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How to execute a single trade of selling X0 shares?

Interesting because:

• Liquidity/market impact risk in its purest form

– development of realistic market impact models

– checking viability of these models

– building block for more complex problems

• Relevant in applications

– real-world tests of new models

• Interesting mathematics
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Overview:

I. Order book models

II. The qualitative effects of risk aversion

III. Multi-agent equilibrium
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Overview:

I. Order book models

Microscopic: Emphasis on single trades

II. The qualitative effects of risk aversion

Mesoscopic: Emphasis on trajectory of trades

III. Multi-agent equilibrium
Macroscopic: Emphasis on interaction

with competitors
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Limit order book before market order

buyers’ bid offers sellers’ ask offers
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Limit order book after market order
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Resilience of the limit order book after market order
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I. Order book models

1. Linear impact, general resilience

2. Nonlinear impact,
exponential resilience

3. Gatheral’s model
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I. Order book models

1. Linear impact, general resilience
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Limit order book model without large trader

unaffected best ask priceunaffected best bid price,
is martingale

buyers’ bid offers sellers’ ask offers



Limit order book model after large trades

actual best ask priceactual best bid price



Limit order book model at large trade

B0
t A0

t

Bt At

DA
t DB

t

DA
t+ DB

t+

Bt+ At+

Bt+∆t At+∆t

DA
t+s DB

t+s

ξt = q(Bt −Bt+)

ξt

q · ψ(∆t) + resilience of other trades

1

B0
t A0

t

Bt At

DA
t DB

t

DA
t+ DB

t+

Bt+ At+

Bt+∆t At+∆t

DA
t+s DB

t+s

ξt = q(Bt −Bt+)

ξt

q · ψ(∆t) + resilience of other trades

1



Limit order book model at large trade

B0
t A0

t

Bt At

DA
t DB

t

DA
t+ DB

t+

Bt+ At+

Bt+∆t At+∆t

DA
t+s DB

t+s

ξt = q(Bt −Bt+)

ξt

q · ψ(∆t) + resilience of other trades

1

B0
t A0

t

Bt At

DA
t DB

t

DA
t+ DB

t+

Bt+ At+

Bt+∆t At+∆t

DA
t+s DB

t+s

ξt = q(Bt −Bt+)

ξt

q · ψ(∆t) + resilience of other trades

1

similarly for buy orders

B0
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sell order executed at average price
∫ Bt

Bt+

xq dx

similarly for buy orders

ψ : [0,∞[→ [0, 1], ψ(0) = 1, decreasing
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Limit order book model immediately after large trade



Resilience of the limit order book
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Strategy:

N + 1 market orders: ξn shares placed at time tn s.th.

a) 0 = t0 ≤ t1 ≤ · · · ≤ tN = T

(can also be stopping times)

b) ξn is Ftn-measurable and bounded from below,

c) we have
N∑

n=0

ξn = X0

Sell order: ξn > 0

Buy order: ξn < 0
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Actual best bid and ask prices

Bt = B0
t −

1
q

∑

tn<t
ξn>0

ψ(t− tn)ξn

At = A0
t −

1
q

∑

tn<t
ξn<0

ψ(t− tn)ξn
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Cost per trade

cn(ξ) =






∫ Atn+

Atn

yq dy =
q

2
(A2

tn+ −A2
tn

) for buy order ξn < 0

∫ Btn+

Btn

yq dy =
q

2
(B2

tn+ −B2
tn

) for sell order ξn > 0

(positive for buy orders, negative for sell orders)

Average cost

C(ξ) = E
[ N∑

n=0

cn(ξ)
]
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A simplified model

No bid-ask spread

S0
t = unaffected price, is (continuous) martingale.

St = S0
t −

1
q

∑

tn<t

ξnψ(t− tn).

Trade ξn moves price from Stn to

Stn+ = Stn −
1
q
ξn.

Resulting cost:

cn(ξ) :=
∫ Stn+

Stn

yq dy =
q

2
[
S2

tn+ − S2
tn

]
=

1
2q

ξ2
n − ξnStn

(positive for buy orders, negative for sell orders)
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Lemma 1. Suppose that S0 = B0. Then, for any strategy ξ,

cn(ξ) ≤ cn(ξ) with equality if ξk ≥ 0 for all k.

Proof: Let

DB
t := Bt −B0

t = −1
q

∑

tn<t
ξn>0

ψ(t− tn)ξn ≤ 0

DA
t := At −A0

t = −1
q

∑

tn<t
ξn<0

ψ(t− tn)ξn ≥ 0

Dt := DA
t + DB

t .

Then
St = S0

t + DA
t + DB

t = B0
t + Dt
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and

cn(ξ) =
q

2
[
S2

tn+ − S2
tn

]
=

q

2
[
(B0

tn
+ Dtn+)2 − (B0

tn
+ Dtn)2

]
.

For ξn ≥ 0 we have Dtn+ = DA
tn

+ DB
tn+ and hence

cn(ξ) =
q

2
[
(B0

tn
+ DA

tn
+ DB

tn+)2 − (B0
tn

+ DA
tn

+ DB
tn

)2
]

=
q

2
[
B2

tn+ −B2
tn

+ 2DA
tn

(Btn+ −Btn)
]

≤ q

2
[
B2

tn+ −B2
tn

]

= cn(ξ),

since DA
t ≥ 0 and Btn+ −Btn ≤ 0.
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For ξn ≤ 0, we have DA
tn+ −DA

tn
≥ 0 and Btn ≤ B0

tn
≤ A0

tn
. Hence

cn(ξ) =
q

2
[
(B0

tn
+ DA

tn+ + DB
tn

)2 − (B0
tn

+ DA
tn

+ DB
tn

)2
]

=
q

2
[
(Btn + DA

tn+)2 − (Btn + DA
tn

)2
]

≤ q

2
[
(A0

tn
+ DA

tn+)2 − (A0
tn

+ DA
tn

)2
]

= cn(ξ).

Thus: Enough to study the simplified model (as long as all trades ξn

are positive)
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For ξn ≤ 0, we have DA
tn+ −DA

tn
≥ 0 and Btn ≤ B0

tn
≤ A0

tn
. Hence

cn(ξ) =
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Lemma 2. In the simplified model, the expected cost of a strategy ξ is

C(ξ) = E
[ N∑

n=0

cn(ξ)
]

=
1
2q

E
[
Cψ

t (ξ) ]−X0S
0
0 ,

where Cψ
t is the quadratic form

Cψ
t (x) =

N∑

m,n=0

xnxmψ(|tn − tm|), x ∈ RN+1, t = (t0, . . . , tN ).
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Proof: We have
N∑

n=0

cn(ξ) =
N∑

n=0

( 1
2q

ξ2
n − ξnStn

)

=
N∑

n=0

( 1
2q

ξ2
n + ξn

1
q

∑

tm<t

ξnψ(tn − tm)− ξnS0
tn

)

=
1
2q

N∑

m,n=0

ξnξmψ(|tn − tm|)−
N∑

n=0

ξnS0
tn

.

Letting
Xt := X0 −

∑

tn<t

ξn and XtN+1 := 0,

we have
N∑

n=0

ξnS0
tn

= −
N∑

n=0

(Xtn+1 −Xtn)S0
tn

= X0S
0
0 +

N∑

n=0

Xtn(S0
tn
− S0

tn−1
).
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First Question:
What are the conditions on ψ under which the
(simplified) model is viable?

Requiring the absence of arbitrage opportunities in the
usual sense is not strong enough, as examples will show.

Second Question:
Which strategies minimize the expected cost for
given X0?

This is the optimal execution problem. It is very closely
related to the question of model viability.
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The usual concept of viability from Hubermann & Stanzl (2004):

Definition
A round trip is a strategy ξ with

N∑

n=0

ξn = X0 = 0.

A market impact model admits

price manipulation strategies

if there is a round trip with negative expected costs.
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In the simplified model, the expected costs of a strategy ξ are

C(ξ) =
1
2q

E
[
Cψ

t (ξ) ]−X0S
0
0 ,

where

Cψ
t (x) =

N∑

m,n=0

xnxmψ(|tn − tm|), x ∈ RN+1, t = (t0, . . . , tN ).

• There are no price manipulation strategies when Cψ
t is nonnegative

definite for all t = (t0, . . . , tN );

• when the minimizer x∗ of Cψ
t (x) with

∑
i xi = X0 exists, it yields

the optimal strategy in the simplified model; in particular, the
optimal strategy is then deterministic;

• when the minimizer x∗ has only nonnegative components, it yields
the optimal strategy in the order book model.
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Bochner’s theorem (1932):
Cψ

t is always nonnegative definite (ψ is “positive definite”) if and
only if ψ(| · |) is the Fourier transform of a positive Borel measure µ

on R.

Cψ
t is even strictly positive definite (ψ is “strictly positive definite”)

when the support of µ is not discrete.

33



A. Schied: Viability of market impact models and optimal execution 2nd SMAI European Summer School, 2009

Bochner’s theorem (1932):
Cψ

t is always nonnegative definite (ψ is “positive definite”) if and
only if ψ(| · |) is the Fourier transform of a positive Borel measure µ

on R.

Cψ
t is even strictly positive definite (ψ is “strictly positive definite”)

when the support of µ is not discrete.

