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Give us the tools, and we will finish the work.
Winston Churchill, February 9, 1941.
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Definition and Main Properties of Lévy Processes

Definition

An IRd-valued process X such that X0 = 0 is a Lévy process if
a) for every s, t,Xt+s −Xt is independent of FX

t

b) for every s, t the r.v’s Xt+s −Xt and Xs have the same law.
c) X is continuous in probability, i.e., P(|Xt −Xs| > ε) → 0 when s→ t

for every ε > 0.

The sum of two independent Lévy processes is a Lévy process.
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Property c) implies that a Lévy process has no jumps at fixed time.

A Lévy process admits a càdlàg modification

(A process Y is said to be a modification of X is P(Xt = Yt) = 1,∀t)
Let T > 0 be fixed. For any ε > 0, the set {t ∈ [0, T ] : |ΔXt| > ε} is
finite

The set {t ∈ [0, T ] : |ΔXt| > 0} is countable
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Examples

• Brownian motion
The standard Brownian motion is a process W with continuous paths
such that
- for every s, t, Wt+s −Wt is independent of FW

t ,
- for every s, t, the r.v. Wt+s −Wt has the same law as Ws.
The law of Ws is N (0, s).
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• Brownian hitting time process
Let W be a standard BM and for a > 0, define

Ta := inf{t : Wt = a}

The process (Ta, a ≥ 0) is a Lévy process.
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• Poisson process
The standard Poisson process is a counting process such that
- for every s, t, Nt+s −Nt is independent of FN

t ,
- for every s, t, the r.v. Nt+s −Nt has the same law as Ns.
Then, the r.v. Nt has a Poisson law with parameter λt

P(Nt = k) = e−λt
(λt)k

k!
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If X has a Poisson law with parameter θ > 0, then
(i) for any s ∈ IR, E[sX ] = eθ(s−1).

(ii) E[X] = θ, Var (X) = θ.
(iii) for any u ∈ IR, E(eiuX) = exp(θ(eiu − 1))
(iv) for any α ∈ IR, E(eαX) = exp(θ(eα − 1))
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• Compound Poisson Process
Let λ be a positive number and F (dy) be a probability law on IR (we
assume that P(Y1 = 0) = 0). A (λ, F )-compound Poisson process is
a process X = (Xt, t ≥ 0) of the form

Xt =
Nt∑
k=1

Yk

where N is a Poisson process with intensity λ > 0 and the (Yk, k ∈ IN)
are i.i.d. random variables, independent of N , with law
F (dy) = P(Y1 ∈ dy).

If E(|Y1|) <∞, for any t, E(Xt) = λtE(Y1).
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The characteristic function of the r.v. Xt is

E[eiuXt ] = eλt(E[eiuY1 ]−1) = exp
(
λt

∫
IR

(eiuy − 1)F (dy)
)
.

Assume that E[eαY1 ] <∞. Then, the Laplace transform of the r.v. Xt is

E[eαXt ] = eλt(E[eαY1 ]−1) = exp
(
λt

∫
IR

(eαy − 1)F (dy)
)
.

We shall note ν(dy) = λF (dy) and say that X is a ν-compound Poisson
process.
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Martingales

Let X be a Lévy process.

• If E(|Xt|) <∞, the process Xt − E(Xt) is a martingale.
• For any u, the process Zt(u) : = eiuXt

E(eiuXt )
is a martingale.

• If E(eλXt) <∞ , the process eλXt

E(eλXt )
is a martingale
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Examples

• Brownian motion
The standard Brownian motion is a martingale, the process Y = E(λW )
defined by Yt = eλWt− 1

2λ
2t is a martingale.

The Doléans-Dade exponential Y = E(λW ) satisfies

dYt = YtλdWt
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• Poisson process
The process Mt = Nt − λt is a martingale.
For any α, the process

exp(αNt − λt(eα − 1)) = exp(αMt − λt(eα − 1 − α)) = E(αM)t

is a martingale.
For any β, the process (1 + β)Nte−λβt is a martingale

If X is a counting process and if, for some λ the process Mt = Nt − λt

is a martingale, then X is a Poisson process

If X is a counting process with stationary and independent increments,
then X is a Poisson process.
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• Compound Poisson Processes
Assume that E(|Y1|) <∞. Then, the process
(Zt := Xt − tλE(Y1), t ≥ 0) is a martingale and in particular,

E(Xt) = λtE(Y1) = λt

∫ ∞

−∞
yF (dy) = t

∫ ∞

−∞
yν(dy)

For any α ∈ IR such that
∫∞
−∞ |eαx − 1|F (dx) <∞, the process

exp
(
αXt − tλ

∫ ∞

−∞
(eαx − 1)F (dx)

)
= exp

(
αXt − t

∫ ∞

−∞
(eαx − 1)ν(dx)

)
is a martingale.
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Random Measures

• Counting process: Let (Tn) be a sequence of random times, with

0 < T1 < · · · < Tn . . .

and Nt =
∑
n≥1 11Tn≤t. Let A be a Borel set in IR+ and

N(ω;A) := Card {n ≥ 1 : Tn(ω) ∈ A}

The measure N is a random measure and Nt(ω) = N(ω, ]0, t]).

For a Poisson process

E(N(A)) = λ Leb(A)
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Let ν be a radon measure on E. A random Poisson measure N on
E with intensity ν is a measure such that
- N(A) is an integer valued random measure,
- N(A) <∞ for A bounded Borel set,
- for disjoint sets Ai, the r.v’s N(Ai) are independent
- the r.v. N(A) is Poisson distributed with parameter ν(A)
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• Compound Poisson process: Define N =
∑
n δTn,Yn

on IR+ × IR,
i.e

N(ω, [0, t] ×A) =
Nt(ω)∑
n=1

11Yn(ω)∈A .

We shall also write Nt(dx) = N([0, t], dx). The measure N is a random
Poisson measure on IR+ × IR with intensity λdtF (dx)

We denote by (f ∗ N)t the integral∫ t

0

∫
IR

f(x)N(ds, dx) =
∫
IR

f(x)Nt(dx) =
Nt∑
k=1

f(Yk) =
∑
s≤t

f(ΔXs)11ΔXs �=0 .

In particular

Xt =
Nt∑
k=1

Yk =
∑
s≤t

ΔXs =
∫ t

0

∫
IR

xN(ds, dx)
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If ν(|f |) <∞, the process

Mf
t : = (f ∗ N)t − tν(f) =

∫ t

0

∫
IR

f(x)(N(ds, dx) − dsν(dx))

=
∑
s≤t

f(ΔXs)11ΔXs �=0 − tν(f)

is a martingale.
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Proof: Indeed, the process Zt =
∑Nt

k=1 f(Yk) is a ν̂ compound Poisson
process, where ν̂, defined as

ν̂(A) = λP(f(Yn) ∈ A)

is the image of ν by f . Hence, if E(|f(Y1)|) <∞, the process
Zt − tλE(f(Y1)) = Zt − t

∫
f(x)ν(dx) is a martingale.
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Using again that Z is a compound Poisson process, it follows that the
process

exp

(
Nt∑
k=1

f(Yk) − t

∫ ∞

−∞
(ef(x) − 1)ν(dx)

)

= exp
(∫ t

0

∫
IR

f(x)N(ds, dx) − t

∫ ∞

−∞
(ef(x) − 1)ν(dx)

)
is a martingale
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If X is a pure jump process, if there exists λ and a probability measure
σ such that

∑
s≤t f(ΔXs)11ΔXs �=0 − tλσ(f) is a martingale, then X is a

compound Poisson process.
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• Lévy Processes

The random variable N([s, t] ×A) =
∑
s<u≤t 11A(ΔXu) represents the

number of jumps in the time interval ]s, t] with jump size in A.

We define ν by
ν(A) = E(N([0, 1] ×A))

For A compact set such that 0 /∈ A, ν(A) <∞
The process

NA
t =

∑
0<s≤t

11A(ΔXs) = N([0, t] ×A)

is a Poisson process with intensity ν(A).

The processes NA and NC are independent if ν(A ∩ C) = 0, in
particular if A and C are disjoint.
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Let A be a Borel set of IRd with 0 /∈ Ā, and f a Borel function defined
on A. We have∫
A

f(x)Nt(ω, dx) =
∫ t

0

∫
A

f(x)N(ω, ds, dx) =
∑

0<s≤t
f(ΔXs(ω))11A(ΔXs(ω)) .

The process ∫
A

f(x)Nt(ω, dx)

is a Lévy process; if
∫
A
|f(x)|ν(dx) <∞, then

Mf
t =

∫
A

f(x)Nt(ω, dx)−t
∫
A

f(x)ν(dx) =
∫ t

0

∫
A

f(x)(N(ds, dx)−ν(dx)ds)

is a martingale.

