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Agenda

e Thursday: applications in finance + numerical methods

e Friday an saturday: numerical methods
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1 Applications in finance

[Ref: El Karoui, Peng, Quenez ’97 ; El Karoui, Quenez 97 ; Peng ’03]

1.1 Pricing of European style contingent claims

Standard filtered probability space (2, F, (F;)0 <t < T,P), supporting a standard
BM W € Rq.
Usual assumptions:

q
1. d risky assets: dS} = Si (b} + Zai’JdW:l), 1< <d.
j=1
The appreciation rates b' and volatilities o' are predictable and bounded.
2. A non risky asset (money market instrument): dS{ = SPrydt, where ry is the

short rate (predictable and bounded).

3. Existence of risk premium 6;: predictable and bounded process such that
by — ryl = 040 (1 is the vector with all components equal to 1).
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1.1.1 Self-financing strategy

¢¢: the row vector of amounts invested in each risky asset.

Here, we do not assume any constraints on the strategy.

The wealth process Y; satisfies the self-financing condition:

dY, = Zcbt g (- qu ))rodt
— ¢t(0-tth + btdt) ( t — th].)’l“tdt
= rYidt + ¢r040,dt + ¢rodWy.

If we set Zi; = ¢¢o¢, the self-financing condition writes
—dYt = —I'thdt — Zthdt — thWt.

Up to the specification of the terminal value of Y, (Y, Z) solves a Linear BSDE
(LBSDE), with a driver defined by f(t,w,y,z) = —ryy — zb;.
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The driver f(t,w,y,2) = —ry — 20, is globally Lipschitz in (y, z) (recall that r and
6 are bounded).

& Note that to safely come back to the hedging strategy, one has to invert the
relation ¢; — Z; = @0y

~» usually, the volatility matrix ¢ has to be invertible «— complete
market.

1.1.2 Complete market without portfolio constraints

Replication of an option
Assume additionnally that
1. the volatility matrix o has a full rank (d = q) and its inverse is bounded.

Consider a option maturing at T" and payoff &(S; : 0 <t < T) (a path-dependent
functional of 5).

@ Replication of the option? link with the risk-neutral valuation rule?

European Summer School in Financial Mathematics - Paris - 24-29 August 2009 page 5



Backward SDEs with Financial Applications E. Gobet

Answer: YES

Theorem. If ®(S;: 0 <t <T) € Ly(P), then there is a solution (Y, Z) € Hs to the
LBSDE and thus to the hedging problem.

In addition, the Y-component has a explicit representation has a conditional
expectation.

Proof.

e For existence and uniqueness, apply standard BSDE results (see Jin Ma’s

minicourse).
e The hedging strategy is given by ¢y = Zio, L

e Finally, all LBSDE have an explicit representation (see [EPQ97]): the solution to
—dY¢ = [t + Yi0¢ + Zeyldt — ZedWy and Y7 = € € Ly (with bounded

T
(8,7), p € Hy and & € ILy) is given by Y = IE[@TtT +/ I‘fgpsds\ft} where
t
I} = exp(fts(ﬁ,r - %‘%"P)dr + fts %TdWr)

— Rare situation where explicit solutions are known.
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In our setting of replicating an option, we have o, =0, 6; = —ry, 74 = —0;:

T T
1
Y, = Ep[exp(/ (—rs — 5\95\2)618 —/ Q:dws)§|~7:t]
t t

= EQ[exp(/t —rsds)§|.7:t}

where Q|z, = exp(—3 fg 10,]%)ds — fot 0 dWs)P|£, defines the usual (unique)

risk-neutral measure.

A\ Solving this BSDE is done under the historical measure (with non risk-neutral

simulations) and estimates under P!
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1.1.3 Complete market with portfolio constraints

Bid-ask spread for interest rates [Bergman ’95, Korn ’95, Cvitanic

Karatzas 93]

The investor borrows money at interest rate R; and lends at rate ry < Ry.
~» Modification of the self-financing strategy:

d ; d
dY; = Zqétds (Y; — Z¢ )rredt — (Ve — Y ¢'(t))— Redt
1=1 —1

— ¢t(0tth + btdt) ( t — ¢t1)7“tdt — (Rt — Tt)(Yt — ¢t1)—
=1 Yidt + ¢ro 0. dt + G0 dWy  —(Ry — 1) (Ve — 1) dt

~
additional cost when borrowing

where bt — I't]. = Jtﬁf.
Similarly, with by — Ry1 = Jtﬁfi, we have

dY; = RyYydt + o 07dt + ¢oedW,y —(Ry —r)(Y; — 1) ¢ dt.

-~

smaller portfolio appreciation when lending
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Set Zy = ¢rot. Then, (Y, Z) solves a non-linear BSDE with the globally Lipschitz

driver
fr’R(tayaz) = —ry — 20; + (Rt — rt)(y — ZUt_ll)—
= —Ryy — 20;" + (B¢ — 1¢)(y — 20, '1)+.

We focus on the dependence on (r, R) by denoting (Y*®, Z¥R) the solution to the

BSDE with a given terminal condition and driver f*'}.

Comparison of prices with/without different interest rates?

Lower bounds. The price with different interest rates is still larger than the price
with fixed interest rates:

YR > max(YP", YR
for any t € [0,T].

Proof. Apply the comparison theorem within its strong version:

frii(t,y, 2) > max(—ryy — 207, —Ryy — 20;°) = max(f"" (t,y, 2), f 1 (t,y, 2)).
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Upper bounds and equalities: examples in the Black-Scholes setting.

e Call option: ®(5) = (S — K) .
From the Black-Scholes formula with a single interest rate, one knows that

the amount in cash is always negative (money borrowing) ~-

PR (e, YRR, ZRR) = _R YRR L ZRRR L (R ) (VR - 2B R0 1),

\

"~

=0

= fRR vy z270R),
Hence, (Y1, Z1E) also solves the BSDE with the driver f™¥. By uniqueness:
(Yr,].:{7 Zr,R) _ (YR’R, ZR’R)

The price is obtained using the higher interest rate.
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e Put option: ®(5) = (K — S7)4.
Similarly, with a single interest rate, one always lends money ~~

(Yr,R Zr,R) _ (Yr,r Zr,r)
The price is obtained with the lower interest rate.

e Call Spread: ®(S) = (S — K1)+ —2(St — K2)1 (K1 < K>).
With probability 1, we have

YIRS max(YP5, YioR) vt < T,

Proof by contradiction. Assume the equality on a set A € F;. The
comparison theorem implies the equality of drivers along (Y,"", ZI'");<s<7 and
(YEE ZEE), 1 almost surely on A ~ P(A) = 0.

e General payoff with deterministic coefficients (), (R¢)¢, (0¢)¢, (bt)s
sufficient conditions in [EPQo7]. If

D;®(S)o; '1 > ®(S) dt®dP —a.e.,
then (Y©R, ZrR) = (YRR ZRR)
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Short sales constraints [Jouiny, Kallal ’95...]

Difference of returns b} and b when long and short positions in the risky assets.
Aim at modeling the existence of reposit rate for instance.
Similar story as before.

Leads to
e two risk premias 0. and 65.

e a BSDE with non-linear driver f(t,y,z) = —ryy — z6; + [zo, '] 0t (0r — 65).
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1.2 Incomplete markets

Suppose that d < ¢: number of tradable assets d smaller than the number of

sources of risk q.
Examples:
e trading restriction on the assets.

e stochastic volatilities model like Heston model:

dSt = St(rtdt —+ AV ‘/tth),
dVy = k(0 — Vi)dt + £/ Vid By,
d<W, B>t = ptdt

Here d = 1 (one can not trade the volatility) and ¢ = 2.
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Market incompleteness

Denote the associated amount ¢; in the traded assets and the associated volatility
ol € R?®@R? w.r.t. the g-dimensional BM W.

The self-financing equation writes: dYy = r; Yidt + ¢fol0idt + of ol dWy.

A\ 1 general, there does not exist a strategy ¢; such that Y = ®(S).

