Backward Stochastic Differential Equations with Financial Applications (Part I)

Jin Ma

$\overline{\overline{\mathrm{USC}}}$ Department of Mathematics
University of Southern California

2nd SMAI European Summer School in Financial Mathematics Paris, France, August 24 - 29, 2009

Outline

(1) Introduction
(2) BSDEs in Finance (A First Glance)
(3) Wellposedness of BSDEs

4 Well-posedness of FBSDEs
(5) Some Important facts of BSDEs/FBSDEs
(6) Weak Solution for FBSDEs
(7) Backward Stochastic PDEs
(8) BSPDEs and FBSDEs
(9) References

1. Introduction

Why BSDEs and FBSDEs?

An Example:

A standard "LQ" stochastic control problem:

$$
\left\{\begin{array}{l}
d X_{t}^{u}=\left(a X_{t}^{u}+b u_{t}\right) d t+d W_{t}, \quad X_{0}^{u}=x \\
J(u)=\frac{1}{2} \mathbb{E}\left\{\int_{0}^{T}\left\{\left|X_{t}^{u}\right|^{2}+\left|u_{t}\right|^{2}\right\} d t+\left|X_{T}^{u}\right|^{2}\right\}
\end{array}\right.
$$

where W is a standard Brownian motion and $\mathbb{F}=\left\{\mathscr{F}_{t}^{W}\right\}_{t \geq 0}$ is the natural filtration generated by W; $u=\left\{u_{t}\right\}$ is the "control" process; and $J(u)$ is the "cost functional".

The problem:

Find $u^{*} \in \mathscr{U}_{a d} \subseteq L_{\mathbb{F}}^{2}(\Omega \times[0, T])$ such that $J\left(u^{*}\right)=\inf _{u \in \mathscr{U}_{a d}} J(u)$.

A necessary condition (Pontryagin's Maximum Principle):

Assume u^{*} is optimal.
Then $\forall \varepsilon>0$ and $\forall v \in \mathscr{U}_{a d}$, one has $J\left(u^{*}+\varepsilon v\right) \geq J\left(u^{*}\right)$

$$
0 \leq\left.\frac{d}{d \varepsilon} J\left(u^{*}+\varepsilon v\right)\right|_{\varepsilon=0}=\mathbb{E}\left\{\int_{0}^{T}\left\{X_{t}^{u^{*}} \xi_{t}+u_{t}^{*} v_{t}\right\} d t+X_{T}^{u^{*}} \xi_{T}\right\}
$$

where $\xi=\left.\frac{d}{d \varepsilon} X^{u^{*}+\varepsilon v}\right|_{\varepsilon=0}$ is the solution to the variational equation:

$$
\begin{equation*}
d \xi_{t}=\left\{a \xi_{t}+b v_{t}\right\} d t, \quad \xi_{0}=0 \tag{1}
\end{equation*}
$$

A necessary condition (Pontryagin's Maximum Principle):

Assume u^{*} is optimal.
Then $\forall \varepsilon>0$ and $\forall v \in \mathscr{U}_{a d}$, one has $J\left(u^{*}+\varepsilon v\right) \geq J\left(u^{*}\right)$

$$
0 \leq\left.\frac{d}{d \varepsilon} J\left(u^{*}+\varepsilon v\right)\right|_{\varepsilon=0}=\mathbb{E}\left\{\int_{0}^{T}\left\{X_{t}^{u^{*}} \xi_{t}+u_{t}^{*} v_{t}\right\} d t+X_{T}^{u^{*}} \xi_{T}\right\},
$$

where $\xi=\left.\frac{d}{d \varepsilon} X^{u^{*}+\varepsilon v}\right|_{\varepsilon=0}$ is the solution to the variational equation:

$$
\begin{equation*}
d \xi_{t}=\left\{a \xi_{t}+b v_{t}\right\} d t, \quad \xi_{0}=0 \tag{1}
\end{equation*}
$$

A Lucky Guess (?):

Assume that η is the solution to the following "adjoint equation" of (1):

$$
\begin{equation*}
d \eta_{t}=-\left(a \eta_{t}+X_{t}^{u^{*}}\right) d t, \quad \eta_{T}=X_{T}^{u^{*}} \tag{2}
\end{equation*}
$$

Then, "integration by parts" yields

- $\xi_{T} \eta_{T}=\int_{0}^{T}\left\{-\xi_{t} X_{t}^{u^{*}}+b \eta_{t} v_{t}\right\} d t$
- $\int_{0}^{T}\left\{u_{t}^{*} v_{t}+b \eta_{t} v_{t}\right\} d t=\int_{0}^{T}\left\{X_{t}^{u^{*}} \xi_{t}+u_{t}^{*} v_{t}\right\} d t+X_{T}^{u^{*}} \xi_{T}$
- $\mathbb{E} \int_{0}^{T}\left\{u_{t}^{*}+b \eta_{t}\right\} v_{t} d t=$
$\mathbb{E}\left\{\int_{0}^{T}\left\{X_{t}^{u^{*}} \xi_{t}+u_{t}^{*} v_{t}\right\} d t+X_{T}^{u^{*}} \xi_{T}\right\} \geq 0$
- Since $v \in L_{\mathbb{F}}^{2}(\Omega \times[0, T])$ is arbitrary, $u_{t}^{*}=-b \eta_{t}, \forall t$, a.s.
- $u^{*}=-b \eta$ should have all the reasons to be an optimal control except...

Then, "integration by parts" yields

- $\xi_{T} \eta_{T}=\int_{0}^{T}\left\{-\xi_{t} X_{t}^{u^{*}}+b \eta_{t} v_{t}\right\} d t$
- $\int_{0}^{T}\left\{u_{t}^{*} v_{t}+b \eta_{t} v_{t}\right\} d t=\int_{0}^{T}\left\{X_{t}^{u^{*}} \xi_{t}+u_{t}^{*} v_{t}\right\} d t+X_{T}^{u^{*}} \xi_{T}$
- $\mathbb{E} \int_{0}^{T}\left\{u_{t}^{*}+b \eta_{t}\right\} v_{t} d t=$

$$
\mathbb{E}\left\{\int_{0}^{T}\left\{X_{t}^{u^{*}} \xi_{t}+u_{t}^{*} v_{t}\right\} d t+X_{T}^{u^{*}} \xi_{T}\right\} \geq 0
$$

- Since $v \in L_{\mathbb{F}}^{2}(\Omega \times[0, T])$ is arbitrary, $u_{t}^{*}=-b \eta_{t}, \forall t$, a.s.
- $u^{*}=-b \eta$ should have all the reasons to be an optimal control except...

A Problem:

$u^{*} \notin \mathscr{U}_{a d}!$ (since it is not adapted!!)

BSDE to the rescue:

Example

$$
\left\{\begin{array}{l}
d Y_{t}=0 \tag{3}\\
Y_{T}=\xi \in L^{2}\left(\mathscr{F}_{T}\right)
\end{array}\right.
$$

Same Problem: The unique "solution" $Y_{t} \equiv \xi$ is not adapted!

BSDE to the rescue:

Example

$$
\left\{\begin{array}{l}
d Y_{t}=0 ; \tag{3}\\
Y_{T}=\xi \in L^{2}\left(\mathscr{F}_{T}\right) .
\end{array}\right.
$$

Same Problem: The unique "solution" $Y_{t} \equiv \xi$ is not adapted!

The Solution:

Define $Y_{t}=\mathbb{E}\left\{\xi \mid \mathscr{F}_{t}\right\}, t \in[0, T]$. Then Y becomes an L^{2}-martingale, and by Martingale Representation Theorem (Itô, 1951), there exists $Z \in L_{\mathbb{F}}^{2}(\Omega \times[0, T])$ such that

$$
\begin{align*}
Y_{t} & =\mathbb{E}\{\xi\}+\int_{0}^{t} Z_{t} d W_{t}, \quad t \in[0, T] . \\
\Longrightarrow \quad Y_{t} & =\xi-\int_{t}^{T} Z_{t} d W_{t}, \quad t \in[0, T]-\mathrm{ABSDE}! \tag{4}
\end{align*}
$$

Back to the LQ problem:

Consider the modified adjoint equation (as a BSDE):

$$
\left\{\begin{array}{l}
d \eta_{t}=-\left(a \eta_{t}+X_{t}^{u^{*}}\right) d t+Z_{t} d W_{t} \tag{5}\\
\eta_{T}=X_{T}^{u^{*}}
\end{array}\right.
$$

The Conclusion

Suppose that one can find a pair of process (η, Z) that is the solution to (5). Then define $u_{t}^{*}=-b \eta_{t}, \forall t$, we obtain an optimal control!

Back to the LQ problem:

Consider the modified adjoint equation (as a BSDE):

$$
\left\{\begin{array}{l}
d \eta_{t}=-\left(a \eta_{t}+X_{t}^{u^{*}}\right) d t+Z_{t} d W_{t} \tag{5}\\
\eta_{T}=X_{T}^{u^{*}}
\end{array}\right.
$$

The Conclusion

Suppose that one can find a pair of process (η, Z) that is the solution to (5). Then define $u_{t}^{*}=-b \eta_{t}, \forall t$, we obtain an optimal control!

Observation:

The "close-loop" system is then

$$
\left\{\begin{array}{l}
d X_{t}^{u^{*}}=\left(a X_{t}^{*}-b^{2} \eta_{t}\right) d t+d W_{t} \\
d \eta_{t}=-\left(a \eta_{t}+X_{t}^{u^{*}}\right) d t+Z_{t} d W_{t} \\
X_{0}^{u^{*}}=x \quad \eta_{T}=X_{T}^{u^{*}}
\end{array}\right.
$$

- An FBSDE!

A Brief History

- Bismut ('73) - Linear BSDEs (Maximum Principle)
- Pardoux-Peng ('90, '92) — Nonlinear BSDEs
- Antonelli ('93) - FBSDEs (Stochastic Recursive Utility -Duffie-Epstain ('92))
- Ma-Yong/Ma-Protter-Yong ('93,'94) — "Four Step Scheme"
- El Karoui-Kapoudjian-Pardoux-Peng-Quenez, Cvitanic-Karatzas, ('97) - BSDEs with reflections
- Ma-Yong ('96-'98) - BSPDEs
- Ma-Yong ('99) — Book (LNM 1702)

A Brief History

- Bismut ('73) - Linear BSDEs (Maximum Principle)
- Pardoux-Peng ('90, '92) — Nonlinear BSDEs
- Antonelli ('93) - FBSDEs (Stochastic Recursive Utility -Duffie-Epstain ('92))
- Ma-Yong/Ma-Protter-Yong ('93,'94) — "Four Step Scheme"
- El Karoui-Kapoudjian-Pardoux-Peng-Quenez,

Cvitanic-Karatzas, ('97) - BSDEs with reflections

- Ma-Yong ('96-'98) - BSPDEs
- Ma-Yong ('99) - Book (LNM 1702)

Other Developments

- Lepeltier-San Martin ('97) — BSDEs with cont. coefficients
- Kobylanski ('01) - BSDEs with quadratic growth (in Z)
- Delarue ('02) - FBSDE with Lipschitz coefficients
- Ma-Zhang-Zheng ('08) — Weak solution and "FBMP"
- Soner-Touzi-Zhang (09?) - 2BSDEs

2. BSDEs/FBSDEs in Finance

Option Pricing

The (Black-Scholes) market model:

$$
\left\{\begin{array}{l}
d S_{t}^{0}=S_{t}^{0} r_{t} d t, \quad S_{0}^{0}=s^{0}, \\
d S_{t}^{i}=S_{t}^{i}\left\{b_{t}^{i} d t+\sum_{j=1}^{d} \sigma_{t}^{i j} d W_{t}^{j}\right\}, S_{0}^{i}=s^{i}, 1 \leq i \leq d, \text { (Stocks) }
\end{array}\right.
$$

- S_{t}^{0}, S_{t}^{i} —prices of bond/(i-th) stocks (per share) at time t
- r_{t}-interest rate at time t
- $\left\{b_{t}^{i}\right\}_{i=1}^{d}$ —appreciation rates at time t
- $\left[\sigma_{t}^{i j}\right]$-volatility matrix at time t

More general form of the underlying asset price:

$$
d S_{t}=S_{t}\left\{b\left(t, S_{t}\right) d t+\sigma\left(t, S_{t}\right) d W_{t}\right\}, \quad S_{0}=s
$$

The Wealth Equation:

Denote:

- Y_{t}-dollar amount of the total wealth of an investor at time t
- π_{t}^{i}-dollars invested in i-th stock at time $t, i=1, \cdots, N$
- C_{t}-cumulated consumption up to time t

Then, the wealth process Y satisfies an SDE: for $t \in[0, T]$,

$$
Y_{t}=y+\int_{0}^{t}\left\{r_{s} Y_{s}+\left\langle\pi_{s},\left[b_{s}-r_{s} \mathbf{1}\right]\right\rangle\right\} d s+\int_{0}^{t}\left\langle\pi_{s}, \sigma_{s} d W_{s}\right\rangle-C_{t}
$$

where $\mathbf{1} \triangleq(1, \cdots, 1)$.

The Contingent Claims:

Any $\xi \in \mathscr{F}_{T}$. In particular, $\xi=g\left(S_{T}\right)$ - Options. E.g.,

- $\xi=\left(S_{T}^{1}-q\right)^{+}$-European call
- $\xi=\left(S_{\tau}^{1}-q\right)^{+}$-American call (τ-stopping time)

European Options (Fixed exercise time T)

Define the "fair price" of an option to be

$$
p=\inf \left\{v: \exists(\pi, C), \text { such that } Y_{T}^{y, \pi, C} \geq \xi\right\}
$$

Then (El Karoui-Peng-Quenez, '96), the price p and the "hedging strategy" (π, C) can be determined by:

- $C \equiv 0, p=Y_{0}=y$, and $\pi_{t}=\left(\sigma_{t}^{T}\right)^{-1} Z_{t}$;
- (Y, Z) solves the BSDE:

$$
Y_{t}=\xi-\int_{t}^{T}\left\{r_{s} Y_{s}+\left\langle Z_{s}, \sigma_{s}^{-1}\left[b_{s}-r_{s} 1\right]\right\rangle\right\} d s-\int_{t}^{T}\left\langle Z_{s}, d W_{s}\right\rangle
$$

Fair price for American Option:

$$
p=\inf \left\{v: \exists(\pi, C), \text { such that } Y_{\tau}^{y, \pi, C} \geq g\left(S_{\tau}\right), \forall \tau\right\}
$$

American Options (El Karoui-Kapoudjian-Pardoux-Peng-Quenez, '97)

For $\xi=g\left(S_{\tau}\right)$, where τ is exercise time (any $\left\{\mathscr{F}_{t}\right\}$-stopping time). Then the price, hedging strategy, and the optimal exercise time are solved as:

- $p=Y_{0}=y, C=0$,
- (Y, Z, K) solves a BSDE with reflection:

$$
\left\{\begin{aligned}
& Y_{t}= g\left(S_{T}\right)-\int_{t}^{T}\left\{r_{s} Y_{s}+\left\langle Z_{s}, \sigma_{s}^{-1}\left[b_{s}-r_{s} \mathbf{1}\right]\right\rangle\right\} d s \\
& \quad-\int_{t}^{T}\left\langle Z_{s}, d W_{s}\right\rangle+K_{T}-K_{t} \\
& Y_{t} \geq g\left(S_{t}\right), \quad \forall t \in[0, T], \text { a.s. } ; \int_{0}^{T}\left(Y_{t}-g\left(S_{t}\right)\right) d K_{t}=0
\end{aligned}\right.
$$

- The optimal exercise time is given by

$$
\tau=\inf \left\{t>0: Y_{t}=g\left(S_{t}\right)\right\} .
$$

Contrary to the Black-Scholes theory, one may assume that some investors are "large".

The price-wealth pair satisfies an FBSDE:

$$
\left\{\begin{aligned}
d X_{t}= & X_{t}\left\{b\left(t, X_{t}, Y_{t}, Z_{t}\right) d t+\sigma\left(t, X_{t}, Y_{t}, Z_{t}\right) d W_{t}\right\} \\
d Y_{t}= & -\left\{r_{t} Y_{t}+Z_{t}\left[b\left(t, X_{t}, Y_{t}, Z_{t}\right)-r_{t} \mathbf{1}\right]\right\} d t \\
& \quad-Z_{t} \sigma(t, \cdots) d W_{t}+C_{T}-C_{t} \\
X_{0}= & x, \quad Y_{T}=g\left(X_{T}\right)
\end{aligned}\right.
$$

- Hedging without constraint (Cvitanic-Ma, 1996)
- Hedging with constraint (Buckdahn-Hu, 1998)
- American "game" option (FBSDER, Cvitanic-Ma, 2000)

Stochastic Recursive Utility

Duffie-Epstain ('92) defined the "SRU" by a BSDE:

$$
U_{t}=\Phi\left(Y_{T}\right)+\int_{t}^{T} f\left(s, c_{s}, U_{s}, V_{s}\right) d s-\int_{t}^{T} V_{s} d W_{s}
$$

- Y - wealth;
- Φ-utility function
- f - "standard driver" or "aggregator"
- $\left|V_{t}\right|^{2}=\frac{d}{d t}\langle U\rangle_{t}$ - the "variability" process
- c - consumption (rate) process
- Standard Utility: $f(c, u, v)=\varphi(c)-\beta u$.
- Uzawa Utility: $f(c, u, v)=\varphi(c)-\beta(c) u$.
- Generalized Uzawa Utility: $f(c, u, v)=\varphi(c)-\beta u-\gamma|v|$, (Chen-Epstein (1999)).