If f is bounded and vanishes in a neighborhood of 0,

E(
∑

0<s≤t
f(ΔXs)) = t

∫
IRd

f(x)ν(dx) .
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The measure ν satisfies ∫
(1 ∧ |x|2)ν(dx) <∞

i.e.
∫
|x|≥1

ν(dx) <∞ and
∫
|x|<1

|x|2ν(dx) <∞
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Infinitely Divisible Random Variables

Definition

A random variable X taking values in IRd is infinitely divisible if its
characteristic function satisfies

μ̂(u) = E(ei(u·X)) = (μ̂n(u))n

where μ̂n is a characteristic function.
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Examples: The Gaussian law N (m,σ2) has the characteristic
function exp(ium− u2σ2/2).

Cauchy laws. The standard Cauchy law has the characteristic
function exp(−c|u|).
The hitting time of the level a for a Brownian motion has
Laplace transform

E[exp(−λ
2

2
Ta)] = exp(−|a|λ)

Poisson laws. The Poisson law with parameter λ has characteristic
function

exp(c(eiu − 1))
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Poisson Random Sum. Let Xi i.i.d. r.v’s with characteristic function
ϕ and N a r.v. independent of the Xi’s with a Poisson law. Let

X = X1 +X2 + · · · +XN

The characteristic function of X is

exp(−λ(1 − ϕ(u)))

Gamma laws. The Gamma law Γ(a, ν) has density

νa

Γ(a)
xa−1e−νx11x>0

and characteristic function

(1 − iu/ν)−a
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A Lévy measure ν is a positive measure on IRd \ {0} such that∫
IRd\{0}

min(1, ‖x‖2)ν(dx) <∞ .
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Lévy-Khintchine representation.
If X is an infinitely divisible random variable, there exists a triple
(m,A, ν) where m ∈ IRd, A is a non-negative quadratic form and ν is a
Lévy measure such that

μ̂(u) = exp
(
i(u·m) − 1

2
(u·Au) +

∫
IRd

(ei(u·x) − 1 − i(u·x)11{|x|≤1})ν(dx)
)
.

The triple (m,A, ν) is called the characteristic triple .
If

∫ |x|11{|x|≤1}ν(dx) <∞, one writes the LK representation in a
reduced form

μ̂(u) = exp
(
i(u·m0) − 1

2
(u·Au) +

∫
IRd

(ei(u·x) − 1)ν(dx)
)
.
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A first step is to prove that any function ϕ such that

ϕ(u) = exp
(
i(u·m) − 1

2
(u·Au) +

∫
IRd

(ei(u·x) − 1 − i(u·x)11{|x|≤1})ν(dx)
)

(∗)

is a characteristic function (hence, i.d.).
If ϕ satisfies (*), one proves that
• it is continuous at 0
• it is the limit of characteristic functions.

The result follows.
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Continuity: show that

ψ(u) =
∫

(eiux − 1 − iux11{|x|≤1})ν(dx)

is continuous.

ψ(u) =
∫
|x|≤1

(eiux − 1 − iux)ν(dx) +
∫
|x|>1

(eiux − 1)ν(dx)

Then, using the fact that

|eiux − 1 − iux| ≤ 1
2
u2x2

the result is obtained
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Limit:∫
|x|≤1

(eiux − 1 − iux)ν(dx) = lim
∫
|x|≥1/n

(eiux − 1 − iux)ν(dx)

The right-hand side corresponds to compound Poisson process
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If μ̂ is i.d., then it satisfies LK.

If μ̂ is i.d., then μ̂(u) does not vanish.

Then,
μ̂(u) = (μ̂n(u))n

implies that

Φn(u) := exp(n(μ̂n(u) − 1)) = exp(n(e
1
n ln μ̂(u) − 1))

converges to μ̂(u).

Φn(u) = exp(n
∫

(eiux − 1)μn(dx))

is associated with a compound Poisson process.

37



Examples:
Gaussian laws. The Gaussian law N (m,σ2) has the characteristic
function exp(ium− u2σ2/2). Its characteristic triple is (m,σ, 0).

Cauchy laws. The standard Cauchy law has the characteristic function

exp(−c|u|) = exp
(
c

π

∫ ∞

−∞
(eiux − 1)x−2dx

)
.

Its reduced form characteristic triple is (0, 0, π−1x−2dx).
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Gamma laws. The Gamma law Γ(a, ν) has characteristic function

(1 − iu/ν)−a = exp
(
a

∫ ∞

0

(eiux − 1)e−νx
dx

x

)
.

Its reduced form characteristic triple is (0, 0, 11{x>0} ax−1e−νxdx).
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Brownian hitting times.The first hitting time of a > 0 for a
Brownian motion has characteristic triple (in reduced form)

(0, 0,
a√
2π

x−3/211{x>0}dx) .

Indeed E(e−λTa) = e−a
√

2λ. Moreover

√
2λ =

1√
2Γ(1/2)

∫ ∞

0

(1 − e−λx)x−3/2dx ,

hence, using that Γ(1/2) =
√
π

E(e−λTa) = exp
(
− a√

2π

∫ ∞

0

(1 − e−λx)x−3/2dx

)
.
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Inverse Gaussian laws. The Inverse Gaussian law has density

a√
2π
eaνx−3/2 exp

(
−1

2
(a2x−1 + ν2x)

)
11{x>0}

This is the law of the first hitting time of a for a Brownian motion with
drift ν. The Inverse Gaussian law has characteristic triple (in reduced
form) (

0, 0,
a√

2πx3
exp

(
−1

2
ν2x

)
11{x>0}dx

)
.
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Inverse Gaussian laws. The Inverse Gaussian law has density

a√
2π
eaνx−3/2 exp

(
−1

2
(a2x−1 + ν2x)

)
11{x>0}

This is the law of the first hitting time of a for a BM with drift ν.

The Inverse Gaussian law has characteristic triple (in reduced form)(
0, 0,

a√
2πx3

exp
(
−1

2
ν2x

)
11{x>0}dx

)
.

Indeed

exp
(
− a√

2π

∫ ∞

0

dx

x3/2
(1 − e−λx) e−ν

2x/2

)
= exp

(
− a√

2π

∫ ∞

0

dx

x3/2

(
(e−ν

2x/2 − 1) + (1 − e−(λ+ν2/2)x)
))

= exp(−a(−ν +
√
ν2 + 2λ)

is the Laplace transform of the first hitting time of a for a BM with
drift ν.
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Stable Random Variables

A random variable is stable if for any a > 0, there exist b > 0 and c ∈ IR

such that [μ̂(u)]a = μ̂(bu) eicu .

X is stable if

∀n, ∃(βn, γn), such that X
(n)
1 + · · · +X(n)

n
law= βnX + γn

where (X(n)
i , i ≤ n) are i.i.d. random variables with the same law as X.

A stable law is infinitely divisible.
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The characteristic function of a stable law can be written

μ̂(u) =

⎧⎪⎪⎨⎪⎪⎩
exp(ibu− 1

2σ
2u2), forα = 2

exp (−γ|u|α[1 − iβ sgn(u) tan(πα/2)]) , forα �= 1, �= 2

exp (γ|u|(1 − iβv ln |u|)) , α = 1

,

where β ∈ [−1, 1]. For α �= 2, the Lévy measure of a stable law is
absolutely continuous with respect to the Lebesgue measure, with
density

ν(dx) =

⎧⎨⎩ c+x−α−1dx if x > 0

c−|x|−α−1dx if x < 0 .

Examples: A Gaussian variable is stable with α = 2. The Cauchy law
is stable with α = 1.
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Lévy-Khintchine Representation

Let X be a Lévy process. Then, X1 is i.d.

There exists m ∈ IRd, a non-negative semi-definite quadratic form A, a
Lévy measure ν such that for u ∈ IRd

E(exp(i(u·X1))) =

exp
(
i(u·m) − 1

2
(u·Au) +

∫
IRd

(ei(u·x) − 1 − i(u·x)11|x|≤1)ν(dx)
)

where ν is the Lévy measure.
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• If ν(IR \ {0}) <∞, the process X has a finite number of jumps in any
finite time interval. In finance, one refers to finite activity.
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• If ν(IR \ {0}) <∞, the process X has a finite number of jumps in any
finite time interval. In finance, one refers to finite activity.

