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What is (il)liquidity?

  
 
  
 

 A fluid concept 
Feb 8th 2007  
From The Economist print edition 

 
 
Just about everyone agrees that there's a lot of liquidity about—whatever it is 
 

LIQUIDITY is everywhere. Depending on what you read, you may learn that the 

world's financial markets are awash with it, that there is a glut of it or even that there 

is a wall of it. But what exactly is it? Again depending on what you read, you may be 

told that “it is one of the most mentioned, but least understood, concepts in the 

financial market debate today” or that “there is rarely much clarity about what 

‘buoyant liquidity’ actually means.” An economics textbook may bring you clarity—or 

confusion. It is likely to define liquidity as the ease with which assets can be converted 

into money. Fine: but that is scarcely the stuff of dramatic metaphors. Liquidity thus 
defined is surely to be welcomed; floods, gluts and walls of water surely not. 

Helpfully, Martin Barnes, of BCA Research, an economic research firm, has laid out 

three ways of looking at liquidity. The first has to do with overall monetary conditions: 

money supply, official interest rates and the price of credit. The second is the state of 

balance sheets—the share of money, or things that can be exchanged for it in a hurry, 

in the assets of firms, households and financial institutions. The third, financial-market 

liquidity, is close to the textbook definition: the ability to buy and sell securities 
without triggering big changes in prices. 

... 
 

 

 

  



Aspects of (il)liquidity

Kyle’s (1985) characteristics of financial market liquidity:

Tightness: the cost of turning around a position over a short
period of time
; spread, transaction costs

Depth: the size of an order flow innovation required to
change prices a given amount
; these lectures

Resiliency: the speed with which prices recover from a random,
uninformative shock
; market manipulation, Alex Schied’s lectures

Topic of these lectures:

How to account for finite market depth when pricing and hedging
financial derivatives?
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Market prices depend on transactions

  
 
 

 
 

 
A Japanese trading debacle  
 

Please may I take it back? 
Dec 14th 2005 | TOKYO  
From The Economist print edition 

 
Red faces all round 

At the start of trading on December 8th Mizuho Securities placed an order on the 

TSE to sell 610,000 shares of J-Com, a small recruiting agency it was bringing to 

market that day, for ¥1 each: it had meant to sell one share for ¥610,000, the 

initial offer price. The false order, indeed, was for 40 times more shares than J-
Com had outstanding. 

Having tried frantically to cancel the order and failed, Mizuho scrambled to buy the 

shares it had sold but did not own. Some of the nicest sharks in finance, including 

Morgan Stanley, UBS, Nomura Securities and Nikko Citigroup, detected blood in 

the water. Meanwhile, as rumours swirled, investors sold the shares of brokers who 

might have made the mistake (Mizuho did not own up until trading ended). They 

also sold more broadly, calculating that a troubled broker would unload its own 

holdings to cover its losses. The Nikkei 225-share average registered its third-

biggest daily fall of the year (though it recovered to end December 13th at its 
highest since 2000). 

1987 stock market crash: program trading?
LTCM crisis: Russian default
dotcom bubble: small volume stocks
subprime crisis: counterparty risk
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Illiquidity: an issue when pricing and hedging derivatives

Knock-out call option on the stock with price process P = (Pt):

H = (PT − k)+1{max0≤t≤T Pt<b}

Rationale for this product:

Secure small price k for stock at lower costs than a call!

Black-Scholes approach:

• P geometric Brownian motion:
P0 = p, dPt = Pt(µ dt + σ dWt)

• option price: v(T , p) = E∗e−rT H

• P∗ martingale measure for (e−rtPt):
dP∗ = exp(−λWT − 1

2λ
2T ) dP

• λ = (µ− r)/σ: market price of risk



Knock-out call indeed considerably less expensive than call...

...but in practice significantly more difficult to hedge:

• replication of H à la Black-Scholes:

H = E∗e−rT H︸ ︷︷ ︸
=v(T ,p)

+

∫ T

0
∆t dPt +

∫ T

0
(v(T − t,Pt)−∆tPt)r dt

where

∆t = ∂pv(T − t,Pt) : ‘Delta’ of the option

• for knock-out call, Delta has a positive jump when Pt = b:
need to buy a large number shares when the option knocks
out...