Possible approaches:

1.
2.

mean-variance hedging

super-replication

. local-risk minimization: mean self-financing strategy + orthogonality of the

cost process to the tradable martingale part

~+ Find a martingale M orthogonal to ( fot oldW,); such that
YT+ Mt = (I)(S) ([Fﬁllmer-Schweizer decomposition ’90]).
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A BSDE-solution to the FS decomposition

Assumption: rank(c}) = d (non redundant tradable assets).

The FS strategy is obtained by solving a linear BSDE
dY; = r; Y dt + Z 0l dt + Z,dW,, Y1 = ®(S),

where

1
o

® 0; = € R? ® R? has a full rank ¢ (we complete the market by fictitious

o}
assets with volatilities o).
o Ol = Projf{ange([gg]*)(ﬁt) is the minimal risk premium.

(the solution of this LBSDE is the risk-neutral evaluation under the minimal

martingale measure).
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Proof by verification. (Y, Z) solves dY; = r.Y,dt + Z,0}dt + Z,dW, where

0f = [o8]"[ofog "] ol
Define [Z:tl]* = Projfiange([atl]*)(zt) — [U%]*[¢%]* and Z% = Zt — Z%
Since R? = Range([o}]*) ® Ker(c}), one has [Z7]* € Ker(o}): ol[Z2]* = 0.

It follows
o 26} = 716} + 230} = 9016} + 220} olol | Lot0, = olol6).
—0

® thWt — ¢%0'%th + ZthWt
N——
:Zth

Thus, dYy = r  Yedt + ¢pop0pdt + ot ol dW + dMg.

. t
In addition, < / crdWo, M >i=0 = / ocl[Z2]*ds
0 0

—> M is strongly orthogonal to (f(f otdWy);.

Uniqueness is proved similarly.
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Other connections between pricing and BSDEs

Superhedging via increasing sequence of non linear BSDEs (via penalization on
the non tradable I‘iSkS) [Cvitanic, Karatzas ’93; El Karoui, Quenez ’95; El

Karoui, Peng, Quenez ’97]

Non linear pricing theory [El Karoui, Quenez ’97]

Large investor (fully coupled FBSDE) [Cvitanic, Ma ’96...].
Recursive utility: driver quadratic in z [Duffie, Epstein ’92 ...].

Exponential hedging and quadratic BSDE [El Karoui, Rouge ’01; Sekine ’06 ...]
: V(z) = supyea E(U(X%? — F)) with U exponential utility.

g-expectations and dynamically consistent evaluations/expectations [Peng ’03

]

American options [El Karoui, Kapoudjian, Pardoux, Peng, Quenez ’97 |
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1.3 Dynamically consistent evaluation

An operator & : Lao(F;) — La(Fs) is a dynamically consistent non linear
evaluation if it satisfies:

A1) Monotonicity: X > Y= &,+(X) > E+(Y).

A2) Constant-preserving: & (X) = X for X € Lo(F).

A3) Time-consistency: &, ;(Es+(X)) = &4(X) for all r < s <.
)

A4) 0-1 law: VA € F, and X € L?(F;) with s <, one has
14E64(X) = 14E, (14 X).

Consider a Lipschitz driver g and for X € L?(F;), denote by (Y7, (X))s<: the
solution to

t t
Y, = X+/ g(r,Yr,Zr)dr—/ Z,.dW,.

Then Y/, (X) = &,,(X) defines a dynamically consistent non linear

evaluation.

Proof. Follows from standard comparison and flow properties of BSDEs.
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Converse property for dominated non linear evaluation

Consider a Brownian filtration and a dynamically consistent non linear evaluation

operator & ¢(.).
Define g, (y, z) = ply| + p|2|.

In addition, assume that for some (k;); and p > 0, one has
o V, (X)) < E4(X) < YHTH(X) for all X € L2(F),
o E4(X) =& (X)) <Y (X — X') for all X, X' € L*(F).
Then, there exits a standard driver with g(¢,0,0) = k; such that
Ea(X) = YE,(X).

Extension to a domination by quadratic BSDEs [Hu, Ma, Peng, Yao ’08...]

Qualitative properties on g tranfer to the Y/,(X): sub-additivity, positive

homogeneity, convexity... See [Barrieu, El1 Karoui ’09...]
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1.4 Reflected BSDEs and American options [kp+97]

@ 3 solution (Y, Z, K) to

;

Yi=®+ [ f(s,Ys, Zs)ds + Kp — K¢ — [, ZdW,,
< Yt Z Ot7
K is continuous, increasing, Ko = 0 and f(;r (Y¢ — Oy)dK = 0.

\

Assumptions:
e standard Lipschitz driver f + augmented Brownian filtration
o dc? (fT)

e The obstacle O is continuous adapted process, satisfying ® > O and

Esup S7 < oo.
t<T

Theorem. There is a unique triplet solution (Y, Z, K).

Applications to American options [El Karoui, Kapoudjian, Pardoux, Peng,
Quenez ’97], to switching problems [Hamadene, Jeanblanc ’07...].
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Applications to optimal stopping problems

Lower bound. For any stopping time 7 € 7; 1, one has

Y, = E(Y, +/ (.Y, Z)ds + K, — K, — / 7. AW\ F))
t

t

> B0 Ler+ @1or + [ f(s. Yo, Z,)dsIF),
t

which implies Y¢ > ess sup E(O;1,.7 + ®1._1 +/ f(s,Ys, Zs)ds| Fy).
T€Te, T t

Equality. The equality holds for 7* = inf{u € [¢t,T]: Y, = O, } A T.
American options

Consider a linear driver f(t,y,z) = —ryy — 20; (self-financing condition without

constraints).

Theorem. Y; is the price at time ¢ of the American option with payoff

Po=1—7®+1,.70;: Y¢=-ess sup Eg(e” )& rstPT|ft).
TE,Z;,T
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Methods of construction of a solution

1. Picard iteration |+ Snell envelops.

& Does not lead to a practical numerical method.

2. Penalized BSDEs. Consider the sequence of standard BSDEs (Y, Z"),,>¢
defined by

T T T
Y= —|—/ f(s, Y], Z)ds + n/ (Y — Og)_ds — / ZrdWs.
t t t

e By comparison theorem, Y < Y"1 hence it converges to a process Y ~-
lower approximation.

e We can prove that Y; > O;.

e By setting K* = an(YS” — O4)_ds, one can prove that (Z", K") is a
Cauchy sequence that the limit-triplet (Y™, Z™, K™) converges to the
RBSDE.

© The penalization approach can be turned into a numerical method.

@ The driver and its Lispchitz constant increases like n!!
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Methods of construction of a solution (Cont’d)

3. Specific representation of the local time K. [Bally, Caballero, Fernandez,
El Karoui ’02]

Assume that the obstacle O has the Ito decomposition:
dO; = Updt + Vi, dWy + dAf

with AT is a continuous increasing process, with dA;" singular w.r.t. dt.
Examples: call, put, convex payofs...
Then, one has
e smooth-fit condition:
Zy =V, on the set {Y; = O, }.
e absolute continuity of K:
dK; = ayly,—o,(f(t, 0, Vi) + Uy)~ dt for some ay € [0, 1].

Proof. The Ito decompositions of d(Y; — O;) and d(Y; — O;)+ coincide!!
Proceed by identification.
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An alternative representation of reflected BSDE [Bcrkoz]
@ 3 solution (Y,Z,«a) to

Y, =@+ [ f(s,Ys, Z)ds + [, asly.—o.(f(s,04, V) + Ug) _ds — [ Z,dW,,
Yt Z Ot-

Theorem. There is a unique solution (Y, 7, a) and 0 < a < 1.

M o s uniquely determined only on {(s,w) : 1y, —o_(f(s,O0s, Vs) + Us)— > 0}.

By setting K; = fg asly.—o.(f(s,0s,Vs) 4+ Us)_ds, this proves that (Y, Z, K) is
solution to the standard RBSDE.
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Solving
Y, =0+ [ f(s,Ye, Z)ds+ [ asly.—o,(f(s, O, Vi) +U,) _ds— [ Z.dW,

The solution is obtained as follows:
e define a smooth function ¢™ such that 1jg2-n) < ©" < 11g9-m-1).

e consider the solution (Y, Z™) of the standard BSDE with driver
f(s,w,y,z) =f(s,w,y,z) + p"(y — O¢)(f(s, Os, Vg) + Ug) _.

e show that (Y, Z™) converges to (Y, Z) and that o™ converges to aly_o.

