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Give us the tools, and we will finish the work.
Winston Churchill, February 9, 1941.



Definition and Main Properties of Lévy Processes
Definition

An IR%valued process X such that Xy = 0 is a Lévy process if

a) for every s,t, Xy, — X; is independent of F;*

b) for every s,t the r.v’s X;1s — X and X have the same law.

c) X is continuous in probability, i.e., P(|X; — X;| > €) — 0 when s — ¢

for every e > 0.

The sum of two independent Lévy processes is a Lévy process.



Property c) implies that a Lévy process has no jumps at fixed time.
A Lévy process admits a cadlag modification
(A process Y is said to be a modification of X is P(X; =Y;) = 1,Vt)

Let T > 0 be fixed. For any € > 0, the set {t € [0,T] : |AX{| > €} is
finite

The set {t € [0,T] : |AX,| > 0} is countable



Examples

e Brownian motion

The standard Brownian motion is a process W with continuous paths
such that

- for every s,t, Wyys — W; is independent of F}V,

- for every s,t, the r.v. Wi, — W, has the same law as Wj.

The law of Wy is N (0, s).



e Brownian hitting time process
Let W be a standard BM and for a > 0, define

T, :=inf{t : W; =a}

The process (T,,a > 0) is a Lévy process.



Non continuity of T,
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e Poisson process

The standard Poisson process is a counting process such that
- for every s,t, Nyys — Ny is independent of F}V,

- for every s,t, the r.v. Nyys — N; has the same law as N;.

Then, the r.v. IV; has a Poisson law with parameter At

(At)"

P(Nt = k’) = G_At ]
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If X has a Poisson law with parameter 6 > 0, then
(i) for any s € IR, E[sX] = (s71),
(ii)) E[X] =6, Var (X) = 0.
(iii) for any u € IR, E(e*“*) = exp(f(e*™ — 1))
(iv) for any a € IR, E(e®*) = exp(f(e® — 1))
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e Compound Poisson Process

Let A be a positive number and F'(dy) be a probability law on IR (we
assume that P(Y; =0) =0). A (A, F)-compound Poisson process is
a process X = (X¢,t > 0) of the form

Ny
X, = Z Y,
k=1

where N is a Poisson process with intensity A > 0 and the (Y, k € INV)
are i.i.d. random variables, independent of N, with law

F(dy) =P(Y1 € dy).
If E(|Y1]) < oo, for any ¢, E(X;) = ME(Y7).
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The characteristic function of the r.v. X; is
E[efX¢] = AEE[™ ] 1) _ exp ()\t/ (e — 1)F(dy)> .
R
Assume that E[e“Y!] < co. Then, the Laplace transform of the r.v. X; is

E[e®Xt] = MEE] 1) exp ()\t/ (e — 1)F(dy)> :
R

We shall note v(dy) = AF'(dy) and say that X is a v-compound Poisson

process.
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Martingales

Let X be a Lévy process.
o If E(|X;|) < oo, the process X; — E(X;) is a martingale.

e For any u, the process Z;(u) : = E(eax7y IS a martingale.

o If E(e?*t) < oo , the process % is a martingale

TuX¢
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Examples

e Brownian motion

The standard Brownian motion is a martingale, the process Y = E(AW)
defined by Y; = eAWt=22"t ig a4 martingale.

The Doléans-Dade exponential Y = £(AW) satisfies

dY; = Y AdW;
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e Poisson process
The process M; = N; — At is a martingale.
For any «, the process

exp(alNy — At(e® — 1)) = exp(aM; — M(e®* — 1 —a)) = E(aM ),
is a martingale.
For any (3, the process (1 + 3)Mte=*Pt is a martingale

If X is a counting process and if, for some A the process M; = Ny — At

is a martingale, then X is a Poisson process

If X is a counting process with stationary and independent increments,

then X is a Poisson process.
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e Compound Poisson Processes
Assume that E(|Y1|) < oo. Then, the process
(Zy := Xy — tAE(Y7),t > 0) is a martingale and in particular,

oo o0

E(X;) = ME(Y7) = )\t/ yF(dy) = t/ yv(dy)

— 00 — O

For any a € IR such that [ |e*” — 1|F(dz) < oo, the process

exp (oth Y / T (e 1)F(dx)> — exp (oth ¢ / T (e 1)1/(d:r;))

— 0 — 00

is a martingale.
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Random Measures

e Counting process: Let (7},) be a sequence of random times, with
O<Ti <--- <1y ...
and Ny =) -, 1, <;. Let A be a Borel set in IR™ and
N(w;A):=Card {n >1: T,(w) € A}

The measure N is a random measure and Ny(w) = N(w, |0, t]).

For a Poisson process

E(N(A)) = A Leb(A)
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Let v be a radon measure on F. A random Poisson measure N on
E with intensity v is a measure such that

- N(A) is an integer valued random measure,

- N(A) < oo for A bounded Borel set,

- for disjoint sets A;, the r.v’s N(A;) are independent

- the r.v. N(A) is Poisson distributed with parameter v(A)
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e Compound Poisson process: Define N =" dr y, on R x IR,
l.e
Nt (w)

N(w,[0,t] x A) ZHY(w)EA

We shall also write N¢(dx) = IN(]0, t], dx). The measure N is a random
Poisson measure on IRT x IR with intensity AdtF (dz)

We denote by (f « IN); the integral

/O/]Rf(a:)N(ds,d:E)Z/]Rf(ZIJ)Nt(d:C):l;f(Yk):;f(AXs)nAXS#O_

In particular

X, = ZYk—ZAX //CUNdeZU

s<t
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If v(|f]) < oo, the process
M/ = (f*N),—tv(f / / f(x)(N(ds,dx) — dsv(dz))

— Zf AX HAX ;,go—tV

s<t

is a martingale.
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PROOF: Indeed, the process Z; = ij;l (Y%) is a ¥ compound Poisson

process, where v, defined as
V(A) = AP(f(Yn) € A)

is the image of v by f. Hence, if E(|f(Y1)]) < oo, the process
Zy —tAE(f(Y1)) = Z¢ — t [ f(x)v(dz) is a martingale.
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Using again that Z is a compound Poisson process, it follows that the

process

exp (Zf (Yi) — t/oo (ef(®) — l)u(daj)>

_ exp (//f N(ds, dz) — /_o:o(ef(x)—l)u(da:)>

is a martingale
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If X is a pure jump process, if there exists A and a probability measure
o such that > _, f(AX;)Lax.20 —tAo(f) is a martingale, then X is a

compound Poisson process.
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e Lévy Processes

The random variable N([s,¢| x A) =) _ -, 14(AX,) represents the

number of jumps in the time interval |s, t] with jump size in A.
We define v by
v(A) =E(N([0,1] x A))
For A compact set such that 0 ¢ A, v(A) < oo
The process

NA = 3 1a(AX) = N(0.1] x 4)

0<s<t

is a Poisson process with intensity v(A).

The processes N and N¢ are independent if v(ANC) = 0, in
particular if A and C are disjoint.
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Let A be a Borel set of IR? with 0 ¢ A, and f a Borel function defined

on A. We have

Af(x)Nt(w,dx):/()tAf(x) w,ds, dz) Z F(AX (o

The process

is a Lévy process; if [, |f(z)|v(dz) < oo, then

:/Af(x)Nt(w,dx)—tAf(x)y(dx):/Ot/Af(x)(N

is a martingale.