• ...yet this will cost a bundle if the stock does not trade very
liquidly! ; lectures by Alex Schied

• ...and these costs should be taken into account when pricing
the option: not done in the Black-Scholes approach!
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Asset prices
Mathematical Finance:

• price dynamics exogenous as
semimartingale models

• stochastic analysis

+ mathematically tractable

+ dynamic model: hedging

+ ‘easy’ to calibrate: volatility

– correlation between assets ad
hoc

– only suitable for (very) liquid
markets or small investors

Economics:

• prices endogeneous: demand
matches supply

• equilibrium theory

+ undeniably reasonable
explanation for price formation

+ excellent qualitative properties

+ accounts for intricate
interdependencies

– difficult to calibrate:
preferences, endowments

– hedging strategies (essentially)
not considered

Problem:
How to bridge the gap between these price formation principles
and still say something about hedging in illiquid markets?
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Some models proposed in the literature

Henceforth: interest rate r = 0 — for simplicity!

Cvitanic-Ma/-Cuoco: strategy dependent diffusion coefficients

dPt = Pt(µt(θt) dt + σt(θt) dWt)

with θt = position at time t.

+ mathematically tractable

+ BSDEs ; Jin Ma’s lectures

– no immediate price impact from large transactions
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Some models proposed in the literature

Cetin-Jarrow-Protter: series of independent auctions

Pt = p exp(σWt + (µ− 1
2σ

2)t)eη∆θt

with ∆θt = change of position at time t

+ immediate price impact from large transactions

+ ‘local’ model: no longterm effects ; tractable, most
appropriate for markets with infrequent trades

– liquidity effects disappear for absolutely continuous strategies

– option prices not sensitive to liquidity

– hedging strategies merely time averaged versions of
Black-Scholes hedges ; impose constraints on hedging
strategies
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Some models proposed in the literature

Gökay-Soner: Binomial approximation to Cetin et al.

• consider discrete-time binomial model and solve
super-replication problem by dynamic programming

• pass to diffusion-limit by properly rescaling time and space to
find nonlinear pde for asymptotic superreplication price
φ = φ(t, p):

−φt − inf
β≥0

{
1

2
p2σ2(φpp + β) + Λ(t, p)p2σ2(φpp + β)2

}
= 0

+ same PDE derived by Cetin-Soner-Touzi by imposing
constraints on the ‘speed’ of trading in the Cetin-et al. setting

+ illiquidity causes strictly positive premium over Black-Scholes

? hedging strategies, non-Markovian theory

+ Presentation by Selim Gökay on Friday
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Gökay-Soner: Binomial approximation to Cetin et al.

• consider discrete-time binomial model and solve
super-replication problem by dynamic programming

• pass to diffusion-limit by properly rescaling time and space to
find nonlinear pde for asymptotic superreplication price
φ = φ(t, p):

−φt − inf
β≥0

{
1

2
p2σ2(φpp + β) + Λ(t, p)p2σ2(φpp + β)2

}
= 0

+ same PDE derived by Cetin-Soner-Touzi by imposing
constraints on the ‘speed’ of trading in the Cetin-et al. setting

+ illiquidity causes strictly positive premium over Black-Scholes

? hedging strategies, non-Markovian theory

+ Presentation by Selim Gökay on Friday



Some models proposed in the literature

Rogers-Singh: Penalized quadratic optimization

• trading at rates θ̇ only

• seek to minimize sum of

- expected illiquidity costs: E∗
∫ T

0
Pt

ε
2 θ̇

2
t dt

- penalization for mishedge: E∗(H − (V0 +
∫ T

0
θt dPt))2

+ focus on hedging strategy

+ tractable: numerical scheme, asymptotic analysis for small ε

+/– inevitably incomplete model

+/– only temporary price impact

– portfolios not selffinancing

– hedging criterion ad hoc

– even a miniscule transaction causes ruin if carried out fast
enough
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Some models proposed in the literature

Frey, Papanicolaou & Sircar . . . : demand function

Pt = P0 exp(σWt + (µ− 1
2σ

2)t)eηθt

with θt = position held at time t

+ immediate price impact from large transactions

+ increased vol for stock from dynamically hedging options

+ nonlinear PDE for option price and hedging strategy

+/– constrained strategy space: θt = Θ(t,Pt) ; suitable for an
analysis of program trading, but not flexible enough to discuss
‘arbitrary’ strategies

– if we allow for semimartingale strategies: liquidity effect
disappears!?!
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Wealth dynamics in Frey’s model

Evolution of bank account

• family of continuous semimartingales
P(ϑ) = (P(ϑ; t)) (ϑ ∈ R):

Pϑ
t = asset price if our position at time t is θt = ϑ

• ϑ 7→ P(ϑ) smooth so that for θ = (θt) a semimartingale
strategy, the observed price process

Pθ
t := Pϑ

t

∣∣∣
ϑ=θt

(t ≥ 0)

is a semimartingale.