• If ν(IR \ {0}) = ∞, the process corresponds to infinite activity.
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The complex valued continuous function Φ such that

E [exp(iuX1)] = exp(−Φ(u))

is called the characteristic exponent (sometimes the Lévy exponent)
of the Lévy process X.
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The complex valued continuous function Φ such that

E [exp(iuX1)] = exp(−Φ(u))

is called the characteristic exponent (sometimes the Lévy exponent)
of the Lévy process X.
If E

[
eλX1

]
<∞ for any λ > 0, the function Ψ defined on [0,∞[, such

that
E [exp(λX1)] = exp(Ψ(λ))

is called the Laplace exponent of the Lévy process X.
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The complex valued continuous function Φ such that

E [exp(iuX1)] = exp(−Φ(u))

is called the characteristic exponent (sometimes the Lévy exponent)
of the Lévy process X.
If E

[
eλX1

]
<∞ for any λ > 0, the function Ψ defined on [0,∞[, such

that
E [exp(λX1)] = exp(Ψ(λ))

is called the Laplace exponent of the Lévy process X.
It follows that, if Ψ(λ) exists,

E [exp(iuXt)] = exp(−tΦ(u)), E [exp(λXt)] = exp(tΨ(λ))

and
Ψ(λ) = −Φ(−iλ) .
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From LK formula, the characteristic exponent and the Laplace
exponent can be computed as follows:

Φ(u) = −ium+
1
2
σ2u2 −

∫
(eiux − 1 − iux11|x|≤1)ν(dx)

Ψ(λ) = λm+
1
2
σ2λ2 +

∫
(eλx − 1 − λx11|x|≤1)ν(dx) .
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Martingales
• If E(|Xt|) <∞, i.e.,

∫
|x|≥1

|x|ν(dx) <∞;
E(Xt) = t(m+

∫
|x|≥1

|x|ν(dx)), the process Xt − E(Xt) is a martingale.
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Martingales
• If E(|Xt|) <∞, i.e.,

∫
|x|≥1

|x|ν(dx) <∞, the process Xt − E(Xt) is a
martingale and E(Xt) = t(m+

∫
|x|≥1

|x|ν(dx)).
• If Ψ(α) exists (i.e., if

∫
|x|>1

exν(dx) <∞), the process

eαXt

E(eαXt)
= eαXt−tΨ(α)

is a martingale
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More generally, for any bounded predictable process H

E

⎡⎣∑
s≤t

Hsf(ΔXs)

⎤⎦ = E

[∫ t

0

dsHs

∫
f(x)dν(x)

]

and if H is a predictable function (i.e. H : Ω× IR+ × IRd → IR is P ×B
measurable)

E

⎡⎣∑
s≤t

Hs(ω,ΔXs)

⎤⎦ = E

[∫ t

0

ds

∫
dν(x)Hs(ω, x)

]
.

Both sides are well defined and finite if

E

[∫ t

0

ds

∫
dν(x)|Hs(ω, x)|

]
<∞
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(Exponential formula.) Let X be a Lévy process and ν its Lévy
measure. For all t and all Borel function f defined on IR+ × IRd such
that

∫ t
0
ds

∫ |1 − ef(s,x)|ν(dx) <∞, one has

E

⎡⎣exp

⎛⎝∑
s≤t

f(s,ΔXs)11{ΔXs �=0}

⎞⎠⎤⎦ = exp
(
−

∫ t

0

ds

∫
(1 − ef(s,x))ν(dx)

)
.

The above property does not extend to predictable functions.
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Lévy-Itô’s decomposition

If X is a Rd-valued Lévy process, it can be decomposed into
X = Y (0) + Y (1) + Y (2) + Y (3) where Y (0) is a affine function, Y (1) is a
linear transform of a Brownian motion, Y (2) is a compound Poisson
process with jump size greater than or equal to 1 and Y (3) is a
Lévy process with jumps sizes smaller than 1. The processes Y (i) are
independent.
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More precisely

Xt = mt+ σWt +X1
t + lim

ε→0
X̃ε
t

where

X1
t =

∫ t

0

∫
{|x|≥1}

xN(dx, ds) =
∑
s≤t

ΔXs11|ΔXs|≥1

X̃ε
t =

∫ t

0

∫
{ε≤|x|<1}

x (N(dx, ds) − ν(dx)ds)

The processes X1 is a compound Poisson process, the process X̃ε is a
compensated compound Poisson process, it is a martingale. Note that∫ t
0

∫
{ε≤|x|<1} xN(dx, ds) and

∫ t
0

∫
{ε≤|x|<1} x ν(dx)ds) are well defined.

However, these quantities do not converge as ε goes to 0.
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Path properties

• The Lévy process X is continuous iff ν = 0
• The Lévy process X with piecewise constant paths iff it is a
compound Poisson process or iff m = 0, σ = 0 and

∫
ν(dx) <∞

• The Lévy process X is with finite variation path iff σ = 0 and∫
|x|≤1

|x|ν(dx) <∞. In that case,

ium+
∫

(eiux − 1 − iux11|x|≤1)ν(dx)

can be written

ium0 +
∫

(eiux − 1)ν(dx)

and
Xt = m0t+

∑
s≤t

ΔXs

58



• If
∫
|x|≤1

|x|ν(dx) = ∞, the sum
∑
s≤t |ΔXs|11|ΔXs|≤ε diverges,

however the compensated sum converges.
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If X is a Lévy process with jumps bounded (by 1), it admits moments
of any order, and, setting Zt = Xt − E(Xt), Z = Zc + Zd where Zc is a
continuous martingale,

Zdt =
∫
|x|<1

x (N(dt, dx) − ν(dx)dt)

and Zc and Zd are martingales and independent Lévy processes.
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If X is a Lévy process with jumps bounded (by 1), it admits moments
of any order, and, setting Zt = Xt − E(Xt), Z = Zc + Zd where Zc is a
continuous martingale,

Zdt =
∫
|x|<1

x (N(dt, dx) − ν(dx)dt)

and Zc and Zd are martingales and independent Lévy processes.

If X is a Lévy process, it admits a decomposition as

dXt = αdt+ σdBt +
∫
|x|<1

x (N(dt, dx) − ν(dx)dt) +
∫
|x|≥1

xN(dt, dx)

The Lévy process is a semi-martingale, hence
∑

0<s≤t(ΔXs)2 <∞
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Some definitions on general stochastic processes
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Local martingale

An adapted, right-continuous process M is an F-local martingale if
there exists a sequence of stopping times (Tn) such that

(i) The sequence Tn is increasing and limn Tn = ∞, a.s.

(ii) For every n, the stopped process MTn11{Tn>0} is an F-martingale.

63



Covariation of Martingales

• Continuous local martingales: Let X be a continuous local
martingale. The predictable quadratic variation process of X is the
continuous increasing process 〈X〉 such that X2 − 〈X〉 is a local
martingale.
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Covariation of Martingales

• Continuous local martingales: Let X be a continuous local
martingale. The predictable quadratic variation process of X is the
continuous increasing process 〈X〉 such that X2 − 〈X〉 is a local
martingale.

Let X and Y be two continuous local martingales.

• The predictable covariation process is the continuous finite variation
process 〈X,Y 〉 such that XY − 〈X,Y 〉 is a local martingale. Note that
〈X〉 = 〈X,X〉 and

〈X + Y 〉 = 〈X〉 + 〈Y 〉 + 2〈X,Y 〉 .
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Covariation of Martingales

• Continuous local martingales: Let X be a continuous local
martingale. The predictable quadratic variation process of X is the
continuous increasing process 〈X〉 such that X2 − 〈X〉 is a local
martingale.

Let X and Y be two continuous local martingales.

• The predictable covariation process is the continuous finite variation
process 〈X,Y 〉 such that XY − 〈X,Y 〉 is a local martingale. Note that
〈X〉 = 〈X,X〉 and

〈X + Y 〉 = 〈X〉 + 〈Y 〉 + 2〈X,Y 〉 .

• Integration by parts formula

XtYt = X0Y0 +
∫ t

0

XsdYs +
∫ t

0

YsdXs + 〈X,Y 〉t
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• General Local martingales:

Let X and Y be two local martingales.
� The covariation process is the finite variation process [X,Y ] such
that

XY − [X,Y ] is a local martingale
Δ[X,Y ]t = ΔXtΔYt
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• General Local martingales:

Let X and Y be two local martingales.
� The covariation process is the finite variation process [X,Y ] such
that

XY − [X,Y ] is a local martingale
Δ[X,Y ]t = ΔXtΔYt

The process [X,X] is non-decreasing.

� If the martingales X and Y are continuous, [X,Y ] = 〈X,Y 〉.
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• General Local martingales:

Let X and Y be two local martingales.
� The covariation process is the finite variation process [X,Y ] such
that

XY − [X,Y ] is a local martingale
Δ[X,Y ]t = ΔXtΔYt

The process [X,X] is non-decreasing.

� If the martingales X and Y are continuous, [X,Y ] = 〈X,Y 〉.
� This covariation process is the limit in probability of∑p(n)
i=1 (Xti+1 −Xti)(Yti+1 − Yti), for 0 < t1 < · · · < tp(n) ≤ t when

supi≤p(n)(ti − ti−1) goes to 0.
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� The covariation [X,Y ] of both processes X and Y can be also defined
by polarisation

[X + Y,X + Y ] = [X,X] + [Y, Y ] + 2[X,Y ]
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Let X and Y be two local martingales.
� The predictable covariation process is the finite variation process
〈X,Y 〉 such that

XY − 〈X,Y 〉 is a local martingale

〈X,Y 〉 is predictable.
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Let X and Y be two local martingales.
� The predictable covariation process is the finite variation process
〈X,Y 〉 such that

XY − 〈X,Y 〉 is a local martingale

〈X,Y 〉 is predictable.