Portfolio/Consumption Optimization Problems

General wealth equation with portfolio-consumption strategy (π, c) :

$$
\begin{equation*}
d Y_{t}=b\left(t, c_{t}, Y_{t}, \sigma_{t}^{T} \pi_{t}\right) d t-\left\langle\pi_{t}, \sigma_{t} d W_{t}\right\rangle \tag{6}
\end{equation*}
$$

Portfolio/consumption optimization problem

Find (π, c) so as to maximize certain "utility":
$U(y, \pi, c) \triangleq E\left\{\Phi\left(Y_{T}^{y, \pi, c}\right)+\int_{0}^{T} h\left(t, c_{t}, Y_{t}^{y, \pi, c}\right) d t\right\}$.

- A stochastic control problem!

With Stochastic Recursive Utility:

$U_{0}^{y, \pi, c}=E\left\{\Phi\left(Y_{T}^{y, \pi, c}\right)+\int_{0}^{T} f\left(t, c_{t}, Y_{t}^{y, \pi, c}, U_{t}^{y, \pi, c}, V_{t}^{y, \pi, c}\right) d t\right\}$.
\Longrightarrow A stochastic control problem for FBSDEs!

Term Structure of Interest Rates.

Brennan-Schwartz's Term structure model: (1979)

$$
\left\{\begin{array}{l}
d r_{t}=\mu\left(r_{t}, R_{t}\right) d t+\alpha\left(r_{t}, R_{t}\right) d W_{t} \\
d R_{t}=\nu\left(r_{t}, R_{t}\right) d t+\beta\left(r_{t}, R_{t}\right) d W_{t}
\end{array}\right.
$$

where r-short rate, R-consol rate (consol = perpetual annuity). This model was later disputed by M. Hogan, by counterexample, which leads to

Consol Rate Conjecture by Fisher Black:

Assume that the consol price $Y_{t}=R_{t}^{-1}$, where R is the consol rate. Then, under at most technical conditions, $\forall \mu$ and $\alpha, \exists A(\cdot, \cdot)$ such that

$$
\left\{\begin{array}{l}
d r_{t}=\mu\left(r_{t}, Y_{t}\right) d t+\alpha\left(r_{t}, Y_{t}\right) d W_{t} \tag{7}\\
d Y_{t}=\left(r_{t} Y_{t}-1\right) d t+A\left(r_{t}, Y_{t}\right) d W_{t}
\end{array}\right.
$$

- Assume $r_{t}=h\left(X_{t}\right)$ for some "factor" process X and $h(\cdot)>0$,
- X satisfies an SDE depending on R (or equivalent Y).
- Then the term structure SDEs (7) becomes an FBSDE with infinite horizon:

$$
\begin{cases}d X_{t}=b\left(X_{t}, Y_{t}\right) d t+\sigma\left(X_{t}, Y_{t}\right) d W_{t}, & X_{0}=x \tag{8}\\ Y_{t}=E\left\{\int_{t}^{\infty} e^{-\int_{t}^{s} h\left(X_{u}\right) d u} d s \mid \mathscr{F}_{t}\right\}, & t \in[0, \infty)\end{cases}
$$

where Y is uniformly bounded for $t \in[0, \infty)$.

- Or equivalently,

$$
\left\{\begin{array}{l}
d X_{t}=b\left(X_{t}, Y_{t}\right) d t+\sigma\left(X_{t}, Y_{t}\right) d W_{t} \tag{9}\\
Y_{t}=\left(h\left(X_{t}\right) Y_{t}-1\right) d t+A\left(X_{t}, Y_{t}\right) d W_{t} \\
X_{0}=x, \quad \operatorname{esssup}_{\omega} \sup _{t \in[0, \infty)}\left|Y_{t}(\omega)\right|<\infty
\end{array}\right.
$$

Solution of Black's Consol Rate Conjecture

This result (Duffie-Ma-Yong, 1993) was one of the early successful applications of FBSDE in finance, and the first application using the Four Step Scheme.

Theorem

Under some technical conditions, there exists a unique function $A(x, y)=-\sigma(x, y)^{T} \theta_{x}(x)$ such that (X, Y) in (8) satisfies (9), and θ is the unique classical solution to the PDE:

$$
\frac{1}{2} \sigma \sigma^{T}(x, \theta) \theta_{x x}+b(x, \theta) \theta_{x}-h(x) \theta+1=0
$$

Moreover, $Y_{t}=\theta\left(X_{t}\right)$ for any $t \in[0, \infty)$.

BSDEs and g-expectations

Consider a Backward SDE of the following general form:

$$
\begin{equation*}
Y_{t}=\xi+\int_{t}^{T} g\left(t, Y_{s}, Z_{s}\right) d s-\int_{t}^{T} Z_{s} d B_{s}, \quad t \in[0, T] \tag{10}
\end{equation*}
$$

where $\xi \in L^{2}\left(\mathscr{F}_{T}\right)$ is the terminal condition and $g(t, y, z)$ is the generator.
g-expectation via BSDE (Peng, '93)

- If the BSDE (10) is well-posed, then the solution mapping $\mathscr{E g}^{g}: \xi \mapsto Y_{0}$ is called a g-expectation.
- For any $t \in[0, T]$, the conditional g-expectation of ξ given \mathscr{F}_{t} is defined by $\mathscr{E}^{g}\left[\xi \mid \mathscr{F}_{t}\right] \triangleq Y_{t}$.

BSDEs and g-expectations

Properties of g-expectations: Assume that $\left.g\right|_{z=0}=0$.

- Constant-preserving: $\mathscr{E}^{g}\left[\xi \mid \mathscr{F}_{t}\right]=\xi$, \mathbb{P}-a.s., $\forall \xi \in L^{2}\left(\mathscr{F}_{t}\right)$; In particular, $\mathscr{E}^{g}[c]=c, \forall c \in \mathbb{R}$;
- Time-consistency: $\mathscr{E}^{g}\left[\mathscr{E}^{g}\left[\xi \mid \mathscr{F}_{t}\right] \mid \mathscr{F}_{s}\right]=\mathscr{E} g\left[\xi \mid \mathscr{F}_{s}\right], \mathbb{P}$-a.s., $\forall 0 \leq s \leq t \leq T$;
- (Strict) Monotonicity: If $\xi \geq \eta$, then

$$
\mathscr{E}^{\mathscr{E}}\left[\xi \mid \mathscr{F}_{t}\right] \geq \mathscr{E}^{\mathscr{S}}\left[\eta \mid \mathscr{F}_{t}\right], \quad \mathbb{P} \text {-a.s., } \quad t \in[0, T] ;
$$

Moreover if " $=$ " holds for some t, then $\xi=\eta$, \mathbb{P}-a.s.;

- "Zero-one" Law: $\mathscr{E}^{\mathscr{g}}\left[\mathbf{1}_{A} \xi \mid \mathscr{F}_{t}\right]=\mathbf{1}_{A} \mathscr{E}^{\mathscr{g}}\left[\xi \mid \mathscr{F}_{t}\right]$, \mathbb{P}-a.s., $\forall A \in \mathscr{F}_{\text {t }}$;
- Translation Invariance: If g is independent of y, then

$$
\mathscr{E}^{g}\left[\xi+\eta \mid \mathscr{F}_{t}\right]=\mathscr{E}^{g}\left[\xi \mid \mathscr{F}_{t}\right]+\eta, \quad \mathbb{P} \text {-a.s., } \quad \forall \eta \in L^{2}\left(\mathscr{F}_{t}\right) .
$$

- Convexity: If g is convex (in z), then so is $\mathscr{E g}\left[\cdot \mid \mathscr{F}_{t}\right]$.

g-Expectations and Risk Measures

Axioms for Risk Measures (Artzner et al., Barrieu-El Karoui,...)

- A (static) RM is a mapping $\rho: \mathscr{X} \mapsto \mathbb{R}$ (for some space of random variables \mathscr{X}), s.t.,
- Monotonicity: $\xi \leq \eta \quad \Longrightarrow \quad \rho(\xi) \geq \rho(\eta)$;
- Translation Invariance: $\rho(\xi+m)=\rho(\xi)-m, \quad m \in \mathbb{R}$;
- Coherent: if
- Subadditivity: $\rho(\xi+\eta) \leq \rho(\xi)+\rho(\eta)$
- Positive homogeneity: $\rho(\alpha \xi)=\alpha \rho(\xi), \forall \alpha \geq 0$;
- Convex: (Föllmer and Schied, '02)

$$
\rho(\alpha \xi+(1-\alpha) \eta) \leq \alpha \rho(\xi)+(1-\alpha) \rho(\eta), \alpha \in[0,1] .
$$

g-Expectations and Risk Measures

Axioms for Risk Measures (Artzner et al., Barrieu-El Karoui,...)

- A (static) RM is a mapping $\rho: \mathscr{X} \mapsto \mathbb{R}$ (for some space of random variables \mathscr{X}), s.t.,
- Monotonicity: $\xi \leq \eta \quad \Longrightarrow \quad \rho(\xi) \geq \rho(\eta)$;
- Translation Invariance: $\rho(\xi+m)=\rho(\xi)-m, \quad m \in \mathbb{R}$;
- Coherent: if
- Subadditivity: $\quad \rho(\xi+\eta) \leq \rho(\xi)+\rho(\eta)$
- Positive homogeneity: $\rho(\alpha \xi)=\alpha \rho(\xi), \forall \alpha \geq 0$;
- Convex: (Föllmer and Schied, '02)

$$
\rho(\alpha \xi+(1-\alpha) \eta) \leq \alpha \rho(\xi)+(1-\alpha) \rho(\eta), \alpha \in[0,1]
$$

- A (dynamic) RM is a family of mappings $\rho_{t}: \mathscr{X} \mapsto L^{0}\left(\mathscr{F}_{t}\right)$, $t \in[0, T]$, s.t. $\forall \xi, \eta \in \mathscr{X}$,
- Monotoncity: If $\xi \leq \eta$, then $\rho_{t}(\xi) \geq \rho_{t}(\eta)$, \mathbb{P}-a.s., $\forall t$;
- Translation Invariance: $\rho_{t}(\xi+\eta)=\rho_{t}(\xi)-\eta, \forall \eta \in \mathscr{F}_{t}$.
- ρ_{0} is a static risk measure
- $\rho_{T}(\xi)=-\xi$ for any $\xi \in \mathscr{X}$.

Example

- Worst-case Dynamic Risk Measure:

$$
\rho_{t}(\xi) \triangleq \underset{Q \in \mathscr{P}_{P}}{\operatorname{esssup}} E_{Q}\left[-\xi \mid \mathscr{F}_{t}\right], \quad t \in[0, T],
$$

- Entropic Dynamic Risk Measure:

$$
\rho_{t}^{\gamma}(\xi)=\gamma \ln \left\{E\left[\left.e^{-\frac{1}{\gamma} \xi} \right\rvert\, \mathscr{F}_{t}\right]\right\}, \quad t \in[0, T] .
$$

- Convex Dynamic Risk Measure:

$$
\rho_{t}(\xi) \triangleq \operatorname{esssup}_{Q \in \mathscr{P}_{P}}\left\{E_{Q}\left[-\xi \mid \mathscr{F}_{t}\right]-F_{t}(Q)\right\}, \quad t \in[0, T]
$$

where F_{t} is the "penalty function" of ρ_{t} for any t.

- $\left\{\rho_{t}\right\}_{t \in[0, T]}$ is called convex (or coherent) if each ρ_{t} is. (e.g., Worst case - coherent; Entropic - convex.)
- $\left\{\rho_{t}\right\}_{t \in[0, T]}$ is said to be time-consistent if

$$
\rho_{0}\left[\xi \mathbf{1}_{A}\right]=\rho_{0}\left[-\rho_{t}(\xi) \mathbf{1}_{A}\right], \quad t \in[0, T], \xi \in \mathscr{X}, \boldsymbol{A} \in \mathscr{F}_{t} .
$$

g-Expectations and Risk Measures

Let g be generator with $\left.g\right|_{z=0}=0$, and is Lipschitz in (y, z).

- $\rho(\xi) \triangleq \mathscr{E}^{g}[-\xi]$ defines a static risk measure on $\mathscr{X}=L^{2}\left(\mathscr{F}_{T}\right)$.
- $\rho_{t}(\xi) \triangleq \mathscr{E} g\left[-\xi \mid \mathscr{F}_{t}\right], t \in[0, T]$, defines a dynamic risk measure on $\mathscr{X}=L^{2}\left(\mathscr{F}_{T}\right)$.
- The risk measure (resp. dynamic risk measure) is convex if g is convex in z.
- The risk measure (resp. dynamic risk measure) is coherent if g is further independent of y.

Question:

Does every risk measure have to be a g-expectation??

Nonlinear Expectations

Definition

Let $\left(\Omega, \mathscr{F}, P,\left\{\mathscr{F}_{t}\right\}\right)$ be a given probability space. A functional $\mathscr{E}: L^{2}\left(\mathscr{F}_{T}\right) \mapsto \mathbb{R}$ is called a nonlinear expectation if it satisfies the following axioms:

- Monotonicity: $\xi \geq \eta, P$-a.s. \Longrightarrow
- $\mathscr{E}[\xi] \geq \mathscr{E}[\eta]$
- $\mathscr{E}[\xi]=\mathscr{E}[\eta] \Longleftrightarrow \xi=\eta, P$-a.s.
- Constant-preserving: $\mathscr{E}[c]=c, c \in \mathbb{R}$.

A nonlinear expectation \mathscr{E} is called $\left\{\mathscr{F}_{t}\right\}$-consistent if it satisfies

- for all $t \in[0, T]$ and $\xi \in L^{2}\left(\mathscr{F}_{T}\right)$, there exists $\eta \in \mathscr{F}_{t}$ such that

$$
\mathscr{E}\left[\mathbf{1}_{A} \xi\right]=\mathscr{E}\left[\mathbf{1}_{A} \eta\right], \forall A \in \mathscr{F}_{s}
$$

Will denote $\eta=\mathscr{E}\left\{\xi \mid \mathscr{F}_{t}\right\}$, for obvious reasons.

Nonlinear Expectations

Definition

An $\left\{\mathscr{F}_{t}\right\}$-consistant nonlinear expectation \mathscr{E} is said to be dominated by $\mathscr{E}^{\mu}=\mathscr{E}^{g_{\mu}}(\mu>0)$ if

$$
\begin{equation*}
\mathscr{E}[\xi+\eta]-\mathscr{E}[\xi] \leq \mathscr{E}^{\mu}[\eta], \quad \forall \xi, \eta \in L^{2}\left(\mathscr{F}_{T}\right) \tag{11}
\end{equation*}
$$

where $\mathscr{E}^{\mu}=\mathscr{E}^{g_{\mu}}$ is the g-expectation with $g \equiv \mu|z|$. Further, \mathscr{E} is said to satisfy the translability condition if

$$
\mathscr{E}\left[\xi+\alpha \mid \mathscr{F}_{t}\right]=\mathscr{E}\left[\xi \mid \mathscr{F}_{t}\right]+\alpha, \forall \xi \in L^{2}\left(\mathscr{F}_{T}\right), \quad \alpha \in L^{2}\left(\mathscr{F}_{t}\right) .
$$

Nonlinear Expectations

Definition

An $\left\{\mathscr{F}_{t}\right\}$-consistant nonlinear expectation \mathscr{E} is said to be dominated by $\mathscr{E}^{\mu}=\mathscr{E}^{\mathscr{g}_{\mu}}(\mu>0)$ if

$$
\begin{equation*}
\mathscr{E}[\xi+\eta]-\mathscr{E}[\xi] \leq \mathscr{E}^{\mu}[\eta], \quad \forall \xi, \eta \in L^{2}\left(\mathscr{F}_{T}\right) \tag{11}
\end{equation*}
$$

where $\mathscr{E}^{\mu}=\mathscr{E}^{g_{\mu}}$ is the g-expectation with $g \equiv \mu|z|$. Further, \mathscr{E} is said to satisfy the translability condition if

$$
\mathscr{E}\left[\xi+\alpha \mid \mathscr{F}_{t}\right]=\mathscr{E}\left[\xi \mid \mathscr{F}_{t}\right]+\alpha, \forall \xi \in L^{2}\left(\mathscr{F}_{T}\right), \quad \alpha \in L^{2}\left(\mathscr{F}_{t}\right) .
$$

Representation Theorem (Coquet et al. '02)

If \mathscr{E} is a translable $\left\{\mathscr{F}_{t}\right\}$-expectation dominated by \mathscr{E}^{μ}, for some $\mu>0$, then \exists ! (deterministic) function g, independent of y, such that $|g(t, z)| \leq \mu|z|$, and that

$$
\mathscr{E}[\xi]=\mathscr{E}^{g}[\xi], \quad \text { for all } \xi \in L^{2}\left(\mathscr{F}_{T}\right)
$$

Representing Risk Measures as g-Expectations

A direct consequence of the Representation Theorem for nonlinear expectation is the following representation theorem for dynamic coherent risk measures.

