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Free Random Matrices

e Freeness

— Freeness is the generalisation of independence for matri-
ces. Two matrices A, B are said to be free essentially if
the eigenvectors of A are a random rotation of those of

B.
— Examples: A, B sym. and fixed, H random GOE matrix,
O a random rotation

Aand H: A and O'BO: H; and H-

— Rectangular matrix examples: A N x T fixed, C N x N

fixed, H N x T IID Gaussian:
AAtand HHY; H,H! and HyH} H,H and C
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Free Random Matrices

e [ woO powerful composition theorems

— If A, B are sym. and free, then the spectrum of A+ B is
such that:

Ra4+p(2) = Ra(z) + Rp(2)

— If A, B are sym., non negative and free, then the spectrum
of AB is such that:

Sap(z) = 54(2)Sp(2)
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Convergence to the semi-circle

e CLT for matrix spectrum

e Take a ‘small’ matrix H with a centred spectrum and expand
G(z) in 1/z:

G(z) = ——|—O—|—€—+O(e3/z4)—>1%G—€2G3
2z

1 1

B(z) ~ 53— R(z) = B(z) — —~ ez + O(e322)

e Now add M such free matrices with e = M~1/2 and M — oo,
then

Ry (2) = Me?z + O(Me322) — oo 2
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Convergence to the semi-circle

The sum of M ‘small’ centred matrices has a Wigner spec-
trum in the large M limit, with computable corrections
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The Marcenko-Pastur distribution

e Consider the following empirical N x N correlation matrix

1 & kol
Eij = kzl XFx5 where (XPX5) = Cyjbp

e When C =1, Ez-j IS @ sum of rotationally invariant projectors

(XFXT)/T
Gk(z):]if(Ziq‘l-N;l)

e Inverting Gi(z) to first order in 1/N,

1 1
by additivity Rpg(x) =
T(1 - gz) (1—gqzx)

which is the R-transform of the MP distribution

Ry(z) =
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The EMA Marcenko-Pastur distribution

e Consider the case where C = 1 with an Empirical matrix
computed using an exponentially weighted moving average
with a =1 — ¢q/N:

@)
Eijj=(1-a) ) o"XFX} where (XTXEY = 6,50
k=0

o In law, E;; satisfies E;; = aEj; + (1 — o) XPX7.

e [ he R-transform of the extra piece is

q
N(1 — gx)

Ro(z) =
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EWMA Empirical Correlation Matrices

e Now, using: R, 4(x) = aR4(ax),
q

Rp(z) = Ryp(z)+Ro(z) = (1_‘1/N)RE((1_Q/N)$)+N(1 — qx)

e To first order in 1/N

log(1l —
1 =0 sol: R(x) = — 91 — qz)
1l —gqgx qx

R(z) + 2R/ (z) +

e Going back to the resolvent to find the density

1
p(A) = —SG(N\) where G()\) solves  AgG = g —log(1 — ¢G)
T

e p(A — 0) ~exp(—1/q) when ¢ — 0.
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EWMA Empirical Correlation Matrices

1.2 ‘ ‘
— exp Q=2
- - std Q=3.45

0.81

p(A)

0.61

0.4

0.2f

Spectrum of the exponentially weighted random matrix with
qg=(N(1—a)) =1/2 and the spectrum of the standard random
matrix with ¢ = N/T = 1/3.45.
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General C Case

e The general case for C cannot be directly written as a sum
of “Blue” functions.

e But the spectrum of XCX? is the same as that of CXtX

e Using S-transforms:

z

T 1+ q(zGp(z) — 1)

2Gp(z) = ZGo(Z) where A

e Other equivalent expression:
1
z— X1 —q+ qzGp(2))

Gp(=) = [ drpc(V)
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General C Case

e Check: pc(A\) =6(A—1): ¢zG% — (2 4+q—1)Gg+1=0, OK
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Empirical Correlation Matrix

1.0— (] | — Empirical data 7]
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i \\I : — "True" eigenvalues ]
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The Student (Elliptic) Ensemble

e On a given day, the volatility is a random variable:

