4. Extreme eigenvalues

J.P Bouchaud

LAPITALFUND MANAGEMENT
 \square

http://www.cfm.fr

The Tracy-Widom problem

- Edge and extreme eigenvalues
- Max of IID variables: trivial problem - Fréchet, Gumbel and Weibull
- Max of correlated variables: a few known non trivial cases, such as the max of eigenvalues of GOE, GUE
- Tracy-Widom result:

$$
\lambda_{\max }=2+\frac{\xi}{N^{2 / 3}}, \quad F_{T W}(\xi)
$$

where $F_{T W}(\xi)$ is expressed in terms of Painlev solutions, $\ln F_{T W}(\xi) \sim_{ \pm \infty}-|\xi|^{3 / 2,3}$

Rank one perturbations

- Universality of TW?
- TW result expected to breakdown when the distribution of matrix elements is too broad
- An auxiliary problem: what is the largest eigenvalue of $\mathbf{H}+$ Λ, where \mathbf{H} is W igner and Λ a rank-one perturbation with eigenvalue S ?
- Several methods: free, direct perturbation, replicas

Rank one perturbations

- R-transform method
- Green function for Λ :

$$
G(z)=\frac{N-1}{N z}+\frac{1}{N} \frac{1}{z-S} \rightarrow B(z) \approx \frac{1}{z}+\frac{1}{N} \frac{S}{1-S z}
$$

Sum of R-transforms:

$$
R_{H+\wedge}=z+\frac{1}{N} \frac{S}{1-S z} \rightarrow z \approx G+\frac{1}{G}+\frac{1}{N} \frac{S}{1-S G}
$$

- Isolated eigenvalue out of the Wigner sea if $S G_{W}(z)=1$ has a non trival solution, leading to

$$
z=\lambda_{\max }=S+\frac{1}{S} \quad(S>1) ; \quad \lambda_{\max }=2 \quad(S \leq 1)
$$

CAPITALFUND MANAGEITENT

Rank one perturbations

- But: No info on the structure of the largest eigenvector

Extension: Wigner with one Large Element

- Symmetric $H_{i j}$ Gaussian with variance $1 / N$ except one pair $H_{\alpha \beta}=H_{\beta \alpha}=S$
- Rank two perturbation with eigenvalues $\pm S$
- Extension of the above result: two eigenvalues $\pm(S+1 / S)$ pop out of the Wigner sea when $S>1$
- Different derivation based on Statistical Mechanics

$$
\mathcal{H}=-\frac{1}{2} \sum_{i, j=1}^{N} H_{i j} s_{i} s_{j}+\frac{z}{2} \sum_{i=1}^{N} s_{i}^{2}
$$

where s_{i} are soft spins verifying the spherical constraint $\sum_{i=1}^{N}\left\langle s_{i}^{2}\right\rangle=$ N. Solution with 'replica trick'.

Wigner Problem with One Large Element

- Zero temperature solution: $\lambda_{\max }=2$ or $\lambda_{\max }=S+1 / S$.
- First solution corresponds to usual Tracy-Widom statistics ($N^{-2 / 3}$) with a delocalized eigenvector (Porter-Thomas).
- Second solution has Gaussian fluctuations $(1 / \sqrt{N})$, localized on α and β with weight $w_{\alpha}=w_{\beta}=\left(1-1 / S^{2}\right) / 2$.

Wigner Problem with Fat Tails

- Matrix elements IID with distribution

$$
P(H) \sim \frac{A^{\mu}}{|H|^{1+\mu}} \text { with } A \sim O(1 / \sqrt{N})
$$

- Largest element (out of $N^{2} / 2$) is such that $H_{\text {max }}$ is distributed with Fréchet of order $N^{2 / \mu-1 / 2}$. From the above:
- If $\mu>4$: $H_{\max } \ll 1$, one recover Tracy-Widom.
- If $\mu<4: H_{\max } \gg 1, \lambda_{\max }=H_{\max }$: Fréchet distribution.
- If $\mu=4: H_{\max } \sim O(1), \lambda_{\max }=2$ or $\lambda_{\max }=H_{\max }+$ $1 / H_{\max }$

Wigner Problem with Fat Tails

- Largest Eigenvalue statistics
$-\mu>4: \lambda_{\max }-2 \sim N^{-2 / 3}$ with a Tracy-Widom distribution
$-2<\mu<4: \quad \lambda_{\max } \sim N^{\frac{2}{\mu}-\frac{1}{2}}$ with a Fréchet distribution (although the density goes to zero when $\lambda>2$!!)
$-\mu=4: \lambda_{\max } \geq 2$ but remains $O(1)$, with a new distribution:

$$
P(s)=w \delta(s-1)+(1-w) \Theta(s-1) F(s) \quad \lambda_{\max }=s+\frac{1}{s}
$$

- Note: The case $\mu>4$ still has a power-law tail for finite N

Density for $\mu=6$

LAPITALFUND MANAGEMENT

Density for $\mu=3$

Largest Eigenvalue of a Random Matrix with $\mu=3$
Density of $\log \left(\lambda_{\text {max }} /\right.$ norm $)$

CAPITALFUND MANAGEMENT

Largest Eigenvalue vs Largest Element ($\mu=4$)

APITALFUND MANAGEMENT

Inverse Participation Ratio vs Largest Element

CAPITALFUND IIANAGEITENT

Wishart Problem with a Large Element

- Take $H_{i j}$ standard Wishart matrix, except for $H_{11}=S$ - i.e. one day one stock jumps

$$
W=\sum_{k>1}^{T} H_{i, k} H_{j, k}+H_{i, 1} H_{j, 1}
$$

- Solve using R transform.

$$
\begin{equation*}
\lambda_{\max }(S)=\left(\frac{1}{Q}+S^{2}\right)\left(1+\frac{1}{S^{2}}\right) \quad S \geq 1 / Q^{1 / 4} \tag{1}
\end{equation*}
$$

- For $S<1 / Q^{1 / 4}$ one has $\lambda_{\max }=1+1 / Q+1 /(2 \sqrt{Q})$ (M-P solution).
- Same classification as for the Wigner case around $\mu=4$

Wishart Problem with a Large Element

- Note: different from the Student ensemble: one day, all stocks jump

Dynamics of the top eigenvector of EMA matrices

- Specific dynamics of large top eigenvalue and eigenvector:

Ornstein-Uhlenbeck processes (on the unit sphere for \mathbf{V}^{1})

- The angle obeys the following SDE:

$$
d \theta \approx-\frac{\epsilon}{2} \sin 2 \theta d t+\zeta_{t} d W_{t}
$$

with

$$
\zeta_{t}^{2} \approx \epsilon^{2}\left[\frac{1}{2} \sin ^{2} 2 \theta_{t}+\frac{\lambda_{1}}{\lambda_{0}} \cos ^{2} 2 \theta_{t}\right]
$$

- Eigenvector dynamics:

$$
\left\langle\left\langle\psi_{0 t+\tau} \mid \psi_{0 t}\right\rangle\right\rangle \approx E\left(\cos \left(\theta_{t}-\theta_{t+\tau}\right)\right) \approx 1-\epsilon \frac{\lambda_{1}}{\lambda_{0}}(1-\exp (-\epsilon \tau))
$$

The variogram of the top eigenvector