• Seems to completely settle the question of model viability;

• for strictly positive definite ψ, the optimal strategy is

ξ∗ = x∗ =
X0

1"M−11
M−11 for Mij = ψ(|ti − tj |).
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Proof of “⇐”: Suppose that

ψ(|t|) =
1√
2π

∫

R
eitz µ(dz).

Then

Cψ
t (x) =

N∑

m,n=0

xnxmψ(|tn − tm|) =
1√
2π

∫ N∑

m,n=0

xnxmei(tn−tm)z µ(dz)

=
1√
2π

∫ ( N∑

n=0

xneitnz
)( N∑

n=0

xne−itnz
)

µ(dz)

=
1√
2π

∫
|g(z)|2 µ(dz) ≥ 0,

where

g(z) =
N∑

n=0

xneitnz.
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Now suppose that x &= 0 but

Cψ
t (x) =

1√
2π

∫
|g(z)|2 µ(dz) = 0.

Then the function g vanishes on the support of µ. But g is analytic
and a non-vanishing, so its zero set must be discrete. Hence the
support of µ must be discrete.
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Examples

Example 1: Exponential resilience
[Obizhaeva & Wang (2005), Alfonsi, Fruth, S. (2008)]

For the exponential resilience function

ψ(t) = e−ρt,

ψ(| · |) is the Fourier transform of the positive measure

µ(dt) =
√

2
π

ρ

ρ2 + t2
dt

Hence, ψ is strictly positive definite.
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Optimal strategies for exponential resilience ψ(t) = e−ρt
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The optimal strategy can in fact be computed explicitly for any time
grid:

Let an := e−ρ(tn−tn−1) for n = 1, . . . , N . Then we can write

M =





1 a1 a1a2 · · · · · · a1a2 · · · aN

a1 1 a2 a2a3 · · · a2a3 · · · aN

a1a2 a2 1 a3 · · ·
...

...
. . . . . . . . .

...

a2 · · · aN aN−1 1 aN

a1a2 · · · aN · · · · · · aN−1aN aN 1





.
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The inverse of M can be computed as the tridiagonal matrix

M−1 =





1
1−a2

1

−a1
1−a2

1
0 · · · 0

−a1
1−a2

1

(
1

1−a2
1

+ a2
2

1−a2
2

)
−a2
1−a2

2
0 · · · 0

0
. . . . . . . . .

...
...

. . . −aN−1
1−a2

N−1

(
1

1−a2
N−1

+ a2
N

1−a2
N

)
−aN

1−a2
N

0 · · · 0 −aN

1−a2
N

1
1−a2

N
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From this formula, we get

M−11 =





1
1+a1

1
1+a1

− a2
1+a2

...
1

1+aN−1
− aN

1+aN

1
1+aN





And hence
x∗ = λ0M

−11

for

λ0 =
X0

1"M−11
=

X0

2
1+a1

+
∑N

n=2
1−an
1+an

.
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The initial market order of the optimal strategy is hence

x∗0 =
λ0

1 + a1
,

the intermediate market orders are given by

x∗n = λ0

( 1
1 + an

− an+1

1 + an+1

)
, n = 1, . . . , N − 1,

and the final market order is

x∗N =
λ0

1 + aN
.
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The initial market order of the optimal strategy is hence

x∗0 =
λ0

1 + a1
,

the intermediate market orders are given by

x∗n = λ0

( 1
1 + an

− an+1

1 + an+1

)
, n = 1, . . . , N − 1,

and the final market order is

x∗N =
λ0

1 + aN
.

It is clear that x∗0 and x∗N are strictly positive. For i = 1, . . . , N − 1
we have

x∗i = λ0 ·
(1− aiai+1)

(1 + ai)(1 + ai+1)
> 0.
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For the equidistant time grid tn = nT/N the solution simplifies:

x∗0 = x∗N =
X0

(N − 1)(1− a) + 2

and
x∗1 = · · · = x∗N−1 = ξ∗0(1− a).
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The symmetry of the optimal strategy is a general fact:

Exercise:
Suppose that ψ is strictly positive definite and that the time grid is
symmetric, i.e.,

ti = tN − tN−i for all i,

then the optimal strategy is reversible, i.e.,

x∗ti
= x∗tN−i

for all i.
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Example 2: Linear resilience ψ(t) = 1− ρt for some ρ ≤ 1/T

We will see in a minute that this ψ is strictly positive definite.
The optimal strategy is always of this form:

!! " ! # $ % & '
!!

"

!

#

$

%

&

()*+,-./+*(01

()
*
+
,-
.
/1
,2
0
1

()*+,-./1()*(0.3

It is independent of the underlying time grid and consists of two
symmetric trades of size X0/2 at t = 0 and t = T , all other trades are
zero.
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Proof: Let x0 denote the asserted strategy. It has the cost

(1) Cψ
t (x0) =

(X0

2

)2[
ψ(0) + 2ψ(T ) + ψ(0)] =

2− ρT

2
X2

0 ,

regardless of the underlying time grid. We will show that the
minimal cost is independent of the time grid and equal to the
right-hand side in (1). Since the linear resilience function is strictly
positive definite, x0 must then be the unique optimal strategy.

The cost of the optimal

x∗ =
X0

1"M−11
M−11

for an arbitrary time grid is

Cψ
t (x∗) = (x∗)"Mx∗ =

X2
0

1"M−11
.
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Let x := M−11 = (x0, . . . , xN ) and ∆i := ti − ti−1. Then the first
and last lines of the equation Mx = 1 can be written as follows.

x0 +
(
1− ρ∆1

)
x1 + · · ·+

(
1− ρ

N∑

i=1

∆i

)
xN = 1,

(
1− ρ

N∑

i=1

∆i

)
x0 + · · ·+

(
1− ρ∆N

)
xN−1 + xN = 1.

Summing both equations yields
N∑

i=0

xi

(
2− ρ

N∑

i=1

∆i

)
= 2

and thus

1"M−11 =
N∑

i=0

xi =
2

2− ρT
.

This proves the assertion.
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More generally: Convex resilience

Theorem 3.
[Carathéodory (1907), Toeplitz (1911), Young (1912)]

ψ is convex, decreasing, nonnegative, and nonconstant =⇒
ψ(| · |) is strictly positive definite.
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More generally: Convex resilience

Theorem 3.
[Carathéodory (1907), Toeplitz (1911), Young (1912)]

ψ is convex, decreasing, nonnegative, and nonconstant =⇒
ψ(| · |) is strictly positive definite.

Proof: W.l.o.g.: ψ is continuous (exercise).
ψ′ = right-hand derivative.
ψ′′(dx) = second derivative (= Borel measure on [0,∞]).

For ε > 0 let ψε(x) := e−εxψ(x) (is again convex and decreasing).
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The inverse Fourier transform of ψε(| · |) is proportional to
∫ ∞

−∞
ψε(|x|)e−ixz dx = 2

∫ ∞

0
ψε(x) cosxz dx

= −2
∫ ∞

0
ψ′ε(x)

∫ x

0
cos zt dt dx

= 2
∫ ∞

0

∫ x

0

∫ t

0
cos sz ds dtψ′′ε (dx)

= 2
∫ ∞

0

1− cosxz

z2
ψ′′ε (dx)

As a function of z, the right-hand side is the density of a positive
finite Borel measure µε. It follows that ψε, and hence ψ, are positive
definite functions.
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Since ψε → ψ pointwise, Lévy’s theorem entails that µε converges
weakly to the measure µ, the inverse Fourier transform of ψ modulo
a proportionality factor. Portmanteau theorem:

µ([a, b]) ≥ lim sup
ε↓0

µε([a, b]) ≥ 2
∫ ∞

0

∫ b

a

1− cosxz

z2
dz ψ′′(dx) > 0

for all 0 < a < b. Hence, the support of µ is not discrete, and so ψ is
strictly positive definite.
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Example 3: Power law resilience ψ(t) = (1 + βt)−α
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Example 4: Trigonometric resilience
The function

cos ρx

is the Fourier transform of the positive finite measure

µ =
√

π

2
(δ−ρ + δρ)

Since it is not strictly positive definite, we take

ψ(t) = (1− ε) cos ρt + εe−t for some ρ ≤ π

2T
.
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Trigonometric resilience ψ(t) = 0.999 cos(tπ/2T ) + 0.001e−t
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Example 5: Gaussian resilience

The Gaussian resilience function

ψ(t) = e−t2

is its own Fourier transform (modulo constants). The corresponding
quadratic form is hence positive definite.

Nevertheless.....
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Gaussian resilience ψ(t) = e−t2 , N = 10
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Gaussian resilience ψ(t) = e−t2 , N = 15

!! " ! # $ % &" &!
!"'!

"

"'!

"'#

"'$

"'%

&

&'!

&'#

&'$

()*&+

56



A. Schied: Viability of market impact models and optimal execution 2nd SMAI European Summer School, 2009

Gaussian resilience ψ(t) = e−t2 , N = 20
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Gaussian resilience ψ(t) = e−t2 , N = 25
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Gaussian resilience ψ(t) = e−t2 , N = 25
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⇒ absence of price manipulation strategies is not enough
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Definition [Hubermann & Stanzl (2004)]
A market impact model admits

price manipulation strategies in the strong sense

if there is a round trip with negative expected liquidation costs.