The existence of the predictable covariation process requests some
additional conditions on the local martingales ([X,L] is P-locally
integrable).

If W is a Brownian motion 〈W 〉t = [W ]t = t.

If M is the compensated martingale of a Poisson process, [M ]t = Nt

and 〈M〉t = λt, and [W,M ] = 0.
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If P and Q are equivalent, the covariation process under P and under Q

are equal. This is not the case for the predictable covariation process.
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Spaces of martingales

H2 is the set of square integrable martingales, i.e., martingales such
that supt<∞E(M2

t ) <∞
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Spaces of martingales

H2 is the set of square integrable martingales, i.e., martingales such
that supt<∞E(M2

t ) <∞
Two martingales in H2 are orthogonal if their product is a martingale.

We denote by H2,c the space of continuous square integrable
martingales and by H2,d the set of square integrable martingales
orthogonal to H2,c.
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Spaces of martingales

H2 is the set of square integrable martingales, i.e., martingales such
that supt<∞E(M2

t ) <∞
Two martingales in H2 are orthogonal if their product is a martingale.

We denote by H2,c the space of continuous square integrable
martingales and by H2,d the set of square integrable martingales
orthogonal to H2,c.

A martingale in H2,d is called a purely discontinuous martingale
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Spaces of martingales

H2 is the set of square integrable martingales, i.e., martingales such
that supt<∞E(M2

t ) <∞
Two martingales in H2 are orthogonal if their product is a martingale.

We denote by H2,c the space of continuous square integrable
martingales and by H2,d the set of square integrable martingales
orthogonal to H2,c.

A martingale in H2,d is called a purely discontinuous martingale

For any martingale M ∈ H2, we denote by M c its projection on H2,c

and by Md its projection on H2,d. Then, M = M c +Md is the
decomposition of any martingale in H2 into its continuous and purely
discontinuous parts.
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Covariation of Semi-martingales

A semi-martingale is a càdlàg process X such that Xt = Mt +At, M
martingale, A bounded variation process. One can write
Xt = M c

t +Md
t +At where M c is continuous. We use the (usual)

notation Xc := M c.

� If X and Y are semi-martingales and if Xc , Y c are their continuous
martingale parts, their quadratic covariation is

[X,Y ]t = 〈Xc, Y c〉t +
∑
s≤t

(ΔXs)(ΔYs) .

� In the case where X,Y are continuous semi-martingales, their
predictable covariation process is the predictable covariation process of
their continuous martingale parts.
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Stieltjes Integral

Let U be a càdlàg process with bounded variation (i.e., the difference
between two increasing processes). The Stieltjes integral

∫∞
0
θsdUs

is defined for elementary processes θ of the form θs = ϑa11]a,b](s), with
ϑa a r.v. as

∫∞
0
θsdUs = ϑa (U(b) − U(a)) and for θ such that∫∞

0
|θs||dU(s)| <∞ by linearity and passage to the limit. (Hence, the

integral is defined path-by-path.) Then, one defines the integral∫ t

0

θsdUs =
∫

]0,t]

θsdUs =
∫ ∞

0

11{]0,t]}θsdUs .

Note that if U has a jump at time t0, then (Θt : =
∫ t
0
θsdUs, t ≥ 0) has

also a jump at time t0 given as ΔΘt0 = Θt0 − Θt−0
= θt0ΔUt0 .
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Integration by Parts If U and V are two finite variation processes,
Stieltjes’ integration by parts formula can be written as follows

UtVt = U0V0 +
∫

]0,t]

VsdUs +
∫

]0,t]

Us−dVs

= U0V0 +
∫

]0,t]

Vs−dUs +
∫

]0,t]

Us−dVs +
∑
s≤t

ΔUs ΔVs .

The summation
∑
s≤t ΔUs ΔVs is in fact a summation over a

denumerable number of times s, i.e., the times where U and V admit a
common jump. As a partial check, one can verify that the jumps of the
left-hand side, i.e., UtVt − Ut−Vt− , are equal to the jumps of the right
hand side Vt−ΔUt + Ut−ΔVt + ΔUt ΔVt.
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Chain Rule Let F ∈ C1 and A a finite variation process. Then,

F (At) = F (A0)+
∫ t

0

F ′(As−)dAs+
∑
s≤t

(F (As)−F (As−)−F ′(As−)ΔAs)

or,

F (At) = F (A0) +
∫ t

0

F ′(As−)dAcs +
∑
s≤t

F (As) − F (As−)

where Ac is the continuous part of A.
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Stochastic Integral

Let N be a counting process. The stochastic integral∫ t

0

CsdNs

is defined pathwise as a Stieltjes integral for every bounded measurable
process (not necessarily FN -adapted) (Ct, t ≥ 0) by

(C�N)t
def
=

∫ t

0

CsdNs =
∫

]0,t]

CsdNs
def
=

∞∑
n=1

CTn
11{Tn≤t} .

We emphasize that the integral
∫ t
0
CsdNs is here an integral over the

time interval ]0, t], where the upper limit t is included and the lower
limit 0 excluded. This integral is finite since there is a finite number of
jumps during the time interval ]0, t].
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We shall also write ∫ t

0

CsdNs =
∑
s≤t

CsΔNs

where the right-hand side contains only a finite number of non-zero
terms. The integral

∫∞
0
CsdNs is defined as

∫∞
0
CsdNs =

∑∞
n=1 CTn

,

when the right-hand side converges.

We shall also use the differential notation d(C�N)t
def
= CtdNt.
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Integration by parts formula for Poisson process

Let (xt, t ≥ 0) and (yt, t ≥ 0) be two predictable processes and let
Xt = x+

∫ t
0
xsdNs and Yt = y+

∫ t
0
ysdNs. The jumps of X (resp. of Y )

occur at the same times as the jumps of N and
ΔXs = xsΔNs,ΔYs = ysΔNs. Then

XtYt = xy +
∑
s≤t

Δ(XY )s = xy +
∑
s≤t

Xs−ΔYs +
∑
s≤t

Ys−ΔXs +
∑
s≤t

ΔXs ΔYs

The first equality is obvious, the second one is easy to check.
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Integration by parts formula for Poisson process

Let (xt, t ≥ 0) and (yt, t ≥ 0) be two predictable processes and let
Xt = x+

∫ t
0
xsdNs and Yt = y+

∫ t
0
ysdNs. The jumps of X (resp. of Y )

occur at the same times as the jumps of N and
ΔXs = xsΔNs,ΔYs = ysΔNs. Then

XtYt = xy +
∑
s≤t

Δ(XY )s = xy +
∑
s≤t

Xs−ΔYs +
∑
s≤t

Ys−ΔXs +
∑
s≤t

ΔXs ΔYs

The first equality is obvious, the second one is easy to check.
Hence, from the definition of stochastic integrals

XtYt = xy +
∫ t

0

Ys−dXs +
∫ t

0

Xs−dYs + [X,Y ]t

where (note that (ΔNt)2 = ΔNt)

[X,Y ]t : =
∑
s≤t

ΔXs ΔYs =
∑
s≤t

xsysΔNs =
∫ t

0

xs ys dNs .
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More generally, if dXt = μtdt+ xtdNt with X0 = x and
dYt = νtdt+ ytdNt with Y0 = y, one gets

XtYt = xy +
∫ t

0

Ys−dXs +
∫ t

0

Xs−dYs + [X,Y ]t

where [X,Y ]t =
∫ t
0
xs ys dNs .
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If x is a predictable (bounded) process, the integral∫ t

0

xsdMs

is a martingale.
This is no more the case if x is not predictable, even if the integral is
well defined. The process

∫ t
0
NsdMs is not a martingale.

In particular, from integration by parts formula, if dXt = xtdMt and
dYt = ytdMt, the process XtYt − [X,Y ]t is a local martingale.
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Doláns-Dade exponential of a finite variation process
Let U be a càdlàg process with finite variation. The unique solution of

dYt = Yt−dUt, Y0 = y

is the stochastic exponential of U (the Doléans-Dade exponential of U)
equal to

Yt = y exp(U ct − U c0 )
∏
s≤t

(1 + ΔUs)

= y exp(Ut − U0)
∏
s≤t

(1 + ΔUs)e−ΔUs .
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Proof: Applying the integration by parts formula shows that it is a
solution to the equation dYt = Yt−dUt. As for the uniqueness, if
Y i, i = 1, 2 are two solutions, then, setting Z = Y 1 − Y 2 we get
Zt =

∫ t
0
Zs−dUs. Let Mt = sups≤t |Zs|, then, if Vt is the variation

process of Ut
|Zt| ≤MtVt

which implies that

|Zt| ≤Mt

∫ t

0

Vs−dVs = Mt
V 2
t

2
.