1 & o kok

e When C =1, E IS @ sum of rotationally invariant projectors

(XFXP)/T
1 1 N —1
Gk(z)zN(z—a%q_l_ z >

e Write 02 = pu/s, and P(s) = s*/271e=5/(1/2). Find the
additive R-transform, from which the Blue function is found:
,u

B(xz) = — + Z qa:,u) — + /dSP(S) qmu)

w2




The Student (Elliptic) Ensemble

e Inverting this relation in terms of G leads to:
GRr p(s — uGr/Q)

e Er —|—/dsP(s)(S_MGR/Q)2+7T2p2 (1)
_ 1 w?/Q
ST <_G%W2p2 T /dSP(S) (s = nGRr/Q)? + 7r202> (2)
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The Student (Elliptic) Ensemble

e When P(s) = s#/2=1e=5 /[ (1/2), one finds p(\) ~ A~17#/2.
e [ here is a lower edge to the spectrum
e Fit very well but...not the good model

e For the Maximum Likelihood Estimator of the correlation
matrix for the Student ensemble, one recovers the MP spec-
trum

e The case C # 1 can be treated using S-transforms.
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More General Correlation matrices

e Non equal time correlation matrices

t+7
1 XX
Elj =252

t 010y

N x N but not symmetrical: ‘leader-lagger’ relations

e General rectangular correlation matrices

N ‘input’ factors X:; M ‘output’ factors Y

— Example: Y! = X§+T, N=M
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Singular values and relevant correlations

e Singular values: Square root of the non zero eigenvalues
of GGT or GT'G, with associated eigenvectors u% and vf —
1 2 S1 > S92 > "'S(M,N)_ Z O

e Interpretation: kK = 1: best linear combination of input vari-
ables with weights fuil, to optimally predict the linear com-
bination of output variables with weights ul with a cross-

o
correlation = s1.

e s1. measure of the predictive power of the set of Xs with
respect to Y's

e Other singular values: orthogonal, less predictive, linear com-
binations
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Benchmark: no cross-correlations

e Null hypothesis: No correlations between Xs and Ys — (G) =
0

e But arbitrary correlations among Xs, Cx, and Ys, Cy, are
possible

e Consider exact normalized principal components for the sam-
ple variables Xs and Ys:

1

%t =

ZUZ'J'X;; YOIEZ
J

and define G =Y X7.
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Benchmark: no cross-correlations

e [ricks:

— Non zero eigenvalues of GG! are the same as those of
XTxXyvly

— A= XTX and B = Y1Y are mutually free, with n (m)
eigenvalues equal to 1l and 1 —n (1 —m) equal to O

— Y“S-transforms’” are multiplicative
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Technicalities

_1. 1
nA(y):? r1+yA.

Sa() =~ Tyt + ).
nA(y)=1—n+1iy, nB(y)zl—m—I—lT_lr_Ly.
Soo(@) = S4(2)Sp() = — EFD°

(x+n)(x+m)
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Benchmark: Random SVD

e Final result:([LL,MAM MP, JPBE])

V(=) (g — 5

= (1-n,1-m)T5(s m4n—1)T5(s—
p(s) = (1—n,1-m)T6(s)+(m+n—-1)T6(s—1)+ (1 _ 52)

with

’Yi=n—|—m—2mn:|:2\/mn(1—n)(1—m), 0<~+ <1

e Analogue of the Marcenko-Pastur result for rectangular cor-
relation matrices, but different from MP?2.

e Many applications; finance, econometrics (‘large’ models),
genomics, etc.
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Benchmark: Random SVD

e Simple cases:

—n=m, s€ [0,2\/n(1 —n)]

—n,m— 0, s € [|[v/m —+/n|,v/m+ /n]
—m=1, s—>+v1—n
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RSVD: Numerical illustration

0.8
— m=0.4, n=0.2
,,,,,,,,,,,,,,,, m=n=0.3
77777 m=0.7, n=1-m=0.3
0.6 - —-— m=n=0.8

p(s)
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RSVD: Numerical illustration

~—— Theory (MP?)
—— Theory (Standardized)
03 - simulation (Random SVD)

p(s)
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Inflation vs. Economic indicators
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