Definition:
A market impact model admits

price manipulation strategies in the weak sense

if the expected liquidation costs of a sell (buy) program can be
decreased by intermediate buy (sell) trades.
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Question: When does the minimizer x∗ of
∑

i,j

xixjψ(|ti − tj |) with
∑

i

xi = X0

have only nonnegative components?

Related to the positive portfolio problem in finance:
When are there no short sales in a Markowitz portfolio?

Partial results, e.g., by Gale (1960), Green (1986), Nielsen (1987)
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Proposition 4. [Alfonsi, S., Slynko (2009)]
When ψ is strictly positive definite and trading times are equidistant,
then

x∗0 > 0 and x∗N > 0.

Proof relies on Trench algorithm for inverting the Toeplitz matrix

Mij = ψ(|i− j|/N), i, j = 0, . . . , N
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Theorem 5. [Alfonsi, S., Slynko (2009)]

• If ψ is convex then all components of x∗ are nonnegative.

• If ψ is strictly convex, then all components are strictly positive.

• Conversely, x∗ has negative components as soon as, e.g., ψ is
strictly concave in a neighborhood of 0.
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Qualitative properties of optimal strategies?
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Qualitative properties of optimal strategies?

Proposition 6. [Alfonsi, S., Slynko (2009)]
When ψ is convex and nonconstant, the optimal x∗ satisfies

x∗0 ≥ x∗1 and x∗N−1 ≤ x∗N
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Proof: Equating the first and second equations in Mx∗ = λ01 gives
N∑

j=0

x∗jψ(tj) =
N∑

j=0

x∗jψ(|tj − t1|).

Thus,

x∗0 − x∗1 =
N∑

j=0, j '=1

x∗jψ(|tj − t1|)−
N∑

j=1

x∗jψ(tj)

= x∗0ψ(t1)− x∗1ψ(t1) +
N∑

j=2

x∗j
[
ψ(tj − t1)− ψ(tj)

]

≥ (x∗0 − x∗1)ψ(t1),

by convexity of ψ. Therefore

(x0 − x1)(1− ψ(t1)) ≥ 0

65



A. Schied: Viability of market impact models and optimal execution 2nd SMAI European Summer School, 2009

Proposition 6. [Alfonsi, S., Slynko (2009)]
When ψ is convex and nonconstant, the optimal x∗ satisfies

x∗0 ≥ x∗1 and x∗N−1 ≤ x∗N

What about other trades? General pattern?
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No! Capped linear resilience ψ(t) = (1− ρt)+, ρ = 2/T
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I. Order book models

1. Linear impact, general resilience

2. Nonlinear impact,
exponential resilience
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Limit order book model without large trader

buyers’ bid offers sellers’ ask offers

unaffected best ask priceunaffected best bid price,
is martingale



Limit order book model after large trades



Limit order book model at large trade



Limit order book model immediately after large trade



Limit order book model with resilience
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f(x) = shape function = densities of bids for x < 0, asks for x > 0

B0
t = ‘unaffected’ bid price at time t, is martingale

Bt = bid price after market orders before time t

DB
t = Bt −B0

t

If sell order of ξt ≥ 0 shares is placed at time t:

DB
t changes to DB

t+, where

∫ DB
t+

DB
t

f(x)dx = −ξt

and
Bt+ := Bt + DB

t+ −DB
t = B0

t + DB
t+,

=⇒ nonlinear price impact
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A0
t = ‘unaffected’ ask price at time t, satisfies B0

t ≤ A0
t

At = bid price after market orders before time t

DA
t = At −A0

t

If buy order of ξt ≤ 0 shares is placed at time t:

DA
t changes to DA

t+, where
∫ DA

t+

DA
t

f(x)dx = −ξt

and
At+ := At + DA

t+ −DA
t = A0

t + DA
t+,

For simplicity, we assume that the LOB has infinite depth, i.e.,
|F (x)|→∞ as |x|→∞, where

F (x) :=
∫ x

0
f(y) dy.
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If the large investor is inactive during the time interval [t, t + s[,
there are two possibilities:

• Exponential recovery of the extra spread

DB
t = e−

∫ t
s ρr drDB

s for s < t.

• Exponential recovery of the order book volume

EB
t = e−

∫ t
s ρr drEB

s for s < t,

where

EB
t =

∫ 0

DB
t

f(x) dx =: F (DB
t ).

In both cases: analogous dynamics for DA or EA
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Strategy:

N + 1 market orders: ξn shares placed at time τn s.th.

a) the (τn) are stopping times s.th. 0 = τ0 ≤ τ1 ≤ · · · ≤ τN = T

b) ξn is Fτn-measurable and bounded from below,

c) we have
N∑

n=0

ξn = X0

Will write
(τ , ξ)

and optimize jointly over τ and ξ.
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• When selling ξn > 0 shares, we sell f(x) dx shares at price B0
τn

+ x

with x ranging from DB
τn

to DB
τn+ < DB

τn
, i.e., the costs are negative:

cn(τ , ξ) :=
∫ DB

τn+

DB
τn

(B0
τn

+ x)f(x) dx = −ξnB0
τn

+
∫ DB

τn+

DB
τn

xf(x) dx

• When buying shares (ξn < 0), the costs are positive:

cn(τ , ξ) := −ξnA0
τn

+
∫ DA

τn+

DA
τn

xf(x) dx

• The expected costs for the strategy (τ , ξ) are

C(τ , ξ) = E
[ N∑

n=0

cn(τ , ξ)
]
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Instead of the τk, we will use

(2) αk :=
∫ τk

τk−1

ρsds, k = 1, . . . , N.

The condition 0 = τ0 ≤ τ1 ≤ · · · ≤ τN = T is equivalent to
α := (α1, . . . ,αN ) belonging to

A :=
{
α := (α1, . . . ,αN ) ∈ RN

+

∣∣∣
N∑

k=1

αk =
∫ T

0
ρs ds

}
.
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A simplified model without bid-ask spread
S0

t = unaffected price, is (continuous) martingale.

Stn = S0
tn

+ Dn

where D and E are defined as follows:

E0 = D0 = 0, En = F (Dn) and Dn = F−1(En).

For n = 0, . . . , N , regardless of the sign of ξn,

En+ = En − ξn and Dn+ = F−1(En+) = F−1 (F (Dn)− ξn) .

For k = 0, . . . , N − 1,

Ek+1 = e−αk+1Ek+ = e−αk+1(Ek − ξk)

The costs are

cn(τ , ξ) = −ξnS0
τn

+
∫ Dτn+

Dτn

xf(x) dx
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Lemma 7. Suppose that S0 = B0. Then, for any strategy ξ,

cn(ξ) ≤ cn(ξ) with equality if ξk ≥ 0 for all k.

Moreover,

C(τ , ξ) := E
[ N∑

n=0

cn(τ , ξ)
]

= E
[
C(α, ξ)

]
−X0S

0
0

where

C(α, ξ) :=
N∑

n=0

∫ Dn+

Dn

xf(x) dx

is a deterministic function of α ∈ A and ξ ∈ RN+1.

Implies that is is enough to minimize C(α, ξ) over α ∈ A and

ξ ∈
{
x = (x0, . . . , xN ) ∈ RN+1

∣∣
N∑

n=0

xn = X0

}
.
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Theorem 8. Suppose f is increasing on R− and decreasing on R+.
Then there is a unique optimal strategy (ξ∗, τ ∗) consisting of
homogeneously spaced trading times,

∫ τ∗i+1

τ∗i

ρr dr =
1
N

∫ T

0
ρr dr =: − log a,

and trades defined via

F−1 (X0 −Nξ∗0 (1− a)) =
F−1(ξ∗0)− aF−1(aξ∗0)

1− a
,

and
ξ∗1 = · · · = ξ∗N−1 = ξ∗0 (1− a) ,

as well as
ξ∗N = X0 − ξ∗0 − (N − 1)ξ∗0 (1− a) .

Moreover, ξ∗i > 0 for all i.
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Taking X0 ↓ 0 yields:

Corollary 9. Both the original and simplified models admit neither
strong nor weak price manipulation strategies.
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f(x) =
1

1 + |x|

Figure 1: f , F , F−1, G and optimal strategy
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Strategy of proving Theorem 8:

(a) Show that there exists a (unique) minimizer x∗(α) for each α.
(Prove that C(α,x)→∞ for |x|→∞)

(b) Show that all components of x∗(α) are positive
(Use that x∗(α) must be a critical point of x→ C(α,x)− νx"1
for some Lagrange multiplier ν. Then compute gradient of
C(α, ·) and use explicit estimates....)

(c) By (a) and (b) we can restrict the optimization of C(α,x) to
(α,x) belonging to the compact simplex

A×
{
x ∈ RN+1

∣∣xi ≥ 0 and
N∑

n=0

xn = X0

}
.

Hence a minimizer (α∗,x∗) exists.

(d) Use again Lagrange multipliers to identify (α∗,x∗):
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Let us introduce the functions

F̃ (x) :=
∫ x

0
zf(z) dz and G = F̃ ◦ F−1.

