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Free Random Matrices

• Freeness

– Freeness is the generalisation of independence for matri-

ces. Two matrices A, B are said to be free essentially if

the eigenvectors of A are a random rotation of those of

B.

– Examples: A, B sym. and fixed, H random GOE matrix,

O a random rotation

A andH; AandO
t
BO; H1 andH2

– Rectangular matrix examples: A N × T fixed, C N × N

fixed, H N × T IID Gaussian:

AA
t andHH

t; H1H
t
1 andH2H

t
2 H1H

t
1 andC
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Free Random Matrices

• Two powerful composition theorems

– If A, B are sym. and free, then the spectrum of A + B is

such that:

RA+B(z) = RA(z) + RB(z)

– If A, B are sym., non negative and free, then the spectrum

of AB is such that:

SAB(z) = SA(z)SB(z)
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Convergence to the semi-circle

• CLT for matrix spectrum

• Take a ‘small’ matrix H with a centred spectrum and expand

G(z) in 1/z:

G(z) =
1

z
+ 0 + ǫ2

1

z3
+ O(ǫ3/z4) → 1

z
≈ G − ǫ2G3

B(z) ≈ 1

z − ǫ2z3
→ R(z) = B(z) − 1

z
≈ ǫ2z + O(ǫ3z2)

• Now add M such free matrices with ǫ = M−1/2 and M → ∞,

then

RM(z) = Mǫ2z + O(Mǫ3z2) →M→∞ z

J.Ph. Bouchaud



Convergence to the semi-circle

The sum of M ‘small’ centred matrices has a Wigner spec-

trum in the large M limit, with computable corrections
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The Marcenko-Pastur distribution

• Consider the following empirical N × N correlation matrix

Eij =
1

T

T
∑

k=1

Xk
i Xk

j where 〈Xk
i Xl

j〉 = Cijδkl

• When C = 1, Eij is a sum of rotationally invariant projectors

(Xk
i Xk

j )/T

Gk(z) =
1

N

(

1

z − q
+

N − 1

z

)

• Inverting Gk(z) to first order in 1/N ,

Rk(x) =
1

T(1 − qx)
by additivity RE(x) =

1

(1 − qx)

which is the R-transform of the MP distribution
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The EMA Marcenko-Pastur distribution

• Consider the case where C = 1 with an Empirical matrix

computed using an exponentially weighted moving average

with α = 1 − q/N :

Eij = (1 − α)
∞
∑

k=0

αkXk
i Xk

j where 〈Xk
i Xl

j〉 = δijδkl

• In law, Eij satisfies Eij = αEij + (1 − α)X0
i X0

j .

• The R-transform of the extra piece is

R0(x) =
q

N(1 − qx)
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EWMA Empirical Correlation Matrices

• Now, using: RaA(x) = aRA(ax),

RE(x) = RαE(x)+R0(x) = (1−q/N)RE((1−q/N)x)+
q

N(1 − qx)

• To first order in 1/N

R(x) + xR′(x) +
q

1 − qx
= 0 sol: R(x) = −log(1 − qx)

qx

• Going back to the resolvent to find the density

ρ(λ) =
1

π
ℑG(λ) where G(λ) solves λqG = q − log(1− qG)

• ρ(λ → 0) ∼ exp(−1/q) when q → 0.
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EWMA Empirical Correlation Matrices

0 0.5 1 1.5 2 2.5 3
0

0.2

0.4

0.6

0.8

1

1.2

λ

ρ(
λ)

exp Q=2
std Q=3.45

Spectrum of the exponentially weighted random matrix with

q ≡ (N(1− α)) = 1/2 and the spectrum of the standard random

matrix with q ≡ N/T = 1/3.45.

J.Ph. Bouchaud



General C Case

• The general case for C cannot be directly written as a sum

of “Blue” functions.

• But the spectrum of XCXt is the same as that of CXtX

• Using S-transforms:

zGE(z) = ZGC(Z) where Z =
z

1 + q(zGE(z) − 1)

• Other equivalent expression:

GE(z) =

∫

dλ ρC(λ)
1

z − λ(1 − q + qzGE(z))
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General C Case

• Check: ρC(λ) = δ(λ − 1): qzG2
E − (z + q − 1)GE + 1 = 0, OK
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Empirical Correlation Matrix
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The Student (Elliptic) Ensemble

• On a given day, the volatility is a random variable:

Eij =
1

T

T
∑

k=1

σ2
kXk

i Xk
j

• When C = 1, Eij is a sum of rotationally invariant projectors

(Xk
i Xk

j )/T

Gk(z) =
1

N

(

1

z − σ2
kq

+
N − 1

z

)