Iterating, we obtain |Zt| ≤Mt
V n

t

n! and the uniqueness follows by letting
n→ ∞. �
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Itô’s formula

Itô’s Formula For Poisson processes
Let N be a Poisson process and f a bounded Borel function. The
decomposition

f(Nt) = f(N0) +
∑

0<s≤t
[f(Ns) − f(Ns−)]

is trivial and is the main step to obtain Itô’s formula for a Poisson
process.
We can write the right-hand side as a stochastic integral:∑

0<s≤t
[f(Ns) − f(Ns−)] =

∑
0<s≤t

[f(Ns− + 1) − f(Ns−)]ΔNs

=
∫ t

0

[f(Ns− + 1) − f(Ns−)]dNs ,
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hence, the canonical decomposition of f(Nt) as the sum of a martingale
and an absolute continuous adapted process is

f(Nt) = f(N0)+
∫ t

0

[f(Ns− + 1) − f(Ns−)]dMs+
∫ t

0

[f(Ns−+1)−f(Ns−)]λds .
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More generally, assume that N is an inhomogeneous Poisson process (
i.e., N is a counting process and there exists a non-negative function λ
such that Nt −

∫ t
0
λ(s)ds is a martingale). Let h be an adapted process

and g a predictable process such that
∫ t
0
|hs|ds <∞,

∫ t
0
|gs|λsds <∞.

Let F ∈ C1,1(IR+ × IR) and

dXt = htdt+ gtdMt = (ht − gtλt)dt+ gtdNt

Then

F (t,Xt) = F (0, X0) +
∫ t

0

∂tF (s,Xs)ds+
∫ t

0

∂xF (s,Xs−)(hs − gsλ(s))ds

+
∑
s≤t

F (s,Xs) − F (s,Xs−)

= F (0, X0) +
∫ t

0

∂tF (s,Xs)ds+
∫ t

0

∂xF (s,Xs−)dXs

+
∑
s≤t

[F (s,Xs) − F (s,Xs−) − ∂xF (s,Xs−)gsΔNs] .
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F (t,Xt) = F (0, X0) +
∫ t

0

∂tF (s,Xs)ds+
∫ t

0

∂xF (s,Xs)(hs − gsλ(s))ds

+
∫ t

0

[F (s,Xs) − F (s,Xs−)]dNs
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Proof: Indeed, between two jumps, dXt = (ht − λtgt)dt, and for
Tn < s < t < Tn+1,

F (t,Xt) = F (s,Xs) +
∫ t

s

∂tF (u,Xu)du+
∫ t

s

∂xF (u,Xu)(hu − guλu)du .

At jump times, F (Tn, XTn
) = F (Tn, XTn−) + ΔF (·, X)Tn

. �
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Remark that, in the “ds” integrals, we can write Xs− or Xs, since, for
any bounded Borel function f ,∫ t

0

f(Xs−)ds =
∫ t

0

f(Xs)ds .

Note that since dNs a.s. Ns = Ns− + 1, one has∫ t

0

f(Ns−)dNs =
∫ t

0

f(Ns − 1)dNs .

We shall use systematically use the form
∫ t
0
f(Ns−)dNs, even if the∫ t

0
f(Ns − 1)dNs has a meaning.
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The reason is that
∫ t
0
f(Ns−)dMs =

∫ t
0
f(Ns−)dNs + λ

∫ t
0
f(Ns−)ds is a

martingale, whereas
∫ t
0
f(Ns − 1)dMs is not.
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Check that the above formula can be written as

F (t,Xt) − F (0, X0)

=
∫ t

0

∂tF (s,Xs)ds+
∫ t

0

∂xF (s,Xs)(hs − gsλ(s))ds

+
∫ t

0

[F (s,Xs) − F (s,Xs−)]dNs

=
∫ t

0

∂tF (s,Xs)ds+
∫ t

0

∂xF (s,Xs−)dXs

+
∫ t

0

[F (s,Xs) − F (s,Xs−) − ∂xF (s,Xs−)gs]dNs
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F (t,Xt) − F (0, X0)

=
∫ t

0

∂tF (s,Xs)ds+
∫ t

0

∂xF (s,Xs−)dXs

+
∫ t

0

[F (s,Xs− + gs) − F (s,Xs−) − ∂xF (s,Xs−)gs]dNs

=
∫ t

0

(∂tF (s,Xs) + [F (s,Xs− + gs) − F (s,Xs−) − ∂xF (s,Xs−)gs]λ) ds

+
∫ t

0

[F (s,Xs− + gs) − F (s,Xs−)]dMs
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Let X be a ν-compound Poisson process, and Zt = Z0 + bt+Xt. Then,

using that N =
∞∑
n=1

δTn,Yn
, Itô’s formula

f(Zt) − f(Z0) = b

∫ t

0

f ′(Zs)ds+
∑

k, Tk≤t
f(ZTk

) − f(ZTk−)

= b

∫ t

0

f ′(Zs)ds+
∫ t

0

∫
IR

[f(Zs− + y) − f(Zs−)]N(ds, dy)

=
∫ t

0

ds (Lf)(Zs) +M(f)t

can be written as where Lf(x) = bf ′(x) +
∫
IR

(f(x+ y) − f(x)) ν(dy) is
the infinitesimal generator of Z and

M(f)t =
∫ t

0

∫
IR

[f(Zs− + y) − f(Zs−)] (N(ds, dy) − ds ν(dy))

is a local martingale.
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Let Q be equivalent to P on Ft, for any t and Q|Ft
= Lt P|Ft

where L is
a strictly positive P-martingale. Any P-local martingale X is a Q

semi-martingale and its semi-martingale decompositions are given by
the following theorem:

(i)

Xt −
∫ t

0

d[X,L]s
Ls

is a Q-local martingale

(ii) If [X,L] is P-locally integrable, the process

Xt −
∫ t

0

d〈X,L〉s
Ls−

is a Q-local martingale
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General case

Let X be a semi-martingale and f ∈ C1,2 Then

df(t,Xt) = ∂tf(t,Xt)dt+ ∂xf(t,Xt−)dXt +
1
2
∂xxf(t,Xt−)d[Xc]t

+f(t,Xt) − f(t,Xt−) − ΔXt ∂xf(t,Xt−)
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Back to Lévy processes
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Begin at the beginning, and go on till you come to the end. Then, stop.

L. Carroll, Alice’s Adventures in Wonderland
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Covariation processes
Let X be a (m,σ2, ν) real valued Lévy process. Then, Xc

t = σWt and

[X]t = σ2t+
∫ t

0

∫
x2N(ds, dx)

If
∫
x2ν(dx) <∞,

〈X〉t = σ2t+ t

∫
x2ν(dx)
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Itô’s formula

If X is a Lévy process, it admits a decomposition as

dXt = αdt+ σdBt +
∫
|x|<1

x (N(dt, dx) − ν(dx)dt) +
∫
|x|≥1

xN(dt, dx)

The Lévy process is a semi-martingale, hence
∑

0<s≤t(ΔXs)2 <∞
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f(Xt) = f(X0) +
σ2

2

∫ t

0

f ′′(Xs)ds+
∫ t

0

f ′(Xs−)dXs

+
∑
s≤t

(f(Xs− + ΔXs) − f(Xs−) − ΔXsf
′(Xs−))

As a consequence of the semi-martingale property, if F is a C2 function,
then, the series∑

s≤t
f(Xs− + ΔXs) − f(Xs−) − ΔXsf

′(Xs−))

converges, since

|f(Xs− + ΔXs) − f(Xs−) − ΔXsf
′(Xs−)| ≤ c(ΔXs)2

.
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Let Yt = f(t,Xt), with f bounded with bounded derivatives. Then, Y
is a semi-martingale

Its martingale part is

∂xf(t,Xt)σdBt +
∫

(f(t,Xt− + x) − f(t,Xt−)) (N(dt, dx) − ν(dx)dt)

Its finite variation part is

∂tf(t,Xt) + α∂xf(t,Xt) +
1
2
σ2∂xxf(t,Xt)

+
∫

(f(t,Xt− + x) − f(t,Xt−) − x∂xf(t,Xt−)11x≤1) ν(dx)
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Representation Theorem

Let X be a IRd-valued Lévy process and FX its natural filtration. Let
M be a locally square integrable martingale with M0 = m. Then, there
exists a family (ϕ,ψ) of predictable processes such that∫ t

0

|ϕis|2ds <∞, a.s.