Some Facts:

Let $\left\{\rho_{t}\right\}$ be a dynamic, coherent, time-consistent risk measure on $\mathscr{X} \triangleq L^{2}\left(\mathscr{F}_{T}\right)$. Define $\mathscr{E}_{t}(\xi) \triangleq \rho_{t}(-\xi), t \in[0, T] ;$ and $\mathscr{E} \triangleq \mathscr{E}_{0}$.
Then

- \mathscr{E} is a nonlinear expectation
- $\mathscr{E}_{t}\{\cdot\}=\mathscr{E}\left\{\cdot \mid \mathscr{F}_{t}\right\}$ is the nonlinear conditional expectation ("time-consistency" $\Longrightarrow "\left\{\mathscr{F}_{t}\right\}$-consistency"!)
- Consequently, if \mathscr{E} is further \mathscr{E}^{μ}-dominated for some $\mu>0$, then there exists a unique Lipschitz generator g such that

$$
\rho_{0}(\xi)=\mathscr{E}^{g}(-\xi), \quad \rho_{t}(\xi)=\mathscr{E}^{g}\left\{-\xi \mid \mathscr{F}_{t}\right\}, \quad \forall \xi \in L^{2}\left(\mathscr{F}_{T}\right) .
$$

3. Wellposedness of BSDEs

Wellposedness for BSDEs

Consider the BSDE

$$
\begin{equation*}
Y_{t}=\xi+\int_{t}^{T} f\left(s, Y_{s}, Z_{s}\right) d s-\int_{t}^{T} Z_{s} d W_{s}, \tag{12}
\end{equation*}
$$

where $\xi \in L_{\mathscr{F}_{T}}^{2}\left(\Omega ; \mathbb{R}^{n}\right), W$ is a d-dimensional Brownian motion.

Wellposedness for BSDEs

Consider the BSDE

$$
\begin{equation*}
Y_{t}=\xi+\int_{t}^{T} f\left(s, Y_{s}, Z_{s}\right) d s-\int_{t}^{T} Z_{s} d W_{s} \tag{12}
\end{equation*}
$$

where $\xi \in L_{\mathscr{F}_{T}}^{2}\left(\Omega ; \mathbb{R}^{n}\right)$, W is a d-dimensional Brownian motion.

Some spaces:

For any $\beta \geq 0$ and Euclidean space \mathscr{H}, define

- $\mathscr{S}_{\beta}^{2}(0, T ; \mathscr{H})$ to be the space of all \mathscr{H}-valued, continuous, \mathbb{F}-adapted processes X, such that $\mathbb{E}\left\{\sup _{0 \leq t \leq T} e^{\beta t}\left|X_{t}\right|^{2}\right\}<\infty$
- $\mathbb{H}_{\beta}^{2}(0, T ; \mathbb{E})$ to be the space of all \mathscr{H}-valued, \mathbb{F}-adapted processes X such that $\mathbb{E}\left\{\int_{0}^{T} e^{\beta t}\left|X_{t}\right|^{2} d t\right\}<\infty$
- $\mathscr{N}_{\beta}[0, T] \triangleq \mathscr{S}_{\beta}^{2}\left(0, T ; \mathbb{R}^{n}\right) \times \mathbb{H}_{\beta}^{2}\left(0, T ; \mathbb{R}^{n \times d}\right)$

Main result:

Assumption
f is Lipschitz in (y, z) with a uniform Lipschitz constant $L>0$.

Main result:

Assumption

f is Lipschitz in (y, z) with a uniform Lipschitz constant $L>0$.

Theorem

Under the above assumptions on f, for any $\xi \in L_{\mathscr{F}_{T}}^{2}\left(\Omega ; \mathbb{R}^{n}\right)$, (12) admits a unique solution $(Y, Z) \in \mathscr{N}_{0}[0, T]$.

Main result:

Assumption

f is Lipschitz in (y, z) with a uniform Lipschitz constant $L>0$.

Theorem

Under the above assumptions on f, for any $\xi \in L_{\mathscr{F}_{T}}^{2}\left(\Omega ; \mathbb{R}^{n}\right)$, (12) admits a unique solution $(Y, Z) \in \mathscr{N}_{0}[0, T]$.

Observations:

- Since $\mathscr{N}_{\beta}[0, T]$ is equivalent to $\mathscr{N}_{0}[0, T]$, we need only find the solution $(Y, Z) \in \mathscr{N}_{\beta}(0, T)$ for some $\beta>0$.
- $\forall(y, z) \in \mathscr{N}[0, T]$, let $h(\cdot) \triangleq f(\cdot, y ., z.) \in L_{\mathbb{F}}^{2}\left(\Omega \times[0, T] ; \mathbb{R}^{n}\right)$.

Then, $M_{t} \triangleq E\left\{\xi+\int_{0}^{T} h(s) d s \mid \mathscr{F}_{t}\right\}, t \in[0, T]$ is an $L^{2}(\mathbb{F})$-martingale.

The First Step:

- By the Mart. Rep. Thm, $\exists Z \in L_{\mathscr{F}}^{2}\left(0, T ; \mathbb{R}^{n \times d}\right)$, such that

$$
\begin{equation*}
M_{t}=M_{0}+\int_{0}^{t} Z_{s} d W_{s}, \quad \forall t \in[0, T] \tag{13}
\end{equation*}
$$

- Define $Y_{t} \triangleq M_{t}-\int_{0}^{t} h(s) d s$. Then $M_{0}=Y_{0}$, and

$$
\xi+\int_{0}^{T} h(s) d s=M_{T}=Y_{0}+\int_{0}^{T} Z_{s} d W_{s} .
$$

- Consequenly,

$$
\begin{align*}
Y_{t} & =M_{t}-\int_{0}^{t} h(s) d s=Y_{0}+\int_{0}^{t} Z_{s} d W_{s}-\int_{0}^{t} h(s) d s \\
& =\xi+\int_{0}^{T} h(s) d s-\int_{0}^{T} Z_{s} d W_{s}-\int_{0}^{t} h(s) d s+\int_{0}^{t} Z_{s} d W_{s} \\
& =\xi+\int_{t}^{T} h(s) d s-\int_{t}^{T} Z_{s} d W_{s} . \tag{14}
\end{align*}
$$

A Priori Estimates

- For any $(y, z) \in \mathscr{N}_{\beta}[0, T]$, let (Y, Z) be the solution to (14).
- Applying Itô's formula to $F\left(t, Y_{t}\right)=e^{\beta t}\left|Y_{t}\right|^{2}$, then taking expectation and applying Fatou:

$$
\begin{gathered}
\mathbb{E}\left\{e^{\beta t}\left|Y_{t}\right|^{2}\right\}+\beta \mathbb{E} \int_{t}^{T} e^{\beta s}\left|Y_{s}\right|^{2} d s+\mathbb{E} \int_{t}^{T} e^{\beta s}\left|Z_{s}\right|^{2} d s \\
\leq e^{\beta T} \mathbb{E}|\xi|^{2}+2 \mathbb{E} \int_{t}^{T} e^{\beta s}\left\langle Y_{s}, h(s)\right\rangle d s
\end{gathered}
$$

- Using the trick: $2 a b \leq \varepsilon a^{2}+b^{2} / \varepsilon, \forall \varepsilon>0$, we have

$$
\begin{gathered}
\mathbb{E}\left\{e^{\beta t}\left|Y_{t}\right|^{2}\right\}+\left(\beta-\frac{1}{\varepsilon}\right) \mathbb{E} \int_{t}^{T} e^{\beta s}\left|Y_{s}\right|^{2} d s+\mathbb{E} \int_{t}^{T} e^{\beta s}\left|Z_{s}\right|^{2} d s \\
\leq e^{\beta T} \mathbb{E}|\xi|^{2}+\varepsilon \mathbb{E} \int_{t}^{T} e^{\beta s}|h(s)|^{2} d s
\end{gathered}
$$

- Continuing from before, one has

$$
\left\{\begin{array}{l}
\|Y\|_{\mathbb{H}_{\beta}^{2}}^{2} \leq \frac{\varepsilon}{(\varepsilon \beta-1)}\left\{e^{\beta T_{\mathbb{E}}}|\xi|^{2}+\varepsilon\|h\|_{\mathbb{H}_{\beta}^{2}}^{2}\right\} ; \tag{15}\\
\|Z\|_{\mathbb{H}_{\beta}^{2}}^{2} \leq e^{\beta T_{\mathbb{B}}} \mathbb{E}|\xi|^{2}+\varepsilon\|h\|_{\mathbb{H}_{\beta}^{2}}^{2} .
\end{array}\right.
$$

- Using Burkholder-Davis-Gundy's inequality, one then derive that

$$
\begin{equation*}
\|Y\|_{\mathscr{S}_{\beta}^{2}}^{2} \leq 2\left(1+C_{1}(\beta, \varepsilon)\right) e^{\beta T} \mathbb{E}|\xi|^{2}+2 \varepsilon C_{1}(\beta, \varepsilon)\|h\|_{\mathbb{H}_{\beta}^{2}}^{2} \tag{16}
\end{equation*}
$$

where $C_{1}(\beta, \varepsilon) \triangleq 1+\frac{\varepsilon}{\varepsilon \beta-1}+2(1+C)^{2}$, and C is the universal constant in the Burkholder-Davis-Gundy inequality. $\Longrightarrow \quad(Y, Z) \in \mathscr{N}_{\beta}[0, T]$.

Furthermore,

- For $(y, z),(\bar{y}, \bar{z}) \in \mathscr{N}_{\beta}[0, T]$, let $(Y, Z),(\bar{Y}, \bar{Z}) \in \mathscr{N}_{\beta}[0, T]$ be the corresponding solutions of (14), respectively.
- Define $\widehat{\zeta}=\zeta-\bar{\zeta}, \zeta=y, z, Y, Z$, and $H(s)=f\left(s, y_{s}, z_{s}\right)-f\left(s, \bar{y}_{s}, \bar{z}_{s}\right)$. Then,

$$
|H(s)| \leq L\left(\left|\widehat{y}_{s}\right|+\left|\widehat{z}_{s}\right|\right), \quad \widehat{Y}_{T}=\widehat{\xi}=0 ;
$$

- Choosing $\beta=\beta(\varepsilon)$ and $\varepsilon>0$ small enough, show that

$$
\|(\widehat{Y}, \widehat{Z})\|_{\mathscr{N}_{\beta}[0, T]}^{2} \leq \widetilde{C}(\varepsilon)\|(\widehat{y}, \widehat{z})\|_{\mathscr{N}_{\beta}[0, T]}^{2}
$$

where $\widetilde{C}(\varepsilon)<1$. Thus the mapping $(y, z) \mapsto(Y, Z)$ is a contraction on $\mathscr{N}_{\beta}[0, T]$, proving the theorem.

Comparison Theorems

Suppose that $\left(Y^{i}, Z^{i}\right), i=1,2$ are solutions to the following two BSDEs: for $t \in[0, T]$,

$$
\begin{equation*}
Y_{t}^{i}=\xi^{i}+\int_{t}^{T} f^{i}\left(s, Y_{s}^{i}, Z_{s}^{i}\right) d s-\int_{t}^{T} Z_{s}^{i} d W_{s}, \quad i=1,2 \tag{17}
\end{equation*}
$$

Question:

Assume that

- $\xi^{1} \geq \xi^{2}, \mathbb{P}$-a.s.;
- $f^{1}(t, y, z) \geq f^{2}(t, y, z), \forall(t, y, z)$.

Can we conclude that $Y_{t}^{1} \geq Y_{t}^{2}, \forall t \in[0, T]$?

Comparison Theorems

Suppose that $\left(Y^{i}, Z^{i}\right), i=1,2$ are solutions to the following two BSDEs: for $t \in[0, T]$,

$$
\begin{equation*}
Y_{t}^{i}=\xi^{i}+\int_{t}^{T} f^{i}\left(s, Y_{s}^{i}, Z_{s}^{i}\right) d s-\int_{t}^{T} Z_{s}^{i} d W_{s}, \quad i=1,2 \tag{17}
\end{equation*}
$$

Question:

Assume that

- $\xi^{1} \geq \xi^{2}, \mathbb{P}$-a.s.;
- $f^{1}(t, y, z) \geq f^{2}(t, y, z), \forall(t, y, z)$.

Can we conclude that $Y_{t}^{1} \geq Y_{t}^{2}, \forall t \in[0, T]$?

Answer:

Yes, provided f^{2} is uniformly Lipschitz in (y, z) !!

Comparison Theorems

Define $\Delta Y \triangleq Y^{1}-Y^{2}$ and $\Delta Z \triangleq Z^{1}-Z^{2}$. Then

$$
f^{1}\left(t, Y_{t}^{1}, Z_{t}^{1}\right)-f^{2}\left(t, Y_{t}^{2}, Z_{t}^{2}\right)=\delta f(t)+\alpha(t) \Delta Y_{t}+\left\langle\beta(t), \Delta Z_{t}\right\rangle
$$

where $\delta f(t) \triangleq f^{1}\left(t, Y_{t}^{1}, Z_{t}^{1}\right)-f^{2}\left(t, Y_{t}^{1}, Z_{t}^{1}\right)$, and

$$
\left\{\begin{array}{l}
\alpha(t)=\frac{f^{2}\left(t, Y_{t}^{1}, Z_{t}^{1}\right)-f^{2}\left(t, Y_{t}^{2}, Z_{t}^{1}\right)}{\Delta Y_{t}} \mathbf{1}_{\left\{\Delta Y_{t} \neq 0\right\}} \\
\beta^{i}(t)=\frac{f^{2}\left(t, Y_{t}^{2}, Z_{t}^{1, i}\right)-f^{2}\left(t, Y_{t}^{2}, Z_{t}^{2, i}\right)}{\Delta Z_{t}^{i}} \mathbf{1}_{\left\{\Delta Z_{t}^{i} \neq 0\right\}}
\end{array}\right.
$$

In other words, we have

$$
\begin{aligned}
\Delta Y_{t}= & \Delta \xi+\int_{t}^{T}\left\{\delta f(s)+\alpha(s) \Delta Y_{s}+\left\langle\beta(s), \Delta Z_{s}\right\rangle\right\} d s \\
& -\int_{t}^{T}\left\langle\Delta Z_{s}, d W_{s}\right\rangle
\end{aligned}
$$

Comparison Theorems

Note:

Since f^{2} is uniformly Lipschitz, both α and β are bounded, adapted processes!!

Two Tricks:

1. (Change of Measure:) Define $\Theta(t)=\exp \left\{-\int_{0}^{t} \beta(s) d W_{s}-\frac{1}{2} \int_{0}^{t}\left|\beta_{s}\right|^{2} d s\right\}$; and

$$
\frac{d \mathbb{Q}}{d \mathbb{P}}=\Theta(T) .
$$

Since β is bounded, by Girsanov Theorem we know that Θ is a \mathbb{P}-martingale, and $W_{t}^{1} \triangleq W_{t}+\int_{0}^{t} \beta_{s} d s$ is a \mathbb{Q}-Brownian motion.

Comparison Theorems

2. (Exponentiating:) Define $\Gamma_{t}=\exp \left\{-\int_{0}^{t} \alpha(s) d s\right\}$. Then applying Itô we have, for $t \in[0, T]$,

$$
\Gamma_{T} \Delta Y_{T}-\Gamma_{t} \Delta Y_{t}=-\int_{t}^{T} \Gamma_{s} \delta f(s) d s+\int_{t}^{T} \Gamma_{s}\left\langle\Delta Z_{s}, d W_{s}^{1}\right\rangle .
$$

Now taking conditional expectation on both sides above, we have

$$
\Gamma_{t} \Delta Y_{t}=\mathbb{E}^{\mathbb{Q}}\left\{\Gamma_{T} \Delta \xi+\int_{t}^{T} \Gamma_{s} \delta f(s) d s \mid \mathscr{F}_{t}\right\}, \quad \forall t \in[0, T], \mathbb{P} \text {-a.s. }
$$

Since $\Delta \xi=\xi^{1}-\xi^{2} \geq 0, \mathbb{P}$-a.s. (hence \mathbb{Q}-a.s.!); and

$$
\delta f(t)=f^{1}\left(t, Y_{t}^{1}, Z_{t}^{1}\right)-f^{2}\left(t, Y_{t}^{1}, Z_{t}^{1}\right) \geq 0, \quad \forall t, \mathbb{Q} \text {-a.s. }
$$

we conclude that $\Gamma_{t} \Delta Y_{t} \geq 0, \forall t, \mathbb{Q}$-a.s. This implies that $\Delta Y_{t} \geq 0, \forall t, \mathbb{P}$-a.s., proving the comparison theorem.

BSDEs with Continuous Coefficients

Theorem (Lepeltier-San Martin, 1997)

Assume $f:[0, T] \times \Omega \times \mathbb{R} \times \mathbb{R}^{d} \rightarrow \mathbb{R}$ is a $\mathscr{P} \otimes \mathscr{B}\left(\mathbb{R}^{d+1}\right)$ m'able function, s.t. for fixed t, ω, the mapping $(y, z) \mapsto f(t, \omega, y, z)$ is continuous, and $\exists K>0$, s.t. $\forall(t, \omega, y, z)$,

$$
|f(t, w, y, z)| \leq K(1+|y|+|z|)
$$

Then for any $\xi \in L^{2}\left(\Omega, \mathscr{F}_{T}, P\right)$ the BSDE

$$
\begin{equation*}
Y_{t}=\xi+\int_{t}^{T} f\left(s, Y_{s}, Z_{s}\right) d s-\int_{t}^{T} Z_{s} d W_{s} \tag{18}
\end{equation*}
$$

has an adapted solution $(Y, Z) \in H^{2}\left(\mathbb{R}^{d+1}\right)$, where Y is a continuous process and Z is predictable.

