3. Free Random Matrices and applications

J.P Bouchaud

CAPITALFUND MANAGEITENT
 \square

http://www.cfm.fr

Free Random Matrices

- Freeness
- Freeness is the generalisation of independence for matrices. Two matrices A, B are said to be free essentially if the eigenvectors of \mathbf{A} are a random rotation of those of B.
- Examples: A, B sym. and fixed, H random GOE matrix, O a random rotation

$$
\mathrm{A} \text { and } \mathrm{H} ; \quad \mathrm{A} \text { and } \mathrm{O}^{\mathrm{t}} \mathrm{BO} ; \quad \mathrm{H}_{1} \text { and } \mathrm{H}_{2}
$$

- Rectangular matrix examples: A $N \times T$ fixed, $\mathbf{C} N \times N$ fixed, H $N \times T$ IID Gaussian:
AA^{t} and $\mathrm{HH}^{\mathrm{t}} ; \quad \mathrm{H}_{1} \mathrm{H}_{1}^{\mathrm{t}}$ and $\mathrm{H}_{2} \mathrm{H}_{2}^{\mathrm{t}} \quad \mathrm{H}_{1} \mathbf{H}_{1}^{\mathrm{t}}$ and C

LAPITALFUND MANAGEMENT

Free Random Matrices

- Two powerful composition theorems
- If \mathbf{A}, \mathbf{B} are sym. and free, then the spectrum of $\mathbf{A}+\mathbf{B}$ is such that:

$$
R_{A+B}(z)=R_{A}(z)+R_{B}(z)
$$

- If \mathbf{A}, \mathbf{B} are sym., non negative and free, then the spectrum of $A B$ is such that:

$$
S_{A B}(z)=S_{A}(z) S_{B}(z)
$$

Convergence to the semi-circle

- CLT for matrix spectrum
- Take a ‘small’ matrix H with a centred spectrum and expand $G(z)$ in $1 / z$:

$$
\begin{gathered}
G(z)=\frac{1}{z}+0+\epsilon^{2} \frac{1}{z^{3}}+O\left(\epsilon^{3} / z^{4}\right) \rightarrow \frac{1}{z} \approx G-\epsilon^{2} G^{3} \\
B(z) \approx \frac{1}{z-\epsilon^{2} z^{3}} \rightarrow R(z)=B(z)-\frac{1}{z} \approx \epsilon^{2} z+O\left(\epsilon^{3} z^{2}\right)
\end{gathered}
$$

- Now add M such free matrices with $\epsilon=M^{-1 / 2}$ and $M \rightarrow \infty$, then

$$
R_{M}(z)=M \epsilon^{2} z+O\left(M \epsilon^{3} z^{2}\right) \rightarrow_{M \rightarrow \infty} z
$$

Convergence to the semi-circle

The sum of M 'small’ centred matrices has a Wigner spectrum in the large M limit, with computable corrections

The Marcenko-Pastur distribution

- Consider the following empirical $N \times N$ correlation matrix

$$
E_{i j}=\frac{1}{T} \sum_{k=1}^{T} X_{i}^{k} X_{j}^{k} \quad \text { where } \quad\left\langle X_{i}^{k} X_{j}^{l}\right\rangle=C_{i j} \delta_{k l}
$$

- When $\mathbf{C}=1, E_{i j}$ is a sum of rotationally invariant projectors $\left(X_{i}^{k} X_{j}^{k}\right) / T$

$$
G_{k}(z)=\frac{1}{N}\left(\frac{1}{z-q}+\frac{N-1}{z}\right)
$$

- Inverting $G_{k}(z)$ to first order in $1 / N$,

$$
R_{k}(x)=\frac{1}{T(1-q x)} \quad \text { by additivity } \quad R_{E}(x)=\frac{1}{(1-q x)}
$$

which is the R-transform of the MP distribution

LAPITALFUND MANAGEITENT

The EMA Marcenko-Pastur distribution

- Consider the case where $\mathrm{C}=1$ with an Empirical matrix computed using an exponentially weighted moving average with $\alpha=1-q / N$:

$$
E_{i j}=(1-\alpha) \sum_{k=0}^{\infty} \alpha^{k} X_{i}^{k} X_{j}^{k} \quad \text { where } \quad\left\langle X_{i}^{k} X_{j}^{l}\right\rangle=\delta_{i j} \delta_{k l}
$$