∫ t

0

∫
IRd

|ψs(x)|2ds ν(dx) <∞, a.s.

and

Mt = m+
d∑
i=1

∫ t

0

ϕisdW
i
s +

∫ t

0

∫
IRd

ψs(x)(N(ds, dx) − ds ν(dx)) .
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Change of measure

Poisson Process

Let N be a Poisson process with intensity λ, and Q be the probability
defined by (with β > −1)

dQ

dP
|Ft

= (1 + β)Nte−λβt

Then, the process N is a Q-Poisson process with intensity equal to
(1 + β)λ.
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The process L defined as

Lt = (1 + β)Nte−λβt

is a strictly positive martingale with expectation equal to 1. Then, from
the definition of Q, for any sequence 0 = t1 < t2 < · · · < tn+1 = t,

EQ

(
n∏
i=1

x
Nti+1−Nti

i

)
= EP

(
e−λβt

n∏
i=1

((1 + β)xi)Nti+1−Nti

)
The right-hand side is computed using that, under P, the process N is a
Poisson process (hence with independent increments) and is equal to

e−λβt
n∏
i=1

EP

(
((1 + β)xi)Nti+1−ti

)
= e−λβt

n∏
i=1

e−λ(ti+1−ti) eλ(ti+1−ti)(1+β)xi

=
n∏
i=1

e(1+β)λ(ti+1−ti)(xi−1) .
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EQ

(
n∏
i=1

x
Nti+1−Nti

i

)
=

n∏
i=1

e(1+β)λ(ti+1−ti)(xi−1) .

In particular, for any j (take all the xi’s, except the jth one, equal to 1)

EQ

(
x
Ntj+1−Ntj

j

)
= e(1+β)λ(tj+1−tj)(xj−1) ,

which establishes that, under Q, the r.v. Ntj+1 −Ntj has a Poisson law
with parameter (1 + β)λ, then that

EQ

(
n∏
i=1

x
Nti+1−Nti

i

)
=

n∏
i=1

EQ

(
x
Nti+1−Nti

i

)
which is equivalent to the independence of the increments.
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Compound Poisson process

Let X be a ν-compound Poisson process under P, we present some
particular probability measures Q equivalent to P such that, under Q,
X is still a compound Poisson process.
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Let ν̃ a positive finite measure on IR absolutely continuous w.r.t. ν, and
λ̃ = ν̃(IR) > 0. Let

Lt = exp

⎛⎝t(λ− λ̃) +
∑
s≤t

ln
(
dν̃

dν

)
(ΔXs)

⎞⎠ .

Recall that

exp
(∫ t

0

∫
IR

f(x)N(ds, dx) − t

∫ ∞

−∞
(ef(x) − 1)ν(dx)

)
is a martingale

Applying this martingale property for f = ln
(
dν̃
dν

)
, the process L is a

martingale. Set Q|Ft
= LtP|Ft

. Under Q, the process X is a
ν̃-compound Poisson process.
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Proof: First we find the law of the r.v. Xt under Q. From the
definition of Q

EQ(eiuXt) = EP (eiuXt exp

(
t(λ− λ̂) +

Nt∑
k=1

f(Yk)

)

=
∞∑
n=0

e−λt
(λt)n

n!
et(λ−λ̂)

(
EP (eiuY1+f(Y1))

)n
=

∞∑
n=0

e−λt
(λt)n

n!
et(λ−λ̂)

(
EP (

dν̂

dν
(Y1)eiuY1)

)n
=

∞∑
n=0

(λt)n

n!
e−tλ̂

(
1
λ

∫
eiuydν̂(y)

)n
= exp t

∫
(eiuy − 1)dν̂(y)

It remains to check that X is with independent and stationary
increments under Q.
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By Bayes formula, for t > s

EQ(eiu(Xt−Xs)|Fs) =
1
Ls

EP (Lteiu(Xt−Xs)|Fs)

= exp
(

(t− s)
∫

(eiux − 1)ν̃(dx)
)
.

�
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Esscher transform

We assume that E(e(θ·Xt)) <∞. We define a probability measure Q,
equivalent to P by the formula

Q|Ft
=

e(θ·Xt)

E(e(θ·Xt))
P|Ft

.(∗)

This particular choice of measure transformation, (called an Esscher
transform) preserves the Lévy process property.

Let X be a P-Lévy process with parameters (m,A, ν) where A = RTR.
Let θ be such that E(e(θ·Xt)) <∞ and suppose Q is defined by (*).
Then X is a Lévy process under Q
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It is not difficult to prove that X has independent and stationary
increments under Q. The characteristic exponent of X under Q is Φ(θ)

such that

e−tΦ
(θ)(u) = EQ(ei(u·Xt)) = E(ei(u·Xt)+(θ·Xt))etΦ(−iθ)

= e−t(Φ(u−iθ)−Φ(−iθ)) .

The characteristic exponent of X under Q is

Φ(θ)(u) = Φ(u− iθ) − Φ(−iθ) .

If Ψ(θ) <∞, Ψ(θ)(u) = Ψ(u+ θ) − Ψ(θ) for u ≥ min(−θ, 0).
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A simple computation leads to

Φ(u− iθ) − Φ(−iθ) = −iu·m+
1
2
u·Au− 1

2
iu·Aθ − 1

2
iθ·Au

−
∫ (

eθ·x(eiu·x − 1) − iu·x11{|x|≤1}
)
ν(dx)

= −iu·
(
m+

1
2
(A+AT )θ +

∫
(eθ·x − 1)x11{|x|≤1}ν(dx)

)
+

1
2
u·Au+

∫
eθ·x(eiu·x − 1 − iu·x11{|x|≤1})ν(dx) .

Hence, X1 has the required Lévy-Khintchine representation under Q.
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EQ(exp(i(u·X1))) = exp
(
i(u·m(θ)) − 1

2
(u·Au)

+
∫
IRd

(ei(u·x) − 1 − i(u·x)11|x|≤1)ν(θ)(dx)
)

with

m(θ) = m+
1
2
(A+AT )θ +

∫
|x|≤1

x(eθx − 1)ν(dx)

ν(θ)(dx) = eθxν(dx) .
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General case

More generally, any density (Lt, t ≥ 0) which is a positive martingale
can be used.

dLt =
d∑
i=1

ϕ̃itdW
i
t +

∫
ψ̃t(x)[N(dt, dx) − dtν(dx)] .

From the strict positivity of L, there exists ϕ,ψ such that
ϕ̃t = Lt−ϕt, ψ̃t = Lt−(eψ(t,x) − 1), hence the process L satisfies

dLt = Lt−

(
d∑
i=1

ϕitdW
i
t +

∫
(eψ(t,x) − 1)[N(dt, dx) − dtν(dx)]

)
(∗∗)
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Let Q|Ft
= Lt P|Ft

where L is defined in (**). With respect to Q,

(i) Wϕ
t
def
= Wt −

∫ t
0
ϕsds is a Brownian motion

(ii) The process N is compensated by eψ(s,x)dsν(dx) meaning
that for any Borel function h such that∫ T

0

∫
IR

|h(s, x)|eψ(s,x)dsν(dx) <∞ ,

the process ∫ t

0

∫
IR

h(s, x)
(
N(ds, dx) − eψ(s,x)dsν(dx)

)
is a local martingale.
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Fluctuation theory

Let Mt = sups≤tXs be the running maximum of the Lévy process X.
The reflected process M −X enjoys the strong Markov property.

Let θ be an exponential variable with parameter q, independent of X.
Note that

E(eiuXθ ) = q

∫
E(eiuXt)e−qtdt = q

∫
e−tΦ(u)e−qtdt .

Using excursion theory, the random variables Mθ and Xθ −Mθ can
be proved to be independent, hence

E(eiuMθ )E(eiu(Xθ−Mθ)) =
q

q + Φ(u)
.

This equality is known as the Wiener-Hopf factorization.

Let mt = mins≤t(Xs). Then

mθ
law= Xθ −Mθ .

If E(eX1) <∞, using Wiener-Hopf factorization, Mordecki proves that
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the boundaries for perpetual American options are given by

bp = KE(emθ ), bc = KE(eMθ )

where mt = infs≤tXs and θ is an exponential r.v. independent of X

with parameter r, hence bcbp =
rK2

1 − ln E(eX1)
.
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Pecherskii-Rogozin Identity

For x > 0, denote by Tx the first passage time above x defined as

Tx = inf{t > 0 : Xt > x}

and by Kx = XTx
− x the so-called overshoot.

For every triple of positive numbers (α, β, q),∫ ∞

0

e−qxE(e−αTx−βKx)dx =
κ(α, q) − κ(α, β)
(q − β)κ(α, q)

where κ is the Laplace exponent of the ladder process defined as

e−�κ(α,β) = E(exp(−ατ� − βH�)) ,

where H is defined in terms of M and the local time of M −X.
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Exponential Lévy Processes

Let X be a Lévy process.

The process X is a martingale iff
∫
|x|≥1

|x|ν(dx) <∞ and
b+

∫
|x|≥1

xν(dx) = 0.

The process eX is a martingale iff
∫
|x|≥1

exν(dx) and

b+ 1
2σ

2 +
∫

(ex − 1 − x11|x|≤1ν(dx) = 0

Let C(t, S) be a C1,2 function and St = S0e
rt+Xt where∫

|x|≥1
e2xν(dx) <∞.