Also, there is a minimal solution $(\underline{Y}, \underline{Z})$ of equation (1), in the sense that for any other solution (Y, Z) of (1) we have $\underline{Y} \leq Y$.

BSDEs with Continuous Coefficients

Lemma 1

Let $f: \mathbb{R}^{p} \rightarrow \mathbb{R}$ be a continuous function with linear growth, that is: $\exists K>0$ such that $\forall x \in \mathbb{R}^{p} \quad|f(x)| \leq K(1+|x|)$. Then the sequence of functions

$$
\begin{equation*}
f_{n}(x)=\inf _{y \in \mathbb{Q}^{p}}\{f(y)+n|x-y|\} \tag{19}
\end{equation*}
$$

is well defined for $n \geq K$ and it satisfies:
(i) Linear growth: $\forall x \in \mathbb{R}^{p} \quad\left|f_{n}(x)\right| \leq K(1+|x|)$;
(ii) Monotonicity in $n: \forall x \in \mathbb{R}^{p} \quad f_{n}(x) \nearrow$;
(iii) Lipschitz condition: $\forall x, y \in \mathbb{R}^{p} \quad\left|f_{n}(x)-f_{n}(y)\right| \leq n|x-y|$;
(iv) strong convergence: if $x_{n} \rightarrow x$ as $n \rightarrow \infty$, then $f_{n}\left(x_{n}\right) \rightarrow f(x)$, as $n \rightarrow \infty$.

- Since $f_{n} \leq f\left(\Longrightarrow f_{n}(x) \leq K(1+|x|)\right)$, and $f_{n}(x) \geq \inf _{y \in \mathbb{Q}^{p}}\{-K-K|y|+K|x-y|\}=-K(1+|x|)$, \Longrightarrow (i) holds.
- (ii) is evident from the definition of the sequence $\left(f_{n}\right)$.
- $\forall \varepsilon>0$, choose $y_{\varepsilon} \in \mathbb{Q}^{p}$ so that

$$
\begin{aligned}
f_{n}(x) & \geq f\left(y_{\varepsilon}\right)+n\left|x-y_{\varepsilon}\right|-\varepsilon \\
& \geq f\left(y_{\varepsilon}\right)+n\left|y-y_{\varepsilon}\right|+n\left|x-y_{\varepsilon}\right|-n\left|y-y_{\varepsilon}\right|-\varepsilon \\
& \geq f\left(y_{\varepsilon}\right)+n\left|y-y_{\varepsilon}\right|-n|x-y|-\varepsilon \\
& \geq f_{n}(y)-n|x-y|-\varepsilon .
\end{aligned}
$$

Exchanging the roles of x and y, and since ε is arbitrary we deduce that $\left|f_{n}(x)-f_{n}(y)\right| \leq n|x-y|$, proving (iii).

- To see (iv), assume $x_{n} \rightarrow x$ as $n \rightarrow \infty$. For every n, let $y_{n} \in \mathbb{Q}^{p}$ be such that

$$
f\left(x_{n}\right) \geq f_{n}\left(x_{n}\right) \geq f\left(y_{n}\right)+n\left|x_{n}-y_{n}\right|-1 / n .
$$

Since $\left\{x_{n}\right\}$ is bounded and f has linear growth, we deduce that $\left\{y_{n}\right\}$ is bounded, and so is $\left\{f\left(y_{n}\right)\right\}$.
Consequently $\varlimsup_{n} n\left|y_{n}-x_{n}\right|<\infty$, and in particular $y_{n} \rightarrow x$, as $n \rightarrow \infty$. Moreover,

$$
f\left(x_{n}\right) \geq f_{n}\left(x_{n}\right) \geq f\left(y_{n}\right)-1 / n,
$$

from which the result follows.

Proof of the Theorem

Define, for fixed (t, ω), a sequence $f_{n}(t, \omega, y, z)$, associated to f by Lemma 1; and $h(t, \omega, y, z)=K(1+|y|+|z|)$. Then consider the following two BSDEs:

$$
\begin{aligned}
Y_{t}^{n} & =\xi+\int_{t}^{T} f_{n}\left(s, Y_{s}^{n}, Z_{s}^{n}\right) d s-\int_{t}^{T} Z_{s}^{n} d W s, \quad n \geq K \\
U_{t} & =\xi+\int_{t}^{T} h\left(U_{s}, V_{s}\right) d s-\int_{t}^{T} V_{s} d W_{s} .
\end{aligned}
$$

By Comparison Theorem we obtain that

$$
\forall n \geq m \geq K \quad Y^{m} \leq Y^{n} \leq U \quad d t \otimes d P-\text { a.s. }
$$

$\Longrightarrow \exists A>0$, depending only on K, T and $\mathbb{E}\left(\xi^{2}\right)$, s.t.
$\|U\| \leq A,\|V\| \leq A, \quad$ and hence $\quad \forall n \geq K,\left\|Y^{n}\right\| \leq A$.

Proof of the Theorem

Claim: $\left\|Z^{n}\right\| \leq A$ as well.

Proof of the Theorem

Claim: $\left\|Z^{n}\right\| \leq A$ as well.
Let $\lambda^{2}>K$, and applying Itô to $\left(Y_{t}^{n}\right)^{2}$:

$$
\begin{aligned}
\xi^{2}= & \left(Y_{t}^{n}\right)^{2}-2 \int_{t}^{T} Y_{s}^{n} f_{n}\left(s, Y_{s}^{n}, Z_{s}^{n}\right) d s+2 \int_{t}^{T} Y_{s}^{n} Z_{s}^{n} d W_{s} \\
& +\int_{t}^{T}\left(Z_{s}^{n}\right)^{2} d s .
\end{aligned}
$$

Taking expectation on both sides, we deduce

$$
\mathbb{E}\left(\left(Y_{t}^{n}\right)^{2}\right)+\mathbb{E} \int_{t}^{T}\left(Z_{s}^{n}\right)^{2} d s=\mathbb{E}\left(\xi^{2}\right)+2 \mathbb{E} \int_{t}^{T} Y_{s}^{n} f_{n}\left(s, Y_{s}^{n}, Z_{s}^{n}\right) d s
$$

Therefore we obtain from the uniform linear growth condition on f_{n} (see (i) of Lemma 1), for $t=0$

$$
\left\|Z^{n}\right\|^{2} \leq \mathbb{E}\left(\xi^{2}\right)+2 K\left\|Y^{n}\right\|^{2}+2 K \mathbb{E} \int_{0}^{T}\left|Y_{s}^{n}\right|\left(1+\left|Z_{s}^{n}\right|\right) d s
$$

Proof of the Theorem

Using $2 a \leq a^{2} \lambda^{2}+\frac{1}{\lambda^{2}}$ and $2 a b \leq a^{2} \lambda^{2}+\frac{b^{2}}{\lambda^{2}}$, we have

$$
2 K\left|Y_{s}^{n}\right|\left(1+\left|Z_{s}^{n}\right|\right) \leq K\left\{\frac{1}{\lambda^{2}}+2 \lambda^{2}\left|Y_{s}^{n}\right|^{2}+\frac{1}{\lambda^{2}}\left|Z_{s}^{n}\right|^{2}\right\}
$$

and

$$
\left\|Z^{n}\right\|^{2} \leq \mathbb{E}\left(\xi^{2}\right)+\frac{K T}{\lambda^{2}}+2 K\left(\lambda^{2}+1\right)\left\|Y^{n}\right\|^{2}+\frac{K}{\lambda^{2}}\left\|Z^{n}\right\|^{2}
$$

Since $\lambda^{2}>K$ we deduce for $n \geq K$

$$
\left\|Z^{n}\right\|^{2} \leq \frac{\mathbb{E}\left(\xi^{2}\right)+K T / \lambda^{2}+2 K\left(\lambda^{2}+1\right) B^{2}}{1-K / \lambda^{2}} \triangleq A
$$

proving the claim.

Now fix $n_{0} \geq K$. Since $\left\{Y^{n}\right\}$ is increasing and bounded in $\mathbb{H}^{2}(\mathbb{R})$, it converges in $\mathbb{H}^{2}(\mathbb{R})$ to a limit Y. Then, for $n, m \geq n_{0}$:

$$
\begin{aligned}
& \mathbb{E}\left(\left|Y_{0}^{n}-Y_{0}^{m}\right|^{2}\right)+\mathbb{E} \int_{0}^{T}\left|Z_{u}^{n}-Z_{u}^{m}\right|^{2} d u \\
= & 2 \mathbb{E} \int_{0}^{T}\left(Y_{u}^{n}-Y_{u}^{m}\right)\left(f_{n}\left(u, Y_{u}^{n}, Z_{u}^{n}\right)-f_{m}\left(u, Y_{u}^{m}, Z_{u}^{m}\right)\right) d u .
\end{aligned}
$$

Applying Cauchy-Schwartz, and noting the uniform linear growth of $\left\{f_{n}\right\}$ and boundedness of $\left\{\left\|\left(Y^{n}, Z^{n}\right)\right\|\right\}$ we obtain

$$
\text { for all } n, m \geq n_{0}, \quad\left\|Z^{n}-Z^{m}\right\|^{2} \leq 2 C\left\|Y^{n}-Y^{m}\right\| .
$$

$\Longrightarrow\left\{Z^{n}\right\}$ is Cauchy in $\mathbb{H}^{2}\left(\mathbb{R}^{d}\right)$, and thus converge to $Z \in \mathbb{H}\left(\mathbb{R}^{d}\right)$.

Proof of the Theorem

It then can be checked that, possibly along a subsequence: as $n \rightarrow \infty, \mathbb{P}$-almost surely,

$$
\begin{aligned}
\sup _{t \leq T}\left|Y_{t}^{n}-Y_{t}\right| \leq & \int_{0}^{T}\left|f_{n}\left(s, Y_{s}^{n}, Z_{s}^{n}\right)-f\left(s, Y_{s}, Z_{s}\right)\right| d s \\
& +\sup _{t \leq T}\left|\int_{t}^{T} Z_{s}^{n} d W_{s}-\int_{t}^{T} Z_{s} d W_{s}\right| \rightarrow 0
\end{aligned}
$$

$\Longrightarrow \quad Y$ is continuous, and since $\left\{Y^{n}\right\}$ is monotone, by Dini the convergence is uniform.
\Longrightarrow One can then pass all the necessary limits to show that (Y, Z) is an adapted solution of the original equation (18).
Finally, let (\hat{Y}, \hat{Z}) any H^{2} solution of (18). By Comparison Thm we get that $\forall n Y^{n} \leq \hat{Y}$ and therefore $Y \leq \hat{Y}$ proving that Y is the minimal solution.

BSDEs with Reflections

We now consider the following BSDE with Reflection (cf. e.g., El Karoui-Kapoudjian-Pardoux-Peng-Quenez, 1997):

$$
\begin{align*}
& Y_{t}=\xi+\int_{t}^{T} f\left(s, Y_{s}, Z_{s}\right) d s-\int_{t}^{T} Z_{s} d W_{s}+K_{T}-K_{t} \\
& Y_{t} \geq S_{t}, \quad t \in[0, T] \tag{20}
\end{align*}
$$

where

- $S_{t}, t \in[0, T]$ is the obstacle process, which is assumed to be continuous, and $\mathbb{E}\left\{\sup _{0 \leq t \leq T}\left|S_{t}\right|^{2}\right\}<\infty$; and is given as a parameter of the equation.
- $K_{t}, t \in[0, T]$ is the reflecting process, which is assumed to be continuous and increasing, and satisfies:

$$
K_{0}=0, \quad \int_{0}^{T}\left(Y_{t}-S_{t}\right) d K_{t}=0
$$

and it is defined as a part of the solution to the BSDE (20)(!)

BSDEs with Reflections

Recall the well-known Skorohod Problem:
Let x be a continuous function on $[0, \infty)$ such that $x_{0} \geq 0$. Then there exists a unique pair (y, k) of functions on $[0, \infty)$ such that

- $y=x+k$;
- $y_{t} \geq 0, \forall t$;
- $t \mapsto k_{t}$ is continuous, increasing, $k_{0}=0$, and $\int_{0}^{\infty} y_{t} d k_{t}=0$.

BSDEs with Reflections

Recall the well-known Skorohod Problem:
Let x be a continuous function on $[0, \infty)$ such that $x_{0} \geq 0$. Then there exists a unique pair (y, k) of functions on $[0, \infty)$ such that

- $y=x+k$;
- $y_{t} \geq 0, \forall t$;
- $t \mapsto k_{t}$ is continuous, increasing, $k_{0}=0$, and $\int_{0}^{\infty} y_{t} d k_{t}=0$.

It is known that the solution to the Skorohod Problem for x has an explicit form: $k_{t}=\sup _{s \leq t} x_{s}^{-}, t \geq 0$. In the BSDE case we have

Proposition

Let (Y, Z, K) be a solution to the BSDE (20). Then for all $t \in[0, T]$, it holds that

$$
K_{T}-K_{t}=\sup _{t \leq u \leq T}\left\{\xi+\int_{u}^{T} f\left(s, Y_{s}, Z_{s}\right) d s-\int_{u}^{T} Z_{s} d W_{s}-S_{u}\right\}^{-}
$$

Other Observations

Proposition

Let (Y, Z, K) be a solution to (20). Then

- for each $t \in[0, T]$,

$$
Y_{t}=\operatorname{esssup}_{v \in \mathscr{T}_{t}} \mathbb{E}\left\{\int_{t}^{v} f\left(s, Y_{s}, Z_{s}\right) d s+S_{v} \mathbf{1}_{\{v<T\}}+\xi \mathbf{1}_{\{v=T\}},\right\},
$$

where \mathscr{T}_{t} is the set of all stopping times v, s.t. $t \leq v \leq T$.

- Suppose further that the obstacle process S is an Itô process:

$$
S_{t}=S_{0}+\int_{0}^{t} U_{s} d s+\int_{0}^{t}\left\langle V_{s}, d W_{s}\right\rangle, \quad t \geq 0
$$

where $U, V \in L_{\mathbb{F}}^{2}([0, T] \times \Omega)$. Then

- $Z_{t}=V_{t}, d \mathbb{P} \otimes d t$-a.e. on the set $\left\{Y_{t}=S_{t}\right\}$;
- $0 \leq d K_{t} \leq \mathbf{1}_{\left\{Y_{t}=S_{t}\right\}}\left[f\left(t, S_{t}, V_{t}\right)+U_{t}\right]^{-} d t$.

A Priori Estimates

Lemma 1
Let (Y, Z, K) be a solution to (20). Then $\exists C>0$ such that

$$
\begin{align*}
& \mathbb{E}\left\{\sup _{0 \leq t \leq T} Y_{t}^{2}+\int_{0}^{T}\left|Z_{t}\right|^{2} d t+K_{T}^{2}\right\} \\
& \quad \leq C \mathbb{E}\left\{\xi^{2}+\int_{0}^{T} f^{2}(t, 0,0) d t+\sup _{0 \leq t \leq T}\left(S_{t}^{+}\right)^{2}\right\} \tag{21}
\end{align*}
$$

Proof. First apply Itô's formula to get

$$
\begin{aligned}
Y_{t}^{2}+\int_{t}^{T}\left|Z_{s}\right|^{2} d s= & \xi^{2}+2 \int_{s}^{T} Y_{s} f\left(s, Y_{s}, Z_{s}\right) d s+2 \int_{s}^{T} Y_{s} d K_{s} \\
& -2 \int_{s}^{T} Y_{s}\left\langle Z_{s}, d W_{s}\right\rangle
\end{aligned}
$$

Then use $\int_{0}^{T}\left(Y_{t}-S_{t}\right) d K_{t}=0$, Hölder, and Gronwall.

A Priori Estimates

Lemma 2

Let $\left(Y^{i}, Z^{i}, K^{i}\right), i=1,2$ be solutions to BSDEs (20) with parameters $\left(\xi^{i}, f^{i}, S^{i}\right), i=1,2$, respectively. Then $\exists C>0$ s.t.

$$
\begin{align*}
& \mathbb{E}\left\{\sup _{0 \leq t \leq T}\left(\Delta Y_{t}\right)^{2}+\int_{0}^{T}\left|\Delta Z_{t}\right|^{2} d t+\left(\Delta K_{T}\right)^{2}\right\} \\
& \leq C \mathbb{E}\left\{(\Delta \xi)^{2}+\int_{0}^{T}[\Delta f(t, 0,0)]^{2} d t\right\} \tag{22}\\
& +C\left[\mathbb{E}\left(\sup _{0 \leq t \leq T}\left(\Delta S_{t}^{+}\right)^{2}\right)\right]^{1 / 2} \Psi_{T}^{1 / 2}
\end{align*}
$$

where $\Delta X=X^{1}-X^{2}$, for $X=\xi, f, S, Y, Z$, and K; and $\Psi_{T}=\mathbb{E}\left\{\sum_{i=1}^{2}\left(\left|\xi^{i}\right|^{2}+\int_{0}^{T}\left|f^{i}(t, 0,0)\right|^{2} d t+\sup _{0 \leq t \leq T}\left|S_{t}^{i}\right|^{2}\right)\right\}$.

