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The Tracy-Widom problem

• Edge and extreme eigenvalues

• Max of IID variables: trivial problem – Fréchet, Gumbel and

Weibull

• Max of correlated variables: a few known non trivial cases,

such as the max of eigenvalues of GOE, GUE

• Tracy-Widom result:

λmax = 2 +
ξ

N2/3
, FTW (ξ)

where FTW (ξ) is expressed in terms of Painlev solutions,

lnFTW (ξ) ∼±∞ −|ξ|3/2,3
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Rank one perturbations

• Universality of TW?

• TW result expected to breakdown when the distribution of

matrix elements is too broad

• An auxiliary problem: what is the largest eigenvalue of H +

Λ, where H is Wigner and Λ a rank-one perturbation with

eigenvalue S ?

• Several methods: free, direct perturbation, replicas
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Rank one perturbations

• R-transform method

• Green function for Λ:

G(z) =
N − 1

Nz
+

1

N

1

z − S
→ B(z) ≈ 1

z
+

1

N

S

1 − Sz

Sum of R-transforms:

RH+Λ = z +
1

N

S

1 − Sz
→ z ≈ G+

1

G
+

1

N

S

1 − SG

• Isolated eigenvalue out of the Wigner sea if SGW(z) = 1 has

a non trival solution, leading to

z = λmax = S +
1

S
(S > 1); λmax = 2 (S ≤ 1)

J.Ph. Bouchaud



Rank one perturbations

• But: No info on the structure of the largest eigenvector
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Extension: Wigner with one Large Element

• Symmetric Hij Gaussian with variance 1/N except one pair

Hαβ = Hβα = S

• Rank two perturbation with eigenvalues ±S

• Extension of the above result: two eigenvalues ±(S + 1/S)

pop out of the Wigner sea when S > 1

• Different derivation based on Statistical Mechanics

H = −1

2

N
∑

i,j=1

Hijsisj +
z

2

N
∑

i=1

s2i

where si are soft spins verifying the spherical constraint
∑N
i=1〈s2i 〉 =

N . Solution with ‘replica trick’.
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Wigner Problem with One Large Element

• Zero temperature solution: λmax = 2 or λmax = S + 1/S.

– First solution corresponds to usual Tracy-Widom statistics

(N−2/3) with a delocalized eigenvector (Porter-Thomas).

– Second solution has Gaussian fluctuations (1/
√
N), local-

ized on α and β with weight wα = wβ = (1 − 1/S2)/2.
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Wigner Problem with Fat Tails

• Matrix elements IID with distribution

P(H) ∼ Aµ

|H|1+µ
with A ∼ O(1/

√
N).

• Largest element (out of N2/2) is such that Hmax is dis-

tributed with Fréchet of order N2/µ−1/2. From the above:

– If µ > 4: Hmax ≪ 1, one recover Tracy-Widom.

– If µ < 4: Hmax ≫ 1, λmax = Hmax: Fréchet distribution.

– If µ = 4: Hmax ∼ O(1), λmax = 2 or λmax = Hmax +

1/Hmax
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Wigner Problem with Fat Tails

• Largest Eigenvalue statistics

– µ > 4: λmax−2 ∼ N−2/3 with a Tracy-Widom distribution

– 2 < µ < 4: λmax ∼ N
2
µ−

1
2 with a Fréchet distribution

(although the density goes to zero when λ > 2 !!)

– µ = 4: λmax ≥ 2 but remains O(1), with a new distribu-

tion:

P(s) = wδ(s− 1) + (1 − w)Θ(s− 1)F(s) λmax = s+
1

s

• Note: The case µ > 4 still has a power-law tail for finite N
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Density for µ = 6
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Density for µ = 3
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Largest Eigenvalue vs Largest Element (µ = 4)
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Inverse Participation Ratio vs Largest Element
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Wishart Problem with a Large Element

• Take Hij standard Wishart matrix, except for H11 = S – i.e.

one day one stock jumps

W =
T
∑

k>1

Hi,kHj,k +Hi,1Hj,1

• Solve using R transform.

λmax(S) =

(

1

Q
+ S2

)

(

1 +
1

S2

)

S ≥ 1/Q1/4 (1)

• For S < 1/Q1/4 one has λmax = 1 + 1/Q + 1/(2
√
Q) (M-P

solution).

• Same classification as for the Wigner case around µ = 4



Wishart Problem with a Large Element

• Note: different from the Student ensemble: one day, all

stocks jump
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Dynamics of the top eigenvector of EMA matrices

• Specific dynamics of large top eigenvalue and eigenvector:

Ornstein-Uhlenbeck processes (on the unit sphere for V1)

• The angle obeys the following SDE:

dθ ≈ − ǫ
2

sin 2θdt+ ζt dWt

with

ζ2t ≈ ǫ2
[

1

2
sin2 2θt +

λ1

λ0
cos2 2θt

]

• Eigenvector dynamics:

〈

〈ψ0t+τ |ψ0t〉
〉

≈ E(cos(θt − θt+τ)) ≈ 1 − ǫ
λ1

λ0
(1 − exp(−ǫτ))
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The variogram of the top eigenvector
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