Then, Y™ is a decreasing sequence converging to Y.

— Very interesting for numerical methods since
© it gives an upper approximation (the penalization app. gives a lower bound).

© the bounds on the approximated driver depends less on n than for the

penalization scheme.

@ No available estimates on the rate of convergence w.r.t. n.
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2 Numerical methods

Our aim:

e to simulate Y and Z

e to estimate the error, in order to tune finely the convergence parameters.
QQuite intricate and demanding since

e it is a non-linear problem (the current process dynamics depend on the future

evolution of the solution).
e it involves various deterministic and probabilistic tools (also from statistics).

e the estimation of the convergence rate is not easy because of the non-linearity,
of the loss of independance (mixing of independent simulations)...
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2.1 Intricate combination of weak and strong
approximations
Strong approximation. (X} )p<;<7 is a strong approximation of (X;)o<;<7 if

sup | XY — XL, — 0 (or ||sup|X;) — X¢|l, — 0) as N goes to oo.
t<T t<T

Weak approximation. For any test function (smooth or non smooth), one has

E(f( X)) —E(f(Xr)) — 0 as N goes to oo.

t t
Examples. Approximation of SDE: X; = x —l—/ b(s, Xs)ds —l—/ o(s, Xs)dWs.
0 0

Time discretization using Euler scheme. Define t; = k% = kh.

Xy =z, X

trt1

= X +b(ty, X; Yh+ o(ty, X)Wy, — Wa).

The simplest scheme to use. Converges at rate % for strong approximation and 1

for weak approximation.
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Milshtein scheme (not available for arbitrary o): rate 1 for both strong and weak
approximations.

The BSDE case
We focus mainly on Markovian BSDE:

T T
Y, = &(Xr) +/ f(s,XS,YS,ZS)ds—/ 7. dWW,
t t

where X is Brownian SDE (later, jumps could be included in X).

We know that Y; = u(t, X;) and Z; = V,u(t, X¢)o(t, X¢) where u solves a
semi-linear PDE=— to approximate Y, Z, we need to approximate the function u(.)
and the process X

o ViV =uN(t, Xi");
e in practice, X is always random;

N

o M\ although w is deterministic, ©" may be random (e.g. Monte Carlo

approximations): the randomness may come from two different objects.
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Formal error analysis
E[Y," - Y| < Elu®(t, X)) — u(t, X{")| + Elu(t, X" ) — u(t, X))
< Ju(t,) —ult, Ve + [VulL EIXE — Xq.
~+ two sources of error:

e strong error related to E| XN — X|.
For the Euler scheme E| XN — X;| = O(N~1/2).

e weak error related to |u’ (t,.) — u(t,.)|L_. Indeed, to see that this is a
weak-type error, take f =0 (u(t,x) = E(f(X71)|X; = z)) and the Euler scheme
to approximate the conditional law of X: from [BT96], one knows that

u(t,.) = u(t, )| = [E(f(X7)|Xe = 2) - E(f(X7)|X] =2)| = O(N )

— it seems that simulating accurately the underlying SDE in the strong

approximation sense is necessary (stated later).

European Summer School in Financial Mathematics - Paris - 24-29 August 2009 page 29



Backward SDEs with Financial Applications E. Gobet

2.2 Resolution by dynamic programming equation

Time grid: 7 ={0=1tg < --- <t; <--- <ty =T} with non uniform time step:
‘7’(" = maXi(tiH — tz‘).
We write At; = t;11 —t; and AWy, = Wy, | — Wy,
Heuristic derivation
From Y;, =Yi,,, + fttf“ f(s,Xs,Ys, Zs)ds — ftt_i“ Z ., dW, we derive

tita
Yﬁi — E(Yti+1 _|_/ f(S,XS,YS,ZS)dSL?.ti),
t;
tita tit1
B[ ZdsiFu) =B+ [ J(5. X0 Y Z)ASAW|F)
t t

7 7

y

1 *
. ZN — At_IE(YEHAWti\fti),
\ Yi =E(Yg, | + Atf(t, X5, Y4, Zg) | Fe) and Y = @(X71).

This is a discrete backward iteration. The scheme is of explicit type.
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Implicit scheme
More closely related to the idea of discrete BSDE.

(Ye,, Zy,) = arg min E(Y}:il + At (6, X, Y, Z) - Y — ZAW,,)?

' (Y,Z)€L2(Fy,)

with Y,V = &(XN).

( 1
Z;, = BV AW | ),

— < 7 Atz 141 7

Y =E(Yq | F) + Atf (b, X5, Y Zy).

\

Needs a Picard iteration procedure to compute Y;".
Well defined for |7| small enough (f Lipschitz).
Rates of convergence of explicit and implicit schemes coincide for Lipschitz driver.

The explicit scheme is the simplest one, and presumably sufficient for Lipschitz

driver.
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2.3 Error analysis

Define the measure of the squared error

EVN -V, ZN - Z) = maxo<i<n E[YYN = V3,2 + SN [T EIZY — Z4dt.

Theorem. For a Lipschitz driver w.r.t. (x,y,2) and %—Holder w.r.t. t, one has

EYN —Y,Z" —Z) < C(E|®(XT) — ®(Xr)[* + sup E[Xg] — Xg,|?
i<N

tit1 B
+Hal+ ) / E|Zy — Zg, |?dt)
t

i—0 Vti
where Z;, = ﬁE( | tt:“ Zsds|Fy,) ~ Different error contributions:

e Strong approximation of the forward SDE (depends on the forward
scheme and not on the BSDE-problem)

e Strong approximation of the terminal conditions (depends on the
forward scheme and on the BSDE-data ®)

e [o-regularity of Z (intrinsic to the BSDE-problem).
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Remarks on generalized BSDEs

Forward jump SDE:

¢ ¢ ¢
Xi=x —|—/ b(s, Xs)ds —|—/ o(s, Xs)dWy —I—/ / B(s, X,—,e)(ds, de),
0 0 0 JE
Generalized BSDE (with Lipschitz driver):
_dY;f :f(ta Xt7 Y;fa Zt)dt — thWt — st7 YT — (I)(XT)a

where L is cadlag martingale orthogonal to W [Barles, Buckdhan, Pardoux ’97; El
Karoui, Huang ’97].

Then,
e the same dynamic programming equation holds to compute (Y, Z).

e crror estimates are unchanged [Lemor, G. ’05].
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Proof for the Y-component

Vi, = Vi = B, (Vi — Y, ) + Be, [ {f(s, X, Vs, Z) — f(t, XY,V 20 s

i+1 tit1 i+17

Then, use Young inequality (a + b)? < (1 + yAt;)a? + (1 + ﬁ)b2 to get

tit1
EY;, — Y < (1+1AR)EE:, (Y, — Y )P+ (14 — - JALFALE / 7. — Z[*ds
t

7

’yAt@'

(2] tit1
+ (1+ JALF AL (At + / E|Xs — X, |°ds + / E[Ys — Vi, [*ds).
t; t;

¥ (2

’}/Ati
Gronwall’s lemma? ~ =7
o E [ |Z,— ZNPds =E [/ |Z, — Zy,|?ds + ALE[Z,, — ZY .

o ALE|Z,, — Z|? <

t;
C{E‘Yti—l—l o Yti\il |2 o E|Etz(Yt o Ytﬁl)‘Q} + CALE fti o f(S, Xs, Ys, ZS)2d8°

o E|X, — XV|? <2E|Xy, — X;'|* +2E| X, — X,|* < 2E| Xy, — X7 |* + CAt;.
e ElY, - VY |2<

tit1

SE|Y:,,, — ViV 2+ 3E [ | Z,2ds + 3ALE [} f(s, X, Yy, Z,)?ds.

i+1
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After simplifications, we obtain:

2

E|Y;, — Y|P <1+ CAL)E|Y;,,, — Y, |?+ CAt® + CAL; Jmax B X, - X;

tit1 . tit1
+ OIE/ Zy — 7, |*ds + OAtiIE/ (f(s, Xs,Ys, Zs)? + | Z,|*)ds.
t t.

