2} d u \sqrt{2-u}=\frac{1}{N} \propto \epsilon^{3 / 2}$.

- For a fixed realization:

$$
\left|\rho_{N}-\rho_{\infty}\right|=\xi N^{-2 / 5}
$$

Other classic RMT results

- Can be extended to non Gaussian elements provided high enough moments exist.
- More precise results about the largest eigenvalue: TracyWidom, see below.

Other classic RMT results

- 3. Universal correlations
- Universal level repulsion: degeneracies are of co-dimension 1 - For example for a 2×2 matrix:

$$
\Delta=0 \quad \text { when } \quad\left(H_{11}-H_{22}\right)^{2}+H_{12}^{2}=0
$$

This implies, for the level spacing distribution:

$$
P(s) \sim_{s \rightarrow 0} s
$$

- Wigner surmise (for a 2×2 Gaussian matrix):

$$
P(s) \propto s \exp \left[-s^{2}\right]
$$

extremely good fit for the exact large N result, and universal (resists change of global densities, etc.) - for example, true

Other classic RMT results

for the Marcenko-Pastur problem, or for quantized classically chaotic systems

- Universal two-level density on a local scale (after rescaling such that $\rho(\lambda)=1$):

$$
\rho\left(\lambda, \lambda+\frac{u}{N}\right)=1-\frac{\sin \pi u}{\pi u}
$$

- Incompressibility

$$
\left\langle n^{2}(\Delta)\right\rangle-\langle n(\Delta)\rangle^{2} \sim \frac{2}{\pi^{2}} \ln \Delta \ll \Delta
$$

Other classic RMT results

- 4. Lévy matrices
- $H_{i j}$: IID with power-law tails, exponent $\mu<2$ such that the variance diverges, rescaled by $N^{1 / \mu}$
- $\rho(\lambda)$ can be exactly computed and has no edge [for a rigorous proof, see Ben-Arous-Guionnet]
- $\rho(\lambda) \sim_{|\lambda| \rightarrow \infty}|\lambda|^{-1-\mu}$
- Interesting structure of eigenvectors (no rotational symmetry) - transition between localized and extended
- Structure of correlations and level spacing unknown

LAPITALFUND MANAGEMENT

[^0]: CAPITALFUND MANAGEMENT