Then, since Dn = F−1(En) and Dn+ = F−1(En+)

C(α,x) =
N∑

n=0

∫ Dn+

Dn

xf(x) dx =
N∑

n=0

[
F̃ (Dn+)− F̃ (Dn)

]

=
N∑

n=0

[
G(En+)−G(En)

]
=

N∑

n=0

[
G(En − xn)−G(En)

]

where

E0 = 0 and En = −
n−1∑

i=0

xie
−

∑n
k=i+1 αk , 1 ≤ n ≤ N.
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Lemma 10. For i = 0, . . . , N − 1, we have the following recursive
formula,

(3)
∂C

∂xi
= e−αi+1F−1(Ei+1)− F−1(Ei − xi) + e−αi+1

∂C

∂xi+1
.

Moreover, for i = 1, . . . , N ,

(4)
∂C

∂αi
= Ei

N∑

n=i

[
F−1(En − xn)− F−1(En)

]
e−

∑n
k=i+1 αk .

When (α,x) is a minimizer, then it is a critical point of

(β,y) -−→ C(β,y)− νy"1− λβ"1.

Hence
∂C

∂xi
= ν and

∂C

∂αj
= λ for all i, j
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Plugging this into (3) yields ν = −F−1(EN − xN ) and

ν = e−αi+1F−1(Ei+1)− F−1(Ei − xi) + e−αi+1ν

or, since Ei+1 = e−αi+1(Ei − xi),

ν = −F−1(Ei − xi)− ai+1F−1(ai+1(Ei − xi))
1− ai+1

where ai+1 = e−αi+1 .
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Plugging this into (3) yields ν = −F−1(EN − xN ) and

ν = e−αi+1F−1(Ei+1)− F−1(Ei − xi) + e−αi+1ν

or, since Ei+1 = e−αi+1(Ei − xi),

ν = −F−1(Ei − xi)− ai+1F−1(ai+1(Ei − xi))
1− ai+1

where ai+1 = e−αi+1 .
Similarly,

λ

Ej
=

N∑

n=j

[
F−1(En − xn)− F−1(En)

]
e−

∑n
k=j+1 αk

= −F−1(Ej) +
[
F−1(Ej − xj)− F−1(Ej+1)e−αj+1

]
+ . . .

+
[
F−1(EN−1 − xN−1)− F−1(EN )e−αN

]
e−

∑N−1
k=j+1 αk

+F−1(EN − xN )e−
∑N

k=j+1 αk
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Plugging this into (3) yields ν = −F−1(EN − xN ) and

ν = e−αi+1F−1(Ei+1)− F−1(Ei − xi) + e−αi+1ν

or, since Ei+1 = e−αi+1(Ei − xi),

ν = −F−1(Ei − xi)− ai+1F−1(ai+1(Ei − xi))
1− ai+1

where ai+1 = e−αi+1 .
Similarly,

λ

Ej
=

N∑

n=j

[
F−1(En − xn)− F−1(En)

]
e−

∑n
k=j+1 αk

= −F−1(Ej) +
[
F−1(Ej − xj)− F−1(Ej+1)e−αj+1

]
+ . . .

+
[
F−1(EN−1 − xN−1)− F−1(EN )e−αN

]
e−

∑N−1
k=j+1 αk

+F−1(EN − xN )e−
∑N

k=j+1 αk
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= −F−1(Ej)− (1− e−αj+1)ν − · · ·− (1− e−αN )νe−
∑N−1

k=j+1 αk

−νe−
∑N

k=j+1 αk

= −F−1(Ej)− ν

Hence

λ = −Ej(F−1(Ej) + ν)

= Ej

[
F−1(Ej − xj)− aj+1F−1(aj+1(Ej − xj))

1− aj+1
− F−1(Ej)

]

Altogether:
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ν = −F−1(Ei−1 − xi−1)− e−αiF−1(e−αi(Ei−1 − xi−1))
1− e−αi

,

λ = e−αi(Ei−1 − xi−1)
F−1(Ei−1 − xi−1)− F−1(e−αi(Ei−1 − xi−1))

1− e−αi
,

for i = 1, . . . , N .
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ν = −F−1(Ei−1 − xi−1)− e−αiF−1(e−αi(Ei−1 − xi−1))
1− e−αi

,

λ = e−αi(Ei−1 − xi−1)
F−1(Ei−1 − xi−1)− F−1(e−αi(Ei−1 − xi−1))

1− e−αi
,

for i = 1, . . . , N .

Lemma 11. Given ν and λ, these equations uniquely determine αi

and Ei−1 − xi−1

It follows that

α1 = · · · = αN and − x0 = E1 − x1 = · · · = EN−1 − xN−1.

The theorem now follows easily.
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Robustness of the optimal strategy
[Plots by C. Lorenz (2009)]
First figure:

f(x) =
1

1 + |x|

Figure 2: f , F , F−1, G and optimal strategy
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Figure 3: f(x) = |x|
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Figure 4: f(x) = 1
8x2
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Figure 5: f(x) = exp(−(|x|− 1)2) + 0.1
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Figure 6: f(x) = 1
2 sin(π|x|) + 1
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Figure 7: f(x) = 1
2 cos(π|x|+ 1

2 )
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Figure 8: f random
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Figure 9: f random
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Figure 10: f random
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Figure 11: f piecewise constant
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Figure 12: f piecewise constant
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Figure 13: f piecewise constant

102



A. Schied: Viability of market impact models and optimal execution 2nd SMAI European Summer School, 2009

Figure 14: f piecewise constant
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Continuous-time limit of the optimal strategy

• Initial block trade of size ξ∗0 , where

F−1
(
X0 − ξ∗0

∫ T

0
ρs ds

)
= F−1(ξ∗0) +

ξ∗0
f(F−1(ξ∗0))

• Continuous trading in ]0, T [ at rate

ξ∗t = ρtξ
∗
0

• Terminal block trade of size

ξ∗T = X0 − ξ∗0 − ξ∗0

∫ T

0
ρt dt
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I. Order book models

1. Linear impact, general resilience

2. Nonlinear impact,
exponential resilience

3. Gatheral’s model
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Liquidation time: T ≥ 0.

Strategy: X adapted with X0 > 0 fixed and XT = 0.
Admissible: Xt bounded, absolutely continuous in t.
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Liquidation time: T ≥ 0.

Strategy: X adapted with X0 > 0 fixed and XT = 0.
Admissible: Xt bounded, absolutely continuous in t.

Note: These strategies are of bounded variation.
So there will be no liquidation costs in many of the models
from Peter Bank’s course

106



A. Schied: Viability of market impact models and optimal execution 2nd SMAI European Summer School, 2009

Liquidation time: T ≥ 0.

Strategy: X adapted with X0 > 0 fixed and XT = 0.
Admissible: Xt bounded, absolutely continuous in t.

Market impact model: S0 unaffected price, = martingale

St = S0
t +

∫ t

0
h(−Ẋt)ψ(t− s) ds

• For h(x) = λx continuous-time version of simplified model in I.1.

• For nonlinear h close to continuous-time version of simplified model
in I.2.

• ψ ≡ const corresponds to purely permanent impact

• ψ(t− s) = δ(t− s) corresponds to purely temporary impact

• Almgren-Chriss model: (studied in next lectures)

ψ(t− s) = λδ(t− s) + γ
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Costs:
Ẋt dt shares are sold at price St ⇒ infinitesimal costs = −ẊtSt dt

Total costs = −
∫ T

0
ẊtSt dt

= −
∫ T

0
ẊtS

0
t dt +

∫ T

0

∫ t

0
(−Ẋt)h(−Ẋs)ψ(t− s) ds dt

Letting ξt := −Ẋt, we get

Expected costs = −X0S
0
0 + E

[ ∫ T

0

∫ t

0
ξth(ξs)ψ(t− s) ds dt

]

Remark: Model formulation is not complete since optimal strategies
typically will not be absolutely continous (see continous-time limit in
preceding section)
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Are there price manipulation strategies?

Find ξ ∈ L2[0, T ] such that
∫ T

0

∫ t

0
ξth(ξs)ψ(t− s) ds dt < 0.

For linear impact h(x) = x: Bochner-Schwartz theorem
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Theorem 12. [Gatheral (2008)]
Suppose that

ψ(t) = e−ρt

and market impact is not linear. Then the model admits price
manipulation strategies in the strong sense.
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Theorem 12. [Gatheral (2008)]
Suppose that

ψ(t) = e−ρt

and market impact is not linear. Then the model admits price
manipulation strategies in the strong sense.

Very puzzling result in view of Corollary 9!
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Theorem 12. [Gatheral (2008)]
Suppose that

ψ(t) = e−ρt

and market impact is not linear. Then the model admits price
manipulation strategies in the strong sense.

Very puzzling result in view of Corollary 9!

The resolution of this paradox is surprising ... stay tuned.
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Theorem 12. [Gatheral (2008)]
Suppose that

ψ(t) = e−ρt

and market impact is not linear. Then the model admits price
manipulation strategies in the strong sense.

Taking ρ ↓ 0 yields:

Corollary 13. [Huberman & Stanzl (2004)]
Suppose that market impact is permanent and nonlinear. Then the
model admits price manipulation strategies in the strong sense.
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Sketch of proof of Theorem 12: For simplicity assume

h(−x) = −h(x)

Consider a strategy of the form

ξt = v1 for 0 ≤ t ≤ T0 and ξt = −v2 for T0 < t ≤ T .