Discrete Gronwall’s lemma yields

max E|YY -V, |? <Clr| +C max E|X, — X} |?
0<kE<N ¢ 0<:<N ¢

N—1 lit1 L
+CZ]E/ Zs — Zy,]2ds +C  E|YF —Yr|?
i=0 ti ) NG g

=E|®(X7)—®(X7)|?

European Summer School in Financial Mathematics - Paris - 24-29 August 2009 page 35



Backward SDEs with Financial Applications E. Gobet

2.4 Strong approximation sup, .y E| XY — X;,|?
The easy part: using the Euler scheme

® SUp;<n ‘Xt]y - XtihLQ — O(N_1/2)

e if o does not depend on z, rate O(N~1).

e Otherwise, Milshtein scheme to get N ~!-rate.
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2.5 Strong approximation of the terminal condition
o If ® Lipschitz, then E|®(XY) — ®(X7)|? < L2E|XN — X2

o If ® is irregular @
Some results of Avikainen [Aviog] for discontinuous function (®(x) = 1,<4).
Also useful for the Multi-Level Monte Carlo methods of Giles [Gilos].

Theorem. If X1 has a bounded density p(.), then for any p > 0

_p_
SUEE\lxN@ Ixr<al <9 (Pl [IXT — XL, ) >
ac

Optimal inequalities:

¢ if E|1¢_ . —1x<a| <C(X,a,p, )| X — X||r,, for any r.v. X with bounded
den81ty, then r < +1
o if Ejl¢_ —1x<4 < CO(X, po)|| X — X P for any p > po, any a and any X,

then X has a bounded density.
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E|®(X7) — @(X7)]* =E[lxy < — Lxy<al’
< Cp(|I X7 — Xl )P/ HY

p

+1,

N[

< CINT

Hence, the convergence rate decreases from N~! to N —3+¢ for any € > 0.
(under a non degeneracy assumptions on the SDE).
Possible generalization to functions with bounded variation [Avikainen ’09].

For intermediare regularity functions, open questions.
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2.6 The Ly-regularity of 7
Lo-regularity of Z-component
N-1 ;4
Define £4(r) = Z / E|Zy — Zy.|?dt.
i=0 “ti

Theorem. [Convergence to 0] Since the Z is the a Lo-projection of Z, in full

generality one has
lim £4(n) = 0.

7| =0

Theorem. [Ma, Zhang ’02 *04] Assume a Lipschitz driver f and a Lipschitz

terminal condition .

Then Z is a continuous process and £ (r) = O(|nx|) for any time-grid 7.

& No ellipticity assumption.
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Sketch of proof

Key fact: Z can be represented via a linear BSDE!! It is proved using the
Malliavin calculus representation of Z component.

The basics of Malliavin calculus:
sensitivity of Wiener functionals w.r.t. the BM
For £ = £(W; : t > 0), its Malliavin derivative (Di€)¢>0 € Lo(RT x Q, dt ® dP) is

defined as
o Dié = 8dwt£(Wt :t>0). “

Basic rules.
o if £ = [ hydW; with h € Ly(R"), Dy = hylicr.
e for smooth random variables X = g(fOT hidWy, - - ,fOT hrdWy),

i=1
e chain rule for £ = g(X) with smooth ¢: D;§ = ¢'(X)D; X.
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e duality relation with adjoint operator D*: E(/ us. D& dt) = E(D*(u)é)
R+
(known as integration by parts formula).

If u is adapted and in Lo, then D*(u) = fOT usdWy (usual stochastic
[to-integral).

e Clark-Ocone’s formula: if £ € Lo(Fr) and in Dy o:
T
E=E(©)+ | BDEF)W,

0

Provides a representation of the Z when the driver is null.

o if Xy =u+ fot b(s, X,)ds + fg o(s, Xs)dWs, then for r <t

t t
DXy :/ b’(s,XS)DTXSdS—F/ o'(s,Xs)D, XdWy + o(r, X,

= VX [VX,] to(r, X,).

® DtXt — O'(t,Xt).
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Malliavin derivatives of (Y, 7) for smooth data

Theorem. If Y; = &(X71) + ftT f(s, Xs,Ys, Zs)ds — ftT Z,dW, then for 0 <t < T

T
oY, — & (Xp)Do X + / (8, X0, Yo, Zo)Do X, + f1(5, Xo, Yo, Z:)DpY,

t

T
[/ (s, Xs, Vs, Zo) Do Zs]ds — / Dy Z.dWW.
t

= (DoY;, Dy Zt)icip,1 solves a linear BSDE (for fixed 6).
In addition:
e Viewing the BSDE as FSDE, one has Z; = D; Y.

e Due to DpX; = VX [VXy| to(0,Xy), we get
(Do Yy, DoZi) = (VY [VXy] 1o(0,Xy), VZi[VXy] 1o(0,Xy)) where

T
VY, = (I)/(XT)VXT + / [f:;(st& }/87 ZS)VXS + f;;(sts: }/87 ZS)VYS
t

T
+f;(87X87Y87ZS)VZs]dS_ / VZSdWS
t
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The explicit representation of the LBSDE yields [Ma, Zhang ’02]
Zy = VY [VX{] to(t, Xy)
T
— ]E(CI)’(XT)VXTFtT —|—/ f;(s,XS,lQ,ZS)VXSFSTdS\Ft> VX tot, Xy).
t
Application to the study of the Ls-regularity of Z:
N—1 prti41 7 12
Zi:O ftz E’Zt o th’ at
Following from this representation, the Ito-decomposition of Z contains:

e an absolutely continuous part (in dt) ~ easy to handle.

e a martingale part M (in dW;):
N—1 at; 14 B
> / E|M, — My, |?dt < |n|E(M2 — M2)!!
i=0 vt
Possible extensions to L..-functionals [Zhang ’04], to jumps [Bouchard, Elie ’08],

to RBSDE [Bouchard, Chassagneux ’06], to BSDE with random terminal
time [Bouchard, Menozzi ’09].
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The case of irregular terminal function ®(Xr) [G., Makhlouf *09]

In the following, we assume strict ellipticity.
If not, Z can be discontinuous at some points [Zha05] ...

Sketch of proof.
1. We study the case with f = 0. It gives the significative contribution.

2. We study the BSDE-difference (Y /79 — Y /=0 Z/#0 _ Z/=0) The Ly-regularity
of Z1#0 — 7/=0 ig still nicer, since it has zero terminal condition.
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The BSDE with null driver

We first approximate ®(X7) € Ly by a sequence of bounded terminal conditions
PM(Sr)=MAN®(X7)V -M 2, ®(Xr) and then deduce by stability results.

u(t,z) = E[®(X7)|X; = x| solves

Oyu(t, x) +

Mg

bi(t, x)0p, u(t,x) + = Zaa ”(t:v)(? Ju(t,z) =0 for t <T,
i,3=1

()()

From It6’s formula, we can identify the solution (y, z) to the BSDE

T
Yy = (I)(XT) — / stWS.
t

~y Yy = ’LL(t,Xt) and z; = vxu(ta Xt)O'(t, Xt)
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The index o to measure the regularity

For o € (0, 1], set

. s E@(Xr)  E®(Xp)|F))
K ((I)) T E|g(XT)‘ +t€[02’) (T—t)a

and define
Loo ={P st. KYP) < 4o0}.

It measures the rate of decreasing of the integrated conditional variance of ®(Xr).
The index « is also called fractional regularity (introduced by Geiss...).

Some examples:
1. Lipschitz= ® € Ly o—1;
2. a-Holder = ® € Lo ,;

3. indicator function = ® € L, ,_1.
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Fractional regularity for indicator functions (digital payoffs)

Proof. Let () = 19 o)(x) and (X;) = (W;). One has

E[®(Xr) — E(O(X1)|F)) = E / L, (5, W) Pds.