If f is bounded and vanishes in a neighborhood of 0,

E( ) f(AX,) =t  f@de

27
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The measure v satisfies
/(1 Az )v(de) < oo

ie. [ s v(dr) <ocoand [, lz|?v(dr) < oo
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Infinitely Divisible Random Variables
Definition

A random variable X taking values in IR? is infinitely divisible if its

characteristic function satisfies

i(u) = B ) = (jin(u))"

where [1,, is a characteristic function.
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Examples: The Gaussian law N (m, c?) has the characteristic
function exp(ium — u?c?/2).
Cauchy laws. The standard Cauchy law has the characteristic

function exp(—clul).

The hitting time of the level a for a Brownian motion has

Laplace transform

Blexp(~ 3 T.)] = exp(~lal)

Poisson laws. The Poisson law with parameter \ has characteristic

function
exp(c(e™ — 1))
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Poisson Random Sum. Let X, 1.i.d. r.v’s with characteristic function

@ and N a r.v. independent of the X,’s with a Poisson law. Let
X=X1+Xo+ -+ Xn

The characteristic function of X is
exp(—A(1 — ¢(u)))

Gamma laws. The Gamma law I'(a, ) has density

Va

a—1_ —vx
I,
F(a)x € >0

and characteristic function

(1 —du/v)™"
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A Lévy measure v is a positive measure on IR?\ {0} such that

/ min(1, |[]|2)(dz) < oo
R\ {0}
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Lévy-Khintchine representation.

If X is an infinitely divisible random variable, there exists a triple

(m, A,v) where m € IR, A is a non-negative quadratic form and v is a
Lévy measure such that

fiu) = exp (i(u-m) — %(U-Au) + /Rd(e““’””) —1- i(u'x)ﬂ{|x|§1})V(dar)> -

The triple (m, A, v) is called the characteristic triple.
If [ |z|lg,<13v(de) < oo, one writes the LK representation in a

reduced form

ii(u) = exp (z’(u-mo) - %(U-Au) + /]R () 1)V(d:1:)> .
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A first step is to prove that any function ¢ such that

©(u) = exp (z(um) — %(uAu) -+ /JRd(ei(“'x) —1— i(u-:v)ll{|x|§1})y(dac)> (%)

is a characteristic function (hence, i.d.).
If ¢ satisfies (*), one proves that
e it 1s continuous at 0

e it is the limit of characteristic functions.

The result follows.
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Continuity: show that

Y(u) = /(emx — 1 —duzllyy<1y)v(d)

1S continuous.

Y(u) = /| |<1(emng — 1 —jux)v(dr) +/ (" — 1)v(dx)

|lz|>1
Then, using the fact that

UL 1 2 2

] — gzl < =
e zua:\_zux

the result is obtained
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Limit:

/ (e — 1 — jux)v(dx) = lim (e — 1 — jux)v(dx)
2| <1 [z|>1/n

The right-hand side corresponds to compound Poisson process
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If ;1 is i.d., then it satisfies LK.
If iz is i.d., then ji(u) does not vanish.
Then,

implies that
®,,(u) := exp(n(fin(u) — 1)) = exp(n(en AW 1))

converges to (u).

B, (u) = exp(n / (€% — 1)pn (da))

is associated with a compound Poisson process.
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Examples:
Gaussian laws. The Gaussian law N (m, c?) has the characteristic

function exp(ium — u?c?/2). Its characteristic triple is (m, o, 0).

Cauchy laws. The standard Cauchy law has the characteristic function

exp(—clu|) = exp (E / (et 1):1:_2dx) .

7-‘-—OO

Its reduced form characteristic triple is (0,0, 7tz ~2dz).
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Gamma laws. The Gamma law I'(a,v) has characteristic function

(1 —du/v)~% = exp <a /Ooo(em — 1)6—”‘1—”3) .

X

Its reduced form characteristic triple is (0,0, Ly, ax~ e "*dzr).

39



Brownian hitting times.The first hitting time of @ > 0 for a

Brownian motion has characteristic triple (in reduced form)

a

V2T
Indeed E(e~*7) = e=2V2XA Moreover

(O, 0, x_g/zﬂ{x>0}d£v> :

L 1 > _e—Aa: $—3/2 T

hence, using that I'(1/2) = /7

E(e *a) = exp (— V% /000(1 — e M) x_3/2dx) .

V2
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Inverse Gaussian laws. The Inverse Gaussian law has density

1
a e 1 —3/2 exp (——(a%‘l + sz)) as0)

V2 2

This is the law of the first hitting time of a for a Brownian motion with
drift v. The Inverse Gaussian law has characteristic triple (in reduced

a I 5
O,O,Wexp —iuzc lysorde | .

form)
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Inverse Gaussian laws. The Inverse Gaussian law has density

@ av. .—3/2 L o1
e x ex +v%z) ) Ly,
o P( 2( )) {z>0}

This is the law of the first hitting time of a for a BM with drift v.

The Inverse Gaussian law has characteristic triple (in reduced form)

a 1
(0,0, Nore exp <—§V2£C) Il{x>0}d:1;> :

Indeed
> dx —\T —v2%x/2
exp( N $3/21—e )e /)
> dx —v%x - v T
— exp( o x3/2 /2—1)—|—(1—e (A+v7/2) )))

= exp(—a(—v+ Vv? + 2))

is the Laplace transform of the first hitting time of a for a BM with

drift v.
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Stable Random Variables

A random variable is stable if for any a > 0, there exist b > 0 and ¢ € IR
such that [fi(u)]® = ji(bu) e*® .

X 1is stable if
Vn, 3(Bn,vn), such that X ™ 4. 4 XMW '3 x 4o

where (Xi(n),i < n) are i.i.d. random variables with the same law as X.

A stable law is infinitely divisible.
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The characteristic function of a stable law can be written

( exp(ibu — s02u?), fora = 2
f(u) = exp (—v|ul*[1 —i8 sgn(u) tan(wa/2)]), fora#1,#2 |,
| exp (vlul(1 — iBvln u) o=1

where 3 € [—1,1]|. For a # 2, the Lévy measure of a stable law is
absolutely continuous with respect to the Lebesgue measure, with

density
cto— dx if x>0

v(dx) = o .
¢ |x|m* dx  if £ <O0.

Examples: A Gaussian variable is stable with o = 2. The Cauchy law
is stable with a = 1.
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Lévy-Khintchine Representation

Let X be a Lévy process. Then, X7 is i.d.

There exists m € IR?, a non-negative semi-definite quadratic form A, a

Lévy measure v such that for u € IR?

E(exp(i(u-X71))) =

1

exp (i(u-m) = 5 (u-Au) + /]R d(e““'f”) —1— z'(u-a:)]l|m|§1)u(dx)>

where v is the Lévy measure.
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o If (IR \ {0}) < o0, the process X has a finite number of jumps in any

finite time interval. In finance, one refers to finite activity.
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o If (IR \ {0}) < o0, the process X has a finite number of jumps in any

finite time interval. In finance, one refers to finite activity.

o If v(IR \ {0}) = oo, the process corresponds to infinite activity.
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The complex valued continuous function ® such that
E [exp(iuX1)] = exp(—P(u))

is called the characteristic exponent (sometimes the Lévy exponent)

of the Lévy process X.

48



The complex valued continuous function ® such that
E [exp(iuX1)] = exp(—P(u))

is called the characteristic exponent (sometimes the Lévy exponent)
of the Lévy process X.

If E [eAXl} < oo for any A > 0, the function ¥ defined on [0, co[, such
that

E [exp(AX1)] = exp(¥(N))

is called the Laplace exponent of the Lévy process X.
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The complex valued continuous function ® such that
E [exp(iuX1)] = exp(—P(u))

is called the characteristic exponent (sometimes the Lévy exponent)
of the Lévy process X.