The process e−rtC(t, St) is a martingale iff

∂C

∂t
+ rS

∂C

∂S
+
σ2

2
S2 ∂

2C

∂S2
− rC

+
∫
ν(dx)(C(t, Sex) − C(t, S) − S(ex − 1)

∂C

∂S
) = 0
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Exponential and stochastic exponential of Lévy
Processes

Doléans-Dade Exponential Let X be a real-valued
(m,σ2, ν)-Lévy process. The solution of

dZt = Zt−dXt, Z0 = 1

is
Zt = eXt− 1

2σ
2t

∏
s≤t

(1 + ΔXs)e−ΔXs
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Proof: in a first step, we prove that

Vt =
∏
s≤t

(1 + ΔXs)e−ΔXs

is well-defined and is a finite variation process.

Vt =
∏

s≤t, |ΔXs|≤1/2

(1 + ΔXs)e−ΔXs

︸ ︷︷ ︸
V 1

t

∏
s≤t, |ΔXs|>1/2

(1 + ΔXs)e−ΔXs

︸ ︷︷ ︸
V 2

t

The product in V 2 contains a finite number of terms

The process V 1 is non-negative and

ln(V 1
t ) =

∑
s≤t, |ΔXs|≤1/2

(ln(1 + ΔXs) − ΔXs)

Using
0 ≥ (ln(1 + ΔXs) − ΔXs) ≥ −(ΔXs)2

we check that V 1 is well defined and with bounded variation.
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Then, we apply Itô’s formula. Let Zt = eXt− 1
2σ

2tVt. Then

dZt = −σ
2

2
Zt−dt+ Zt−dXt+eXt−− 1

2σ
2tdVt+

σ2

2
Zt−dt

+(Zt − Zt−) − Zt−ΔXt−eXt−− 1
2σ

2tΔVt (†)
= Zt−dXt + eXt−− 1

2σ
2t(VteΔXt − Vt− − Vt−ΔXt)

= Zt−dXt
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More generally, the solution of the SDE

dSt = St−(b(t)dt+ σ(t)dXt)

is

St = S0 exp
(∫ t

0

σ(s)dXs +
∫ t

0

(b(s) − σ2(s)
2

ds

)
∏

0<s≤t
(1 + σ(s)ΔXs) exp(−σ(s)ΔXs) .
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Exponentials of Lévy Processes

Let X be a real-valued (m,σ2, ν)-Lévy process.

Let St = eXt be the ordinary exponential of the process X. The
stochastic logarithm of S (i.e., the process Y which satisfies St = E(Y )t)
is a Lévy process and is given by

Yt := L(S)t = Xt +
1
2
σ2t−

∑
0<s≤t

(
1 + ΔXs − eΔXs

)
.

The Lévy characteristics of Y are

mY = m+
1
2
σ2 +

∫ (
(ex − 1)11{|ex−1|≤1} − x11{|x|≤1}

)
ν(dx)

σ2
Y = σ2

νY (A) = ν({x : ex − 1 ∈ A}) =
∫

11A(ex − 1) ν(dx) .
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The process Yt = Xt + 1
2σ

2t−∑
0<s≤t

(
1 + ΔXs − eΔXs

)
is a Lévy

process, σ2
Y = σ2, and ΔYt = eΔXt − 1.

This implies the form of νY (dx). (†)
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we obtain that the Lévy-Itô decomposition of Y is

Yt = Xt +
1
2
σ2t−

∑
0<s≤t

(
1 + ΔXs − eΔXs

)
= mt+ σBt +

∫ t

0

∫
{|x|≤1}

xÑ(ds, dx) +
∫ t

0

∫
{|x|>1}

xN(ds, dx) +
1
2
σ2t

−
∫ t

0

∫
(1 + x− ex)N(ds, dx)

= mY t+ σBt +
∫ t

0

∫
(ex − 1)11{|ex−1|≤1}Ñ(ds, dx)

+
∫ t

0

∫
(ex − 1)11{|ex−1|>1}N(ds, dx)

= mY t+ σBt +
∫ t

0

∫
y11{|y|≤1}ÑY (ds, dy) +

∫ t

0

∫
y11{|y|>1}NY (ds, dy) .

The result follows.
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Let Zt = E(X)t the Doléans-Dade exponential of X. If Z > 0, the
ordinary logarithm of Z is a Lévy process L given by

Lt := ln(Zt) = Xt − 1
2
σ2t+

∑
0<s≤t

(ln(1 + ΔXs) − ΔXs) .

Its Lévy characteristics are

mL = m− 1
2
σ2 +

∫ (
ln(1 + x)11{| ln(1+x)|≤1} − x11{|x|≤1}

)
ν(dx)

σ2
L = σ2

νL(A) = ν({x : ln(1 + x) ∈ A}) =
∫

11A(ln(1 + x)) ν(dx)
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Exponentials of Lévy Processes

Let St = xeXt where X is a (m,σ2, ν) real valued Lévy process.

Let us assume that E(e−αX1) <∞, for α ∈ [−ε, , ε]. This implies that X
has finite moments of all orders.
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A particular case

Let W be a Brownian motion and Z be a ν-compound Poisson process
independent of W of the form Zt =

∑Nt

n=1 Yn. Let

dSt = St−(μdt+ σdWt + dZt) , (0.1)

where μ and σ are constants. The process (Ste−rt, t ≥ 0) is a
martingale if and only if E(|Y1|) <∞ and μ+ λE(Y1) = r.
If Y1 ≥ −1 a.s., the process S can be written in an exponential form as

St = S0e
Xt , Xt = bt+ σWt + Vt

where b = μ− 1
2σ

2, V is the (λ, F̃ )-compound Poisson process

Vt =
Nt∑
n=1

ln(1 + Yn) =
Nt∑
n=1

Un

with F̃ (u) = F (eu − 1).
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Option pricing with Esscher Transform

Let St = S0e
rt+Xt where X is a Lévy process under the historical

probability P. Assume that Ψ(α) = E(eαX1) <∞ on some open interval
(a, b) with b− a > 1 and that there exists a real number θ such that
Ψ(θ) = Ψ(θ + 1).

The process e−rtSt = S0e
Xt is a martingale under the probability Q

defined as Q = ZtP where Zt =
eθXt

Ψ(θ)

Hence, the value of a contingent claim h(ST ) can be obtained, assuming
that the emm chosen by the market is Q as

Vt = e−r(T−t)EQ(h(ST )|Ft) = e−r(T−t) 1
Ψ(θ)

EP (h(yer(T−t)+XT−teθXT−t)
∣∣
y=St
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A Differential Equation for Option Pricing

Let St = exp(rt+Xt) where X is a (m,σ2, ν) Lévy process with∫
e2xν(dx) <∞. Then

dSt = rStdt+ σStdWt +
∫

(ex − 1)St−(N(dt, dx) − dtν(dx))

∂tC(t, x)+rx∂xC+
1
2
σ2∂xxC+

∫
ν(dy)(C(t, xey)−C(t, x)−x(ey−1)∂xC) = 0

and a terminal condition C(T, x) = h(x)
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Put-call Symmetry

Let us study a financial market with a riskless asset with constant
interest rate r, and a price process (a currency) St = S0e

Xt where X is
a Q-Lévy process such that (Zt = e−(r−δ)tSt/S0, t ≥ 0) is a Q-strictly
positive martingale with initial value equal to 1. The Q-characteristic
triple (m,σ2, ν) of X is such that

m = r − δ − σ2/2 −
∫

(ey − 1 − y11{|y|≤1})ν(dy) .
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Then,

EQ(e−rT (ST −K)+) = EQ(e−δTZT (S0 −KS0/ST )+)

= EQ̂(e−δT (S0 −KS0/ST )+)

with Q̂|Ft
= ZtQ|Ft

. The process X is a Q̂-Lévy process, with
characteristic exponent Ψ(λ+ 1) − Ψ(1). The process S0/St = e−Xt is
the exponential of the Lévy process, Y = −X which is the dual of the
Lévy process X and the characteristic exponent of Y is
Ψ̃(λ) = Ψ(1 − λ) − Ψ(1). Hence, the following symmetry between call
and put prices holds:

CE(S0,K, r, δ, T,Ψ) = PE(K,S0, δ, r, T, Ψ̃)
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Subordinators

A Lévy process which takes values in [0,∞[ (i.e. with increasing paths)
is a subordinator.

Xt = bt+
∫ t

0

∫
xN(dx, ds)

In this case, the parameters in the Lévy-Khintchine decomposition are
m ≥ 0, σ = 0 and the Lévy measure ν is a measure on ]0,∞[ with∫

]0,∞[

(1 ∧ x)ν(dx) <∞.
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Subordinators

A Lévy process which takes values in [0,∞[ (i.e. with increasing paths)
is a subordinator.

Xt = bt+
∫ t

0

∫
xN(dx, ds)

In this case, the parameters in the Lévy-Khintchine decomposition are
m ≥ 0, σ = 0 and the Lévy measure ν is a measure on ]0,∞[ with∫

]0,∞[

(1 ∧ x)ν(dx) <∞.

The Laplace exponent can be expressed as

Φ(u) = δu+
∫

]0,∞[

(1 − e−ux)ν(dx)

with δ > 0
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Subordinators

A Lévy process which takes values in [0,∞[ (i.e. with increasing paths)
is a subordinator.