• Write σ2 ≡ µ/s, and P(s) = sµ/2−1e−s/Γ(µ/2). Find the

additive R-transform, from which the Blue function is found:

B(x) =
1

x
+

1

T

∑

t

µ
st

(1 − qxµ
st

)
=

1

x
+
∫

dsP(s)
µ
s

(1 − qxµ
s )



The Student (Elliptic) Ensemble

• Inverting this relation in terms of G leads to:

λ =
GR

G2
R + π2ρ2

+

∫

dsP(s)
µ(s − µGR/Q)

(s − µGR/Q)2 + π2ρ2
(1)

0 = ρ

(

− 1

G2
Rπ2ρ2

+

∫

dsP(s)
µ2/Q

(s − µGR/Q)2 + π2ρ2

)

(2)
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The Student (Elliptic) Ensemble

• When P(s) = sµ/2−1e−s/Γ(µ/2), one finds ρ(λ) ∼ λ−1−µ/2.

• There is a lower edge to the spectrum

• Fit very well but...not the good model

• For the Maximum Likelihood Estimator of the correlation

matrix for the Student ensemble, one recovers the MP spec-

trum

• The case C 6= 1 can be treated using S-transforms.
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More General Correlation matrices

• Non equal time correlation matrices

Eτ
ij =

1

T

∑

t

Xt
iX

t+τ
j

σiσj

N × N but not symmetrical: ‘leader-lagger’ relations

• General rectangular correlation matrices

Gαi =
1

T

T
∑

t=1

Y t
αXt

i

N ‘input’ factors X; M ‘output’ factors Y

– Example: Y t
α = Xt+τ

j , N = M
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Singular values and relevant correlations

• Singular values: Square root of the non zero eigenvalues

of GGT or GTG, with associated eigenvectors uk
α and vk

i →
1 ≥ s1 > s2 > ...s(M,N)− ≥ 0

• Interpretation: k = 1: best linear combination of input vari-

ables with weights v1
i , to optimally predict the linear com-

bination of output variables with weights u1
α, with a cross-

correlation = s1.

• s1: measure of the predictive power of the set of Xs with

respect to Y s

• Other singular values: orthogonal, less predictive, linear com-

binations
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Benchmark: no cross-correlations

• Null hypothesis: No correlations between Xs and Y s – 〈G〉 =

0

• But arbitrary correlations among Xs, CX, and Y s, CY , are

possible

• Consider exact normalized principal components for the sam-

ple variables Xs and Y s:

X̂t
i =

1√
λi

∑

j

UijX
t
j; Ŷ t

α = ...

and define Ĝ = Ŷ X̂T .
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Benchmark: no cross-correlations

• Tricks:

– Non zero eigenvalues of ĜĜT are the same as those of

X̂T X̂Ŷ T Ŷ

– A = X̂T X̂ and B = Ŷ T Ŷ are mutually free, with n (m)

eigenvalues equal to 1 and 1 − n (1 − m) equal to 0

– “S-transforms” are multiplicative
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Technicalities

•

ηA(y) ≡ 1

T
Tr

1

1 + yA
.

•

SA(x) ≡ −1 + x

x
η−1
A (1 + x).

•

ηA(y) = 1 − n +
n

1 + y
, ηB(y) = 1 − m +

m

1 + y
.

•

SGG(x) = SA(x)SB(x) =
(1 + x)2

(x + n)(x + m)
.

J.Ph. Bouchaud



Benchmark: Random SVD

• Final result:([LL,MAM,MP,JPB])

ρ(s) = (1−n,1−m)+δ(s)+(m+n−1)+δ(s−1)+

√

(s2 − γ−)(γ+ − s2)

πs(1 − s2)

with

γ± = n + m − 2mn ± 2
√

mn(1 − n)(1 − m), 0 ≤ γ± ≤ 1

• Analogue of the Marcenko-Pastur result for rectangular cor-

relation matrices, but different from MP2.

• Many applications; finance, econometrics (‘large’ models),

genomics, etc.
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Benchmark: Random SVD

• Simple cases:

– n = m, s ∈ [0,2
√

n(1 − n)]

– n, m → 0, s ∈ [|√m −√
n|,√m +

√
n]

– m = 1, s →
√

1 − n

– m → 0, s → √
n
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RSVD: Numerical illustration
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RSVD: Numerical illustration
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Inflation vs. Economic indicators
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