A Priori Estimates

Lemma 2

Let $\left(Y^{i}, Z^{i}, K^{i}\right), i=1,2$ be solutions to BSDEs (20) with parameters $\left(\xi^{i}, f^{i}, S^{i}\right), i=1,2$, respectively. Then $\exists C>0$ s.t.

$$
\begin{align*}
& \mathbb{E}\left\{\sup _{0 \leq t \leq T}\left(\Delta Y_{t}\right)^{2}+\int_{0}^{T}\left|\Delta Z_{t}\right|^{2} d t+\left(\Delta K_{T}\right)^{2}\right\} \\
& \leq C \mathbb{E}\left\{(\Delta \xi)^{2}+\int_{0}^{T}[\Delta f(t, 0,0)]^{2} d t\right\} \tag{22}\\
& +C\left[\mathbb{E}\left(\sup _{0 \leq t \leq T}\left(\Delta S_{t}^{+}\right)^{2}\right)\right]^{1 / 2} \Psi_{T}^{1 / 2}
\end{align*}
$$

where $\Delta X=X^{1}-X^{2}$, for $X=\xi, f, S, Y, Z$, and K; and $\Psi_{T}=\mathbb{E}\left\{\sum_{i=1}^{2}\left(\left|\xi^{i}\right|^{2}+\int_{0}^{T}\left|f^{i}(t, 0,0)\right|^{2} d t+\sup _{0 \leq t \leq T}\left|S_{t}^{i}\right|^{2}\right)\right\}$.

Note: The uniqueness of BSDE follows directly from Lemma 2!

Comparison Theorem

Theorem

Let $\left(Y^{i}, Z^{i}, K^{i}\right), i=1,2$ be solutions to BSDEs (20) with parameters $\left(\xi^{i}, f^{i}, S^{i}\right), i=1,2$, respectively. Suppose that

- $\xi^{1} \leq \xi^{2}$,
- $f^{1} \leq f^{2}$,
- $S_{t}^{1} \leq S_{t}^{2}, 0 \leq t \leq T$, a.s.

Then $Y_{t}^{1} \leq Y_{t}^{2}, 0 \leq t \leq T$, a.s.
Proof. Apply Itô's formula to $\left|\left(\Delta Y_{t}\right)^{+}\right|^{2}$, and taking expectation. Then use the fact that $Y^{1}>S_{t}^{2} \geq S_{t}^{1}$ on $\left\{\Delta Y_{t}>0\right\}$ to get

$$
\int_{t}^{T}\left(\Delta Y_{t}\right)^{+}\left(d K_{t}^{1}-d K_{t}^{2}\right)=-\int_{t}^{T}\left(\Delta Y_{t}\right)^{+} d K_{t}^{2} \leq 0
$$

Then apply Gronwall to get $\left(\Delta Y_{t}\right)^{+} \equiv 0 \Longrightarrow Y^{1} \leq Y^{2}$.

Well-Posdedness of the Reflected BSDEs

The existence and uniqueness of the adapted solution to the reflected BSDE (20) can be proved using a standard Picard iteration (see EK-K-P-P-Q). However, the following "penalization" method has been used more often for its clarity on the structure of the solution.

Penalization Scheme

For each $n \in \mathbb{N}$, let $\left(Y^{n}, Z^{n}\right)$ be the solution to the unconstrained BSDE:

$$
\begin{equation*}
Y_{t}^{n}=\xi+\int_{t}^{T} f\left(s, Y_{s}^{n}, Z_{s}^{n}\right) d s+K_{T}^{n}-K_{t}^{n}-\int_{t}^{T}\left\langle Z_{s}^{n}, d W_{s}\right\rangle, \tag{23}
\end{equation*}
$$

where $K_{t}^{n} \triangleq n \int_{0}^{t}\left(Y_{s}^{n}-S_{s}\right)^{-} d s, t \in[0, T]$.

Well-Posdedness of the Reflected BSDEs

One can show that (as unconstrained BSDE):

- $\mathbb{E}\left\{\sup _{0 \leq t \leq T}\left|Y^{n}\right|^{2}\right\}<\infty$
- $\exists C>0$, such that

$$
\mathbb{E}\left\{\sup _{0 \leq t \leq T}\left|Y_{t}^{n}\right|^{2}+\int_{0}^{T}\left|Z_{t}^{n}\right|^{2} d t+\left(K_{T}^{n}\right)^{2}\right\} \leq C
$$

- Since $f_{n}=f+n\left(y-S_{t}\right)^{-} \leq f_{n+1}$, by Comparison Theorem, $Y_{t}^{n} \leq Y_{t}^{n+1}, 0 \leq t \leq T$, a.s. $\Longrightarrow Y^{n} \uparrow Y$.
- By Fatou, one has $\mathbb{E}\left\{\sup _{0 \leq t \leq T}\left|Y_{t}\right|^{2}\right\} \leq C$.
- Apply DCT to get $\mathbb{E} \int_{0}^{T}\left(Y_{t}-Y_{t}^{n}\right)^{2} d t \rightarrow 0$, as $n \rightarrow \infty$.
- Since $\mathbb{E}\left\{\sup _{t}\left|\left(Y_{t}^{n}-S_{t}\right)^{-}\right|^{2}\right\} \rightarrow 0$, as $n \rightarrow \infty$ (not trivial!!), it follows that $\left\{\left(Y^{n}, Z^{n}\right)\right\}$ is Cauchy in $L_{\mathbb{F}}^{2}\left([0, T] \times \Omega ; \mathbb{R} \times \mathbb{R}^{d}\right)$.

Well-Posdedness of the Reflected BSDEs

- Thus $\left\{\left(Y^{n}, Z^{n}\right)\right\} \subset L_{\mathbb{F}}^{2}\left(\Omega ; \mathbb{C}([0, T] ; \mathbb{R}) \times L_{\mathbb{F}}^{2}\left([0, T] \times \Omega ; \mathbb{R}^{d}\right)\right.$ is Cauchy, and $\left\{K^{n}\right\}$ is Cauchy in $L_{\mathbb{F}}^{2}(\Omega ; \mathbb{C}([0, T] ; \mathbb{R})$ as well \Longrightarrow The limit (Y, Z, K) (of $\left\{\left(Y^{n}, Z^{n}, K^{n}\right)\right)$ must satisfy (20)
- To check the "flat-off" condition, note that

$$
\begin{aligned}
& \mathbb{E}\left\{\sup _{t}\left|\left(Y_{t}-S_{t}\right)^{-}\right|^{2}\right\}=\lim _{n} \mathbb{E}\left\{\sup _{t}\left|\left(Y_{t}^{n}-S_{t}\right)^{-}\right|^{2}\right\}=0 \\
& \Longrightarrow Y_{s} \geq S_{t}, \forall t \Longrightarrow \int_{0}^{T}\left(Y_{t}-S_{t}\right) d K_{t} \geq 0
\end{aligned}
$$

- On the other hand, since

$$
\begin{aligned}
& \int_{0}^{T}\left(Y_{t}^{n}-S_{t}\right) d K_{t}^{n}=-n \int_{0}^{T}\left[\left(Y_{t}^{n}-S_{t}\right)^{-}\right]^{2} d t \leq 0, \\
\Longrightarrow & \int_{0}^{T}\left(Y_{t}-S_{t}\right) d K_{t}=\lim _{n} \int_{0}^{T}\left(Y_{t}^{n}-S_{t}\right) d K_{t}^{n} \leq 0 \\
\Longrightarrow & \int_{0}^{T}\left(Y_{t}-S_{t}\right) d K_{t}=0 .
\end{aligned}
$$

BSDEs with Quadratic Growth

Consider the BSDE:

$$
\begin{equation*}
Y_{t}=\xi+\int_{t}^{T} f\left(s, Y_{s}, Z_{s}\right) d s-\int_{t}^{T} Z_{s} d W_{s}, \quad t \in[0, T] \tag{24}
\end{equation*}
$$

We assume that the generator f takes the following form:

$$
\begin{equation*}
f(t, y, z)=a_{0}(t, y, z) y+F_{0}(t, y, z) \tag{25}
\end{equation*}
$$

where for constants $\beta_{0}<\alpha_{0}$, it holds for all $(y, z) \in \mathbb{R}^{1+d}$ that
(H1) $\quad\left\{\begin{array}{l}\beta_{0} \leq a_{0}(t, y, z) \leq \alpha_{0} ; \\ \left|F_{0}(t, y, z)\right| \leq k+c(|y|)|z|^{2} ;\end{array} \quad d t \times d \mathbb{P}\right.$-a.s.

Note:

Under (H1) f grows linearly in y, but quadratically in z !

BSDEs with Quadratic Growth

Theorem (Kobylanski, 2000)

Suppose that the coefficient f satisfies (H1), with $\alpha_{0}, \beta_{0}, k \in \mathbb{R}$, and $c: \mathbb{R}^{+} \mapsto \mathbb{R}^{+}$being continuous and increasing. Then, for any $\xi \in L^{\infty}\left(\mathscr{F}_{T}\right)$, the BSDE (24) admits at least one solution $(Y, Z) \in L_{\mathrm{F}}^{\infty}(\Omega ; \mathbb{C}([0, T] ; \mathbb{R})) \times \mathscr{H}_{\mathrm{F}}^{2}\left([0, T] ; \mathbb{R}^{d}\right)$.

BSDEs with Quadratic Growth

Theorem (Kobylanski, 2000)

Suppose that the coefficient f satisfies (H1), with $\alpha_{0}, \beta_{0}, k \in \mathbb{R}$, and $c: \mathbb{R}^{+} \mapsto \mathbb{R}^{+}$being continuous and increasing.
Then, for any $\xi \in L^{\infty}\left(\mathscr{F}_{T}\right)$, the BSDE (24) admits at least one solution $(Y, Z) \in L_{\mathbf{F}}^{\infty}(\Omega ; \mathbb{C}([0, T] ; \mathbb{R})) \times \mathscr{H}_{\mathbf{F}}^{2}\left([0, T] ; \mathbb{R}^{d}\right)$.

The Power of "Exponential (Hopf-Cole) Transformation"

Consider a simple quadratic BSDE:

$$
\begin{equation*}
Y_{t}=\xi+\int_{t}^{T} \frac{1}{2}\left|Z_{s}\right|^{2} d s-\int_{t}^{T} Z_{s} d W_{s}, \quad t \in[0, T] \tag{26}
\end{equation*}
$$

Define $y=\exp [Y], z=y Z$. Then, the BSDE (26) becomes

$$
y_{t}=\exp [\xi]-\int_{t}^{T} z_{s} d W_{s}, \quad t \in[0, T] .
$$

A Priori Estimates

Suppose that the assumption (H1) is replaced by
(H0)

$$
\left\{\begin{array}{l}
a_{0}(t, y, z) \leq \alpha_{0} \\
\left|F_{0}(t, y, z)\right| \leq b(t)+C(|y|)|z|^{2}
\end{array}\right.
$$

$$
d t \times d \mathbb{P} \text {-a.s. }
$$

where α_{0} is constant and $b \in L^{1}([0, T])$. Then the following a priori estimates hold:

- Assume that $\xi \in L_{\mathscr{F}_{T}}^{\infty}(\Omega)$, then

$$
\begin{equation*}
Y_{t} \leq\left[\sup _{\Omega}(\xi)\right]^{+} e^{\int_{t}^{T} a_{s} d s}+\int_{t}^{T} b_{s} e^{\int_{t}^{s} a_{\lambda} d \lambda} d s \tag{27}
\end{equation*}
$$

- for some constant $K>0, \mathbb{E} \int_{0}^{T}\left|Z_{s}\right|^{2} d s \leq K$;
- $\|Y\|_{\infty} \leq\|\xi\|_{\infty}+\frac{\|b\|_{\infty}}{\left|\alpha_{0}\right|}$.

A Priori Estimates

Suppose that the assumption (H1) is replaced by
(H0)

$$
\left\{\begin{array}{l}
a_{0}(t, y, z) \leq \alpha_{0} \\
\left|F_{0}(t, y, z)\right| \leq b(t)+C(|y|)|z|^{2}
\end{array}\right.
$$

$$
d t \times d \mathbb{P} \text {-a.s. }
$$

where α_{0} is constant and $b \in L^{1}([0, T])$. Then the following a priori estimates hold:

- Assume that $\xi \in L_{\mathscr{F}_{T}}^{\infty}(\Omega)$, then

$$
\begin{equation*}
Y_{t} \geq\left[\inf _{\Omega}(\xi)\right]^{-} e^{\int_{t}^{T} a_{s} d s}-\int_{t}^{T} b_{s} e^{\int_{t}^{s} a_{\lambda} d \lambda} d s \tag{28}
\end{equation*}
$$

- for some constant $K>0, \mathbb{E} \int_{0}^{T}\left|Z_{s}\right|^{2} d s \leq K$;
- $\|Y\|_{\infty} \leq\|\xi\|_{\infty}+\frac{\|b\|_{\infty}}{\left|\alpha_{0}\right|}$.

A Priori Estimates

Idea of the Proof.

- Define the RHS of (27) by φ, then φ satisfies the ODE:

$$
\varphi_{t}=\left[\sup _{\Omega}(\xi)\right]^{+} \int_{t}^{T}\left(a_{s} \varphi_{s}+b_{s}\right) d s, \quad t \in[0, T] .
$$

- Let Φ be a C^{2}-function to be determined. Applying Itô to get

$$
\begin{aligned}
& \Phi\left(Y_{t}-\varphi_{t}\right)=\Phi\left(Y_{T}-\varphi_{T}\right) \\
& \quad+\int_{t}^{T} \Phi^{\prime}\left(Y_{s}-\varphi_{s}\right)\left[f\left(s, Y_{s}, Z_{s}\right)-\left(a_{s} \varphi_{s}+\beta_{s}\right)\right] d s \\
& \quad-\int_{t}^{T} \frac{1}{2} \Phi^{\prime \prime}\left(Y_{s}-\varphi_{s}\right)\left|Z_{s}\right|^{2} d s-\int_{t}^{T} \Phi^{\prime}\left(Y_{s}-\varphi_{s}\right) Z_{s} d W_{s}
\end{aligned}
$$

A Priori Estimates

- Denote $M=\|Y\|_{\infty}+\|\varphi\|_{\infty}$, and choose

$$
\Phi(u)= \begin{cases}e^{2 C u}-1-2 C u-2 C^{2} u^{2}, & u \in[0, M] \\ 0 & u \in[-M, 0]\end{cases}
$$

One can check that

- $\Phi(u) \geq 0$ and $\Phi(u)=0 \Longleftrightarrow u \leq 0$
- $\Phi^{\prime}(u) \geq 0$
- $0 \leq u \Phi^{\prime}(u) \leq 2(M+1) C \Phi(u)$
- $C \Phi^{\prime}(u)-\frac{1}{2} \Phi^{\prime \prime}(u) \leq 0$.

A Priori Estimates

- Denote $M=\|Y\|_{\infty}+\|\varphi\|_{\infty}$, and choose

$$
\Phi(u)= \begin{cases}e^{2 C u}-1-2 C u-2 C^{2} u^{2}, & u \in[0, M] \\ 0 & u \in[-M, 0]\end{cases}
$$

One can check that

- $\Phi(u) \geq 0$ and $\Phi(u)=0 \Longleftrightarrow u \leq 0$
- $\Phi^{\prime}(u) \geq 0$
- $0 \leq u \Phi^{\prime}(u) \leq 2(M+1) C \Phi(u)$
- $C \Phi^{\prime}(u)-\frac{1}{2} \Phi^{\prime \prime}(u) \leq 0$.
- Applying these to (29) we get, with $k_{t} \triangleq a_{t}^{+} 2(M+1) C$,

$$
0 \leq \Phi\left(Y_{t}-\varphi_{t}\right) \leq \int_{t}^{T} k_{s} \Phi\left(Y_{s}-\varphi_{s}\right) d s-\int_{t}^{T} \Phi^{\prime}\left(Y_{s}-\varphi_{s}\right) Z_{s} d W_{s}
$$

- Taking expectation and applying Gronwall one shows that $\mathbb{E}\left\{\Phi\left(Y_{t}-\varphi_{t}\right)\right\}=0 \Longrightarrow \Phi\left(Y_{t}-\varphi_{t}\right)=0 \Longrightarrow Y_{t} \leq \varphi_{t}$.