Then

u(t,z) =Plx + Wp — Wy > 0),

1 X2
’LL/ t,ﬂ? = exXp — ’
1
Elu (t, W,)]? =
s (8, W)l o2mVT + VT — 1

— o= 1.
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L, .= interpolation space between L, and D,
Following [Geiss, Hujo ’07], one defines:

e the K-functional by
K(®,\; Lo, Dy ) = inf{|®°|, + A\|®"|p, , such that & = &° + &'}
e the space (L2,D1 2)a.00 by the elements ® such that

|(I)|(L2,D1,2)a,oo = iup )\_O‘K((I)’ A;L27D1,2) < 0.
>0

In the BM case, possible in terms of sequences using the chaos decomposition.

Such Wiener chaos expansion enables to provide a ® such that ®(W;) ¢ U Lo
a€e(0,1]
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Equivalent estimates on u and its derivatives

Assume uniform ellipticity.

Lemma. Let a € (0,1]. Then the three following assertions are equivalent:

1) P c Lg,a.

ii) For some constant C' > 0, Vt € (0,7, ng ‘D2U(S,XS)‘2 ds < (T—gl—a'

iii) For some constant C' > 0, V¢ € [0,T), E|V,u(t, X;)|> < (T—gl—a'

And, if ® € Ly ,, one can take C in i) and ii) proportional to K*(P).

If « <1 (resp. a = 1), the previous three assertions are also equivalent to (resp.

lead to) the following one:

iv) For some constant C' > 0, Vt € [0,T), E ]DQu(t,Xt)’2 < (T—?)2—o<'
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A general upper bound in Lo,

For ® in some Ly, (a0 € (0, 1]), one has

N—-1 tir1 N—-1 thil
3 / Bl — 2, 2dt < C(la|Ko(@)T* + 3 / (tosr — r)E|D2u(r, X,) dr)
i=0 Vi k=0 V1

k

Corollary. Assume ® € Ly, (o € (0,1]). Then, for the uniform time grid,
N—-1 tire
Z / E‘Zt —Eti‘2dt: O(N_a)
i=0 Yt

The rate is optimal: for each « € (0, 1], one can exhibit a ® achieving exactly this

rate [GTO1].

European Summer School in Financial Mathematics - Paris - 24-29 August 2009 page 50



Backward SDEs with Financial Applications E. Gobet

Theorem. Assume that ® € L, ,, for some o € (0, 1].
Now, take 6 =1, if « = 1, and 8 < « otherwise. Then, 3C > 0 such that, for any
time net m = {tyx,k = 0...N},

— i ter1 — Tk
Z / E|z — 2. |2dt < CKY(®)Tn| + CK*(®)T* "  sup ( s - ) :
— k=0..N—1 \ (T —tp)!=F

Corollary. For a < 1, the non-uniform grid

k.1

with 3 < « yields an error as N~! for the Lo-regularity of Z.

By adapting the grid to the payoff regularity, we can maintain
the rate % for the LLy-regularity of Z.
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Back to the initial BSDE
We define the BSDE-difference

Y =Y —w, 7y = Zy — 2.

solution in Ly of the BSDE with null terminal condition and singular

generator
fo(t, x,y,2) = f(t,x,y+u(t,z),z+ Vyu(t,x)o(t,z)),
1.e.

T T
YtO:/ fo(s,XS,YSO,ZS)ds—/ Z2dW.
t t

Theorem. We have Z; — z; = U;o(t, X;) where (U, V) the solution of the following
linear BSDE
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T q q
U :/ {ag + U, (bg[d + Vaib(r, X;) + Z ) Vayo(r, X)) + Z 104 (c?,rld + 0j.) pdr
t

J=1 j=1
—Z/ VIidWw?,
j=1"1
where we have set fO(t,x,y,2) = f(t,x,y + u(t, x), z + Vult, x)a(t,x)) and
al =V, f(r, X, Y, Z);

r

bo = vny(T‘, X?‘a Yroa ZS),

r

=V, X,,Y°, Z%.

r

T
Proof. /N In general for ® € J,¢ (g 1 L2,a, we have / Ela?|?dr = oo, but we can
0
T
prove fo [a%|;,dr < oo (one needs results from [Briand, Delyon, Hu, Pardoux,
Stoica ’03])

Key point: to establish that the usual representation of Z° using Malliavin
derivatives holds (not triviall!!)

European Summer School in Financial Mathematics - Paris - 24-29 August 2009 page 53



Backward SDEs with Financial Applications E. Gobet
Corollary. Assume that g € Lo, (o € (0,1]). Then
o [E[(@00) - BR(xnIR) 17
|Zt—zt\<(}/ ds + C(T — 1).
— S

—

1. Lo-bounds:

E|Zy — 2| < CKY(®)(T — t)* + C(T — t)%.
2. Pointwise bounds: when ® is a-Ho6lder continuous, it yields
Z, — 2| < O(T — )% + C(T — t).
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The L,-regularity of z (without driver) controls the
Lo-regularity of Z (with driver)
Corollary. Assume that ® € Ly, (o € (0,1]). Then

1 N—1 tit1 N—1 i1 )
9 Z / Elz; — z,|°dt + O(|7|) < Z / E|Z, — Z,,|*dt
i=0 7t i=0 7t

i+1

N—1 t
<2y / E|z — 5 [2dt + O(|x]).
i=0 7l

To achieve the rate N~! with N-points grid, one should choose,
e if @ = 1, uniform grids

e if o < 1, the non-uniform grid

k

rB) .= {t,iN’B) = T—T(l N

)5.0<k<NY.

with an index 8 < a.
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Error expansion for smooth data and uniform grid [G., Labart *07]

Instead of upper boundson Y — Y and Z — Z¥ in L, norm, we expand the error.

Dynamic programming equation on the value function

Due to the Markov property of the Euler scheme (X7));, one has Y,¥ = u® (¢;, X}V)
and 7} = o™ (t;, X{') where

1 1 .

o (1, x) = At-E(UN( Z+1,X§+1)AWM XN =),
< UN(tZ,ZC) — E(UN( 'L‘|’17XI£V_|_1) _|_ At’lff(t'lJ:C?uN( 7J+17X1£V_|_1) UN( 'L+17 )‘XN ))
CuN(T,2) = ®(x).
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Approximation result of weak type

Theorem. Assuming smooth data b, o, f, @, one has

C(1+|z[*)
N

|uN(t'i7 :C) T u(tiv ZU)‘ <

and )
1
W (. 2) — Vyults, 2)o(t, z)] < S jv‘x‘ ),

Proof. Adaptation of the Malliavin calculus approach of Kohatsu-Higa [KHO01].
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Global expansion

Corollary.

Ytiv T Ytz — vﬂ?u(ti?Xti)(Xti o Xt]:[) -+ O(|th T XtJYP) -+ O(N_l)

and

Zi, = Zy, = [Va [ Vauol" (ti, Xp, ) (Xe, — X))+ O(1Xe, — X3 7) + O(N ).

Proof of corollary.
Y,V =Y, =N (i, Xp)) — ulti, Xe,)
=u™ (t;, X7 ) —ulty, X)) +ulty, X[ ) — ults, Xz,)
= O(N™Y) + Vu(ty, X)) ( Xy, — X7) + O(1 Xy, — XY P). [
—> Strong approximation of the forward SDE is crucial.

— At time 0, Y' — Yo = O(N—1)!!
First proved by Chevance [Che97] when f does not depend on z.
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2.7 Resolution by Picard’s iteration

BSDE = limit of a sequence of linear BSDE
Y/ = unt (¢, Xp) = E((Xr) + [, f(s, Xo, Y, Z2)ds| X,)
and
ZM = Vount it X))o (t, Xy).
Allow (t,z) to play similar roles.
[Bender, Denk ’07]; [G., Labart ’09] with adaptive control variates.

Smaller errors propagation compared to the dynamic programming equation.
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3 Computations of the conditional expectations

Our objective: to implement the dynamic programmin equation = to compute the
conditional expectations ~- the crucial step!!