If E [eAXl} < oo for any A > 0, the function ¥ defined on [0, co[, such
that

E [exp(AX1)] = exp(¥(N))

is called the Laplace exponent of the Lévy process X.
It follows that, if W(\) exists,

E [exp(iuXt)] = exp(—tP(u)), E [exp(AX:)] = exp(t¥(N))

and
U(N\) =—P(—i)).
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From LK formula, the characteristic exponent and the Laplace

exponent can be computed as follows:

1 :
®(u) = —ium+ §a2u2 — /(ewx — 1 —duzlly <1 )v(de)
1
TN = dIm+ 502)\2 + /(em —1— Azl <q)v(de).
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Martingales
o [f E(|X¢]) <oo,ie., [ 5 |zlv(de) < oo;
E(X;) = t(m + f|x|>1 lz|v(dx)), the process X; — E(X;) is a martingale.
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Martingales

o If E(|Xy|) < oo, ie., [, 5 |z[v(dz) < oo, the process X; — E(Xy) is a
martingale and E(X;) = t(m + fle lz|v(dx)).

o If V() exists (i.e., if f|x|>1 e’v(dx) < 00), the process

aX
e~ _ paXi—t¥(a)

is a martingale
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More generally, for any bounded predictable process H

E S H,f(AX,) :IE[ /O dsH, / f(a;)du(a;)]

s<t

and if H is a predictable function (i.e. H : Qx IRT x IR — IRis P x B

measurable)

E|) Hi(w,AX,)| =E Uot ds/du(:c)HS(w,az)] .

s<t

Both sides are well defined and finite if

E [/Ot ds/du(a:)|]—l8(w,x)\] < o
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(Exponential formula.) Let X be a Lévy process and v its Lévy
measure. For all ¢ and all Borel function f defined on IRT x IR such

that f(f ds [ |1 — ef®®)|y(dz) < oo, one has

E

exp Z f(s, AX )M ax, 20y

s<t

= exp (- /Ot ds/(l - ef(s’x))y(d:v)) .

The above property does not extend to predictable functions.
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Lévy-Itd’s decomposition

If X is a R%valued Lévy process, it can be decomposed into

X=YO 1+y®D 4v® 4+ YO where Y is a affine function, YV is a
linear transform of a Brownian motion, Y (2 is a compound Poisson
process with jump size greater than or equal to 1 and Y®) is a

Lévy process with jumps sizes smaller than 1. The processes Y () are

independent.
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More precisely

X; = mt+0Wt+X1+th€

e—0

where

t
X! = // xN(dx,ds):ZAXS]l|AXS|21
0 J{|z|>1}

s<t

X¢ = // N(dz,ds) — v(dx)ds)
{€<|w|<1}

The processes X' is a compound Poisson process, the process X¢€ is a

compensated compound Poisson process, it is a martingale. Note that
fot f{e<|x|<1} x N(dz,ds) and fot f{€<|m|<1} zv(dzr)ds) are well defined.

However, these quantities do not converge as € goes to 0.
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Path properties

e The Lévy process X is continuous iff v = 0

e The Lévy process X with piecewise constant paths iff it is a
compound Poisson process or iff m =0, 0 =0 and [ v(dx) < oo
e The Lévy process X is with finite variation path iff c = 0 and
flx|§1 lz|v(dx) < co. In that case,

ium + /(ei“ac — 1 —duzll)y<q)v(dr)
can be written
iumg + /(eiux — 1)v(dx)

and
Xt — mot + Z AXS

s<t
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o If flm|<1 [x|v(dz) = oo, the sum } _, [AX,|T|ax,|<c diverges,

however the compensated sum converges.
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If X is a Lévy process with jumps bounded (by 1), it admits moments
of any order, and, setting Z;, = X; — E(X), Z = Z¢ 4+ Z% where Z¢ is a

continuous martingale,
74 = / 2 (N(dt, dz) — v(dz)dt)
|lz|<1

and Z¢ and Z¢ are martingales and independent Lévy processes.
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If X is a Lévy process with jumps bounded (by 1), it admits moments
of any order, and, setting Z;, = X; — E(X), Z = Z¢ 4+ Z% where Z¢ is a

continuous martingale,
74 = / 2 (N(dt, dz) — v(dz)dt)
|lz|<1

and Z¢ and Z¢ are martingales and independent Lévy processes.

If X is a Lévy process, it admits a decomposition as

dXt = Oédt + O'dBt +/
lz|<1

x (N(dt,dz) — v(dx)dt) + / xN(dt, dx)

[ >1

The Lévy process is a semi-martingale, hence » ., (AX,)? < oo
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Some definitions on general stochastic processes
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Local martingale

An adapted, right-continuous process M is an F-local martingale if
there exists a sequence of stopping times (73,) such that

(i) The sequence T, is increasing and lim,, T,, = o0, a.s.

(ii) For every n, the stopped process M T"H{Tn>0} is an F-martingale.
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Covariation of Martingales

e Continuous local martingales: Let X be a continuous local
martingale. The predictable quadratic variation process of X is the
continuous increasing process (X) such that X? — (X) is a local

martingale.
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Covariation of Martingales

e Continuous local martingales: Let X be a continuous local
martingale. The predictable quadratic variation process of X is the
continuous increasing process (X) such that X? — (X) is a local

martingale.

Let X and Y be two continuous local martingales.

e The predictable covariation process is the continuous finite variation
process (X, Y) such that XY — (X,Y) is a local martingale. Note that
(X)=(X,X) and

(X+Y)=(X)+(Y)+2(X,Y).
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Covariation of Martingales

e Continuous local martingales: Let X be a continuous local
martingale. The predictable quadratic variation process of X is the
continuous increasing process (X) such that X? — (X) is a local

martingale.

Let X and Y be two continuous local martingales.

e The predictable covariation process is the continuous finite variation
process (X, Y) such that XY — (X,Y) is a local martingale. Note that
(X)=(X,X) and

(X+Y)=(X)+ () +2(X,Y).

e Integration by parts formula

t t
X,Y; = XoYo +/ X,dY, +/ Y.dX, + (X, Y),
0 0
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e GGeneral Local martingales:

Let X and Y be two local martingales.
» The covariation process is the finite variation process [X, Y| such
that

XY — [X,Y] is a local martingale

AlX,Y]; = AX;AY,
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e GGeneral Local martingales:

Let X and Y be two local martingales.
» The covariation process is the finite variation process [X, Y| such
that

XY — [X,Y] is a local martingale

A[X,Y]; = AX,AY,

The process | X, X]| is non-decreasing.

» If the martingales X and Y are continuous, [X,Y] = (X,Y).
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e GGeneral Local martingales:

Let X and Y be two local martingales.
» The covariation process is the finite variation process [X, Y| such
that

XY — [X,Y] is a local martingale

A[X,Y]; = AX,AY,

The process | X, X]| is non-decreasing.
» If the martingales X and Y are continuous, [X,Y] = (X,Y).

» This covariation process is the limit in probability of
POV Xty = Xe) Ve, = Yi,), for 0 <ty < -+ < () < t when
SUD; < p(n) (ti — ti—1) goes to 0.
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» The covariation [ X, Y] of both processes X and Y can be also defined
by polarisation

X +Y, X +Y]=[X,X]+[V,Y] +2[X,Y]
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Let X and Y be two local martingales.
» The predictable covariation process is the finite variation process
(X,Y) such that

XY — (X,Y) is a local martingale

(X,Y) is predictable.
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Let X and Y be two local martingales.
» The predictable covariation process is the finite variation process
(X,Y) such that

XY — (X,Y) is a local martingale

(X,Y) is predictable.