A Priori Estimates

The L^{2}-bound for Z can be proved by considering

$$
\Phi(u)=\frac{1}{2 C^{2}}[\exp (2 C(u+M))-(1+2 C(u+M))]
$$

where $M=\|Y\|_{\infty}$. Indeed, since

- $\Phi(u) \geq 0, \Phi^{\prime}(u) \geq 0$
- $0 \leq u \Phi^{\prime}(u) \leq \frac{M}{C}\left(e^{4 C M}-1\right) \triangleq K_{0}$
- $\frac{1}{2} \Phi^{\prime \prime}(u)-C \Phi^{\prime}(u)=1$,

Setting $\varphi \equiv 0$ in (29) we can check
$0 \leq \Phi\left(Y_{0}\right) \leq \Phi\left(Y_{T}\right)+K_{0} \int_{t}^{T} a_{s}^{+} d s-\int_{t}^{T}\left|Z_{s}\right|^{2} d s-\int_{t}^{T} \Phi^{\prime}\left(Y_{s}\right) Z_{s} d W_{s}$,
$\Longrightarrow \mathbb{E} \int_{0}^{T}\left|Z_{s}\right|^{2} d s \leq \Phi(M)+K_{0}\left\|a^{+}\right\|_{L^{1}} \triangleq K$.

Monotone Stability

Proposition

Suppose that $\left\{\left(f^{n}, \xi^{n}\right)\right\}$ are a sequence of parameters such that

- $f^{n} \rightarrow f$ locally uniformly on $\mathbb{R}^{+} \times \mathbb{R} \times \mathbb{R}^{d}$;
- $\xi^{n} \rightarrow \xi$ in L^{∞}.
- $\exists k: \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}, k \in L^{1}([0, T])$, such that for some $C>0$,

$$
\left|f^{n}(t, y, z)\right| \leq k_{t}+C|z|^{2}, \quad \forall n \in \mathbb{N},(t, y, z) \in \mathbb{R}^{+} \times \mathbb{R} \times \mathbb{R}^{d}
$$

- $\left(Y^{n}, Z^{n}\right) \in L_{\mathrm{F}}^{\infty}(\Omega ; \mathbb{C}([0, T] ; \mathbb{R})) \times \mathscr{H}_{\mathrm{F}}^{2}\left([0, T] ; \mathbb{R}^{d}\right)$ such that $\left\{Y^{n}\right\} \nearrow$ and $\left\|Y^{n}\right\|_{\infty} \leq M$.
Then $\exists(Y, Z) \in L_{\mathbf{F}}^{\infty}(\Omega ; \mathbb{C}([0, T] ; \mathbb{R})) \times \mathscr{H}_{\mathbf{F}}^{2}\left([0, T] ; \mathbb{R}^{d}\right)$ such that $\lim _{n \rightarrow \infty} Y^{n}=Y$, uniformly on $[0, T] ; \quad Z^{n} \rightarrow Z$ in $\mathscr{H}_{\mathbf{F}}^{2}\left([0, T] ; \mathbb{R}^{d}\right)$, and (Y, Z) solves BSDE (24).

Monotone Stability

Main Points:

- $\left\{Y^{n}\right\}$ is monotone and bounded $\Longrightarrow \exists Y$, s.t., $Y^{n} \rightarrow Y$ (pointwisely).
- $\left\{Z^{n}\right\}$ is bounded in $L^{2}([0, T] \times \Omega) \Longrightarrow$ it has a weakly convergent subsequence, denoted by itself.

Monotone Stability

Main Points:

- $\left\{Y^{n}\right\}$ is monotone and bounded $\Longrightarrow \exists Y$, s.t., $Y^{n} \rightarrow Y$ (pointwisely).
- $\left\{Z^{n}\right\}$ is bounded in $L^{2}([0, T] \times \Omega) \Longrightarrow$ it has a weakly convergent subsequence, denoted by itself.

Want to Show:

- $\left\{Z^{n}\right\}$ converges Strongly in $L^{2}([0, T] \times \Omega)$ (Mazur's Theorem)
- $\left\{Y^{n}\right\}$ converges Uniformly in t (Dini's Theorem)

Consequently, one can then show that

- $\int_{t}^{T} f^{n}\left(s, Y_{s}^{n}, Z_{s}^{n}\right) d s \rightarrow \int_{t}^{T} f\left(s, Y_{s}, Z_{s}\right) d s$; and
- $\int_{t}^{T} Z_{s}^{n} d W_{s} \rightarrow \int_{t}^{T} Z_{s} d W_{s}$, and thus (Y, Z) solves the BSDE.

Proof of the Main Result

Assumptions:

There exists $\alpha_{0}, \beta_{0} \in \mathbb{R}, B, C \in \mathbb{R}^{+}$, such that for all $(t, y, z) \in \mathbb{R}^{+} \times \mathbb{R} \times \mathbb{R}^{d}$,

$$
f(t, y, z)=a_{0}(t, y, z) y+F_{0}(t, y, z)
$$

where

- $\beta_{0} \leq a_{0}(t, y, z) \leq \alpha_{0}$,
- $\left.F_{0}(t, y, z)|\leq B+C| z\right|^{2}$.

Assumptions:

There exists $\alpha_{0}, \beta_{0} \in \mathbb{R}, B, C \in \mathbb{R}^{+}$, such that for all $(t, y, z) \in \mathbb{R}^{+} \times \mathbb{R} \times \mathbb{R}^{d}$,

$$
f(t, y, z)=a_{0}(t, y, z) y+F_{0}(t, y, z)
$$

where

- $\beta_{0} \leq a_{0}(t, y, z) \leq \alpha_{0}$,
- $\left.F_{0}(t, y, z)|\leq B+C| z\right|^{2}$.

1. Exponential Change. Define $\mathbf{y}_{t} \triangleq e^{2 C Y_{t}}$ and $\mathbf{z}_{t} \triangleq 2 C \mathbf{y}_{t} Z_{t}$. Then, by Itô one can check that (\mathbf{y}, \mathbf{z}) solves the BSDE (24) with parameters:

- $\mathbf{y}_{T}=e^{2 C \xi}$;
- $F(t, y, z) \triangleq 2 C \cdot y f\left(s, \frac{\ln (y)}{2 C}, \frac{z}{2 C \cdot y}\right)-\frac{1}{2} \frac{|z|^{2}}{y}$

Proof of the Main Result

2. Truncation. Define a C^{∞} function $\psi: \mathbb{R} \mapsto[0,1]$ by

$$
\psi(u)= \begin{cases}1, & \text { if } u \in\left[e^{-2 C M}, e^{2 C M}\right] \\ 0, & \text { if } u \notin\left[e^{-2 C(M+1)}, e^{2 C(M+1)}\right]\end{cases}
$$

Now, define $\widetilde{F}(t, y, z) \triangleq \psi(y) F(t, y, z)$, and let

$$
\begin{aligned}
\ell^{+}(y) & \triangleq \psi(y)\left(\alpha_{0} y \ln (y)+2 C B y\right) ; \\
\ell^{-}(y, z) & \triangleq \psi(y)\left(\beta_{0} y \ln (y)-2 C B y-\frac{|z|^{2}}{y}\right) .
\end{aligned}
$$

Then it is easily checked that

$$
\begin{equation*}
\ell^{-}(y, z) \leq \widetilde{F}(t, y, z) \leq \ell(y), \quad \forall(t, y, z) \tag{30}
\end{equation*}
$$

Note:

The function $y \mapsto \ell^{+}(y)$ is bounded and Lipschitz!

Proof of the Main Result

3. Approximation. For any $n \in \mathbb{N}$, find $\widetilde{F}^{n} \in C_{b}^{\infty}$ such that

$$
\widetilde{F}+\frac{1}{2^{n+1}} \leq \widetilde{F}^{n} \leq \widetilde{F}+\frac{1}{2^{n}}
$$

Then, let $\phi_{n} \in C^{\infty}$ be s.t. $\phi(u)=\left\{\begin{array}{ll}1, & 0 \leq u \leq n ; \\ 0, & u \geq n+1 .\end{array} \quad\right.$ Define $F^{n}(t, y, z) \triangleq \widetilde{F}^{n}(t, y, z) \phi_{n}(|y|+|z|)+\left(\ell^{+}(y)+\frac{1}{2^{n}}\right)\left[1-\phi_{n}(|y|+|z|)\right]$.

Note:

- F^{n} 's are uniformly Lipschitz (in (y, z));
- For any $n \in \mathbb{N}$ and all (t, y, z), it holds that

$$
\begin{equation*}
\widetilde{F}(t, y, z) \leq \widetilde{F}^{n}(t, y, z) \leq F^{n}(t, y, z) \leq \ell^{+}(y)+\frac{1}{2^{n}} \tag{31}
\end{equation*}
$$

Proof of the Main Result

4. Synthesis. Denote $\left(\mathbf{y}^{n}, \mathbf{z}^{n}\right)$ to be solution to $\operatorname{BSDE}\left(F^{n}, e^{2 C \xi}\right)$, via standard theory.

- For n large enough
- $F^{n}\left(t, e^{2 C M}, 0\right) \leq 0$, and $e^{2 C M} \geq e^{2 C \xi}$;
- $F^{n}\left(t, e^{-2 C M}, 0\right) \geq 0$, and $e^{-2 C M} \leq e^{2 C \xi}$,
- Since $y_{t} \equiv e^{2 C M}, z_{t} \equiv 0$ (resp. $y_{t} \equiv e^{-2 C M}, z_{t} \equiv 0$) are solutions to the $\operatorname{BSDE}\left(e^{2 C M}, 0\right)$ (resp. $\operatorname{BSDE}\left(e^{-2 C M}, 0\right)$), by the standard Comparison Theorem we conclude:

$$
e^{-2 C M} \leq \mathbf{y}^{n+1} \leq \mathbf{y}^{n} \leq e^{2 C M}
$$

- Define $Y_{t}^{n} \triangleq \frac{\ln \left(\mathbf{y}_{t}^{n}\right)}{2 C}, Z_{t}^{n} \triangleq \frac{\mathbf{z}_{t}^{n}}{2 C \mathbf{y}_{t}^{n}}$, and

$$
\begin{aligned}
f^{n}(t, y, z) & \triangleq \frac{F^{n}\left(t, e^{2 C y}, 2 C e^{2 C y} z\right)}{2 C e^{2 C y}}+C|z|^{2} \\
\widetilde{f}^{n}(t, y, z) & \triangleq \frac{\widetilde{F}^{n}\left(t, e^{2 C y}, 2 C e^{2 C y} z\right)}{2 C e^{2 C y}}+C|z|^{2}
\end{aligned}
$$

Then $\left(Y^{n}, Z^{n}\right)$ is the solution to $\operatorname{BSDE}\left(\widetilde{f}^{n}, \xi\right), n \in \mathbb{N}$, and Y^{n} 's are monotone, since y^{n} 's are!

- Since $\widetilde{f}^{n} \rightarrow \widetilde{f}$ and $f^{n} \rightarrow f$, uniformly on compacts, we can first apply the Monotone Stability Theorem, we know that $\exists(Y, Z) \in L_{F}^{\infty}(\Omega ; \mathbb{C}([0, T] ; \mathbb{R})) \times \mathscr{H}_{\mathbf{F}}^{2}\left([0, T] ; \mathbb{R}^{d}\right)$ such that (Y, Z) solves $\operatorname{BSDE}(\widetilde{f}, \xi)$.
- One can then show that $\|Y\|_{\infty} \leq M$ as was done in the a priori estimate, and note that

$$
\widetilde{f}(t, y, z)=f(t, y, z), \quad \text { whenever }|y| \leq M
$$

(by the nature of the truncation), we conclude that (Y, Z) solves $\operatorname{BSDE}(f, \xi)$, proving the existence.

Uniqueness

We shall assume that the generator f satisfies the following assumptions throughout the uniqueness discussion.
(H2) For some constants M and $C>0$, and positive functions $I(\cdot)$ and $k(\cdot)$, it holds for all $t \in \mathbb{R}^{+}, y \in[-M, M]$, and $z \in \mathbb{R}^{d}$ that

$$
\left\{\begin{array}{l}
|f(t, y, z)| \leq I(t)+C|z|^{2}, \tag{32}\\
\left|\frac{\partial f}{\partial z}(t, y, z)\right| \leq k(t)+C|z|^{2},
\end{array}\right.
$$

(H3) For some constant $\varepsilon>0$ and $C_{\varepsilon}>0$, it holds for all $t \in \mathbb{R}^{+}, y \in \mathbb{R}$, and $z \in \mathbb{R}^{d}$ that

$$
\begin{equation*}
\frac{\partial f}{\partial y}(t, y, z) \leq I_{\varepsilon}(t)+C|z|^{2}, \quad \text { a.s. } \tag{33}
\end{equation*}
$$

Uniqueness

Comparison Theorem

Let $\left(Y^{i}, Z^{i}\right), i=1,2$ be two solutions of $\operatorname{BSDE}\left(f^{i}, \xi^{i}\right), i=1,2$.
Assume that

- $\xi^{1} \leq \xi^{2}$, a.s., and $f^{1} \leq f^{2}$;
- For all $\varepsilon>0$ and $M>0$, there exist functions $I, I_{\varepsilon} \in L^{1}$, $k \in L^{2}$, and constant $C \in \mathbb{R}$, such that either f^{1} or f^{2} satisfies both (H 2) with I, k, and C and $(\mathrm{H} 3)$ with I_{ε} and ε.
Then if $\left(Y^{1}, Z^{1}\right)$ [resp. $\left.\left(Y^{2}, Z^{2}\right) \in L^{\infty}(\cdots) \times L^{2}(\cdots)\right]$ is a sub-solution (resp. super-solution) of the BSDEs with parameters $\left(f^{1}, \xi^{1}\right)\left(\right.$ resp. $\left.\left(f^{2}, \xi^{2}\right)\right)$, one has

$$
Y_{t}^{1} \leq Y_{t}^{2}, \quad \forall t \in \mathbb{R}^{+}, \quad \text { a.s. }
$$

Proof. Lengthy. (cf. Kobylanski (2000))

A Quick Summary

We have studied following types of BSDEs beyond the standard ones:

- BSDEs with continuous coefficients
- BSDEs with reflections
- BSDEs with quadratic growth

A Quick Summary

We have studied following types of BSDEs beyond the standard ones:

- BSDEs with continuous coefficients
- BSDEs with reflections
- BSDEs with quadratic growth

Some Variations

- Reflected BSDEs with continuous coefficients - Matoussi (1997), Hamadene-Matoussi-Lepeltier (1997)
- BSDEs with superlinear-quadratic coefficients - Lepelier-San Martin (1998)
- Reflected BSDE with superlinear-quadratic coefficients -Kobylanski-Lepeltier-Quenez-Torres (2001)
-

Converse Comparison Theorem

Consider the BSDE:

$$
Y_{t}=\xi+\int_{t}^{T} f\left(s, Y_{s}, Z_{s}\right) d s-\int_{t}^{T} Z_{s} d W_{s}, \quad t \geq 0
$$

We know that " $\xi^{1} \geq \xi^{2 "} \oplus{ }^{\prime \prime} f^{1} \geq f^{2 "} \Longrightarrow{ }^{\prime \prime} Y_{t}^{1} \geq Y_{t}^{2}, t \geq 0$ "

Question:

Under what condition $Y^{1} \geq Y^{2}$ implies $f^{1} \geq f^{2}$?

Main Assumptions

(A1) The random field $f:[0, T] \times \Omega \times \mathbb{R} \times \mathbb{R}^{d} \mapsto \mathbb{R}$ is uniformly Lipschitz in (y, z), uniformly in (t, ω).
(A2) $t \mapsto f(t, 0,0)$, is a square-integrable adapted process.
(A3) $f(t, y, 0)=0$
(A4) $t \mapsto f(t, y, z)$ is continuous.

Converse Comparison Theorem

Theorem (Briand-Coquet-Hu-Mémin-Peng, 2000)

Assume (A1)-(A4), and assume further that for any $\xi \in L^{2}\left(\mathscr{F}_{T}\right)$, it holds that $Y_{t}^{1}(\xi) \leq Y_{t}^{2}(\xi)$, for all $t \in[0, T]$, \mathbb{P}-a.s.
Then \mathbb{P}-almost surely,

$$
f_{0}^{1}(t, y, z) \leq f_{0}^{1}(t, y, z), \quad \forall(y, z) \in \mathbb{R} \times \mathbb{R}^{6}
$$

Main Tricks:

- Choose $\xi_{\varepsilon}=y+z\left(W_{t+\varepsilon}-W_{t}\right), \varepsilon>0$; and denote

$$
Y_{T}^{\varepsilon} \triangleq Y_{t}\left(\xi_{\varepsilon}\right)
$$

- Show that $\frac{1}{\varepsilon}\left(Y_{t}^{\varepsilon}-y\right) \rightarrow g(t, y, z)$, as $\varepsilon \rightarrow 0$;
- Then $Y^{1, \varepsilon} \leq Y^{2, \varepsilon} \Longrightarrow \quad g_{1} \leq g_{2}$.