• position in bank account resulting from strategy (θt):

βt = −
∫ t

0
Pθ

t− dθt −
[
Pθ, θ

]
t

(t ≥ 0)



Wealth dynamics in Frey’s model

Possible definitions of wealth:

• book value or mark-to-market value: V book
t = βθt + θt Pϑ

t

∣∣
ϑ=θt

• block liquidation value: V block
t = βθt + θtP0

t

• realizable portfolio value or real wealth: Vt = βθt + L(θt ; t)
where

L(ϑ; t) :=

∫ ϑ

0
P(x ; t) dx = asymptotic liquidation proceeds

If ϑ 7→ Pϑ
t is increasing (as it should be):

V book
t ≥ Vt ≥ V block

t

We will focus on the realizable portfolio value V !
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Dynamics of the real wealth process
For any semimartingale strategy θ:

Vt − V0− =

∫ t

0
L(θs−; ds)− 1

2

∫ t

0
P ′(θs−; s) d [θ]cs

−
∑

0≤s≤t

∫ θs

θs−

{P(θs ; s)− P(x ; s)} dx .

Three components:

•
∫ t

0 L(θs−; ds): nonlinear stochastic integral describing profit or
loss due to exogenous shocks

•
∑

0≤s≤t

∫ θs
θs−
{P(θs ; s)− P(x ; s)} dx ≥ 0: transaction costs

due to block orders

• 1
2

∫ t
0 P ′(θs−; s) d [θ]cs ≥ 0: transaction costs due to ‘intense

trading’

Definition
θ is called admissible if

∫ .
0 L(θs−; ds) ≥ const. .
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Nonlinear stochastic integration
Given: ‘smooth’ family of continuous semimartingales

L(ϑ) = (L(ϑ; t))t≥0 (ϑ ∈ R)
Define stochastic integral (see Kunita (1991)):
• for simple strategies θ =

∑
i ϑi+11(si ,si+1] with ϑi+1 ∈ L0(Fsi ):∫ t

0
L(θs ; ds) :=

∑
i

{L(ϑi+1; si+1 ∧ t)− L(ϑi+1; si ∧ t)}

• extend to general strategies by approximation

Itô-Wentzell formula
If L(ϑ) (ϑ ∈ R) is smooth and θ = (θt) a semimartingale, then also
Lθ = (L(θt ; t)) is a semimartingale and its dynamics are given by

L(θt ; t)− L(θ0−; 0) =

∫ t

0
L(θs−; ds) +

∫ t

0
L′(θs−; s) dθs

+

[∫ .

0
L′(θs−; ds), θ

]
t

+
1

2

∫ t

0
L′′(θs−; s) d [θ]cs

+
∑

0≤s≤t

{∆L(θs ; s)− L′(θs−; s)∆θs} .
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Itô-Wentzell formula
If L(ϑ) (ϑ ∈ R) is smooth and θ = (θt) a semimartingale, then also
Lθ = (L(θt ; t)) is a semimartingale and its dynamics are given by

L(θt ; t)− L(θ0−; 0) =

∫ t

0
L(θs−; ds) +

∫ t

0
L′(θs−; s) dθs

+

[∫ .

0
L′(θs−; ds), θ

]
t

+
1

2

∫ t

0
L′′(θs−; s) d [θ]cs

+
∑

0≤s≤t

{∆L(θs ; s)− L′(θs−; s)∆θs} .



Absence of arbitrage for the large investor

Recall:

Vt − V0− =

∫ t

0
L(θs−; ds)− 1

2

∫ t

0
P ′(θs−; s) d [θ]cs

−
∑

0≤s≤t

∫ θs

θs−

{P(θs ; s)− P(x ; s)} dx .

Proposition

If there exists a universal equivalent martingale measure, i.e.,
P∗ ≈ P such that all Pϑ (ϑ ∈ R) are P∗-martingales, then there is
no admissible semimartingale strategy θ such that

VT ≥ V0 a.s. and ‘ > ’ holds with positive probability.



Approximate attainability
Recall:

Vt − V0− =

∫ t

0
L(θs−; ds)− 1

2

∫ t

0
P ′(θs−; s) d [θ]cs

−
∑

0≤s≤t

∫ θs

θs−

{P(θs ; s)− P(x ; s)} dx .

Important observation:

Continuous strategies of bounded variation do not incur
transaction costs since for these

Vt − V0− =

∫ t

0
L(θs−; ds) .

Question:
Which payoffs are attainable by such ‘tame’ strategies?



Approximate attainability

Definition

• H ∈ L0(FT ) is called approximately attainable for initial
capital v if for any ε > 0 there is θε admissible for the large
investor such that

V θε with V θε

0− = v satisfies
∣∣∣V θε

T − H
∣∣∣ ≤ ε P–a.s.