‘Round trip’ requires that

v1T0 = v2(T − T0)

A calculation yields that for this specific strategy
∫ T

0

∫ t

0
ξth(ξs)ψ(t− s) ds dt = · · ·
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· · · = v1h(v1)
(
e−

v2ρT
v1+v2 − 1 +

v2ρT

v1 + v2

)
+ v2h(v2)

(
e−

v1ρT
v1+v2 − 1 +

v1ρT

v1 + v2

)

−v2h(v1)
(
1 + e−ρT − e−

v2ρT
v1+v2 − e−

v1ρT
v1+v2

)
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· · · = v1h(v1)
(
e−

v2ρT
v1+v2 − 1 +

v2ρT

v1 + v2

)
+ v2h(v2)

(
e−

v1ρT
v1+v2 − 1 +

v1ρT

v1 + v2

)

−v2h(v1)
(
1 + e−ρT − e−

v2ρT
v1+v2 − e−

v1ρT
v1+v2

)

≈
v1v2

[
v1h(v2)− v2h(v1)

]
(ρT )2

2(v1 + v2)2
+ O((ρT )3) for ρT → 0
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· · · = v1h(v1)
(
e−

v2ρT
v1+v2 − 1 +

v2ρT

v1 + v2

)
+ v2h(v2)

(
e−

v1ρT
v1+v2 − 1 +

v1ρT

v1 + v2

)

−v2h(v1)
(
1 + e−ρT − e−

v2ρT
v1+v2 − e−

v1ρT
v1+v2

)

≈
v1v2

[
v1h(v2)− v2h(v1)

]
(ρT )2

2(v1 + v2)2
+ O((ρT )3) for ρT → 0

Can always choose v1, v2 such that [. . . ] < 0, then take T such that
ρT small enough.
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More econo-physics:

ψ(t) = t−γ , h(v) = vδ

Gatheral finds that

γ must be such that γ ≥ γ∗ := 2− log 3
log 2

≈ 0.415

δ + γ ≈ 1

Consistent with (some) empirical studies.
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Conclusion for Part I:

• Market impact should decay as a convex function of time

• Exponential or power law resilience leads to “bathtub solutions”
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which are extremely robust

• Many open problems

• Minimizing expected costs does not take into account volatility risk.
Must introduce risk aversion — see next part.
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II. The qualitative effects of
risk aversion

1. Exponential utility and mean-variance

2. General utility functions
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II. The qualitative effects of
risk aversion

1. Exponential utility and mean-variance
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Liquidation time: T ∈ [0,∞].
Strategy: X adapted with X0 > 0 fixed and XT = 0.
Admissible: Xt bounded, absolutely continuous in t. Take

ξt := −Ẋt

as controll. Then

Xξ
t := X0 −

∫ t

0
ξs ds

Market impact model: Following Almgren (2003),

Sξ
t = S0 + σBt + γ(Xξ

t −X0) + h(ξt)

initial Brownian permanent temporary

price motion impact impact

Most common model in practice; drift, multiple assets, general Lévy
process, Gatheral-type impact possible.
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Assumption:
f(x) := xh(x)

is convex, C1, and satisfies f(x) = f(−x) and f(x)/x→∞ for
|x|→∞.
E.g., h(x) = α sign(x)

√
|x|+ βx.

Sales revenues:

RT (ξ) =
∫ T

0
(−Ẋt)Sξ

t dt = . . .

= S0X0 −
γ

2
X2

0 + σ

∫ T

0
Xξ

t dBt −
∫ T

0
f(ξt) dt.

Goal: maximize expected utility

E[u(RT (ξ)) ]

over admissible strategies for u(x) = −e−αx
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Setup as control problem

• controlled diffusion:

Rξ
t = R0 + σ

∫ t

0
Xξ

s dBs −
∫ t

0
f(ξs) ds

• value function

v(T,X0, R0) = sup
ξ∈X (T,X0)

E
[
u(Rξ

T )
]
,

where

X (T,X0) =
{

ξ |Xξ is bounded and
∫ T

0
ξt dt = X0

}
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Heuristic derivation of HJB equation

dv(T − t,Xξ
t , Rξ

t ) = σvRXξ
t dBt

+
(
− vt − ξtvX + vRf(ξt) +

σ2

2
(Xξ

t )2vRR

)
dt

Hence

vt =
σ2

2
X2vRR − inf

ξ

(
ξvX + vRf(ξ)

)
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Heuristic derivation of HJB equation

dv(T − t,Xξ
t , Rξ

t ) = σvRXξ
t dBt

+
(
− vt − ξtvX + vRf(ξt) +

σ2

2
(Xξ

t )2vRR

)
dt

Hence

vt =
σ2

2
X2vRR − inf

ξ

(
ξvX + vRf(ξ)

)

What about the constraint
∫ T
0 ξt dt = X0?
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Heuristic derivation of HJB equation

dv(T − t,Xξ
t , Rξ

t ) = σvRXξ
t dBt

+
(
− vt − ξtvX + vRf(ξt) +

σ2

2
(Xξ

t )2vRR

)
dt

Hence

vt =
σ2

2
X2vRR − inf

ξ

(
ξvX + vRf(ξ)

)

What about the constraint
∫ T
0 ξt dt = X0? It is in the initial

condition:

v(0,X,R) = lim
T↓0

v(T,X,R) =





u(R) if X = 0,

−∞ otherwise.
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)
dt

Hence
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ξ
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)

What about the constraint
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u(R) if X = 0,

−∞ otherwise.
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Theorem 14. [A.S. & Schöneborn (2008), A.S., Schöneborn
& Tehranchi (2009)]
If u(x) = −e−αx for some α > 0, then the unique optimal strategy ξ∗

is a deterministic function of t. Moreover, v is a classical solution of
the singular HJB equation.

The fact that optimal strategies for CARA investors are
deterministic is very robust. Is also true

• if Brownian motion is replaced by a Lévy process;

• for Gatheral-type impact

• other models with functionally dependent impact
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Sketch of proof: For simplicity: σ = 1. We have

E
[
u(Rξ

T )
]

= −e−αR0E
[
e−α

∫ T
0 Xξ

t dBt+α
∫ T
0 f(ξt) dt

]

= −e−αR0Eξ
[
e

α2
2

∫ T
0 (Xξ

t )2 dt+α
∫ T
0 f(ξt) dt

]

where
dPξ

dP = e−α
∫ T
0 Xξ

t dBt−α2
2

∫ T
0 (Xξ

t )2 dt
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Sketch of proof: For simplicity: σ = 1. We have

E
[
u(Rξ

T )
]

= −e−αR0E
[
e−α

∫ T
0 Xξ

t dBt+α
∫ T
0 f(ξt) dt

]

= −e−αR0Eξ
[
e

α2
2

∫ T
0 (Xξ

t )2 dt+α
∫ T
0 f(ξt) dt

]

where
dPξ

dP = e−α
∫ T
0 Xξ

t dBt−α2
2

∫ T
0 (Xξ

t )2 dt

Now, by Jensen’s inequality,

Eξ
[
e

α2
2

∫ T
0 (Xξ

t )2 dt+α
∫ T
0 f(ξt) dt

]
≥ exp

(
Eξ

[ α2

2

∫ T

0
(Xξ

t )2 dt + α

∫ T

0
f(ξt) dt

])

with equality if and only if ξ is deterministic.
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Sketch of proof: For simplicity: σ = 1. We have

E
[
u(Rξ

T )
]

= −e−αR0E
[
e−α

∫ T
0 Xξ

t dBt+α
∫ T
0 f(ξt) dt

]

= −e−αR0Eξ
[
e

α2
2

∫ T
0 (Xξ

t )2 dt+α
∫ T
0 f(ξt) dt

]

where
dPξ

dP = e−α
∫ T
0 Xξ

t dBt−α2
2

∫ T
0 (Xξ

t )2 dt

Now, by Jensen’s inequality,

Eξ
[
e

α2
2

∫ T
0 (Xξ

t )2 dt+α
∫ T
0 f(ξt) dt

]
≥ exp

(
Eξ

[ α2

2

∫ T

0
(Xξ

t )2 dt + α

∫ T

0
f(ξt) dt

])

with equality if and only if ξ is deterministic. Moreover

Eξ
[ α2

2

∫ T

0
(Xξ

t )2 dt+α

∫ T

0
f(ξt) dt

]
≥ α2

2

∫ T

0
(Xξ

t )2 dt+α

∫ T

0
f(ξt) dt

where ξt := Eξ[ ξt ].
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Hence, the value function is

v(T,X0, R0) = sup
ξ∈X (T,X0)

E
[
u(Rξ

T )
]

= sup
ξ∈Xdet(T,X0)

E
[
u(Rξ

T )
]

= − exp
(
− αR0 + α inf

ξ∈Xdet(T,X0)

∫ T

0
L(Xξ

t , ξt) dt
)

where Xdet(T,X0) are the deterministic strategies in X (T,X0) and L

is the Lagrangian

L(q, p) =
α

2
q2 + f(−p) =

α

2
q2 + f(p)
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Classical mechanics: the action function

S(T,X) := inf
ξ∈Xdet(T,X)

∫ T

0
L(Xξ

t , ξt) dt = inf
ξ∈Xdet(T,X)

∫ T

0
L(Xξ

t , Ẋξ
t ) dt

is a classical solution of the Hamilton-Jacobi equation

ST (T,X) + H(X,SX(T,X)) = 0 T > 0, X ∈ R

where H is the Hamiltonian

H(q, p) = −α

2
q2 + f∗(p)

Boundary conditions:

S(0, 0) = 0 and S(0,X) =∞ for X &= 0.