The existence of the predictable covariation process requests some
additional conditions on the local martingales (|X, L] is P-locally

integrable).
If W is a Brownian motion (W), = [W]; = t.

If M is the compensated martingale of a Poisson process, [M|; = N,
and (M); = At, and [W, M| = 0.
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If P and Q are equivalent, the covariation process under P and under Q

are equal. This is not the case for the predictable covariation process.
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Spaces of martingales

H? is the set of square integrable martingales, i.e., martingales such
that sup,_ ., E(M?) < oo
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Spaces of martingales

H? is the set of square integrable martingales, i.e., martingales such
that sup,_ ., E(M?) < oo

Two martingales in H? are orthogonal if their product is a martingale.
g

We denote by H?¢ the space of continuous square integrable
martingales and by H?? the set of square integrable martingales

orthogonal to H?°.

75



Spaces of martingales

H? is the set of square integrable martingales, i.e., martingales such
that sup,_ ., E(M?) < oo

Two martingales in H? are orthogonal if their product is a martingale.

We denote by H?¢ the space of continuous square integrable
martingales and by H?? the set of square integrable martingales

orthogonal to H?°.

A martingale in H>¢ is called a purely discontinuous martingale
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Spaces of martingales

H? is the set of square integrable martingales, i.e., martingales such
that sup,_ ., E(M?) < oo

Two martingales in H? are orthogonal if their product is a martingale.

We denote by H?¢ the space of continuous square integrable
martingales and by H?? the set of square integrable martingales

orthogonal to H?°.
A martingale in H>¢ is called a purely discontinuous martingale

For any martingale M € H?, we denote by M¢ its projection on H*¢
and by M¢? its projection on H?¢. Then, M = M¢ + M9 is the
decomposition of any martingale in H? into its continuous and purely

discontinuous parts.
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Covariation of Semi-martingales

A semi-martingale is a cadlag process X such that X; = M; + A;,, M
martingale, A bounded variation process. One can write

Xy = Mf+ M2 + A; where M€ is continuous. We use the (usual)
notation X° := M¢€.

» If X and Y are semi-martingales and if X, Y ¢ are their continuous

martingale parts, their quadratic covariation is

X, Y] = (XY + ) (AX,)(AY).

s<t

» In the case where X,Y are continuous semi-martingales, their
predictable covariation process is the predictable covariation process of

their continuous martingale parts.
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Stieltjes Integral

Let U be a cadlag process with bounded variation (i.e., the difference
between two increasing processes). The Stieltjes integral fooo 0sdU;

is defined for elementary processes 0 of the form 6, = 9,1,y (s), with
U ar.v. as [ 05dUs =0, (U(b) — U(a)) and for 0 such that

[ 165]|dU (s)| < oo by linearity and passage to the limit. (Hence, the

integral is defined path-by-path.) Then, one defines the integral

t o0
/ QSdUS = / HSdUS = / ﬂ{]o,t]}ests .
0 10,¢] 0

Note that if U has a jump at time ¢y, then (©; : = fg’ 0sdUs, t > 0) has
also a jump at time #y given as AQ;, = O, — @tcT = 0, AUy, .
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Integration by Parts If U and V' are two finite variation processes,

Stieltjes’ integration by parts formula can be written as follows

UV, = U0V0+/ ‘/SdUs+/ Us—dVs
10,%] 10,%]

— U0V0+/ ‘[S_dUS+/ Us-dVs + Y AU, AV, .
10,¢] 10,¢]

s<t

The summation ) ., AUs AVj is in fact a summation over a
denumerable number of times s, i.e., the times where U and V admit a
common jump. As a partial check, one can verify that the jumps of the
left-hand side, i.e., U, V; — U,-V,—, are equal to the jumps of the right
hand side V,- AU; + U,- AV; + AU; AV;.
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Chain Rule Let F' € C! and A a finite variation process. Then,

F(At) — F(AO)_'_/t F/(As_)dAs_l_Z(F(As)_F(As_)_F/(AS_)AAS)

F<At) — F<AO) + /Ot F/(As_)dAg + ZF(AS> o F(As—)

where A€ is the continuous part of A.
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Stochastic Integral

Let N be a counting process. The stochastic integral

t
| cuan.
0

is defined pathwise as a Stieltjes integral for every bounded measurable

process (not necessarily FN-adapted) (C;,t > 0) by

(CxN), < / CudN, = / CydNy 2N O L, <y -
0,t]

n=1

We emphasize that the integral fg C'sdNy is here an integral over the
time interval |0, ¢], where the upper limit ¢ is included and the lower
limit 0 excluded. This integral is finite since there is a finite number of

jumps during the time interval |0, ¢].
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We shall also write t
/ CsdN; =)  C,AN,
0 s<t
where the right-hand side contains only a finite number of non-zero
terms. The integral fooo C.dN, is defined as fooo CsdNg =5, Cr,,
when the right-hand side converges.

We shall also use the differential notation d(C*N ), w CidNy.
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Integration by parts formula for Poisson process

Let (z¢,t > 0) and (y¢,t > 0) be two predictable processes and let

X =x+ fot rsdNg and Y; =y + fot ysdNs. The jumps of X (resp. of V)
occur at the same times as the jumps of N and

AX, =2,ANg, AY, = ysANg. Then

XYy = ay+ )Y AXY),=ay+ Y X, AY,+ > Y AX,+ > AX,AY,

s<t s<t s<t s<t

The first equality is obvious, the second one is easy to check.
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Integration by parts formula for Poisson process

Let (z¢,t > 0) and (y¢,t > 0) be two predictable processes and let

X =x+ fot xsdNg and Y; =y + fot ysdNs. The jumps of X (resp. of V)
occur at the same times as the jumps of NV and

AX, =2,ANg, AY, = y;ANg. Then

XYy = ay+ Y AXY)s=ay+ > X, AYo+ ) Y, AX,+ > AX,AY,

s<t s<t s<t s<t

The first equality is obvious, the second one is easy to check.
Hence, from the definition of stochastic integrals

t t
XY, = xy—|—/ YS_dXS+/ X,_dY, + [X, Y],
0 0

where (note that (AN;)? = AN;)

t
(X, Y] =) AX AY, =) z,y,AN, = / s ys ANy .
0

s<t s<t
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More generally, if dX; = p;dt + z,dN; with Xg = x and
dY; = vedt + y,dNy with Yy = y, one gets

t t
X,Y; = ay +/ Y,_dX, +/ X,_dY, + [X,Y),
0 0

where [X,Y]; = fot TsYs AN .
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If x is a predictable (bounded) process, the integral

¢
/ r.dM,
0

This is no more the case if = is not predictable, even if the integral is

is a martingale.
well defined. The process f(f NsdM is not a martingale.