- In law, $E_{i j}$ satisfies $E_{i j}=\alpha E_{i j}+(1-\alpha) X_{i}^{0} X_{j}^{0}$.
- The R-transform of the extra piece is

$$
R_{0}(x)=\frac{q}{N(1-q x)}
$$

EWMA Empirical Correlation Matrices

- Now, using: $R_{a A}(x)=a R_{A}(a x)$,

$$
R_{E}(x)=R_{\alpha E}(x)+R_{0}(x)=(1-q / N) R_{E}((1-q / N) x)+\frac{q}{N(1-q x)}
$$

- To first order in $1 / N$

$$
R(x)+x R^{\prime}(x)+\frac{q}{1-q x}=0 \text { sol: } R(x)=-\frac{\log (1-q x)}{q x}
$$

- Going back to the resolvent to find the density

$$
\rho(\lambda)=\frac{1}{\pi} \Im G(\lambda) \quad \text { where } G(\lambda) \text { solves } \quad \lambda q G=q-\log (1-q G)
$$

- $\rho(\lambda \rightarrow 0) \sim \exp (-1 / q)$ when $q \rightarrow 0$.

CAPITALFUND MANAGEMENT

EWMA Empirical Correlation Matrices

Spectrum of the exponentially weighted random matrix with $q \equiv(N(1-\alpha))=1 / 2$ and the spectrum of the standard random matrix with $q \equiv N / T=1 / 3.45$.

General C Case

- The general case for \mathbf{C} cannot be directly written as a sum of "Blue" functions.
- But the spectrum of $\mathbf{X C X}^{\mathrm{t}}$ is the same as that of $\mathbf{C X}^{\mathrm{t}} \mathbf{X}$
- Using S-transforms:

$$
z G_{E}(z)=Z G_{C}(Z) \quad \text { where } \quad Z=\frac{z}{1+q\left(z G_{E}(z)-1\right)}
$$

- Other equivalent expression:

$$
G_{E}(z)=\int d \lambda \rho_{C}(\lambda) \frac{1}{z-\lambda\left(1-q+q z G_{E}(z)\right)}
$$

General C Case

- Check: $\rho_{C}(\lambda)=\delta(\lambda-1): q z G_{E}^{2}-(z+q-1) G_{E}+1=0$, OK

Empirical Correlation Matrix

LAPITALFUND MANAGEMENT

The Student (Elliptic) Ensemble

- On a given day, the volatility is a random variable:

$$
E_{i j}=\frac{1}{T} \sum_{k=1}^{T} \sigma_{k}^{2} X_{i}^{k} X_{j}^{k}
$$

- When $\mathbf{C}=1, E_{i j}$ is a sum of rotationally invariant projectors $\left(X_{i}^{k} X_{j}^{k}\right) / T$

$$
G_{k}(z)=\frac{1}{N}\left(\frac{1}{z-\sigma_{k}^{2} q}+\frac{N-1}{z}\right)
$$

- Write $\sigma^{2} \equiv \mu / s$, and $P(s)=s^{\mu / 2-1} e^{-s} / \Gamma(\mu / 2)$. Find the additive R-transform, from which the Blue function is found:

$$
B(x)=\frac{1}{x}+\frac{1}{T} \sum_{t} \frac{\frac{\mu}{s_{t}}}{\left(1-\frac{q x \mu}{s_{t}}\right)}=\frac{1}{x}+\int d s P(s) \frac{\frac{\mu}{s}}{\left(1-\frac{q x \mu}{s}\right)}
$$

The Student (Elliptic) Ensemble

- Inverting this relation in terms of G leads to:

$$
\begin{align*}
\lambda & =\frac{G_{R}}{G_{R}^{2}+\pi^{2} \rho^{2}}+\int d s P(s) \frac{\mu\left(s-\mu G_{R} / Q\right)}{\left(s-\mu G_{R} / Q\right)^{2}+\pi^{2} \rho^{2}} \tag{1}\\
0 & =\rho\left(-\frac{1}{G_{R}^{2} \pi^{2} \rho^{2}}+\int d s P(s) \frac{\mu^{2} / Q}{\left(s-\mu G_{R} / Q\right)^{2}+\pi^{2} \rho^{2}}\right) \tag{2}
\end{align*}
$$

The Student (Elliptic) Ensemble

- When $P(s)=s^{\mu / 2-1} e^{-s} / \Gamma(\mu / 2)$, one finds $\rho(\lambda) \sim \lambda^{-1-\mu / 2}$.
- There is a lower edge to the spectrum
- Fit very well but...not the good model
- For the Maximum Likelihood Estimator of the correlation matrix for the Student ensemble, one recovers the MP spectrum
- The case $\mathbf{C} \neq 1$ can be treated using S-transforms.