[Side remark: this fact is classical when f ∈ C2 but more subtle when
f ∈ C1 as for h(x) =

√
|x|]
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Plugging the Hamilton-Jacobi equation into

v(T,X0, R0) = − exp
(
− αR0 + α inf

ξ∈Xdet(T,X0)

∫ T

0
L(Xξ

t , ξt) dt
)

= − exp
(
− αR0 + αS(T,X0)

)

yields the singular HJB-equation for v.
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Alternative proof: Define the function

w(T,X0, R0) := − exp
(
− αR0 + αS(T,X0)

)

so that it’s a classical solution of the singular HJB-equation. Then
use a verification argument to show that w = v (subtle).

Then there is ξ∗ ∈ Xdet(T,X0) such that

S(T,X0) =
∫ T

0
L(Xξ∗

t , ξ∗t ) dt

and this ξ∗ must hence be optimal.
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The relation with mean-variance optimization

For ξ ∈ Xdet(T,X0),

Rξ
t = R0 + σ

∫ t

0
Xξ

s dBs −
∫ t

0
f(ξs) ds

is Gaussian, and so

E
[
u(Rξ

T )
]

= − exp
(
− αE[Rξ

T ] +
α2

2
var(Rξ

T )
)

Hence, exponential-utility maximization is equivalent to the
maximization of the mean-variance functional

E[Rξ
T ]− α

2
var(Rξ

T )

for deterministic strategies [Markowitz,. . . , Almgren & Chriss (2000)].
Different for adaptive strategies [Almgren & Lorenz (2008)].

128



A. Schied: Viability of market impact models and optimal execution 2nd SMAI European Summer School, 2009

Computation of the optimal strategy

Classical mechanics: Xξ∗ is solution of the Euler-Lagrange equation

αX = f ′′(Ẋt)Ẍt with X0 = initial portfolio and XT = 0
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Computation of the optimal strategy

Classical mechanics: Xξ∗ is solution of the Euler-Lagrange equation

αX = f ′′(Ẋt)Ẍt with X0 = initial portfolio and XT = 0

Not clear when f /∈ C2 as for h(x) =
√
|x|

Theorem 15. [A.S. & Schöneborn (2008)]
The optimal Xξ∗ is C1 and uniquely solves the Hamilton equations

Ẋt = Hp(Xt, p(t)) = −(f∗)′(−p(t))

ṗ(t) = −Hq(Xt, p(t)) = αXt

with initial conditions Xξ∗

0 = X0 and p(0) = −(f∗)′(ξ∗0).
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Example: For linear temporary impact, f(x) = λx2, the optimal
strategy is

ξ∗t = X0

√
ασ2

2λ
·
cosh

(
(T − t)

√
ασ2

2λ

)

sinh
(
T

√
ασ2

2λ

)

Xξ∗

t = X0 ·
cosh

(
t
√

ασ2

2λ

)
sinh

(
T

√
ασ2

2λ

)
− cosh

(
T

√
ασ2

2λ

)
sinh

(
t
√

ασ2

2λ

)

sinh
(
T

√
ασ2

2λ

)

The value function is

v(T,R0,X0) = − exp
[
−α(R0+S0X0−

γ

2
X2

0 )+X2
0

√
λα3σ2

2
coth

(
T

√
ασ2

2λ

)]
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II. The qualitative effects of
risk aversion

1. Exponential utility and mean-variance

2. General utility functions
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Problem with T <∞ difficult because of singular initial condition of
HJB equation.

=⇒ Consider infinite time horizon instead

- Assume also linear temporary impact (for simplicity only)

f(x) = λx2

- Utility function u ∈ C6(R) such that the absolute risk aversion,

A(R) := −u′′(R)
u′(R)

(= constant for exponential utility),

satisfies
0 < Amin ≤ A(R) ≤ Amax <∞.

Entire section based on A.S. & Schöneborn (2009)

132



A. Schied: Viability of market impact models and optimal execution 2nd SMAI European Summer School, 2009

Recall

Rξ
t = R0 + σ

∫ t

0
Xξ

s dBs − λ

∫ t

0
ξ2
s ds.

• Optimal liquidation:

maximize E[u(Rξ
∞) ]

• Maximization of asymptotic portfolio value:

maximize lim
t↑∞

E[u(Rξ
t ) ]

Note: Liquidation enforced by the fact that a risk-averse investor
does not want to hold a stock whose price process is a martingale.
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HJB equation for finite time horizon:

vt =
σ2

2
X2vRR − inf

c

(
cvX + λvRc2

)

Guess for infinite time horizon:

0 =
σ2

2
X2vRR − inf

c

(
cvX + λvRc2

)

Initial condition:
v(0, R) = u(R).
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HJB equation for finite time horizon:

vt =
σ2

2
X2vRR − inf

c

(
cvX + λvRc2

)

Guess for infinite time horizon:

0 =
σ2

2
X2vRR − inf

c

(
cvX + λvRc2

)

Initial condition:
v(0, R) = u(R).

Corresponding reduced-form equation:

v2
X = −2λσ2X2vR · vRR

Not a straightforward PDE either......
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Way out: consider optimal Markov control in HJB equation

ĉ(X,R) = − vX(X,R)
2λvR(X,R)

and let

c̃(Y,R) =
ĉ(
√

Y ,R)√
Y

.

If v solves the HJB equation, then c̃ solves

(∗)






c̃Y =
σ2

4c̃
c̃RR −

3
2
λc̃c̃R

c̃(0, R) =
√

σ2A(R)
2λ
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Way out: consider optimal Markov control in HJB equation

ĉ(X,R) = − vX(X,R)
2λvR(X,R)

and let

c̃(Y,R) =
ĉ(
√

Y ,R)√
Y

.

If v solves the HJB equation, then c̃ solves

(∗)






c̃Y =
σ2

4c̃
c̃RR −

3
2
λc̃c̃R

c̃(0, R) =
√

σ2A(R)
2λ

Theorem 16. (∗) admits a unique classical solution c̃ ∈ C2,4 s.th.
√

σ2Amin

2λ
≤ c̃(Y,R) ≤

√
σ2Amax

2λ
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Follows from:

Theorem 17. [Ladyzhenskaya, Solonnikov & Uraltseva
(1968)] There is a classical C2,4-solution for the parabolic partial
differential equation

ft −
∂

∂x

[
a(x, t, f, fx)

]
+ b(x, t, f, fx) = 0

with initial value condition f(0, x) = ψ0(x) if all of the following
conditions are satisfied:

• ψ0(x) is smooth (C4) and bounded

• a and b are smooth (C3 respectively C2)

• There are constants b1 and b2 ≥ 0 such that for all x and u:
(

b(x, t, u, 0)− ∂a

∂x
(x, t, u, 0)

)
u ≥ −b1u

2 − b2.
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• For all M > 0, there are constants µM ≥ νM > 0 such that for
all x, t, u and p that are bounded in modulus by M :

(5) νM ≤ ∂a

∂p
(x, t, u, p) ≤ µM

and

(6)
(
|a|+

∣∣∣∣
∂a

∂u

∣∣∣∣

)
(1 + |p|) +

∣∣∣∣
∂a

∂x

∣∣∣∣ + |b| ≤ µM (1 + |p|)2.

Proof: Obtained from original existence theorem by cutting off the
coefficients of the PDE.
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Next, consider the transport equation




w̃Y = −λc̃w̃R

w̃(0, R) = u(R).

Proposition 18. The transport equation admits a C2,4-solution w̃.
Moreover, w(X,R) := w̃(X2, R) is a classical solution of the HJB
equation

0 =
σ2

2
X2wRR − inf

c

(
cwX + wRc2

)
, w(0, R) = u(R)

The unique minimum above is attained at

c(X,R) := c̃(X2, R)X.
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Sketch of proof: Existence and uniqueness of solutions follws by
method of characteristics. Assume for the moment that

c̃2 = −σ2w̃RR

2λw̃R
.

Then with Y = X2:

0 = −λX2w̃R

(
σ2w̃RR

2λw̃R
+ c̃2

)

= −λX2w̃R

(
σ2w̃RR

2λw̃R
+

w̃2
Y

λ2w̃2
R

)

= −1
2
σ2X2wRR −

w2
X

4λwR

= inf
c

[
−1

2
σ2X2wRR + λwRc2 + wXc

]
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We now show that

c̃2 = −σ2w̃RR

2λw̃R
.