In particular, from integration by parts formula, if dX; = x;dM; and
dY; = y.dM;, the process X;Y; — [X,Y]; is a local martingale.
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Dolans-Dade exponential of a finite variation process

Let U be a cadlag process with finite variation. The unique solution of
dY; =Y;-dU;, Yo =y

is the stochastic exponential of U (the Doléans-Dade exponential of U)

equal to
Y: = yexp(Uf—Uf) H(l + AUs)
s<t
= yexp(U; — Up) [[(1+ AU )e 2.
s<t
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PROOF: Applying the integration by parts formula shows that it is a
solution to the equation dY; = Y, dU;. As for the uniqueness, if
Y i=1,2 are two solutions, then, setting Z =Y ! — Y2 we get
Zy = [ Zs—dU,. Let My = sup,, | Zs|, then, if V; is the variation
process of U,

1Z:| < MV,

which implies that

Ve

t
Z0 <My [ Viedvo = M,
0

Iterating, we obtain |Z;| < Mt% and the uniqueness follows by letting

n — oo. VAN

389



Ito’s formula

Ito’s Formula For Poisson processes
Let N be a Poisson process and f a bounded Borel function. The

decomposition

f(Ne) = f(No) + > [F(Ne) = f(Ne-)]

0<s<t

is trivial and is the main step to obtain Itd’s formula for a Poisson
process.
We can write the right-hand side as a stochastic integral:

DN = fF(NG)] = ) [f(Ne +1) = f(N-)JAN,

0<s<t 0<s<t

_ / F(N,- +1) — f(N,)JN, ,
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hence, the canonical decomposition of f(/V;) as the sum of a martingale

and an absolute continuous adapted process is

F(NG) = f(No)+ / F(Ne- +1) = F(N,)]dM+ / [F(Ny +1)—F(N, - )]Ads
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More generally, assume that N is an inhomogeneous Poisson process (

i.e., N is a counting process and there exists a non-negative function A
such that N; — fo s)ds is a martingale). Let h be an adapted process
and g a predictable process such that fo |hs|ds < oo, f(f |gs| Asds < o0.

Let F € CHY(IRT x IR) and

dXy = hydt + gidMy = (hy — g A¢)dt + ged Ny

Then
F(t,X;) = F(0,Xpy) + /5’75 (s, Xs) d8+/ 0:F (s, Xs_)(hs — gsA(s))ds
+) F(s,Xs) — F(s, X,2)
s<t

= F(0, X)) /&g ster/@FsX)dX

+3 0 [F( F(s,Xs—) — 0,F (s, Xs-)gsAN,] .

s<t
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F(t,X;) = F(0,Xp)+ /t O F (s, Xs)ds + /t 0. F (s, Xs)(hs — gsA(s))ds

—|—/t[F(S,Xs) — F(SaXs—)]dNS
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PROOF: Indeed, between two jumps, dX; = (hy — A\t gs)dt, and for
T, <s<t< Ty,

t ¢
F(t, X;) = F(s, Xs) —|—/ O F(u, Xy)du —|—/ O F(u, Xy)(hy — guAy)du .

At jump times, F(T,,, X1, )= F(T,, X7, )+ AF(-, X)r.. AN

n
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Remark that, in the “ds” integrals, we can write X,_ or X, since, for

any bounded Borel function f,

/ F(X)ds = / X

Note that since dNg a.s. Ny = Ng_ + 1, one has

/O F(N,_)dN, = /0 F(N. — 1)dN..

We shall use systematically use the form fo s—)dNg, even if the
fo 1)dNg has a meaning.
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The reason is that f(f f(Ng_)dM, = fg f(Ng_)dNg + )\fot f(Ng_)ds is a
martingale, whereas fg f(Ns — 1)dM; is not.

96



Check that the above formula can be written as

F(t, X:) — F(0, Xo)

:t/@ m¥@+/anX gsA(s))ds

—I_/ [F<87Xs) F(S,XS_)]CZNS

t t
/ O F (s, Xs)ds + / 0. F (s, Xs_)dX
0 0

‘|‘/t[F(S>XS) _F(S7XS—) o 8$F(S’XS_)gS]dNS
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F(t, X;) — F(0, Xp)

t t
/ O F (s, Xs)ds +/ 0. F (s, Xs_)dXs
0 0
t
—|—/ F(s, Xs_ +9gs) — F(s,Xs_) — 0. F(s,Xs_)gs]dNy
0
t
/ (0,F (5, X.) + [F(5, Xo_ +g2) — F(s, Xo_) — 0y F (5, Xo_)go]\) ds
0

+/t[F(S, Xow +9s) = F(s, X )|dM
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Let X be a v-compound Poisson process, and Z; = Zy + bt + X;. Then,

using that N = Z ot v, , 1td’s formula

n=1

F(2) — f(Z) = / F(Zyds+ S f(Zn) - f(Zn)

k, T, <t

= o [ s / [ e +) — 12N,

/ ds (LF)(Z4) + M(f),

0

can be written as where Lf(x) =bf'(x) + [,(f(z +y) — f(x)) v(dy) is
the infinitesimal generator of Z and

M(f), = / /R F(Zae +y) — £(Z2)) (N(ds, dy) — ds v(dy))

is a local martingale.
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Let Q be equivalent to P on F;, for any t and Q|z, = L; P|£, where L is
a strictly positive P-martingale. Any P-local martingale X is a Q
semi-martingale and its semi-martingale decompositions are given by

the following theorem:

(i)

t
d| X, L| :
X — / | L’ | is a Q-local martingale
0

S

(ii) If [ X, L] is P-locally integrable, the process

t

d(X,L)s . :

X — / < L’ ) is a Q-local martingale
0 s
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(General case

Let X be a semi-martingale and f € C*? Then

df(t,Xs) = Ouf(t, Xy)dt + 9 f(t, X, )dX, + %am F(t, X,-)d[X ),
+f(Xe) = (8 X ) = AXy 0o f (8, Xy-)
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Back to Lévy processes
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Begin at the beginning, and go on till you come to the end. Then, stop.

L. Carroll, Alice’s Adventures in Wonderland
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Covariation processes

Let X be a (m,o0?,v) real valued Lévy process. Then, X¢ = oW, and

(X): = 2t+/0t/x2N(ds,da;)

If [2?v(dx) < oo,
(X)), = ot +t/xzu(da;)
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I1to’s formula

If X is a Lévy process, it admits a decomposition as

dXt = Oédt—i—O'dBt —|—/

|lz|<1

x (N(dt,dz) — v(dx)dt) + / xN(dt, dx)

|z[>1

The Lévy process is a semi-martingale, hence » ., (AX,)? < oo
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) = 0+ [ ds+/f

+) (f(Xem + AX,) — —AX (X))

s<t

As a consequence of the semi-martingale property, if F' is a C? function,

then, the series

Y (X +AX) = f(Xso) — AX f(X50))

s<t

converges, since

F(Xom + AX) — f(Xoo) — AX ' (X2)| < e(AXS)?
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Let Y; = f(t, X;), with f bounded with bounded derivatives. Then, Y

is a semi-martingale

Its martingale part is

9, f(t, X;)odB, + / (f(t, X, +2)— f(t, X,)) (N(dt, dz) — v(dz)dt)

Its finite variation part is
1
O f(t, Xy) + a0y f(t, Xy) + §U2amf(ta Xy)

T / (F(t, X @) — F(t, X)) — 200 f(t, X ) aey) vlde)
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Representation Theorem

Let X be a IR%valued Lévy process and F¥X its natural filtration. Let
M be a locally square integrable martingale with My = m. Then, there
exists a family (¢, 1) of predictable processes such that

/ 0" |?ds < 00, a.s.

//]Rdlws )|*ds v(dz) < oo, a.s.

and

My =m + Z/ LAW?! + / Ys(x)(N(ds,dzr) — dsv(dx)) .