Quadratic BSDEs with Unbounded Terminal Value

This is based on the works of Briand and Hu (2005-08).
Consider the BSDE:

$$
\begin{equation*}
Y_{t}=\xi+\int_{t}^{T} f\left(s, Y_{s}, Z_{s}\right) d s-\int_{t}^{T} Z_{s} d W_{s}, \quad t \in[0, T] \tag{34}
\end{equation*}
$$

Main Assumptions

$\exists \beta \geq 0, \gamma>0, \alpha \in L_{\mathbb{F}}^{0}([0, T] \times \Omega)$, and $\varphi: \mathbb{R}_{+} \mapsto \mathbb{R}_{+}$with $\varphi(0)=0$, such that \mathbb{P}-a.s.,
(i) For all $t \in[0, T],(y, z) \mapsto f(t, y, z)$ is continuous;
(ii) (Monotoniciy in $y) \forall(t, z)$,

$$
y[f(t, y, z)-f(t, 0, z)] \leq \beta|y|^{2}
$$

(iii) (Quadratic growth): $\forall(t, y, z)$,

$$
\left.\left|f(t, y, z) \leq \alpha(t)+\varphi(|y|)+\frac{\gamma}{2}\right| z\right|^{2}
$$

Quadratic BSDEs with Unbounded Terminal Value

Main Purpose:

Find the adapted solution (hopefully unique!) to the BSDE (34), with terminal value ξ satisfying: $\mathbb{E}\left\{e^{\gamma|\xi|}\right\}<\infty$ (ξ is said to have "exponential moment of order γ "), for some or all $\gamma>0$.

A Trick: Consider $U\left(t,\left|Y_{t}\right|\right)=e^{\gamma \psi\left(t,\left|Y_{t}\right|\right)}$, where ψ is a smooth function to be determined. Applying Itô \oplus Tanaka:

$$
\begin{aligned}
\frac{d U\left(t,\left|Y_{t}\right|\right)}{\gamma U\left(t,\left|Y_{t}\right|\right)}= & \left\{-\psi_{x}\left(t,\left|Y_{t}\right|\right) \operatorname{sgn}\left(Y_{t}\right) f\left(t, Y_{t}, Z_{t}\right)+\psi_{t}\left(t,\left|Y_{t}\right|\right)\right. \\
& \left.+\frac{\gamma}{2} \psi_{x}\left(t,\left|Y_{t}\right|\right)^{2}\left|Z_{t}\right|^{2}\right\} d t+\frac{1}{2} \psi_{x x}\left(t,\left|Y_{t}\right|\right)\left|Z_{t}\right|^{2} d t \\
& +\psi_{x}\left(t,\left|Y_{t}\right|\right) d L_{t}+\psi_{x}\left(t,\left|Y_{t}\right|\right) \operatorname{sgn}\left(Y_{t}\right) Z_{t} \cdot d W_{t}
\end{aligned}
$$

where L is the local time of Y at zero.

Quadratic BSDEs with Unbounded Terminal Value

Since

$$
\begin{aligned}
& \operatorname{sgn}\left(Y_{t}\right) f\left(t, Y_{t}, Z_{t}\right)= \operatorname{sgn}\left(Y_{t}\right)\left[f\left(t, Y_{t}, Z_{t}\right)-f\left(t, 0, Z_{t}\right)\right] \\
&+\operatorname{sgn}\left(Y_{t}\right) f\left(t, 0, Z_{t}\right) \\
& \leq \beta\left|Y_{t}\right|+\alpha(t)+\frac{\gamma}{2}\left|Z_{t}\right|^{2}
\end{aligned}
$$

assuming $\psi_{x}(t, x) \geq 1$ for $x \geq 0$, one has

$$
\begin{aligned}
& \psi_{x}\left(t,\left|Y_{t}\right|\right) \operatorname{sgn}\left(Y_{t}\right) f\left(t, Y_{t}, Z_{t}\right)-\psi_{t}\left(t,\left|Y_{t}\right|\right)-\frac{\gamma}{2} \psi_{x}\left(t,\left|Y_{t}\right|\right)^{2}\left|Z_{t}\right|^{2} \\
& \leq \psi_{x}\left(t,\left|Y_{t}\right|\right)\left[\alpha(t)+\beta\left|Y_{t}\right|\right]-\psi_{t}\left(t,\left|Y_{t}\right|\right) .
\end{aligned}
$$

Quadratic BSDEs with Unbounded Terminal Value

Since

$$
\begin{aligned}
& \operatorname{sgn}\left(Y_{t}\right) f\left(t, Y_{t}, Z_{t}\right)= \operatorname{sgn}\left(Y_{t}\right)\left[f\left(t, Y_{t}, Z_{t}\right)-f\left(t, 0, Z_{t}\right)\right] \\
&+\operatorname{sgn}\left(Y_{t}\right) f\left(t, 0, Z_{t}\right) \\
& \leq \beta\left|Y_{t}\right|+\alpha(t)+\frac{\gamma}{2}\left|Z_{t}\right|^{2}
\end{aligned}
$$

assuming $\psi_{x}(t, x) \geq 1$ for $x \geq 0$, one has

$$
\begin{aligned}
& \psi_{x}\left(t,\left|Y_{t}\right|\right) \operatorname{sgn}\left(Y_{t}\right) f\left(t, Y_{t}, Z_{t}\right)-\psi_{t}\left(t,\left|Y_{t}\right|\right)-\frac{\gamma}{2} \psi_{x}\left(t,\left|Y_{t}\right|\right)^{2}\left|Z_{t}\right|^{2} \\
& \leq \psi_{x}\left(t,\left|Y_{t}\right|\right)\left[\alpha(t)+\beta\left|Y_{t}\right|\right]-\psi_{t}\left(t,\left|Y_{t}\right|\right)
\end{aligned}
$$

Idea:

Look for ψ that solves the first order PDE for $(t, x) \in[s, T] \times \mathbb{R}$:

$$
\begin{equation*}
\psi_{t}(t, x)-(\alpha(t)+\beta x) \psi_{x}(t, x)=0, \quad \psi(s, x)=x \tag{35}
\end{equation*}
$$

Quadratic BSDEs with Unbounded Terminal Value

The solution to the characteristic equation of (35):

$$
\begin{equation*}
v(u ; t, x)=x+\int_{u}^{t}[\alpha(r)+\beta v(r ; t, x)] d r, \quad 0 \leq u \leq t \tag{36}
\end{equation*}
$$

is $v(s ; t, x)=x e^{\beta(t-s)}+\int_{s}^{t} \alpha(r) e^{\beta(r-s)} d r, 0 \leq s \leq t \leq T$.
Since $\frac{d}{d u} \psi(u, v(u ; t, x))=0$, we have for $s \leq t \leq T$,

$$
\psi(t, x)=\psi(t, v(t ; t, x))=\psi(s, v(s ; t, x))=v(s ; t, x)
$$

$\Longrightarrow \psi_{x}(t, x) \geq 1$ and $\psi_{x x}(t, x) \geq 0!!$

A Key Estimate

$$
\begin{aligned}
e^{\gamma\left|Y_{s}\right|} & =U\left(s,\left|Y_{s}\right|\right) \\
& \leq U\left(t,\left|Y_{t}\right|\right)-\int_{s}^{t} \gamma U\left(r,\left|Y_{r}\right|\right) \psi_{x}\left(r,\left|Y_{r}\right|\right) \operatorname{sgn}\left(Y_{r}\right) Z_{r} d W_{r}
\end{aligned}
$$

Quadratic BSDEs with Unbounded Terminal Value

Theorem (Existence)

Assume that the main assumption holds. Assume also that $\xi+|\alpha|_{1}$ has an exponential moment of order $\gamma e^{\beta T}$, then the BSDE (34) has a solution (Y, Z) such that

$$
\left|Y_{t}\right| \leq \frac{1}{\gamma} \log \mathbb{E}\left\{\exp \left\{\gamma e^{\beta(T-t)}|\xi|+\gamma \int_{t}^{T} \alpha(r) e^{\beta(r-t)} d r\right\} \mid \mathscr{F}_{t}\right\}
$$

Note:

The Comparison Theorems (whence uniqueness) for quadratic BSDE were only proved for the bounded terminal value case, based essentially on the fact that in that case the process $Z \bullet W$ is a "BMO Martingale". Since this fact fails in the unbounded terminal case, a new idea is needed!

Quadratic BSDEs with Convex Coefficients in z

Assumption (A2)

There exist two constants $\gamma>0$ and $\beta \geq 0$, and a non-negative, progressively measurable process $\alpha(t), t \geq 0$, such that,

- $\forall t \in[0, T], \forall y \in \mathbb{R}$, the mapping $z \mapsto f(t, y, z)$ is convex;
- $\forall(t, z) \in[0, T] \times \mathbb{R}$,

$$
\left|f(t, y, z)-f\left(t, y^{\prime}, z^{\prime}\right)\right| \leq \beta\left|y-y^{\prime}\right|, \quad \forall\left(y, y^{\prime}\right) \in \mathbb{R}^{2}
$$

- f satisfies the growth condition:

$$
|f(t, y, z)| \leq \alpha(t)+\beta|y|+\frac{\gamma}{2}|z|^{2}
$$

- $|\alpha|_{1}$ has exponential moment of all order.

Quadratic BSDEs with Convex Coefficients in z

Comparison Theorem

Let (Y, Z) and $\left(Y^{\prime}, Z^{\prime}\right)$ be two solution to (34) w.r.t. terminal conditions ξ and ξ^{\prime}, generators f and f^{\prime}, respectively. Assume that

- for any $\lambda>0, \mathbb{E}\left\{e^{\lambda Y^{*}}+e^{\lambda Y^{\prime *}}\right\}<\infty$, where

$$
Y^{*}=\sup _{t \in[0, T]}|\stackrel{\stackrel{Y}{Y}}{t}| ;
$$

- $\xi \leq \xi^{\prime}, \mathbb{P}$-a.s.;
- $f(t, y, z) \leq f^{\prime}(t, y, z), \forall(t, y, z) \in[0, T] \times \mathbb{R} \times \mathbb{R}^{d}$;
- f satisfies (A2).

Then $Y_{t} \leq Y_{t}^{\prime}$, for all $t \in[0, T]$, \mathbb{P}-a.s. Furthermore, if $Y_{0}=Y_{0}^{\prime}$, then

$$
\mathbb{P}\left\{\xi^{\prime}=\xi, \quad \int_{0}^{T}\left(f^{\prime}-f\right)\left(t, Y_{t}^{\prime}, Z_{t}^{\prime}\right) d t=0\right\}>0
$$

Quadratic BSDEs with Convex Coefficients in z

Main Trick:

- For any $\theta \in(0,1)$, consider $\eta^{\theta}=\eta-\theta \eta^{\prime}, \eta=\xi, Y, Z$.
- Let $A_{t}=\int_{0}^{t} \alpha(s) d s$, then we have

$$
e^{A_{t}} Y_{t}^{\theta}=e^{A_{T}} Y_{T}^{\theta}+\int_{t}^{T} e^{A_{s}} F_{s} d s-\int_{t}^{T} e^{A_{s}} Z_{s}^{\theta} d W_{s}
$$

where, denoting $\delta f(t) \triangleq\left(f-f^{\prime}\right)\left(t, Y_{t}^{\prime}, Z_{t}^{\prime}\right)$,

$$
\begin{aligned}
F_{t}= & \left(f\left(t, Y_{t}, Z_{t}\right)-\theta f^{\prime}\left(t, Y_{t}^{\prime}, Z_{t}^{\prime}\right)\right)-\alpha(t) Y_{t}^{\theta} \\
= & \left(f\left(t, Y_{t}, Z_{t}\right)-f\left(t, Y_{t}^{\prime}, Z_{t}\right)\right) \\
& +\left(f\left(t, Y_{t}^{\prime}, Z_{t}\right)-\theta f\left(t, Y_{t}^{\prime}, Z_{t}^{\prime}\right)\right)+\theta \delta f(t)
\end{aligned}
$$

- Using the convexity of f in z, one has

$$
f\left(t, Y_{t}^{\prime}, Z_{t}\right) \leq \theta f\left(t, Y_{t}^{\prime}, Z_{t}^{\prime}\right)+(1-\theta) f\left(t, Y_{t}^{\prime}, \frac{Z_{t}^{\theta}}{1-\theta}\right)
$$

Quadratic BSDEs with Convex Coefficients in z

- Using the growth condition to get

$$
\begin{aligned}
& f\left(t, Y_{t}^{\prime}, Z_{t}\right) \leq \theta f\left(t, Y_{t}^{\prime}, Z_{t}^{\prime}\right)+(1-\theta)\left(\alpha(t)+\beta\left|Y_{t}^{\prime}\right|\right)+\frac{\gamma}{1-\theta}\left|Z_{t}^{\theta}\right|^{2} \\
& \Longrightarrow F_{t} \leq(1-\theta)\left(\alpha(t)+2 \beta\left|Y_{t}^{\prime}\right|\right)+\frac{\gamma}{2(1-\theta)}\left|Z_{t}^{\theta}\right|^{2}+\theta \delta f(t)
\end{aligned}
$$

- Denote $P_{t}=e^{c e^{A_{t}} Y_{t}^{\theta}}, Q_{t}=c P_{t} Z_{t}^{\theta} e^{A_{t}}$, then

$$
\begin{gathered}
P_{t}=P_{T}+c \int_{t}^{T} P_{s} e^{A_{s}}\left(F_{s}-\frac{c e^{A_{s}}}{2}\left|Z_{t}^{\theta}\right|^{2}\right) d s-\int_{t}^{T} Q_{s} d W_{s} . \\
\Longrightarrow Y_{t}^{\theta} \leq \frac{1-\theta}{\gamma} \log \mathbb{E}\left\{\exp \left\{\gamma e^{2 \beta T}\left(|\xi|+\int_{t}^{T} G\left(s,\left|Y_{s}^{\prime}\right|\right) d s\right)\right\} \mid \mathscr{F}_{t}\right\} .
\end{gathered}
$$

- Letting $\theta \rightarrow 1$, one obtains $Y_{t} \leq Y_{t}^{\prime}$!

Quadratic BSDEs and Convex Risk Measures

Recall the Entropic dynamic risk measure.

- It is shown by Barrieu-El Karoui ('04) that $\left\{\rho_{t}^{\gamma}(\xi)\right\}_{t \in[0, T]}$ is the unique solution of the following quadratic BSDE:

$$
\rho_{t}^{\gamma}(\xi)=-\xi+\frac{1}{2 \gamma} \int_{t}^{T}\left|Z_{s}\right|^{2} d s-\int_{t}^{T} Z_{s} d B_{s}, \quad \forall t \in[0, T]
$$

Quadratic BSDEs and Convex Risk Measures

Recall the Entropic dynamic risk measure.

- It is shown by Barrieu-El Karoui ('04) that $\left\{\rho_{t}^{\gamma}(\xi)\right\}_{t \in[0, T]}$ is the unique solution of the following quadratic BSDE:

$$
\rho_{t}^{\gamma}(\xi)=-\xi+\frac{1}{2 \gamma} \int_{t}^{T}\left|Z_{s}\right|^{2} d s-\int_{t}^{T} Z_{s} d B_{s}, \quad \forall t \in[0, T]
$$

- But the generator $g=\frac{1}{2 \gamma}|z|^{2}$ is quadratic, and hence NOT a consequence of the representation theorem!

Quadratic BSDEs and Convex Risk Measures

Recall the Entropic dynamic risk measure.
4 Entropic RM

- It is shown by Barrieu-El Karoui ('04) that $\left\{\rho_{t}^{\gamma}(\xi)\right\}_{t \in[0, T]}$ is the unique solution of the following quadratic BSDE:

$$
\rho_{t}^{\gamma}(\xi)=-\xi+\frac{1}{2 \gamma} \int_{t}^{T}\left|Z_{s}\right|^{2} d s-\int_{t}^{T} Z_{s} d B_{s}, \quad \forall t \in[0, T]
$$

- But the generator $g=\frac{1}{2 \gamma}|z|^{2}$ is quadratic, and hence NOT a consequence of the representation theorem!
- In fact, in this case the "domination" (11) fails. E.g., $\gamma=1$: $\rho_{0}(\xi+\eta)-\rho_{0}(\xi)=\eta+\frac{1}{2} \int_{0}^{T}\left(\left|Z_{s}^{2}+Z_{s}\right|^{2}-\left|Z_{s}^{2}\right|^{2}\right) d s-\int_{0}^{T} Z_{s} d B_{s}$. where $Z=Z^{1}-Z^{2}$. But $\frac{1}{2}\left(\left|z^{2}+z\right|^{2}-\left|z^{2}\right|^{2}\right) \leq|z|^{2}+\frac{1}{2}\left|z^{2}\right|^{2}$ cannot be dominated by any (quadratic g).

Quadratic BSDEs and Convex Risk Measures

- In fact one needs to consider a quadratic BSDE:

$$
\begin{equation*}
Y_{t}=\xi+z B_{\tau}+\int_{t}^{T} g\left(s, Z_{s}\right) d s-\int_{t}^{T} Z_{s} d B_{s} \tag{37}
\end{equation*}
$$

where $\xi \in L^{\infty}\left(\mathscr{F}_{T}\right), z \in \mathbb{R}^{d}$, and $\tau \in \mathscr{M}_{0, T}$.

- Although $\xi+z B_{\tau}$ is unbounded, it does have exponential moment of all orders (recall the moment generating function of a Brownian motion), and the BSDE is convex in z. Thus the previous existence and uniqueness applies!
- An easier way: Set $\widetilde{Y}_{t}=Y_{t}-z B_{t \wedge \tau}, \widetilde{Z}_{t}=Z_{t}-z \beta 1_{\{t \leq \tau\}}$, then (37) becomes

$$
\begin{equation*}
\widetilde{Y}_{t}=\xi+\int_{t}^{T} g\left(s, \widetilde{Z}_{s}+z \beta 1_{\{s \leq \tau\}}\right) d s-\int_{t}^{T} \widetilde{Z}_{s} d B_{s} \tag{38}
\end{equation*}
$$

Since $\xi \in L^{\infty}\left(\mathscr{F}_{T}\right)$, the BSDE (38) is uniquely solvable.