• H ∈ L0(FT ) is called attainable modulo transaction costs for
initial capital v if

H = v +

∫ T

0
L(θs ; ds)

for θ L–integrable with
∫ .

0 L(θs ; ds) ≥ const. .



Approximate attainability

Theorem
Any contingent claim H ∈ L0(FT ) which is attainable modulo
transaction costs is approximately attainable with the same initial
capital.



The scope of tame integrands

Approximation theorem for stochastic integrals

Assume Lϑ (ϑ ∈ R) is a smooth family of semimartingales. Let θ
be an L–integrable, predictable process and fix ϑ0 ∈ L0(F0),
ϑT ∈ L0(FT−). Then, for any ε > 0, there exists a predictable
process θε with continuous paths of bounded variation such that
θε0 = ϑ0, θεT = ϑT and

sup
0≤t≤T

∣∣∣∣∫ t

0
L(θs ; ds)−

∫ t

0
L(θεs ; ds)

∣∣∣∣ ≤ ε P–a.s.



Proof of approximation theorem

• Lemma: For any given τ ≤ T , ϑτ ∈ L0(Fτ ), and ε > 0,
there exists a predictable process θε,τ,ϑτ with continuous paths
of bounded variation such that θε,τ,ϑττ = ϑτ , θε,τ,ϑτT = ϑT and

P

[
sup

τ≤t≤T

∣∣∣∣∫ t

τ
L(θs , ds)−

∫ t

τ
L(θε,τ,ϑτs , ds)

∣∣∣∣ ≥ ε
]
≤ ε .

• εn := ε/2n (n = 0, 1, . . .), τ0 := 0, θε0 := ϑ0

• inductive extension: θε := θεn+1,τn,θ
ε
τn on (τn, τn+1] where

τn+1 := inf

{
t ≥ τn :

∣∣∣∣∫ t

τn

L(θs , ds)−
∫ t

τn

L(θεs , ds)

∣∣∣∣ > εn+1

}
∧T .

and
P [τn+1 < T ] ≤ εn+1 = ε/2n+1

 continuous adapted process θε of bounded variation with
θεT = ϑT — this θε does the job!



Attainability for small and large investors

Assumption

• P(ϑ; t) = P(ϑ; 0) +
∫ t

0 pϑs dP0
s for some pϑ ∈ L(P0)

• For P⊗ d [P0]–a.e. (ω, t) ∈ Ω× [0,T ], the mapping

ϑ 7→
∫ ϑ

0 px
s (ω) dx is surjective.

Wealth dynamics in terms of P0:

L(θt ; dt) = ‘

∫ θt

0
dPx

t dx ’ =

{∫ θt

0
px
t dx

}
dP0

t

Hence:

P0-integrable small
investor strategies ξ

! L-integrable ‘strategies’ θ

via

ξt =

∫ θt

0
px
t dx



Description of attainable claims

Any claim H ∈ L0(FT ) which is attainable in the small investor
model P0 is approximately attainable for the same initial capital in
our large investor model.

In particular:

Small investor will quote the same option price as the large
investor!

No liquidity effect!
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Illiquidity: Now you see it, now you don’t

• illiquidity surprisingly hard to model

• ad hoc extensions of Black-Scholes often exhibit not
necessarily desirable features:

• constrained strategy spaces
• small trades with high costs

• illiquidity effect may disappear through modeling loophole

• comparability to Black-Scholes?
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Illiquidity: Now you see it, now you don’t

Asset prices in Economics: classical equilibrium theory

Market indifference prices and their dynamics

Optimal investment
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Prices from demand and supply

Arrow, Debreu, Radner, . . . : Microeconomics 101

Equilibrium approach

• specify economy: economic agents’ endowments and
preferences

• allow these agents to trade: exchange economy

• consider pricing rules: market clearing



The economic agents

• A finite set of agents

• Endowment of agent a ∈ A : ea bounded FT -measurable
random variable

• Preferences of agent a ∈ A : utility function ua : R→ R for
wealth at time T

• ẽa considered better than ea iff Eua(ẽa) > Eua(ea)
• ua is increasing: more is better
• ua is concave: risk aversion

• ua has bounded absolute risk aversion: c ≤ − u′a(x)
u′′a (x) ≤ C

• Example: ua(x) = − exp(−αax) with αa > 0



The exchange economy

• Pricing rule: positive linear functional Π on L∞

• Agent a has Π(ea) Euro to spend and will choose to buy ẽΠ
a ,

the solution to his utility maximization problem:

Eua(ẽΠ
a ) = max

ẽa such that Π(ẽa)≤Π(ea)
Eua(ẽa)

Does the market clear?
Can we find a pricing rule Π∗ such that the induced allocation of
wealth (ẽΠ∗

a )a∈A is feasible in the sense that∑
a∈A

ẽΠ∗
a ≤

∑
a∈A

ea ?