Different points of view:

e the conditional expectation is a projection operator: if Y € Lo, then

E(Y|X)=A in E(Y —m(X))>*.
(Y]X) g min (Y —m(X))

~+ this is a least-squares problem. What for?
— To simulate the random variable m(X)? one only needs its law.
— To compute the regression function m? finding a function of
dimension= dim(X) ~- curse of dimensionality.
o Markovian setting: E(g(Xy, ,)|X:,) with (Xy,); Markov chain.

— To compute the transition operator from X;, to Xy, 7 to compute the

integral of g wr.t. Px, |x,, (dx)?
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— To simulate the transition?

e How many regression functions to compute?
Answer. For the DPE of BSDEs, N regression functions and N — oo.

( 1
N(ti, z) = At'I[Eil(uN( ZH,XN DAWE XY =),
) uV(tx) = B (g, XD + At f (s, zu (b, XY ) 0N (i, )| XY = )
\ N(T,x) = ®(x).

e In which points X € R%?

Answer. Potentially, many...

All is a question of global efficiency
— balance between accuracy and computational cost
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Markovian setting
Based on E(g(Xy,,,)|X,) = [ 9()Px, o Ix,, (dr) = m(Xy,).
If m(.) are required at only few values of X;, = x1,...,xy:

e one can simulate M independant paths of Xy, | starting from X;, = x1,---,xz,

and average them out (usual Monte Carlo procedures).

e but if needed for many ¢, exponentially growing tree!!

How to put constraints on the complexity?

e One possibility for one-dimensional BM (or Geometric BM): replace the true

dynamics by that of a Bernoulli random walk (binomial tree).
The size of the tree grows linearly with IV since it recombines.

In practice, feasible in dimension 1. Convergence: see [Ma, Protter, San Martin,
Torres ’02].

Available for Ornstein-Uhlenbeck process (trinomial tree).
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3.1 For more general dynamics: quantization [Graf, Luschgy ’00]

Step 1. To discretize optimally the law of X, for each j ~» quantization.

Step 2. To use this quantized level to implement the dynamic programming
equation.

Step 1. Computation of the grids. Fix the number of points M, (— o0).

Min. of the Ly-distorsion: X9 = {xJ_:1 < m < M;} = argmin E(mlin X, — XH2)
© Existence of stochastic algorithm to compute these points (Kohonen algorithm).
@ Quite slow. Better to compute them off-line.
© Suitable for Lo-approximations (and Lipschitz functions).

© Grid already known in the case of Gaussian r.v. for various dimensions and

various number of points [see Pages’ website].

© Rate of convergence available on the distorsion (Zador theorem: M jl/ d) of the

optimal grid.
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Define Voronoi tesselations: Cp(X7) = {z € R?: |z — a:‘,i| = mlin |z — .CC‘Z|}

Step 2. Computation of conditional expectations.

J+1

E(g(X,,, )| Xy, = 27) Z ag,19(T

P(th c Ck(Xj)thj_|_1 S Cl(Xj+1))
P(X,, € Cr(X7))

Computed by Monte Carlo simulations of X (also done off-line).

: J 9 J o~

To sum up:

© deterministic approximations

© many computations are made off-line

@ require the pre-computations of quantified grids of weights

For RBSDEs (with f independent of z), see [Bally, Pages 03] .
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3.2 Representation of conditional expectations using

Malliavin calculus

[Fournié, Lasry, Lebuchoux, Lions ’01; Bouchard, Touzi ’04; Bally, Caramellino,

Zanette ’05 ...]

Theorem. [integration by parts formula| Suppose that for any smooth f, one has
E(f*(F)G) = E(f(F)Hy(F, G))

for some r.v. Hy(F,G), depending on F', G, on the multi-index k£ but not on f.

Then, one has

E(1F1§5E1,--- ,ngdel,... ,1(F, G))
E(1p <ar, - Fa<eqaH1,.. 1(F,1))

E(G|F = z) =

—1)- _ ) E(G6 (X)) _ E(G(r<a)’) _ E(r<o.Hi(F,G)))
Formal proof (d=1): E(G|F =) = 5.5 = E((lF;),) = E(1F<§mH1(F,1)) .
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© The H are obtained using Malliavin calculus, or a direct integration by parts

when densities are known.

e Actually, we look for H(F,G) = GH(F,G).
Representation with factorization not so immediate to obtain (possible for
SDE).

€

In practice, large variances ~~ need some extra localization procedures.

€

For non trivial dynamics, the computational time needed to simulate H may be
high.

@ For BSDEs, available rates of convergence w.r.t. N and M [Bouchard, Touzi
’04] using N independent set of simulated paths.
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3.3 The approach using projections and regressions

Statistical regression model: Y = m(X) + € with E(¢|X) = 0.

X is called the (random) design.

Large literature on statistical tools to approximate E(Y|X).

References [Hardle ’92; Bosq, Lecoutre ’87; Gyorfi, Kohler, Krzyzak, Walk ’02]

Problem: compute m(.) using M independent (?) samples (Y;, X;)1<i<ns-

& Usually, estimation errors in the literature are not sufficient for our purpose:
e the law X may not have a density w.r.t. Lebesgue measure.
e the support of the law of the X is never bounded!

& In addition, the samples are not independant (since one has N-times iteration
in the discrete BSDE).
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Discussions of non parametric regression tools from
theoretical /practical points of view

3.3.1 Kernel estimators

1 M x—X;
7 i K )Y

E(Y|W =)~ hdlz o = M)
ad 2zt K(5570)

where

e the kernel function is defined on the compact support [—1, 1], bounded, even,
non-negative, C> and [, K(u)du = 1;
e h > 0 is the bandwith.
Non-integrated Ls-error estimates available.

Remaining problems with the non-compact support of X (partially solved recently

in [G., Labart *09] using weighted Sobolev space estimates).

@ Computational efficiency: to compute m M.n, @t one point, M computations.
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3.3.2 Projection on a set of functions

Set of functions: (¢x)o<r<k-

E(Y[X) = Argmin E (Y - g(X))?

K
~ Argmin @ E(Y — ) aror(X))2.

Computations of the optimal coefficients (ay)x: it solves the normal equation

Aa=E(Y¢) where A;; =E(¢:(X)¢;(X)), [E(Y¢); =E(Y ¢i(X)).

e For simplicity, one should have a system of orthonormal functions (w.r.t. the
law of X).

@ 1In practice, impossible except in few cases (Gaussian case using Hermitte

polynomials, ...).

@ In many situations, the law of X is not explicitely known.
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@ If the system is not orthonormal, one should compute A and invert it.
& Its dimension is expected to be very large: K — oo to ensure convergent
approximations.
Presumably big instabilities (ill-conditioned matrix) to solve this least-squares
problem [Golub, Van Loan ’96].

e In practice, A is computed using simulations, as well E(Y ¢).

Equivalent to solve the empirical least-squares problem:

M
1
(!, = Arg mm — Z Z apdr (X
m=1
@ [CLT] At fixed K, if A is invertible, one has lim vM(a™ — a) £ N(0,...).

M — o0

@ Which set of functions leads to quick /efficient computations of (a!)?

@ How to prove convergence rates of a.¢(.) —m(.) as M — oo and K — oo (for
general laws for (X,Y))?
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The case of polynomial functions

e Popular choice.
e Smooth approximation.

© Global approximation: within few polynomials, a smooth m(.) can be very well
approximated.

@® But slow convergence for non smooth functions (non-linear BSDEs may lead to
non-smooth functions).
@ Do projections on polynomials converge to m(.)? @r>0Pr(X) = La(X)?

If for some a > 0 one has E(e?X!) < 0o, then polynomials are dense in
L,-functions.

Proof. Related to the moment problems. Is a r.v. characterized by its
polynomial moment? []

In particular, if X is log-normal, olynomials of X are not dense in Ly (Feller
counter-exemple)!! Compare with Longstaff-Schwartz algorithm [Lso1].