R4
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Change of measure
Poisson Process

Let N be a Poisson process with intensity A, and Q be the probability
defined by (with g > —1)

dQ Ny -
= — (1 t Bt
= (4 )

Then, the process NN is a (Q-Poisson process with intensity equal to

(1+ B)A.
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The process L defined as
Ly = (14 p)"e ™

is a strictly positive martingale with expectation equal to 1. Then, from
the definition of Q, for any sequence 0 =t <ty < --- <t,11 =1t,

Eq (H IL‘f;VtiHNti) =Ep (fi)\ﬁt H((l + ﬁ)xi)NtiJrthz‘)
i=1

i=1
The right-hand side is computed using that, under P, the process NN is a
Poisson process (hence with independent increments) and is equal to

n

e~ A\Bt HE ( (14 372) Z+1—ti) — e ABt He—k(twl—ti) eMtit1—t:)(1+0)z;

1=1

— H 6(1+ﬁ)>‘(ti+1—ti)($i—1) .

1=1
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EQ <H xi\]ti—i—thi) — H 6(1+B)>‘(ti+l_ti)(xi_1) .
=1 i=1

In particular, for any j (take all the x;’s, except the jth one, equal to 1)

Eg (:Ijj.\[tj“_th) — (1Bt 41 —t;) (x;—1) ;

which establishes that, under Q, the r.v. N ., — Ny has a Poisson law
with parameter (1 + 3)A, then that

mn mn
Ny . —Ng. N . —Ng.
EQ (l | x’i titl tz> — | I ]EQ (.CCZ Fit1 t@)

which is equivalent to the independence of the increments.
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Compound Poisson process

Let X be a v-compound Poisson process under P, we present some
particular probability measures Q equivalent to IP such that, under Q,

X 1is still a compound Poisson process.

112



Let v a positive finite measure on IR absolutely continuous w.r.t. v, and
A=v(R) > 0. Let

Li=exp [tA=X)+> In (2—5) (AX,)

s<t

Recall that

exp ( /O t /]R f(z)N(ds, dz) —t /_ o;(ef@ - 1)V(dx)>

is a martingale

Applying this martingale property for f = In (%), the process L is a

martingale. Set Q|z, = LiP|£,. Under Q, the process X is a

v-compound Poisson process.
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ProoF: First we find the law of the r.v. X; under Q. From the

definition of Q

EQ (eiuXt )

Ep(eiuxt exp (t()\ — /):) + Zt f(Yk)>

k=1

Z e—>\t ()\t)net(A—}\\) (EP(€ZUY1—|—f(Y1)))n

n!
n=0
— ()" HA—X) dv vy )
;Oe e Ep(——(Y1)e™")

i A i (% / ewydﬁ(y))n — expt / (€9 — 1)di(y)

It remains to check that X is with independent and stationary

increments under Q.
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By Bayes formula, for ¢t > s

Fs)

115



Esscher transform
We assume that E(e(®X+)) < co. We define a probability measure Q,
equivalent to P by the formula

o(0-X1)
Q‘ft - E(g(@.xt)) ]P)‘j——t (*)

This particular choice of measure transformation, (called an Esscher

transform) preserves the Lévy process property.

Let X be a P-Lévy process with parameters (m, A,v) where A = RTR.
Let 6 be such that E(e(?X*)) < oo and suppose Q is defined by (*).
Then X is a Lévy process under QQ
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It is not difficult to prove that X has independent and stationary
increments under Q. The characteristic exponent of X under Q is ®(?)
such that

e—tcp(@)(u) _ EQ(ei(u-Xt)):E(ei(u-Xt)—l—(O-Xt))etCID(—iG)

o —H(@(u—i0)—0(—i0))

The characteristic exponent of X under Q is
OO (u) = d(u— i) — B(—i6).

If W(0) < oo, U (u) = ¥(u+60) — V(H) for v > min(—0,0).
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A simple computation leads to

1 1 1
O(u—1i0) — D(—if) = —iu-m+ §u-Au — §iu-A9 — 5739-Au

_/ (" (™™ = 1) = iu-alp <1y) v(d)
—  _—ju (m i %(A + A9 + /(ee’x — 1):1:]1{|x|§1}u(dx)>

1 .
—|—§UAU -+ /ee-x(ezu-x —1— iu-:v]l{|x|§1})1/(d$) :

Hence, X4 has the required Lévy-Khintchine representation under Q.
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Balexp(i(wXr))) = exp (itwm®) - J(uwdu
+ /R d(e“u-w) — 1 —i(uz) Ly < )v? (daz))
with
m® = m+ %(A + AT)H —l—/ z (e — 1)v(dx)

||<1
v (dz) = eu(de).
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(General case

More generally, any density (L;,t > 0) which is a positive martingale

can be used.

d
dL; = Z QL AW} + /Jt(a:)[N(dt, dr) — dtv(dx)].
i=1

From the strict positivity of L, there exists ¢, 1 such that
Oy = Ly_y, Py = Li_(e¥®%) — 1), hence the process L satisfies

d
dL; = Ly <Z OLdW] + /(ew(t’m) — 1)[N(dt, dx) — dtu(d:n)]) ()

1=1
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Let Q|7 = L:P|#, where L is defined in (**). With respect to Q,

(i) W7 “w, - fg ©sds is a Brownian motion

(ii) The process N is compensated by e¥(*®)dsv(dz) meaning
that for any Borel function h such that

T
/ / h(s, z)|e? ) dsy(dz) < 0o,
0 JR

the process

/O t /IR h(s, ) (N(ds,dw) —e¢(8’m)dsy(dx))

is a local martingale.
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Fluctuation theory

Let My = sup,—; X be the running maximum of the Lévy process X.
The reflected process M — X enjoys the strong Markov property.

Let 6 be an exponential variable with parameter ¢, independent of X.
Note that

Using excursion theory, the random variables My and Xy — My can
be proved to be independent, hence

F(efvMo R (piw(Xo—Mo)y _ q .
(e M0 E(e )= s

This equality is known as the Wiener-Hopf factorization.

Let m; = ming<;(X;). Then

law
me — X@ —Mg.

If E(e*!) < oo, using Wiener-Hopf factorization, Mordecki proves that
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the boundaries for perpetual American options are given by
b, = KE(e™),b. = KE(e)

where m; = inf,<; X and 6 is an exponential r.v. independent of X
rK?
1 —InE(eX1)

with parameter r, hence b.b, =
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Pecherskii-Rogozin Identity

For x > 0, denote by T, the first passage time above x defined as
T, =inf{t >0 : X; >z}

and by K, = X7, — x the so-called overshoot.

For every triple of positive numbers («, 3, q),

~ T e—aTx—BKx T — HJ(O&, q) B HJ(O&,B)
/0 i e = = Br(arq)

where k is the Laplace exponent of the ladder process defined as

e M0 = B(exp(—am — SHy)),

where H is defined in terms of M and the local time of M — X.
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Exponential Lévy Processes

Let X be a Lévy process.

The process X is a martingale iff f|

2|51 |z|v(dx) < oo and

X

The process e is a martingale iff f| e’v(dr) and

x|>1
b+ %02 + f(e"’" —1 - ZIZ’]l|m|§1V(dZE) =0
Let C(t,S) be a C1? function and S; = Spe™ Tt where

fle e**v(dx) < oo

The process e " C(t, S;) is a martingale iff

oC oC o ,02C
S T St 5SS 0

+(/mmmcms&y4x@9—5@-4)

oC

95) ="
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Exponential and stochastic exponential of Lévy
Processes

Doléans-Dade Exponential Let X be a real-valued

2 v)-Lévy process. The solution of

(m,o
dZy = Zy_d Xy, Zg =1
1S
7, = pXt—507t H(l _|_AXS)6—AXS

s<t
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Proof: in a first step, we prove that

V, = H(l + AX,)e A%

s<t

is well-defined and is a finite variation process.