If so, Π∗ will be called an equilibrium pricing rule and (ẽΠ∗
a )a∈A its

equilibrium allocation of wealth.
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Candidates for equilibria: Pareto optima

An allocation (ẽa)a∈A is called Pareto optimal if there is no other
allocation (ẽ ′a)a∈A such that∑

a∈A

ẽ ′a ≤
∑
a∈A

ẽa

and

Eua(ẽ ′a) ≥ Eua(ẽa) for all a ∈ A and ‘ > ’ for some a ∈ A .

Lemma
Every equilibrium allocation is Pareto optimal.
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Characterizations of Pareto optima

Lemma
Equivalent for an allocation (ẽa)a∈A with Σ =

∑
a∈A ẽa:

(i) (ẽa)a∈A is Pareto optimal.

(ii) Given the respective endowments ẽa (a ∈ A ) all agents will
quote the same marginal indifference prices:

Π(X ) =
Eu′a(ẽa)X

Eu′a(ẽa)
=

Eu′b(ẽb)X

Eu′b(ẽb)
(X ∈ L∞) for any a, b ∈ A .

(iii) (ẽa)a∈A is the solution to a social welfare problem:∑
a∈A

waEua(ẽa)→ max subject to Σ =
∑
a∈A

ẽa

for suitable weights wa > 0 (a ∈ A ) with
∑

a wa = 1.

There are 1-1 correspondences: w ↔ Πw ↔ ẽw



Existence of an Arrow-Debreu equilibrium

Theorem
There exists an equilibrium pricing rule Π∗ and an equilibrium
allocation (ẽ∗a )a∈A .

Sketch of Proof: Consider the excess demand map

w = (wa)a∈A 7→ (
1

wa
Πw (ẽw

a − ea))a∈A

and use a fixed point argument to conclude that this map has a zero w∗:

ẽ∗ = ẽw∗ , Π∗ = Πw∗ ; see, e.g., Dana-Le Van (1996).



Implementation as an Arrow-Radner equilibrium

Assume: F generated by B∗, Brownian motion under P∗ with

dP∗

dP
=

u′a(e∗a )

Eu′a(e∗a )

Then:

ẽ∗a = Π∗(ea) +

∫ T

0
ηa
t dB∗t

Hence: all agents can trade in a single security, e.g., with price
process Pt = B∗t to attain their Arrow-Debreu allocation ẽ∗a .

+ trading strategies can be considered . . .

– . . . but not in pre-specified securities

– and no real role to play for derivatives

; We have to resort to equilibria in incomplete markets: fairly
complicated, no gold standard available; see Magill-Quinzii
(1996)
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Equilibrium asset pricing?

+ Equilibrium prices match demand and supply.

+ Good qualitative properties: risk sharing/exchange, efficiency

+ Marginal prices provide asset prices in line with the economy’s
preferences.

+ Equilibria can be implemented via trading strategies: Radner

– Unclear how to discuss hedging of contingent claims in this
(essentially) static setting: too far away from Black-Scholes!
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A large investor interacting with market makers

Our setting in a nutshell:

• market makers: economic agents required to quote prices for
certain financial products

• large trader submits orders to market makers

• market makers fill orders of large trader and charge/pay him
accordingly

• market makers continually hedge their positions

• market makers quote best prices which allow them to fill the
large investors order without decreasing their expected utility



The simplest case

A single market maker . . .

• a market maker accepts orders for a contingent claim paying

F = BT at maturity T > 0

where B is a Brownian motion: forward contract, cf.
Bachelier model

• only additional investment opportunity: money market r = 0

• prices are quoted by indifference principle:

position before transaction ∼ position after transaction

• market maker’s preferences are modeled by exponential utility:

u(x) = − exp(−αx) where α > 0 absolute risk aversion



The simplest case

A single investor’s wealth dynamics . . .

• at time t = 0:

– investor asks market maker for ϑ claims
– market maker quotes indifference price P0(ϑ):

u(0) = Eu(P0(ϑ)− ϑF ) i.e. P0(ϑ) = ϑB0 +
1

2
αϑ2T

• at time t = 1:

– investor liquidates position ϑ
– market maker pays indifference price P1(ϑ):

P1(ϑ) = ϑB1 +
1

2
αϑ2(T − 1)

• investor’s P & L from t = 0 to t = 1, ∆t = 1:

V1 − V0 = P1(ϑ)− P0(ϑ) = ϑ(B1 − B0)︸ ︷︷ ︸
liquid P & L

− 1

2
αϑ2∆t︸ ︷︷ ︸

liquidity premium



The simplest case

As a result . . .