@ In the good cases, convergence rates?
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The case of local approximation

Piecewise constant approximations. ¢, = 1¢, where the subsets (Cy)x forms a
tesselation of a part of R? : C, NC; =0 for | # k.

ar inf E(Y — ¢g(X))? or ar inf EM(Y — g(X))??
8 oyt | B —g(X) 8 gt | BTV —g(X)
The “matrix” A = (E(¢:(X)¢;(X)); ; is diagonal: A = Diag(P(X € C;);).

—

)
o = 4 EI(P}(/JZEZ?) =EY[X €C) iHP(X eCy) >0,
k p—
0 if P(X € Cy) =0,
oM — < #{m:Xl’mGCk} Zm:X"mECk Y™ if #{m: X™ € Cr} >0,
)=
\O if #{m : X™ € Cy} = 0.

Possible easy extensions to piecewise affine functions (or polynomials).

European Summer School in Financial Mathematics - Paris - 24-29 August 2009 page 72



Backward SDEs with Financial Applications E. Gobet

Rate of approximations of a Lipschitz regression function m(.)

Size of the tesselation: [C| < sup;sup yyeq, IX — ¥

Given a probability measure u: p=Px or u = ﬁ 2%21 dxm(.).

< imiax) — m(e)Puldz) + / m? (2)ul(de)
. Y Cu [UrCr]©
< 3 (C2u(C) + 2 i([UkC]°)

< [CP? + |m|Z p([UkCi]%).-
e We expect the tesselation size to be small.
© The complementary u([UrCr]¢) has to be small (tail estimates).
© Model-free error-estimates.

© Optimal estimates for Lipschitz functions.
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Efficient choice of tesselations?
Given z € R%, how to locate efficiently the Ci such that z € Cy?

e Voronoi tesselations associated to a sample (X*);<r<f of the underlying
rv. X: C, ={z€R%: |z — X¥| = min; |z — X!|}. Closed to quantization ideas.
Theorically, there exists searching algorithms with a cost O(log(K)).

e Regular grid (hypercubes).
k= (ki,..,kq) €{0,..., K1 — 1} x ... x {0, .., K4 — 1} define
Ck = [—Z1,min +Az1k1, =21 min +Az1(k1+1)[X - - X [=2q min +AZ3kq, —Td,min +Axq(kqg+1)].
Tesselation size=0(max; Ax;).
Quick search formula:

LTy — xi,minJ

x € C, with k = (k1, ..., kq) if Tjmin < T; < Timax and k; = | A
L
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3.4 Model-free estimation of the regression error [cKkkwoz2]

In the BSDEs framework, see [Lemor, G., Warin ’06] .
Working assumptions:

o Y =m(X)+ e with E(¢| X) = 0.
e Data: sample of independant copies (X1,Y1), -+, (Xn, Yn).
e 02 =sup, Var(Y|X = z) < o0

e F, = Span(fi,...fk,) a linear vector space of dimension K,,, which may
depend on the data!

Notations: |f|2 = > " | f2(X;). Write u" for the empirical measure associated
to (X1, -, X,).

1
np(.) = in — X; _YiQ-
() = arg i = 3717060 Vi

Kn
Theorem. Lo(p™)-error: E(jr, —m|?| Xy, -, X,) < 0?—2 + fm%‘n f —ml?.
n €Fn

A little extra work would give bounds in Lo ().
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Proof

W.lo.g., we can assume that

e (f1,...fk, ) is orthonormal family in Lo(u™): %Zz [ (X)) f1(X5) = gt
—> The solution of argminsep, = > ., |f(X;) — Yi|? is given by

1
=) aify(.) with 5= Eij(X Y
J i

Lemma. Denote E*(.) = E(.| X1, -+, X,,). Then E*(m,(.)) is the least-squares
solution of argminger, = >, |f(X;) — m(X;)|? = argminger, |f —m|2.

Proof.
e The above least-squares solution is given by » ;a7 f;(.) with

a; = 5 20 fi(X)m(X;).

e As a conditional expectation, E*(ﬁzn()) = E* (o) f5 ().

Then E* Oéj ij ij )+62‘X1, 7Xn) :04;.

European Summer School in Financial Mathematics - Paris - 24-29 August 2009 page 76



Backward SDEs with Financial Applications E. Gobet

Pythagore theorem: |m,, — m|? = |m,, — E*(m,)|? + [E*(1h,) — m|2.
Then,  E*litn — mf% = E*fritn — E* ()% + [E* () — mf2
= E*|i, — E* (i
1 ()5, + in |f —mly.

Since (f;); is orthonormal in Lg(un), we have

1y — B (172,)] Zm ;)%
Thus, using a; — E*(aj) = = Z i (X)) (Vi —m(X;)), we have

E* |y, — E* (m Z E*ng i) f5 (X)) (Vi = m(X:)) (Vi — m(X;)

_Zm Zf Var(Y;| X;)

since the (¢;); conditionnaly on (X1, - Xn) are centered.
o Ky,
* >|< 2 2 E E
:>E\mn—E mn <o n2 f —0'7.
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Uniform law of large numbers

Zym = (41, ,Zy) aiid. sample of size n.
For G C {g : R% — [0, B]}, one needs to quantifty

P(Vg € G : \—Zg (Z)] > ¢)

as a function of € and n?

By Borel-Cantelli lemma, may lead to uniform laws of large numbers:
sup |— 9(Z (Z2)] =0 as.
sup| Z

as n — OQ.
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e-cover of ¢

Definition. For a class of functions G and a given empirical measure " associated
to n points Zy., = (41, , Z,), we define a e-cover of G w.r.t. L1(u") by a
collection (g1, -+ ,gn) in G such that

for any g € G, thereisa j € {1,--- ,N} s.t. |g — gjlL, (un) <€

Set N1(e,G,Z.,)=the smallest size N of e-cover of G w.r.t. Lq(u,).
Theorem. For G C {g: R? — [~B, B]}. For any n and any € > 0, one has

n62

512B2

P(vg € G:|= > (%) — Bg(2)] > ) < BE(N:(¢/8,0, Zun)) exp(~ p1ars)

Theorem. If G ={—-BV >, apdr(.) AB: (a1, - ,ax) € R®}, then

]
€ Og(e

K+1
Nl (67 g7 Zl:n) S 3 (4eB 4eB)> .

© Enables to replace an empirical mean by its expectation, up to error e with high
probability (explicitely quantified).
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3.5 Applications to numerical solution of BSDEs using
empirical simulationsLcwos]

Regular time grid with time step h = % + Lipschitz f, ®, b and o.
Towards an approximation of the regression operators

Truncation of the tails using a threshold R = (R, - , Ry):

(AW, 4w = (= RoVh ) V AW, 1 A (RoVR ),

it x,y,2) = f(t, -RiVxi ARy, - ,—RqV xq A Rg,y, 2),
dR(r)=®(—Ri Va1 ARy, - ,—RqV xq A Ry).
~+ Localized BSDEs

Define YI{V’R(XgV) = ®%(X;\) and

( 1
N,R
< Zl,tk — %E( trtt [AWZ klwl Tty )5
N,R N,R N,R
X }/'L'k — E(thk—kl —|_ th(tk7 tk ) thk:—i—l ? Z )‘ftk)
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Proposition. For some Lipschitz functions y,iV’R(o) and z,iV’R(o), one has:

( 1
N,R
; 1y = EE( D IAW LRl Fr ) = 20 (X)),
N,R N,R N,R N,R
L }/tk — E(}/tk+1 + th(tk7 tk Y }/tk+1 7Zt )|ftk) — yk (Xng)

a) The Lipschitz constants of i, '**(e) and N~'/22"""(e) are uniform in N and R.

b) Bounded functions: sup (||y,iVR(°)Hoo + N_1/2||Z,iV’R(0)HOO> = Cy < 0.
N

Proposition. (Convergence as |R| T c0). For h small enough, one has
N-1

N.B _yN2 N,R N2
og}fa%XNEW Yoo I+ hlE Z 20, — 2y
k=0
N RN 1+R2 — 5
< CE|®(X;)\) — "(X,))” + Z E(|AWy] 1|AWk|zRO\/E)
k=0

+ ChE Y | f(te, X[V YN 200 — (Rt X0 Y 20D

te? " ti410 te+1?