Vv, = ] @+AX)e 2% ] @+AX)e 2%

s<t,|AXs|<1/2 s<t,|AXs|>1/2

7

7

~" ~~

th Vt2
The product in V? contains a finite number of terms

The process V! is non-negative and

In(V;}) = > (In(l+AX,) - AX,)

s<t,|AX;|<1/2

Using
0> (In(1+AX,) - AX,) > —(AX,)?

we check that V! is well defined and with bounded variation.
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Then, we apply Ito’s formula. Let Z; = eXt_%"QtV;. Then

dZ;

0‘2 X 12 0'2
_7Zt_dt + Zi_dXy+e 27 td‘/;t+7Zt—dt

(2 — Zo) — Zy_AX,—eX-"27 AV, (%)
Zy-dX; + XT3 VAN VL - ViU AX)
Z,_dX,

128



More generally, the solution of the SDE
dS; = Si_ (b(t)dt + o(t)dX;)

1S

S, = Spexp ( /0 ta(s)dXS—l— /O t(b(s)— 022(8)d3>

[] (1+0(s)AX,) exp(—o(s)AX,).

0<s<t
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Exponentials of Lévy Processes

Let X be a real-valued (m, 02, v)-Lévy process.

Let S; = eXt be the ordinary exponential of the process X. The
stochastic logarithm of S (i.e., the process Y which satisfies S; = £(Y))

is a Lévy process and is given by

1
Y;I:£(S>t:Xt—|—§O'2t— Z (1+AXS—€AXS> .

0<s<t
The Lévy characteristics of Y are
1
my = m+g0°+ / (" = Dllfjer —1j<1y = @ lqpoj<1y) v(d)

o3 = o

w(d) = vz : e —1eA}) = /nA(efv 1) w(da).
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The process Y; = X; + 0%t — D 0<s<t (1+AX, —e?Xs) is a Lévy

process, 02 = 02, and AY; = 2%t — 1,

This implies the form of vy (dz). (1)

131



we obtain that the Lévy-Ito decomposition of Y is

1
Y, = X+ 0%t > (1+AX, - )

0<s<t

t t
. 1
= mt+oB; + / / xN(ds, dx) + / / N (ds, dx) + =0t
0 J{lz|<1} 0 J{lz|>1} :

_/Ot /(1 4z — e")N(ds, dz)

t
= myt—+obB; —|—/ /(Bx — 1)]1{|ex_1|§1}N(dS,dfC)
0
t
—|—/ /(6m — 1)]1{|€m_1|>1}N(dS,d£IZ‘)
0

t t
0 0
The result follows.
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Let Z; = £(X): the Doléans-Dade exponential of X. If Z > 0, the
ordinary logarithm of Z is a Lévy process L given by

1
Ly :=In(Z,) = X, — 50% + ) (n(14AX,) - AX,) .
0<s<t
Its Lévy characteristics are
1
mp = m=—go+ / (In(1 + 2) L ya) <1y — TLyjei<1y) v(do)

o7 = o

vi(A) = v{z : In(1+2x) € A}) = /]1A(ln(1—|—x))v(da:)
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Exponentials of Lévy Processes

2

Let S; = xe*t where X is a (m, 02, v) real valued Lévy process.

Let us assume that E(e™**t) < oo, for o € [—¢,, €]. This implies that X

has finite moments of all orders.
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A particular case

Let W be a Brownian motion and Z be a v-compound Poisson process
independent of W of the form Z; = ij;l Y.,,. Let

dS; = Si- (pdt + ocdW; + dZ,) , (0.1)

where p and o are constants. The process (S;e™", ¢t > 0) is a
martingale if and only if F(|Y1|) < oo and u+ AE(Y7) =r.

If Y7 > —1 a.s., the process S can be written in an exponential form as

Sy = SQGXt, X;=bt+cW;+V,

where b = 1 — 202, V is the (), ﬁ)—compound Poisson process

2
Ny Ny
Vi=> m(14Y,) =) U,
n=1 n=1
with F(u) = F(e* —1).
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Option pricing with Esscher Transform

Let S; = Spe™tt*¢ where X is a Lévy process under the historical
probability P. Assume that ¥(a) = E(e®***) < 0o on some open interval
(a,b) with b — a > 1 and that there exists a real number 6 such that
U(h)=w(O+1).

The process e~ S; = Spe™* is a martingale under the probability Q

SOX
defined as Q = Z;P where Z; = 10

Hence, the value of a contingent claim h(S7) can be obtained, assuming

that the emm chosen by the market is Q as

1
V, = e_T(T_”EQ(h(ST)\]-}) — o (T=1) \D(g)Ep(h(yer(T—t)JrXT_teeXT_t)‘
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A Differential Equation for Option Pricing

Let S; = exp(rt + X;) where X is a (m, 0%, v) Lévy process with
[ e**v(dz) < co. Then

dS; = rSidt + oS, dW; + ‘/(eg’3 —1)S5;_(N(dt,dx) — dtv(dx))

1
8tC(t,x)—|—7°x8xC—|—§026’mC—l—/ v(dy)(C(t,ze?)—C(t,x)—x(e—1)0,C) =0

and a terminal condition C(T,z) = h(x)
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Put-call Symmetry

Let us study a financial market with a riskless asset with constant
interest rate r, and a price process (a currency) S; = Spet* where X is
a Q-Lévy process such that (Z, = e~ ("=9tS,/8;,t > 0) is a Q-strictly
positive martingale with initial value equal to 1. The ()-characteristic
triple (m, o2, v) of X is such that

m=r—90— 0'2/2 — /(EZy —1— y]1{|y|§1})u(dy).
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Then,

Eqle™™(Sy — K)Y) = Eg(e °TZr(So — KSy/S71)T)

= E@(6_5T(So — KSO/ST)+)

with Q\‘}‘t = Z:Q|x,. The process X is a @—Lévy process, with
characteristic exponent W(\ + 1) — ¥(1). The process Sp/S; = e~ Xt is
the exponential of the Lévy process, Y = —X which is the dual of the
Lévy process X and the characteristic exponent of Y is

U(A\) = ¥(1 — \) — U(1). Hence, the following symmetry between call
and put prices holds:

CE(SOaK7T7 57T7 \Ij) — PE(K7 SO757T7T7 {Ivj)
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Subordinators

A Lévy process which takes values in [0, 00| (i.e. with increasing paths)

t
Xy = bt+/ /a:N(da:,ds)
0

In this case, the parameters in the Lévy-Khintchine decomposition are

is a subordinator.

m > 0,0 = 0 and the Lévy measure v is a measure on |0, co| with

/]0 [(1 A x)v(dr) < oo.
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Subordinators

A Lévy process which takes values in [0, 00| (i.e. with increasing paths)

t
Xy = bt+/ /a:N(da:,ds)
0

In this case, the parameters in the Lévy-Khintchine decomposition are

is a subordinator.

m > 0,0 = 0 and the Lévy measure v is a measure on |0, co| with

/]0 [(1 A x)v(dr) < oo.

The Laplace exponent can be expressed as

B(u) :5u+/ (1 — e=)y(dx)

]0,00]

with 0 > 0
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Subordinators

A Lévy process which takes values in [0, 00| (i.e. with increasing paths)

t
Xy = bt+/ /a:N(da:,ds)
0

In this case, the parameters in the Lévy-Khintchine decomposition are

is a subordinator.

m > 0,0 = 0 and the Lévy measure v is a measure on |0, co| with

/]0 [(1 A x)v(dr) < oo.