• Continuous time wealth dynamics:

VT (θ) =

∫ T

0
θs dBs −

1

2
α

∫ T

0
θ2
s ds

• Small investments governed by Bachelier-model:

VT (εθ) = ε

∫ T

0
θs dBs + o(ε)

• Reasonable wealth dynamics:

No arbitrage for any predictable strategy.



Pricing and hedging options

Hedging problem:

How can our investor hedge a contingent claim G depending on B?

Lemma
For every claim G ∈ σ(Bs , s ≤ T ) such that E exp(αG ) <∞,
there exists a replicating portfolio. Its value process is given by

Vt =
1

α
log E [ exp(αG ) |Ft ] .

• replication price for G is market maker’s indifference price for
−G , even though he is marketing F not G

• compare w/ Black-Scholes: risk-premium for call inherited
from stock



Quantitative analysis of liquidity effects
Assume F = BT is the traded underlying and consider a call option
on F maturing at T : G = (F − k)+

What is the liquidity premium to be charged for a call option?

Liquidity premium for call

E[f]-k

illiquidity

premium

E[f]-k



Quantitative analysis of liquidity effects
Assume F = BT is the traded underlying and consider a call option
on F maturing at T : G = (F − k)+

Does illiquidity cause hedge ratios to increase or decrease?

Hedge ratio difference

E[f]-k

illiquidity

delta-diff.

E[f]-k
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Hedge ratio difference

E[f]-k

illiquidity

delta-diff.

E[f]-k



Optional decomposition

Superhedging?

What is the most cost effective way to super-replicate claims which
do not merely depend on B?

Theorem (Said)

We have the superhedging duality

inf{V0 ∈ R | VT ≥ g for some strategy θ} = sup
P∗

1

α
log E∗[exp(αg)]

where the sup is taken over all martingale measures P∗ ≈ P for B.
A superhedging strategy θ can be calculated from the
multiplicative optional decomposition

sup
P∗

E∗t [exp(αg)] = E (

∫
αθ dW )tDt (0 ≤ t ≤ T ) .



Utility maximization
Assume:
• under the investor’s beliefs P̃, B is a Brownian motion with

drift λ = µ/σ ∈ R, H = σBT :

dBt = dB̃t + λ dt ; dVt = θt(σdB̃t + µ dt)− 1

2
αθ2

t dt

• investor has utility function Ũ and investment horizon T

Investment problem:

How to invest some given initial capital V0 = x?

• Hamilton-Jacobi-Bellman equation for u = u(t, x):

u(T , x) = Ũ(x), ut +
1

2

µ2u2
x

σ2uxx − αux
= 0
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Utility maximization
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u(T , x) = Ũ(x), ut +
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µ2u2
x

σ2uxx − αux
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• in case Ũ(x) = − exp(−βx): value function

u(t, x) = − exp

(
−1

2

µ2

σ2 + α/β
(T − t)− βx

)



Utility maximization
Assume:
• under the investor’s beliefs P̃, B is a Brownian motion with

drift λ = µ/σ ∈ R, H = σBT :

dBt = dB̃t + λ dt ; dVt = θt(σdB̃t + µ dt)− 1

2
αθ2

t dt

• investor has utility function Ũ and investment horizon T

Investment problem:

How to invest some given initial capital V0 = x?

• Hamilton-Jacobi-Bellman equation for u = u(t, x):

u(T , x) = Ũ(x), ut +
1

2

µ2u2
x

σ2uxx − αux
= 0

• in case Ũ(x) = − exp(−βx): optimal investment

θ(t, x) ≡ µ

α + σ2β
i.e. more ‘conservative’ than Merton



Non-equivalence of underlyings and derivatives
Recall: For F = BT , every bounded contingent claim ϑG ∈ D1,2 is
replicable and a hedging strategy is given by

∆ϑ
t = Eαϑt [Dt(ϑG )] =

Et [exp(αϑG )Dt(ϑG )]

Et [exp(αϑG )]

Question:
If market maker deals in G , can we replicate ϑF ?

NOT IN GENERAL!

Counterexample: G = (−k) ∨WT ∧ k cannot replicate all
ϑf = ϑBT (ϑ ∈ R) as

sup
ϑ∈R

∆ϑ
t < +∞ and inf

ϑ∈R
∆ϑ

t > −∞ for t < T

Intuition: Extreme long positions in G can be acquired only by
paying essentially G ’s maximal possible payoff k . This payoff does
not fluctuate, and so it becomes impossible to scale exposure to
external shocks dBt at will.
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Does this generalize?

• more than one underlying?

• underlyings other than F = BT ?