More General Correlation matrices

- Non equal time correlation matrices

$$
E_{i j}^{\tau}=\frac{1}{T} \sum_{t} \frac{X_{i}^{t} X_{j}^{t+\tau}}{\sigma_{i} \sigma_{j}}
$$

$N \times N$ but not symmetrical: 'leader-lagger' relations

- General rectangular correlation matrices

$$
G_{\alpha i}=\frac{1}{T} \sum_{t=1}^{T} Y_{\alpha}^{t} X_{i}^{t}
$$

N ‘input’ factors X; M 'output’ factors Y

- Example: $Y_{\alpha}^{t}=X_{j}^{t+\tau}, N=M$

Singular values and relevant correlations

- Singular values: Square root of the non zero eigenvalues of $G G^{T}$ or $G^{T} G$, with associated eigenvectors u_{α}^{k} and $v_{i}^{k} \rightarrow$ $1 \geq s_{1}>s_{2}>\ldots s_{(M, N)^{-}} \geq 0$
- Interpretation: $k=1$: best linear combination of input variables with weights v_{i}^{1}, to optimally predict the linear combination of output variables with weights u_{α}^{1}, with a crosscorrelation $=s_{1}$.
- s_{1} : measure of the predictive power of the set of $X s$ with respect to Y s
- Other singular values: orthogonal, less predictive, linear combinations

Benchmark: no cross-correlations

- Null hypothesis: No correlations between X s and $Y \mathrm{~s}-\langle G\rangle=$ 0
- But arbitrary correlations among $X \mathrm{~s}, C_{X}$, and $Y \mathrm{~s}, C_{Y}$, are possible
- Consider exact normalized principal components for the sample variables X s and Y s:

$$
\hat{X}_{i}^{t}=\frac{1}{\sqrt{\lambda_{i}}} \sum_{j} U_{i j} X_{j}^{t} ; \quad \hat{Y}_{\alpha}^{t}=\ldots
$$

and define $\hat{G}=\hat{Y} \widehat{X}^{T}$.

LAPITALFUND MANAGEITENT

Benchmark: no cross-correlations

- Tricks:
- Non zero eigenvalues of $\widehat{G} \widehat{G}^{T}$ are the same as those of $\widehat{X}^{T} \widehat{X} \widehat{Y}^{T} \hat{Y}$
$-A=\widehat{X}^{T} \hat{X}$ and $B=\hat{Y}^{T} \hat{Y}$ are mutually free, with n (m) eigenvalues equal to 1 and $1-n(1-m)$ equal to 0
- "S-transforms" are multiplicative

Technicalities

$$
\eta_{A}(y) \equiv \frac{1}{T} \operatorname{Tr} \frac{1}{1+y A}
$$

$$
S_{A}(x) \equiv-\frac{1+x}{x} \eta_{A}^{-1}(1+x)
$$

$$
\eta_{A}(y)=1-n+\frac{n}{1+y}, \quad \eta_{B}(y)=1-m+\frac{m}{1+y}
$$

$$
S_{G G}(x)=S_{A}(x) S_{B}(x)=\frac{(1+x)^{2}}{(x+n)(x+m)}
$$

CAPITALFUND MANAGEMENT

Benchmark: Random SVD

- Final result:([LL,MAM,MP,JPB])

$$
\rho(s)=(1-n, 1-m)+\delta(s)+(m+n-1)+\delta(s-1)+\frac{\sqrt{\left(s^{2}-\gamma_{-}\right)\left(\gamma_{+}-s^{2}\right)}}{\pi s\left(1-s^{2}\right)}
$$ with

$$
\gamma_{ \pm}=n+m-2 m n \pm 2 \sqrt{m n(1-n)(1-m)}, \quad 0 \leq \gamma_{ \pm} \leq 1
$$

- Analogue of the Marcenko-Pastur result for rectangular correlation matrices, but different from MP^{2}.
- Many applications; finance, econometrics ('large’ models), genomics, etc.

Benchmark: Random SVD

- Simple cases:

$$
\begin{aligned}
& -n=m, s \in[0,2 \sqrt{n(1-n)}] \\
& -n, m \rightarrow 0, s \in[|\sqrt{m}-\sqrt{n}|, \sqrt{m}+\sqrt{n}] \\
& -m=1, s \rightarrow \sqrt{1-n} \\
& -m \rightarrow 0, s \rightarrow \sqrt{n}
\end{aligned}
$$

RSVD: Numerical illustration

RSVD: Numerical illustration

CAPITALFUND ITANAGEITENT

Inflation vs. Economic indicators

$N=50, M=16, T=265$

CAPITALFUND MANAGEMENT