The Laplace exponent can be expressed as
B(u) = 5u+/ (1 — e=)y(dx)
]0,00]

with 0 > 0
Let Z be a subordinator and X an independent Lévy process.
Then, X; = Xz, is a Lévy process, called subordinated

Lévy process.
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Compound Poisson process. A compound Poisson process with

Y. > 0 is a subordinator.

Gamma process. The Gamma process G(t;7) is a subordinator which
satisfies

G(t+ h;y) — G(t;7) "2 T(h; ) .

Here I'(h; ) follows the Gamma law. The Gamma process is an
increasing Lévy process, hence a subordinator, with one sided

Lévy measure

1 T

— —— ) 1l,.~0.
xeXp( fy) >0

Hitting times Let W be a BM, and
T,=inf{t >0 : Wy >r}.

The process (T;.,7 > 0) is a stable (1/2) subordinator, its Lévy measure

1
is 1,->odx. Let B be a BM independent of W. The process

V21 x3/2

Br, is a Cauchy process, its Lévy measure is dx/(wz?).
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Changes of Lévy characteristics under subordination

Let X be a (a™, A, v*) Lévy process and Z be a subordinator with
drift 3 and Lévy measure v#, independent of X.The process X; = Xz,

is a Lévy process with characteristic exponent

O(u) =i(au) + %Z(u) — /(ei(“’x) — 1 —i(ux)ll 4 <1)v(dx)

with
a = fa* +/uz(ds)ﬂ|x|§1xP(XS c dx)
A = paAX
v(dr) = Bridx+ / vZ(ds)P(X, € dx).
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“Vous leur conseillerez donc de faire le calcul. Elles [les grandes
personnes| adorent les chiffres: ¢a leur plaira. Mais ne perdez pas votre

temps a ce pensum. C’est inutile. Vous avez confiance en moi.”

Le petit prince, A. de St Exupéry. Gallimard. 1946. p. 59.
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Variance-Gamma Model

The variance Gamma process is a Lévy process where X; has a

Variance Gamma law VG(o,v,0). Its characteristic function is

1 —t/v
E(exp(iuX;)) = (1 — by + 502uu2) :

The Variance Gamma process can be characterized as a time changed

BM with drift as follows: let W be a BM, ~v(t) a G(1/v,1/v) process.
Then

Xt = Q’Y(t) + O-Wv(t)

is a VG(o, v, 0) process.
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The variance Gamma process is a finite variation process. Hence it is
the difference of two increasing processes. Madan et al. showed that it

is the difference of two independent Gamma processes

Xe =Gt pi,m) — Gt pa,y2) -

Indeed, the characteristic function can be factorized

E(exp(iuX;)) = (1 B ﬂ) i (1 . ﬂ) —t/

" V9
with
1
vt = 5 ((9V + /0202 + 21/02)
1
vy, b= §<9V—\/92V2+21/0' )
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The Lévy density of X is

11
— — exp(—rv1l|z|) for x < 0
v |2
11
— —exp(—1ox) forx > 0.
v T

The density of X7 is

1

e ( 2 )5_ K
V7270l (1/2) \ 02 + 202 /v

where K, is the modified Bessel function.

=

4 VPO + 202 )

2=
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Stock prices driven by a Variance-Gamma process have dynamics

oV

¢ 2
S; = Sy exp (rt+X(t; o,v,0)+ —In(1 — v — 7))
v

O'2V

t

From E(e®t) = exp (—— In(1 —0v — T>)’ we get that Sie™"" is a
v

martingale. The parameters v and 6 give control on skewness and

kurtosis.

The CGMY model, introduced by Carr et al. is an extension of the
Variance-Gamma model. The Lévy density is

 C
e~ Mz x>0
xY—I—l
< C Gz <0
(A X
\ ‘ZC‘Y+1

with C >0, M >0,G>0and Y <2,Y ¢ Z.
If Y <0, there is a finite number of jumps in any finite interval, if not,
the process has infinite activity. If Y € [1, 2], the process is with infinite

variation. This process is also called KoBol.
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Double Exponential Model

The Model A particular Lévy model is the double exponential jumps
model, introduced by Kou and Kou and Wang. In this model

Ny
Xe=pt+oWe+ ) Y,
1=1

where W is a Brownian motion independent of N and Zfltl Y; is a
compound Poisson process. The r.v’s Y; are i.i.d., independent of N and
W and the density of the law of Y7 is

flx) =pme™ " Nizsoy + (1 = p)n2e™  Lypcoy -
The Lévy measure of X is v(dx) = A\f(x)dx.

Here, 7, are positive real numbers, and p € [0, 1]. With probability p
(resp. (1 — p)), the jump size is positive (resp. negative) with
exponential law with parameter n; (resp 72).
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It is easy to prove that

2
p 1-—p p 1-—p 1 1

Bv) = 2~ 2P v (vi) = 2+ 252 4 p(1 - p) (_ ; _)
mo e " m 9

and that, for n; > 1, E(e!?) = pyty + (1 —p) ;. Moreover

E(e™*t) = exp (t {—102u2 + 1bu + A ( o + (L= p)rz — 1) }) :

2 mM — 1U N2 + iU

[+ Ap (1_7‘;1_771 — e_m) — A1 —1p) (1_;—2—?72 — e‘”Q). The Laplace

exponent of X, i.e., the function ¥ such that E(e”*t) = exp(¥(3)t) is
defined for —ns < B < 1y as

U(B) = Bu + %6202 + A(mpTﬁ + (1611252 1),
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Change of probability Let S; = Spe”'t** where

X = (pu— %02)75 + oW, + Zjﬁl Y;. Then, setting V; = e¥¢, using an
Escher transform, the process S;e™"* will be a Q martingale with

Q|r, = LidP|x, and L; = E(Q:T)ié), for o such that ¥(a) = U(a + 1).
Under Q, the Lévy measure of X is

v(dx) = e*v(dr) = e \f(z)dx = X]‘A’(a})da: where, after some standard
computations

f($) — (ﬁﬁle_ﬁlxﬂ{x>0} + (1 — ﬁ)ﬁ26ﬁ2xﬂ{x<o}) :
moo= m-a, 2 = N2+«

5 A( P +(1—p)n2>
m—« n2 +«

N2 + &
1
apm + n2(m — a + apn)

p =
In particular, the process X is a double exponential process under Q.
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Hitting times For any x > 0
P(r, <t, X;, —b>2x)=e ""P(r, <t, X, —b>0)

PROOF:

The infinitesimal generator of X is
1
£f = 50%0uaf + 10+ [ (@ +y) = Fa)vda)

Let T, = inf{t : X; > z}. Then Kou and Wang establish that, for
r>0and z > 0,

E(G_rTx) _ m — /81 62 e_ggﬁl 4 62 — M 61 e_xBQ
m B2 — b1 m B2 —
— m—01B2—m , _ _
E(e rTxﬂ . — My e xB1 e xBo
( X1, >y) m By — 34 ( )
B(efXm—rTe) = (0 (771 — 1 B2 — 96_3651 4 (52 —m B — 96_3552)
Bo—0B1m —0 Bo—0B1rm —0

where 0 < 31 < m1 < B3 are roots of G(8) = r. The method is based on
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finding an explicit solution of Lu = ru where L is the infinitesimal

generator of the process X.
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Thank you for your attention.
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