• utility functions other than u(x) = − exp(−αx)?

• more than one market maker?

• risk management by market makers?

• more than one investor?

• . . .



General setting

Financial model

• beliefs and information flow described by stochastic basis
(Ω,FT , (Ft)0≤t≤T ,P)

• marketed claims: European with payoff profiles
ψi ∈ L0(FT ) (i = 1, . . . , I ) possessing all exponential
moments

• utility functions um : R→ R (m ∈M ) with bounded absolute
risk aversion:

0 < c ≤ −u′′m(x)

u′m(x)
≤ C <∞

; similar to exponential utilities

• initial endowments em
0 ∈ L0(FT ) (m ∈M ) have finite

exponential moments and form a Pareto-optimal allocation



Pareto-optimal allocations

Recall:
e = (em) ∈ L0(FT ,RM ) is Pareto-optimal iff the large investor
gets the same marginal indifference price quotes from all market
makers, i.e., we have a universal marginal pricing measure Q(e) for
the market:

dQ(e)

dP
=

u′m(em)

Eu′m(em)
independent of m ∈M

Note:
Pareto-optimal allocations realized through trades among market
makers ; complete Over The Counter (OTC)-market



A single transaction

• pre-transaction endowment of market makers: e = (em) with
total endowment Σ =

∑
m em

• investor submits an order for q = (q1, . . . , qI ) claims and
receives x in cash

• total endowment of market makers after transaction

Σ̃ = Σ− (x + 〈q, ψ〉)

is redistributed among the market makers to form a new
Pareto optimal allocation of endowments ẽ = (ẽm)

Obvious question:

How exactly to determine the cash transfer x and the new
allocation ẽ?



A single transaction

Theorem
There exists a unique cash transfer x and a unique Pareto-optimal
allocation ẽ = (ẽm) of the total endowment Σ̃ = Σ− (x + 〈q, ψ〉)
such that each market maker is as well-off after the transaction as
he was before:

Eum(ẽm) = Eum(em) (m ∈M ) .

Note:
The cash transfer x can be viewed as the market’s indifference
price for the transaction: it is the minimal amount for which the
market makers can accommodate the investor’s order without
anyone of them being worse-off.
; most friendly market environment for our investor!
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Information and price formation

Why don’t market makers improve their utility?

At any moment, the market makers do not make guesses
about or anticipate future trades of the investor.

⇐⇒ Any two strategies coinciding up to time t induce the same
price dynamics up to t.

⇐⇒ The investor can split any order into a sequence of very small
orders each of which is filled at the market’s current marginal
utility indifference price.

⇐⇒ The expected utilities of our market makers do not change.

Comparison to classical Arrow-Debreu setting

• their investor completely reveals his strategy at time 0

• market makers take this into account when forming Pareto
allocation

• and thus gain in terms of utility



The wealth dynamics for simple strategies
When our investor follows a simple strategy

θt =
∑
n

ϑn1(tn−1,tn](t) with ϑn ∈ L0(Ftn−1)

we can proceed inductively to determine the corresponding cash
balance process

Xt =
∑
n

xn1(tn−1,tn](t)

and (conditionally) Pareto-optimal allocations

Et =
∑
n

en1(tn−1,tn](t) .

In particular, we obtain the investor’s terminal wealth mapping:

θ 7→ VT (θ) = 〈θT , ψ〉+ XT =
∑
m

em
0 −

∑
m

Em
T

Mathematical challenge:

How to consistently pass to general predictable strategies?
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ϑn1(tn−1,tn](t) with ϑn ∈ L0(Ftn−1)

we can proceed inductively to determine the corresponding cash
balance process
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More on Pareto-optimal allocations

We need to keep track of those allocations!

Lemma
The following conditions are equivalent:

1. e = (em) is Pareto-optimal given Ft with total endowment
Σ =

∑
m em.

2. There exist weights Wt = (W m
t ) ∈ L0(Ft ,S ) such that e

solves the social planner’s allocation problem

max
e :

P
m em=Σ

∑
m

W m
t E [um(em) |Ft ] ,

where S = {w ∈ RM
+ |

∑
m wm = 1}.

Moreover, there is actually a 1-1-correspondence between all
Pareto allocations of Σ and weights in S .



The technical key observation
Hence: Sufficient to track the evolution of weight vectors Wt and
of the overall endowment Σt . . .

or more simply, given the current
cumulatively generated position θt , keep track of the amount of
cash Xt exchanged so far:

Σt = Σ0 − (Xt + 〈θt , ψ〉) .

But: (Wt ,Xt) changes whenever θt does: ‘wild’ dynamics!