Xt = bt+
∫ t

0

∫
xN(dx, ds)

In this case, the parameters in the Lévy-Khintchine decomposition are
m ≥ 0, σ = 0 and the Lévy measure ν is a measure on ]0,∞[ with∫

]0,∞[

(1 ∧ x)ν(dx) <∞.

The Laplace exponent can be expressed as

Φ(u) = δu+
∫

]0,∞[

(1 − e−ux)ν(dx)

with δ > 0
Let Z be a subordinator and X an independent Lévy process.

Then, X̃t = XZt
is a Lévy process, called subordinated

Lévy process.
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Compound Poisson process. A compound Poisson process with
Yk ≥ 0 is a subordinator.

Gamma process. The Gamma process G(t; γ) is a subordinator which
satisfies

G(t+ h; γ) −G(t; γ) law= Γ(h; γ) .

Here Γ(h; γ) follows the Gamma law. The Gamma process is an
increasing Lévy process, hence a subordinator, with one sided
Lévy measure

1
x

exp(−x
γ

)11x>0 .

Hitting times Let W be a BM, and

Tr = inf{t ≥ 0 : Wt ≥ r} .
The process (Tr, r ≥ 0) is a stable (1/2) subordinator, its Lévy measure

is
1√

2π x3/2
11x>0dx. Let B be a BM independent of W . The process

BTt
is a Cauchy process, its Lévy measure is dx/(πx2).
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Changes of Lévy characteristics under subordination

Let X be a (aX , AX , νX) Lévy process and Z be a subordinator with
drift β and Lévy measure νZ , independent of X.The process X̃t = XZt

is a Lévy process with characteristic exponent

Φ(u) = i(ã·u) +
1
2
Ã(u) −

∫
(ei(u·x) − 1 − i(u·x)11|x|≤1)ν̃(dx)

with

ã = βaX +
∫
νZ(ds)11|x|≤1xP(Xs ∈ dx)

Ã = βAX

ν̃(dx) = βνXdx+
∫
νZ(ds)P(Xs ∈ dx) .
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“Vous leur conseillerez donc de faire le calcul. Elles [les grandes
personnes] adorent les chiffres: ça leur plaira. Mais ne perdez pas votre
temps à ce pensum. C’est inutile. Vous avez confiance en moi.”

Le petit prince, A. de St Exupéry. Gallimard. 1946. p. 59.
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Variance-Gamma Model

The variance Gamma process is a Lévy process where Xt has a
Variance Gamma law VG(σ, ν, θ). Its characteristic function is

E(exp(iuXt)) =
(

1 − iuθν +
1
2
σ2νu2

)−t/ν
.

The Variance Gamma process can be characterized as a time changed
BM with drift as follows: let W be a BM, γ(t) a G(1/ν, 1/ν) process.
Then

Xt = θγ(t) + σWγ(t)

is a VG(σ, ν, θ) process.
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The variance Gamma process is a finite variation process. Hence it is
the difference of two increasing processes. Madan et al. showed that it
is the difference of two independent Gamma processes

Xt = G(t;μ1, γ1) −G(t;μ2, γ2) .

Indeed, the characteristic function can be factorized

E(exp(iuXt)) =
(

1 − iu

ν1

)−t/γ (
1 +

iu

ν2

)−t/γ

with

ν−1
1 =

1
2

(
θν +

√
θ2ν2 + 2νσ2

)
ν−1
2 =

1
2

(
θν −

√
θ2ν2 + 2νσ2

)
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The Lévy density of X is

1
γ

1
|x| exp(−ν1|x|) for x < 0

1
γ

1
x

exp(−ν2x) for x > 0 .

The density of X1 is

2e
θx
σ2

γ1/γ
√

2πσΓ(1/2)

(
x2

θ2 + 2σ2/γ

) 1
2γ − 1

4

K 1
γ − 1

2
(

1
σ2

√
x2(θ2 + 2σ2/γ))

where Kα is the modified Bessel function.
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Stock prices driven by a Variance-Gamma process have dynamics

St = S0 exp
(
rt+X(t;σ, ν, θ) +

t

ν
ln(1 − θν − σ2ν

2
)
)

From E(eXt) = exp
(
− t

ν
ln(1 − θν − σ2ν

2
)
)

, we get that Ste−rt is a

martingale. The parameters ν and θ give control on skewness and
kurtosis.

The CGMY model, introduced by Carr et al. is an extension of the
Variance-Gamma model. The Lévy density is⎧⎪⎨⎪⎩

C

xY+1
e−Mx x > 0

C

|x|Y+1
eGx x < 0

with C > 0,M ≥ 0, G ≥ 0 and Y < 2, Y /∈ ZZ.
If Y < 0, there is a finite number of jumps in any finite interval, if not,
the process has infinite activity. If Y ∈ [1, 2[, the process is with infinite
variation. This process is also called KoBol.
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Double Exponential Model

The Model A particular Lévy model is the double exponential jumps
model, introduced by Kou and Kou and Wang. In this model

Xt = μt+ σWt +
Nt∑
i=1

Yi ,

where W is a Brownian motion independent of N and
∑Nt

i=1 Yi is a
compound Poisson process. The r.v’s Yi are i.i.d., independent of N and
W and the density of the law of Y1 is

f(x) = pη1e
−η1x11{x>0} + (1 − p)η2eη2x11{x<0} .

The Lévy measure of X is ν(dx) = λf(x)dx.

Here, ηi are positive real numbers, and p ∈ [0, 1]. With probability p
(resp. (1 − p)), the jump size is positive (resp. negative) with
exponential law with parameter η1 (resp η2).
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It is easy to prove that

E(Y1) =
p

η1
− 1 − p

η2
, var (Y1) =

p

η2
1

+
1 − p

η2
2

+ p(1 − p)
(

1
η1

+
1
η2

)2

and that, for η1 > 1, E(eY1) = p η1
η1−1 + (1 − p) η2

1+η2
. Moreover

E(eiuXt) = exp
(
t

{
−1

2
σ2u2 + ibu+ λ

(
pη1

η1 − iu
+

(1 − p)η2
η2 + iu

− 1
)})

,

where b = μ+ λE(Y111|Y1|≤1) =

μ+ λp
(

1−e−η1

η1
− e−η1

)
− λ(1 − p)

(
1−e−η2

η2
− e−η2

)
. The Laplace

exponent of X, i.e., the function Ψ such that E(eβXt) = exp(Ψ(β)t) is
defined for −η2 < β < η1 as

Ψ(β) = βμ+
1
2
β2σ2 + λ(

pη1
η1 − β

+
(1 − p)η2
β + η2

− 1) .
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Change of probability Let St = S0e
rt+Xt where

Xt = (μ− 1
2σ

2)t+ σWt +
∑Nt

i=1 Yi. Then, setting Vi = eYi , using an
Escher transform, the process Ste−rt will be a Q martingale with
Q|Ft

= LtdP|Ft
and Lt = eαXt

E(eαXt )
, for α such that Ψ(α) = Ψ(α+ 1).

Under Q, the Lévy measure of X is
ν̂(dx) = eαxν(dx) = eαxλf(x)dx = λ̂f̂(x)dx where, after some standard
computations

f̂(x) =
(
p̂ η̂1e

−η̂1x11{x>0} + (1 − p̂)η̂2eη̂2x11{x<0}
)
.

η̂1 = η1 − α , η̂2 = η2 + α

λ̂ = λ

(
pη1

η1 − α
+

(1 − p)η2
η2 + α

)
p̂ = pη1

η2 + α

αpη1 + η2(η1 − α+ αpη1)

In particular, the process X is a double exponential process under Q.
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Hitting times For any x > 0

P(τb ≤ t, Xτb
− b ≥ x) = e−η1x P(τb ≤ t,Xτb

− b ≥ 0)

Proof:

The infinitesimal generator of X is

Lf =
1
2
σ2∂xxf + μ∂xf + λ

∫
IR

(f(x+ y) − f(x))ν(dx)

Let Tx = inf{t : Xt ≥ x}. Then Kou and Wang establish that, for
r > 0 and x > 0,

E(e−rTx) =
η1 − β1

η1

β2

β2 − β1
e−xβ1 +

β2 − η1
η1

β1

β2 − β1
e−xβ2

E(e−rTx11XTx−x>y) = eη1y
η1 − β1

η1

β2 − η1
β2 − β1

(
e−xβ1 − e−xβ2

)
E(eθXTx−rTx) = eθx

(
η1 − β1

β2 − β1

β2 − θ

η1 − θ
e−xβ1 + (

β2 − η1
β2 − β1

β1 − θ

η1 − θ
e−xβ2

)
where 0 < β1 < η1 < β2 are roots of G(β) = r. The method is based on
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finding an explicit solution of Lu = ru where L is the infinitesimal
generator of the process X.
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Thank you for your attention.
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