~+ Small impact of the threshold R. But more numerical stability.
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Approximation of y, "*(e) and z, " (e)

Projection on a finite dimensional space:

yE’R(.) ~ CVO,k-pO,k(')a ZE;R(C) ~ aljk.pljk(o),

(for instance, hypercubes as presented before).

Coefficients will be computed by extra M independent simulations of (X;"); and
(AW ~ {(Xt]Z’m)k}m and {(AW™);}m (only one set of simulated paths).
In addition, we impose boundedness properties:

N,R,M N,R,M __
Yk (o) = [agk-Pox(®)ly, 2z ~ [ k-Prr(e)]z;

where [¢], = ~C, Vi ACy, [V], = —-C,NY2vyp AC, N2

Yy 2y TN, Zig M X,
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The final algorithm
— Initialization : for k = N take y]]\\;’R(-) = F (L),

— Iteration : for k=N —1,---,0, solve the ¢ least-squares problems :
M N,R, M [A ltrllﬂ] N,my |2
k—argmf—2| Vit 1 tk:-|—1) ; —a- (X, )"
M

Then compute o, as the minimizer of

NRM (o Nm N.R.M ; ~N,m N.m N.m
Z | k—|—1 tk_|_1 )—i_th(tk? 7yk—|—1 (th_|_1 )7 [Q%Cplyk(th )]z)_apo,k(th )|2

Then define g, """ (o) = [agh - pok(®)]y, 25 " (9) = [ - Pri(e)]=.
Error analysis
1. M = oo: quite easy to analyse.
2. For fixed N and fixed set of functions, Central Limit Theorem on o as M — oo.

3. Non asymptotic estimates? hard because dependent regression operators.
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Robust error bounds

Theorem. Under Lipschitz conditions (only ), one has

max E|Y,N 1 — M (N |2+hZIE\ZNR M (SN2

0<k<N
C21 ) "= o
<C Og ) STSCE(EM) + on
k=0 (=0

+CZ {mf]E\yNR(sN)—a po.k(SY) \2+me]E\WZNR(sN)—a-pl,k(sg)m

=1

C2 = y M3 C C (K )3
+C—= h Z {IEZ(KWc eXp(_72C’EKé‘4k)eXp(CKO’kHlog 3

k=0
M C C,Ro(KM)
e ) OP(CRor log ———=))

C C, Mh3)}.

)

N|=

+ hE(K% exp(—

+ exp(C Ko i log

h2 ) eXp(— 7203
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Convergence of the parameters
in the case of HC functions

1 :
~ > choose:

For a global squared error of order ¢ =
1. Edge of the hypercube: ¢ ~ %
2. Number of simulations: M ~ N3124,

Available for a large class of models on X, which depend essentially on Lo bounds
on the solution (no ellipticity condition, with or without jump...).

Complexity /accuracy

Global complexity: C ~ ¢ T

_1

Techniques of local duplicating of paths: C ~ ¢~ 7+d.
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3.6 Numerical results (mainly due to J.P. Lemor)
Ex.1: bid-ask spread for interest rates
e Black-Scholes model and ®(S) = (S — K1)+ — 2(S7 — K2) +.
® f(t7x7y7 Z) — _{yr + 20 — (y T i)_(R o T)}, 0 = M;T'
R T S K K
e Parameters: - id . 0 - ’
0.05 | 0.2 | 0.01 | 0.06 | 0.25 | 100 95 105
N=56=5|N=20,6=1| N=50,6=05
M | D=[60,140] | D =[60,200] | D = [40,200]
128 3.05(0.27) 3.71(0.95) 3.69(4.15)
512 2.93(0.11) 3.14(0.16) 3.48(0.54)
2048 | 2.92(0.05) 3.00(0.03) 3.08(0.12)
8192 | 2.91(0.03) 2.96(0.02) 2.99(0.02)
32768 |  2.90(0.01) 2.95(0.01) 2.96(0.01)
Table 1: Results for the combination of Calls using HC.
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Global polynomials (GP)

Polynomials of d variables with a maximal degree.

N=5 N =20 N = 50 N = 50
M |dy=1,d.=0|dy=2,d,=1|d,=4,d.=2|d,=9,d, =9
128 2.87(0.39) 3.01(0.24) 3.02(0.22) 3.49(1.57)
512 2.82(0.20) 2.94(0.12) 2.97(0.09) 3.02(0.1)
2048 2.78(0.07) 2.92(0.07) 2.92(0.04) 2.97(0.03)
8192 2.78(0.05) 2.92(0.04) 2.92(0.02) 2.96(0.01)
32768 | 2.79(0.03) 2.91(0.02) 2.91(0.01) 2.95(0.01)

Table 2: Results for the calls combination using GP.

Large standard error ~» GP not appropriate
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Ex.2: locally-risk minimizing strategies (FS decomposition)

Heston stochastic volatility models [Heath, Platen, Schweizer ’02]:

dS c
?t =Y dt + Y, dW;, dY; = (?0 — 1 Yy)dt + codBy.
t t
8-5 T T T T I
- —— (5,10) i
I (20,5) .
\ (40,2.5)
I (80,1.25) |
\ - — -» (160,0.625) .
gL Ref Price |
g | ]
Functions HC, = i l
parameters (IV,6). A L |
715k Joo—"7 o
0 4
|
..-I T
|
._I T
l;_ -
7 1 1 1 1 l
0 1. 10*

European Summer School in Financial Mathematics -

Paris - 24-29 August 2009

page 88



Backward SDEs with Financial Applications E. Gobet

American options via RBSDEs: several approaches

1. Taking the max with obstacle ~» Bermuda options (lower approximation)

Yo = max(®(te, Sy, ) E(Yy,), | Fo) + hf (te, S, Yoy s Z4))),

tre41
1

Zl],\‘['fk — EE(}Q]:H

2. Penalization. Obtained as the limit of standard BSDEs with driver
F(5, 85, Yo, Zs) + A(Ya — ®(s, 8,)) with A | +00.
Lower approximation.

AW, | F,.)-

3. Regularization of the increasing process: when

then th — Oét]-Yt:q)(t,St)(f(ta St, (I)(t, St), Vvt) + Ut)_dt with Oy € [O, 1]

Obtained as a limit of standard BSDEs with driver
S(8:85, Y5, Zs) + pa(Ys — @(s,55))(f (s, 55, B(s,55), Vi) + Us) - ete...

Upper approximation.
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Ex.3 : American option on three assets

1

o Payoff g(z) = (K — ([T0_, =:)3) "

T | r o K | S |d
1 ]005|04Id | 100 | 100 | 1

e Black-Scholes parameters:

e Reference price 8.93 (PDE method).

European Summer School in Financial Mathematics - Paris - 24-29 August 2009 page 90



Backward SDEs with Financial Applications

E. Gobet

i — 4+ Regularization )
- Penalization -
o M ax |
Reference price
10 —
(b} L 4
2
a 95 |
9 » —
i e |
1 1 1 1 l 1 1 1 1 l 1
0 5. 10 1.10°

Functions HC(1,0) with lo-
cal polynomials of degree 1
for Y and 0 for Z.

Regularization: N = 32,
0=9, A=2.

Max: N =44, § = 7.

Penalization: N = 60,
0=2, \A=2.
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Ex.4 : American option on ten assets

e d =10 =2p. Multidimensional Black-Scholes model: St = (r — u)dt + o1dW}.

e Payoff : max(x1---xp — xpy1---T2p,0).

)
\V)

e =0, dividend rate u; = —0.05, ;=0 for [ > 2. 0, = ==. T = 0.5.

Si—=40d,1<i<p. Si=36d,p+1<i<2p

S

e Reference price 4.896, obtained with a PDE method [Villeneuve, Zanette 2002].

e Price with quantization algorithm: 4.9945 [Bally-Pages-Printemps 2005].
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T T T T T T T T T T T T T

— Max Price -
Reference Price -

1 Functions HC(1,0).

\Y\‘T\TT‘\TT

Price

7 Max: N =60, § = 0.6.

- Computational time:

- : 1 15 seconds.

number of smulations
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