Fortunately: Given ϑ = θt , (Wt ,Xt) can be recovered from the
vector of the market makers’ expected utilities u = Ut :

Wt = Wt(u, ϑ), Xt = Xt(u, ϑ)

— and these utilities evolve as martingales:

• no changes because of transactions: indifference pricing
principle

• changes induced by arrival of new information: martingales
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Convex duality

Theorem
The social planner’s utility

rt(w , x , ϑ) = max
α :

P
m α

m=Σ0−(x+〈ϑ,ψ〉)

∑
m

wmE [um(αm) |Ft ]

has the dual

r̃t(u, y , ϑ) = sup
w

inf
x
{〈w , u〉+ xy − rt(w , x , ϑ)}

in the sense that

rt(w , x , ϑ) = inf
u

sup
y
{〈w , u〉+ xy − r̃t(u, y , ϑ)}

and (w , x) is a saddle point for r̃t(u, y , ϑ) if and only if (u, y) is a
saddle point for rt(w , x , ϑ). In this case:

w = ∂u r̃t(u, y , ϑ), x = ∂y r̃t(u, y , ϑ), u = ∂w rt(w , x , ϑ), y = ∂x rt(w , x , ϑ)



An SDE for the utility process

We need to understand the martingale dynamics of expected
utilities.

Assumption

• filtration generated by Brownian motion B

• contingent claims ψ and total initial endowment Σ0 Malliavin
differentiable with bounded Malliavin derivatives

• bounded prudence:
∣∣∣−u′′′m (x)

u′′m(x)

∣∣∣ ≤ K < +∞

Notation:

• E (w , x , ϑ) = Pareto allocation of Σ0 − (x + 〈ϑ, ψ〉) with
weights w

• Ut(w , x , ϑ) = (E [um(Em(w , x , ϑ)) |Ft ])m∈M

• dUt(w , x , ϑ) = U(w , x , ϑ; dt) = Ft(w , x , ϑ) dBt



An SDE for the utility process

Theorem
For every simple strategy θ the induced process u = (ut) of
expected utilities for our market makers solves the SDE

u0 = (Eum(em
0 ))m∈M

dut = U(Wt(ut , θt),Xt(ut , θt); dt)

= Gt(ut , θt) dBt ,

where
Gt(u, ϑ) = Ft(Wt(u, ϑ),Xt(u, ϑ), ϑ) .

Note:
This SDE makes sense for any predictable (sufficiently integrable)
strategy θ!



The rest: Stability theory for SDEs

Corollary

For θn such that
∫ T

0 (θn
t − θt)2 dt → 0 in probability, the

corresponding solutions un converge uniformly in probability to the
solution u corresponding to θ.
In particular, we have a consistent and continuous extension of our
terminal wealth mapping θ 7→ VT (θ) from simple strategies to
predictable, a.s. square-integrable strategies.

Sketch of Proof:

• Use Clark-Ocone-Formula to compute Ft .

• Use assumptions on um and bounds on Malliavin derivatives to
control dependence of G on (u, ϑ).

• Get existence, uniqueness, stability of strong solutions to SDE.



No arbitrage

Theorem
There is no arbitrage opportunity for the large investor among all
predictable strategies.

Sketch of Proof: For the large investor to have an arbitrage opportunity,
some market makers have to lose in terms of expected utility.

However, utility processes are local martingales and bounded from above

— thus submartingales!
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Hedging of contingent claims

Problem
Large investor wishes to hedge against a claim H by dynamically
trading the assets ψ available on the market.

Solution
If H has finite exponential moments and if ψ = BT , then

replication price of H =

{
market indifference price of H
if it was traded on the market

and the integrand I in the Ito representation of the utility process
U induced by corresponding Pareto allocation yields the hedging
strategy θ via

Gt(ut , θt) = It .
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Conclusion

• market illiquidity is a major problem in Finance on both the
theoretical and the practical level.

• some models for hedging in illiquid markets

• difficult to avoid pitfalls: vanishing liquidity effects

• economic equilibrium theory yields sound pricing theory, but
limited insights into hedging problems

• market indifference pricing allows for combination of
equilibrium theory and Black-Scholes approach

• limitations of market indifference approach: only permanent
price impact

• neglects: market resilience, market micro structure ; lectures
by Alex Schied

• neglects: manipulability of contingent claims on illiquid stocks

• neglects: intertemporal changes in economy ; liquidity risk

• neglects: a lot more — future research!
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THANK YOU VERY MUCH!

Based on joint work

• with Dietmar Baum: Hedging and Portfolio Optimization in
Financial Markets with a Large Trader, Mathematical Finance
(2004), 14, 1–18.

• with Dmitry Kramkov: A large investor trading at market
indifference prices, in preparation.
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