First, observe that it holds for Y = 0. For general Y , consider

d

dY
c̃2 = −3λc̃2c̃R +

σ2

2
c̃RR

− d

dY

σ2w̃RR

2λw̃R
= σ2c̃

d

dR

w̃RR

2w̃R
+ σ2c̃R

w̃RR

2w̃R
+

σ2

2
c̃RR

The first holds by PDE for c̃, the second by transport eqn. for w̃.
Next,

d

dY

(
c̃2 +

σ2w̃RR

2λw̃R

)
= −3λc̃2c̃R +

σ2

2
c̃RR − σ2c̃

d

dR

w̃RR

2w̃R
− σ2c̃R

w̃RR

2w̃R
− σ2

2
c̃RR

= −λc̃
d

dR

(
c̃2 +

σ2w̃RR

2λw̃R

)
− λc̃R

(
c̃2 +

σ2w̃RR

2λw̃R

)
.
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We now show that

c̃2 = −σ2w̃RR

2λw̃R
.

First, observe that it holds for Y = 0. For general Y , consider

d

dY
c̃2 = −3λc̃2c̃R +

σ2

2
c̃RR

− d

dY

σ2w̃RR

2λw̃R
= σ2c̃

d

dR

w̃RR

2w̃R
+ σ2c̃R

w̃RR

2w̃R
+

σ2

2
c̃RR

The first holds by PDE for c̃, the second by transport eqn. for w̃.
Next,

d

dY

(
c̃2 +

σ2w̃RR

2λw̃R

)
= −3λc̃2c̃R +

σ2

2
c̃RR − σ2c̃

d

dR

w̃RR

2w̃R
− σ2c̃R

w̃RR

2w̃R
− σ2

2
c̃RR

= −λc̃
d

dR

(
c̃2 +

σ2w̃RR

2λw̃R

)
− λc̃R

(
c̃2 +

σ2w̃RR

2λw̃R

)
.

Therefore need u ∈ C6!
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Hence,

f(Y,R) := c̃2 +
σ2w̃RR

2λw̃R

satisfies the linear PDE

fY = −λc̃fR − λc̃Rf

with initial value condition f(0, R) = 0. One obvious solution to this
PDE is f(Y,R) ≡ 0. By the method of characteristics this is the
unique solution to the PDE, since c̃ and c̃R are smooth and hence
locally Lipschitz.
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A (rather technical) verification argument yields:

Theorem 19. The value functions for optimal liquidation and for
maximization of asymptotic portfolio value are equal and are classical
solutions of the HJB equation

−1
2
σ2X2vRR + inf

c

[
λvRc2 + vXc

]
= 0

with boundary condition v(0, R) = u(R). The a.s. unique optimal
control ξ̂t is Markovian and given in feedback form by

(7) ξ̂t = c(X ξ̂
t , Rξ̂

t ) = − vX

2λvR
(X ξ̂

t , Rξ̂
t ).

For the value functions, we have convergence:

(8) v(X0, R0) = lim
t→∞

E[u(Rξ̂
t )] = E[u(Rξ̂

∞)]
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Corollary 20. If u(R) = −e−AR, then

Xξ∗

t = X0 exp
(
− t

√
σ2A

2λ

)
.
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Corollary 20. If u(R) = −e−AR, then

Xξ∗

t = X0 exp
(
− t

√
σ2A

2λ

)
.

General result:

Theorem 21. The optimal strategy c(X,R) is increasing
(decreasing) in R iff A(R) is increasing (decreasing). I.e.,

Utility function Optimal trading strategy

DARA ⇐⇒ Passive in the money

CARA ⇐⇒ Neutral in the money

IARA ⇐⇒ Aggresive in the money
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Theorem 22. If u1 and u0 are such that A1 ≥ A0 then c1 ≥ c0.

Idea of Proof: g := c̃1 − c̃0 solves

gY =
1
2
agRR + bgR + V g,

where

a =
σ2

2c̃0
, b = −3

2
λc̃1, and V = −σ2c̃1

RR

4c̃0c̃1
− 3

2
λc̃0

R.

The boundary condition of g is

g(0, R) =

√
σ2A1(R)

2λ
−

√
σ2A0(R)

2λ
≥ 0

Now maximum principle or Feynman-Kac argument....
(plus localization)
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Relation to forward utilities

Theorem 23.
For every X > 0, the value function v(X,R) is again a utility
function in R. Moreover,

(9) c̃(Y,R) =

√
σ2A(

√
Y ,R)

2λ
.

where

A(X,R) := −vRR(X,R)
vR(X,R)
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What about other monotonicity relations?

• Monotonicity in λ: intuitively, an increase in liquidaton costs
should lead to a decrease of liquidation speed.
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! " # $ %&

&'!

&'"

&'#

&'$

%'&

p
c̃

λ

Dependence of the transformed optimal strategy c̃ on λ for the
DARA utility function with A(R) = 2(1.2− tanh(15R))2.
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-1 1 2 3
R

1

2

3

4

A!R"

The shape of the absolute risk aversion

A(R) = 2(1.2− tanh(15R))2
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! " # $ %&

&'!

&'"

&'#

&'$

%'&

p
c̃

λ

Dependence of the transformed optimal strategy c̃ on λ for the
DARA utility function with A(R) = 2(1.2− tanh(15R))2.

Theorem 24. IARA =⇒ c is decreasing in λ.

Proof similiar to Theorem 22.
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What about other monotonicity relations?

• Monotonicity in λ: intuitively, an increase in liquidaton costs
should lead to a decrease of liquidation speed.

• Monotonicity in X: intuitively, larger asset position should lead to
an increased liquidation speed.
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2

R

X

ξ̂(X,R)

IARA utility function with A(R) = 2(1.5 + tanh(R− 100))2 and
parameter λ = σ = 1.
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What about other monotonicity relations?

• Monotonicity in λ: intuitively, an increase in liquidaton costs
should lead to a decrease of liquidation speed.

• Monotonicity in X: intuitively, larger asset position should lead to
an increased liquidation speed.
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What about other monotonicity relations?

• Monotonicity in λ: intuitively, an increase in liquidaton costs
should lead to a decrease of liquidation speed.

• Monotonicity in X: intuitively, larger asset position should lead to
an increased liquidation speed.

• Monotonicity in σ: intuitively, an increase in volatility should lead
to an increase in the liquidation speed.
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What about other monotonicity relations?

• Monotonicity in λ: intuitively, an increase in liquidaton costs
should lead to a decrease of liquidation speed.

• Monotonicity in X: intuitively, larger asset position should lead to
an increased liquidation speed.

• Monotonicity in σ: intuitively, an increase in volatility should lead
to an increase in the liquidation speed.

?
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The multi-asset case

Initial portfolio of d assets

X0 = (X1
0 , . . . ,Xd

0 )

Strategy

Xξ
t = X0 −

∫ t

0
ξs ds

Price process:

St = S0
0 + σBt + γ"(Xξ

t −X0)− h(ξt)

for d-dim Brownian motion B and covariance matrix Σ := σσ".
Letting

f(ξ) := ξ"h(ξ),
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The revenues are

Rξ
t = R0 +

∫ t

0
(Xξ

2 )"σ dBs −
∫ t

0
f(ξs) ds.

Guess for HJB equation

0 =
1
2
X"ΣXvRR − inf

c

(
c"∇Xv + vRf(c)

)

with initial condition
v(0, R) = u(R).
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The revenues are

Rξ
t = R0 +

∫ t

0
(Xξ

2 )"σ dBs −
∫ t

0
f(ξs) ds.

Guess for HJB equation

0 =
1
2
X"ΣXvRR − inf

c

(
c"∇Xv + vRf(c)

)

with initial condition
v(0, R) = u(R).

Formally: Nonlinear PDE of ”parabolic” type with d time
parameters
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The revenues are

Rξ
t = R0 +

∫ t

0
(Xξ

2 )"σ dBs −
∫ t

0
f(ξs) ds.

Guess for HJB equation

0 =
1
2
X"ΣXvRR − inf

c

(
c"∇Xv + vRf(c)

)

with initial condition
v(0, R) = u(R).

Formally: Nonlinear PDE of ”parabolic” type with d time
parameters

Solvability completely unclear, a priori:

∇Xv = g

typically not solvable (Poincaré lemma)
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Theorem 25. [Schöneborn (2008)]
Under analogous conditions as in the onedimensional case and f

having the scaling property

f(aξ) = aα+1f(ξ), a ≥ 0,

the value function is a classical solution of the HJB equation

0 =
1
2
X"ΣXvRR − inf

c

(
c"∇Xv + vRf(c)

)

with initial condition
v(0, R) = u(R).

The minimizer ĉ determines the optimal strategy....
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Theorem 25. [Schöneborn (2008)]
Under analogous conditions as in the onedimensional case and f

having the scaling property

f(aξ) = aα+1f(ξ), a ≥ 0,

the value function is a classical solution of the HJB equation

0 =
1
2
X"ΣXvRR − inf

c

(
c"∇Xv + vRf(c)

)

with initial condition
v(0, R) = u(R).

The minimizer ĉ determines the optimal strategy....

How can this be proved??
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Theorem 26. [Schöneborn (2008)]
The optimal control is

ĉ(X, R) = c̃
(
v(X), R)c(X),

where v(X) is the cost and c(X) is the vector field (optimal strategy)
for mean-variance optimal liquidation of X, and c̃(Y,R) is the
unique solution of the nonlinear PDE

c̃Y = −2α + 1
α + 1

c̃αc̃R +
α(α− 1)

α + 1

( c̃R

c̃

)2
+

α

α + 1
c̃RR

c̃

with initial condition

c̃(0, R) = A(R)
1

α+1
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III. Multi-agent equilibrium
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Information leakage creates multi-player situations

• One trader (‘the seller’) must liquidate large portfolio by T1

• Informed traders (‘the predators’) can exploit the resulting drift:
- first short the asset
- buy back shortly before T1 at lower price

“predatory trading”

• Suggests ‘stealth trading strategy’ for seller
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Information leakage creates multi-player situations

• One trader (‘the seller’) must liquidate large portfolio by T1

• Informed traders (‘the predators’) can exploit the resulting drift:
- first short the asset
- buy back shortly before T1 at lower price

“predatory trading”

• Suggests ‘stealth trading strategy’ for seller

• But why, then, do some sellers practice ‘sunshine trading’?
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• n + 1 traders with positions X0(t), X1(t), ..., Xn(t)

• Trades at time t are executed at the price

S(t) = S(0) + σB(t) + γ
n∑

i=0

(Xi(t)−Xi(0)) + λ
n∑

i=0

Ẋi(t)

• Player 0 (the seller) has X0(0) > 0, X0(t) = 0 for t ≥ T1

• Players 1, . . . , n have Xi(0) = 0, Xi(T1) = arbitrary, Xi(T2) = 0

• Strategies are deterministic

• Players are risk-neutral and aim to maximize expected return

Goal: Find Nash equilibrium
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Situation in a one-stage framework

Theorem 1. [Carlin, Lobo, Viswanathan]
If T1 = T2, then the unique optimal strategies for these n + 1 players
are given by:

Ẋi(t) = ae−
n

n+2
γ
λ t + bie

γ
λ t

with

a =
n

n + 2
γ

λ

(
1− e−

n
n+2

γ
λ T1

)−1
∑n

i=0(Xi(T1)−Xi(0))
n + 1

bi =
γ

λ

(
e

γ
λ T1 − 1

)−1
(

Xi(T1)−Xi(0)−
∑n

j=0(Xj(T1)−Xj(0))
n + 1

)
.
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0.2 0.4 0.6 0.8 1

-0.2

0.2

0.4

0.6

0.8

1
Asset positions Xi(t)

Time

Solid line ∼ seller, dashed line ∼ predator

• Predation occurs irrespective of the market parameters

• Predators always decrease the seller’s return

• Predation becomes fiercer when the number of predators
increases

=⇒ Model cannot explain sunshine trading or liquidity provision
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Theorem 2.
In the two-stage framework, T2 > T1, there is a unique Nash
equilibrium, in which all predators acquire the same asset positions,
and these are determined by their value at T1:

Xi(T1) =
A2n2 + A1n + A0

B3n3 + B2n2 + B1n + B0
X0.

The coefficients Ai and Bi are functions of n that converge in the
limit n ↑ ∞.

Idea of Proof: Use result from Carlin et al., optimize over Xi(T1).

162



A. Schied: Viability of market impact models and optimal execution 2nd SMAI European Summer School, 2009

Coefficients in theorem can be computed exlicitly, e.g.,

A0 = 2

(
− e

γ(−T1+(2+n)T2)
(1+n)λ − e

γ(n(3+2n)T1+(2+n)T2)(
2+3n+n2

)
λ +

e

γ

((
2+2n+n2

)
T1+n(2+n)T2

)
(
2+3n+n2

)
λ + e

γ

((
−2+n2

)
T1+(2+n)2T2

)
(
2+3n+n2

)
λ +

e
γ(−nT1+(1+2n)T2)

(1+n)λ − e

γ

(
−nT1+

(
2+5n+2n2

)
T2

)
(
2+3n+n2

)
λ + e

nγT1+γT2
λ+nλ −

e
γT1+nγT2

λ+nλ

)
.
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Are there new effects in the two-stage model?

• Plastic market:

temporary impact λ 4 permanent impact γ

• Elastic market:

temporary impact λ 5 permanent impact γ

• Intermediate market:

temporary impact λ ∼ permanent impact γ
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Plastic market (large perm. impact) one predator

0.5 1 1.5 2

-0.2

0.2

0.4
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0.8

1

Asset positions Xi(t)

Time

Solid line ∼ seller, dashed line ∼ predator
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Plastic market (large perm. impact)

0.5 1 1.5 2

-0.5

-0.25

0.25
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1

Asset positions Xi(t)

Time

Solid lines ∼ seller, dashed lines ∼ n predators
Black ∼ n = 2, dark grey ∼ n = 10, light grey ∼ n = 100
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Plastic market (large perm. impact)

5 10 15 20

-0.08

-0.06

-0.04

-0.02

0.02

0.04

Joint asset position
∑n

i=1 Xi(T1) of all predators

/ predators

Upper grey line = limn→∞
∑n

i=1 Xi(T1)
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Plastic market (large perm. impact)

5 10 15 20

6.9

7

7.1

7.2

7.3

7.4

Expected return R0 for the seller
# predators

The grey line represents the limit n→∞. The return for the seller
without predators is at the intersection of x- and y-axis.
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Plastic market (large perm. impact)

0.5 1 1.5 2

6.5

6.75

7.25
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7.75

8

Expected price P̄ (t)

Time

Black ∼ n = 2, dark grey ∼ n = 10, light grey ∼ n = 100
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Elastic market (large temp. impact) with one predator

0.5 1 1.5 2

0.2

0.4

0.6

0.8

1

Asset positions Xi(t)

Time

Solid line ∼ seller, dashed line ∼ predator
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Elastic market (large temp. impact) without predators

0.5 1 1.5 2
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Expected price P̄ (t)

Time
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Elastic market market (large temp. impact)

0.5 1 1.5 2

0.2

0.4

0.6

0.8

1

Asset positions Xi(t)

Time

Solid lines ∼ seller, dashed lines ∼ n predators

Black ∼ n = 2, dark grey ∼ n = 10, light grey ∼ n = 100
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Elastic market (large temp. impact)

5 10 15 20

0.25

0.3

0.35

0.4

Joint asset position
∑n

i=1 Xi(T1) of all predators

# predators

The grey line represents the limit lim
n→∞

∑n
i=1 Xi(T1)
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Elastic market (large temp. impact)

0.5 1 1.5 2

7.4

7.6

7.8

8.2

8.4

Expected price P̄ (t)

Time

Black ≈ n = 2, dark grey ≈ n = 10, light grey ≈ n = 100
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Elastic market (large temp. impact)

5 10 15 20

6.6

6.8

7

7.2

7.4

7.6

7.8

Expected return R0 for the seller

# predators

The grey line represents the limit n→∞.
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Moderate market (λ ≈ γ)

5 10 15 20

8.02

8.04

8.06

8.08

8.12

8.14

Expected return R0 for the seller

# predators

The grey line represents the limit n→∞. The return for the seller
without predators is at the intersection of x- and y-axis.
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Theorem 3.

• For all n, the asset position of the combined asset positions of the
competitors is increasing in γT1/λ

• As n ↑ ∞, it converges to

lim
n→∞

n∑

i=1

Xi(T1) = lim
n→∞

nX1(T1) =
e

γ(T2−T1)
λ − 1

e
γT2

λ − 1
X0 > 0

• For all n,

lim
γT1/λ↓0

Xi(T1) =
T2 − T1

(n + 1)T2
X0 > 0 lim

γT1/λ↑∞
Xi(T1) =

−2X0

n3 + 4n2 + n− 2
< 0

• For all n, Ẋi(t) is increasing in t and decreasing in γT1/λ with

Ẋi(0) =
T2 − T1

(n + 1)T1T2
X0 > 0 for γT1/λ = 0
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Corollary 4.
There are L ≤ P ∈]0,∞] such that

• For 0 ≤ γT1/λ ≤ L, the competitors are pure liquidity providers,
i.e., Xi(t) ≥ 0 for 0 ≤ t ≤ T

• For L ≤ γT1/λ ≤ P , there is first predatory trading, then
liquidity provision, i.e., Ẋi(0) ≤ 0 and Xi(T1) ≥ 0

• For P < γT1/λ, there is pure predation, i.e., Xi(T1) < 0
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Theorem 5.
In competitive markets (i.e. in the limit n ↑ ∞), the competitors are
pure liquidity providers, i.e.,

lim
n↑∞

n∑

i=1

Xi(t) > 0 for 0 < t ≤ T1

if and only if
T2

T1
> − log(2− eγT1/λ)+

γ
λT1

Otherwise, they engage in intra-stage predatory trading (i.e.,∑
i Ẋi(0) < 0)
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Stealth trading: no predators, expected return

X0(P0 − γX0/2− λX0/T1).

Sunshine trading: large number of predators, expected return

X0

(
P0 −

γX0

1− e−γT2/λ

)

Proposition 6. For n ↑ ∞, sunshine trading is superior to steath
trading if

1
2

+
λ

γT1
>

1
1− e−

γ
λ T2

.

For T2 ↑ ∞, a stealth algorithm is beneficial if
γ

λ
T1 < 2

Predatory trading vs. liquidity provision: anecdotal evidence
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Conclusion

Have studied optimal execution problems on three different levels

• Microscopic: Order book models

• Mesoscopic: Expected utility maximization in stylized model

• Macroscopic: Multi-agent situation; stealth vs. sunshine trading,
predation vs. liquidity provision
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Thank you

182