- The "domination" problem is more subtle, need to invoke the "BMO" theory (see, Hu-Ma-Peng-Song, 2008).

4. Wellposedness of FBSDEs

Solution Methods for FBSDEs:

General FBSDEs: for $t \in[0, T]$,

$$
\left\{\begin{array}{l}
X_{t}=x+\int_{0}^{t} b\left(s, \Theta_{s}\right) d s+\int_{0}^{t} \sigma\left(s, \Theta_{s}\right) d W_{s} ; \tag{39}\\
Y_{t}=g\left(X_{T}\right)+\int_{t}^{T} f\left(s, \Theta_{s}\right) d s+\int_{t}^{T} Z_{s} d W_{s},
\end{array}\right.
$$

where $\Theta_{s}=\left(X_{s}, Y_{s}, Z_{s}\right)$.

Objective:

For any given $T>0$, and $x \in \mathbb{R}^{n}$, find an \mathbf{F}-adapted, square-integrable process (X, Y, Z) that satisfies (39) on $[0, T]$,
P-a.s.

An Example:

Consider the following simple FBSDE:

$$
\left\{\begin{array}{l}
d X_{t}=Y_{t} d t+d W_{t}, \quad X_{t}=x \tag{40}\\
d Y_{t}=-X_{t} d t+Z_{t} d W_{t}, \quad Y_{T}=-X_{T}
\end{array}\right.
$$

- Suppose that (40) has an adapted solutions (X, Y, Z)
- letting $x_{t}=E X_{t}, y_{t}=E Y_{t}$ one has

$$
\left\{\begin{array}{lr}
d x_{t}=y_{t} d t, & x_{0}=x \\
d y_{t}=-x_{t} d t, & y_{T}=-x_{T}
\end{array}\right.
$$

- Solving, $\dot{x}_{T}+x_{T}=x(\cos T-\sin T)+C(\cos T+\sin T)$.
- If $T=k \pi+\frac{3 \pi}{4}$, then $0=y_{T}+x_{T}=\sqrt{2} x \Longleftrightarrow x=0(!)$.

An Example:

Consider the following simple FBSDE:

$$
\left\{\begin{array}{l}
d X_{t}=Y_{t} d t+d W_{t}, \quad X_{t}=x \tag{40}\\
d Y_{t}=-X_{t} d t+Z_{t} d W_{t}, \quad Y_{T}=-X_{T}
\end{array}\right.
$$

- Suppose that (40) has an adapted solutions (X, Y, Z)
- letting $x_{t}=E X_{t}, y_{t}=E Y_{t}$ one has

$$
\begin{cases}d x_{t}=y_{t} d t, & x_{0}=x \\ d y_{t}=-x_{t} d t, & y_{T}=-x_{T}\end{cases}
$$

- Solving, $\dot{x}_{T}+x_{T}=x(\cos T-\sin T)+C(\cos T+\sin T)$.
- If $T=k \pi+\frac{3 \pi}{4}$, then $0=y_{T}+x_{T}=\sqrt{2} x \Longleftrightarrow x=0($! $)$.

Warning

The example shows that an FBSDE is not always solvable over an arbitrary duration!

A Simple Case

Consider a simple FBSDE:

$$
\begin{aligned}
d X_{t} & =b\left(t, X_{t}, Z_{t}\right) d t+\sigma\left(Z_{t}\right) d W_{t} \\
d Y_{t} & =h\left(t, X_{t}, Y_{t}\right) d t+Z_{t} d W_{t}, \quad t \in[0, T] \\
X_{0} & =x, Y_{T}=g\left(X_{T}\right)
\end{aligned}
$$

Assume that

- b and h are Lipschitz in (X, Y, Z) with constant L,
- σ is Lipschitz in z with constant L_{1},
- g is Lipschitz in x with constant L_{0}

Define
$\|(Y, Z)\|_{\overline{\mathcal{N}}[0, T]} \triangleq \sup _{t \in[0, T]}\left\{E|Y(t)|^{2}+E \int_{t}^{T}|Z(s)|^{2} d s\right\}^{1 / 2}$, and
let $\overline{\mathscr{N}}[0, T]$ be the completion of $\mathscr{N}[0, T]$ in L^{2}.

A Simple Case

For a given $(Y, Z) \in \overline{\mathscr{N}}[0, T]$, define $\Gamma(Y, Z)=(\bar{Y}, \bar{Z})$ as follows.
First solve an FSDE for X :

$$
\left\{\begin{array}{l}
d X_{t}=b\left(t, X_{t}, Z_{t}\right) d t+\sigma\left(Z_{t}\right) d W_{t}, \quad t \in[0, T] \\
X_{0}=x .
\end{array}\right.
$$

and then solve the BSDE

$$
\left\{\begin{array}{l}
d \bar{Y}_{t}=h\left(Y_{t}, Z_{t}\right) d t+\bar{Z}_{t} d W_{t}, \quad t \in[0, T] \\
\bar{Y}_{T}=g\left(X_{T}\right) .
\end{array}\right.
$$

We shall see when 「 could be a contraction mapping.
So take $\left(Y^{i}, Z^{i}\right) \in \overline{\mathscr{N}}[0, T], i=1,2$, and denote X^{i} and $\left(\bar{Y}^{i}, \bar{Z}^{i}\right)$ be the corresponding solutions above. Denote $\Delta \xi=X^{1}-X^{2}$, $\xi=X, Y, Z, \bar{Y}, \bar{Z}$.

A Simple Case

Applying Itô:

$$
\begin{aligned}
& E\left|\Delta X_{t}\right|^{2} \leq \mathbb{E} \int_{0}^{t}\left\{2 L\left|\Delta X_{s}\right|\left(\left|\Delta X_{s}\right|+\left|\Delta Z_{s}\right|\right)+L_{0}^{2}\left|\Delta Z_{s}\right|^{2} d s\right. \\
& \leq \mathbb{E} \int_{0}^{t}\left\{C_{\varepsilon}\left(\left|\Delta X_{s}\right|^{2}+\left|\Delta Y_{s}\right|^{2}\right)+\left(L_{0}^{2}+\varepsilon\right)\left|\Delta Z_{s}\right|^{2}\right\} d s \\
& \Longrightarrow \mathbb{E}\left|\Delta X_{t}\right|^{2} \leq e^{C_{\varepsilon}} \mathbb{E} \int_{0}^{T}\left\{C_{\varepsilon}\left|\Delta Y_{s}\right|^{2}+\left(L_{0}^{2}+\varepsilon\right)\left|\Delta Z_{s}\right|^{2}\right\} d s
\end{aligned}
$$

Similarly one has

$$
\begin{aligned}
& \mathbb{E}\left|\Delta \bar{Y}_{t}\right|^{2}+\mathbb{E} \int_{t}^{T}\left|\Delta \bar{Z}_{s}\right|^{2} d s \leq e^{C_{\varepsilon} T}\left\{\widetilde{C}_{\varepsilon} \mathbb{E} \int_{0}^{T}\left|\Delta Y_{s}\right|^{2} d s\right. \\
& \left.+\left[\varepsilon+\left(L_{1}^{2}+T\right)\left(L_{0}^{2}+\varepsilon\right) e^{C_{\varepsilon} T}\right] \mathbb{E} \int_{0}^{T}\left|\Delta Z_{s}\right|^{2} d s\right\} \\
\leq & e^{C_{\varepsilon} T}\left[\widetilde{C}_{\varepsilon} T+\varepsilon+\left(L_{1}^{2}+T\right)\left(L_{0}^{2}+\varepsilon\right) e^{C_{\varepsilon} T}\right]\|(\Delta Y, \Delta Z)\|_{\overline{\mathcal{N}}[0, T]}^{2}
\end{aligned}
$$

A Simple Case

By choosing $\varepsilon>0$ small enough then choosing $T>0$ small enough, we obtain

$$
\|\left(\Delta \bar{Y}, \Delta \bar{Z}\left\|_{\bar{N}[0, T]} \leq \alpha\right\|(\Delta Y, \Delta Z) \|_{\bar{N}[0, T]}\right.
$$

for some $0<\alpha<1$, whenever $L_{0} L_{1}<1$.

A Simple Case

By choosing $\varepsilon>0$ small enough then choosing $T>0$ small enough, we obtain

$$
\|\left(\Delta \bar{Y}, \Delta \bar{Z}\left\|_{\bar{N}[0, T]} \leq \alpha\right\|(\Delta Y, \Delta Z) \|_{\bar{N}[0, T]}\right.
$$

for some $0<\alpha<1$, whenever $L_{0} L_{1}<1$.
Namely, the mapping Γ is contraction if

- T small;
- $L_{0} L_{1}<1$.

Method of Contraction Mapping

This method was used by Antonelli ('92), Pardoux-Tang ('96), Cvitanic-Ma ('98)... A more general version can be found in Ma-Yong (LMN, 1999). Consider the FBSDE (39).

Basic Assumptions:

(A1) b, h, and σ are continuous, \mathbf{F}-adapted random fields with linear growth in (x, y, z), and $\exists k_{1}, k_{2} \geq 0$ and $\gamma \in \mathbb{R}$ s.t. for all (t, ω) and $\theta \triangleq(x, y, z), \theta_{i} \triangleq\left(x_{i}, y_{i}, z_{i}\right)$, and $\theta_{0} \triangleq(x, y)$,

$$
\begin{aligned}
& \left|b\left(\omega, t, \theta_{1}\right)-b\left(\omega, t, \theta_{2}\right)\right| \leq K\left|\theta_{1}-\theta_{2}\right| ; \\
& \begin{array}{c}
\left\langle h\left(\omega, t, x, y_{1}, z\right)-h\left(\omega, t, x, y_{2}, z\right), y_{1}-y_{2}\right\rangle \leq \gamma\left|y_{1}-y_{2}\right|^{2} \\
\left|h\left(\omega, t, x_{1}, y, z_{1}\right)-h\left(\omega, t, x_{2}, y, z_{2}\right)\right| \\
\quad \leq K\left(\left|x_{1}-x_{2}\right|+| | z_{1}-z_{2} \|\right) \\
\left|\sigma\left(\omega, t, \theta_{1}\right)-\sigma\left(\omega, t, \theta_{2}\right)\right|^{2} \leq K^{2}\left|\theta_{0}^{1}-\theta_{0}^{2}\right|^{2}+k_{1}^{2}\left|z_{1}-z_{2}\right|^{2} \\
\left|g\left(\omega, x_{1}\right)-g\left(\omega, x_{2}\right)\right| \leq k_{2}\left|x_{1}-x_{2}\right| .
\end{array}
\end{aligned}
$$

Method of Contraction Mapping

Denote, for any constants $C_{1}, C_{2}, C_{3}, C_{4}>0$, and $\lambda \in \mathbb{R}$,

$$
\begin{aligned}
\lambda_{1} & =\lambda-2 K-K\left(2+C_{1}^{-1}+C_{2}^{-1}\right)-K^{2} \\
\lambda_{2} & =-\lambda-2 \gamma-K\left(C_{3}^{-1}-C_{4}^{-1}\right) \\
\mu(\alpha, T) & =K\left(C_{1}+K\right) B\left(\lambda_{2}, T\right)+\frac{A\left(\lambda_{2}, T\right)}{\alpha}\left(K C_{2}+k_{1}^{2}\right),
\end{aligned}
$$

where $A(\lambda, t)=e^{-(\lambda \wedge 0) t}$ and $B(\lambda, t)=\frac{1-e^{-\lambda t}}{\lambda}$.

Method of Contraction Mapping

Denote, for any constants $C_{1}, C_{2}, C_{3}, C_{4}>0$, and $\lambda \in \mathbb{R}$,

$$
\begin{aligned}
\lambda_{1} & =\lambda-2 K-K\left(2+C_{1}^{-1}+C_{2}^{-1}\right)-K^{2} \\
\lambda_{2} & =-\lambda-2 \gamma-K\left(C_{3}^{-1}-C_{4}^{-1}\right) \\
\mu(\alpha, T) & =K\left(C_{1}+K\right) B\left(\lambda_{2}, T\right)+\frac{A\left(\lambda_{2}, T\right)}{\alpha}\left(K C_{2}+k_{1}^{2}\right),
\end{aligned}
$$

where $A(\lambda, t)=e^{-(\lambda \wedge 0) t}$ and $B(\lambda, t)=\frac{1-e^{-\lambda t}}{\lambda}$.

Theorem

Assume (A1), and that $0 \leq k_{1} k_{2}<1$. Assume also that one of the following holds for some constants $C_{1}-C_{3}$, and $C_{4}=\frac{1-\alpha_{0}}{K}$:

- $k_{2}=0 ; \exists \alpha_{0} \in(0,1)$ such that $\mu\left(\alpha_{0}, T\right) K C_{3}<\lambda_{1}$;
- $k_{2}>0 ; \lambda_{1}=\frac{K C_{3}}{k_{2}^{2}} ; \exists \alpha_{0} \in(0,1)$ such that $\mu\left(\alpha_{0}^{2}, T\right) k_{2}^{2}<1$.

Then the FBSDE (39) has a unique adapted solution over $[0, T]$.

Method of Contraction Mapping

Note:

The "compatibility condition": $0 \leq k_{1} k_{2}<1$ is essential!

- If $0 \leq k_{1} k_{2}<1$, then there exists $T_{0}>0$ such that for all $0<T \leq T_{0}$, the FBSDE (39) is uniquely solvable on $[0, T]$.

Method of Contraction Mapping

Note:

The "compatibility condition": $0 \leq k_{1} k_{2}<1$ is essential!

- If $0 \leq k_{1} k_{2}<1$, then there exists $T_{0}>0$ such that for all $0<T \leq T_{0}$, the FBSDE (39) is uniquely solvable on $[0, T]$.
- This condition is indispensable! For example, consider

$$
\left\{\begin{array}{l}
X_{t}=\int_{0}^{t} Z_{s} d W_{s} \tag{41}\\
Y_{t}=\left(X_{T}+\xi\right)-\int_{t}^{T} Z_{s} d W_{s}
\end{array}\right.
$$

where ξ is an \mathscr{F}_{T}-measurable, L^{2} random variable. This FBSDE has no adapted solution on any interval $[0, T]$! Indeed, if (X, Y, Z) were an adapted solution, let $\eta=Y-X$, then $\eta_{t} \equiv \xi, \forall t \in[0, T]$. The \mathbb{F}-adaptedness of η then leads to that ξ is a constant(!). But this is obviously not necessarily ture.

Method of Contraction Mapping

Denote, for $t \in[0, T)$,

- $\mathbf{H}(t, T)=L_{\mathbb{F}}^{2}(t, T ; \mathbb{R})$,
- $\mathbf{H}^{\mathbf{c}}(t, T)$ - elements in $\mathbf{H}(t, T)$, with continuous paths
- $\forall \lambda \in \mathbb{R}, \xi \in \mathbf{H}(t, T)$, define $\|\xi\|_{t, \lambda}^{2} \triangleq \mathbb{E} \int_{t}^{T} e^{-\lambda s}|\xi(s)|^{2} d s$.
$\Longrightarrow \mathbf{H}_{\lambda}(t, T) \triangleq\left\{\xi \in \mathbf{H}(t, T):\|\xi\|_{t, \lambda}<\infty\right\}=\mathbf{H}(t, T)$
- For $\xi \in \mathbf{H}^{\mathbf{c}}(t, T), \lambda \in \mathbb{R}$, and $\beta>0$, define

$$
\mathbf{|} \xi \mathbf{I}_{t, \lambda, \beta} \triangleq e^{-\lambda T} \mathbb{E}\left|\xi_{T}\right|^{2}+\beta\|\xi\|_{t, \lambda}^{2}
$$

and let $\mathbf{H}_{\lambda, \beta}(t, T)$ be the completion of $\mathbf{H}^{\mathbf{c}}(t, T)$ under norm $\boldsymbol{\|} \cdot \boldsymbol{|}_{t, \lambda, \beta}$. Then for any λ and $\beta, \mathbf{H}_{\lambda, \beta}(t, T)$ is a Banach space.

Method of Contraction Mapping

The Solution Mapping:

Define $\Gamma: \mathbf{H}^{\mathbf{c}} \mapsto \mathbf{H}^{\mathbf{c}}$ defined as follows: for fixed $x \in \mathbb{R}^{n}$, let $\bar{X} \triangleq \Gamma(X)$ be the solution to the FSDE:

$$
\begin{equation*}
\bar{X}_{t}=x+\int_{0}^{t} b\left(s, \bar{X}_{s}, Y_{s}, Z_{s}\right) d s+\int_{0}^{t} \sigma\left(s, \bar{X}_{s}, Y_{s}, Z_{s}\right) d W_{s} \tag{42}
\end{equation*}
$$

where (Y, Z) ia the solution to the BSDE:

$$
\begin{equation*}
Y_{t}=g\left(X_{T}\right)+\int_{t}^{T} h\left(s, X_{s}, Y_{s}, Z_{s}\right) d s-\int_{t}^{T} Z_{s} d W_{s} \tag{43}
\end{equation*}
$$

Need to show that Γ is a contraction on $\mathbf{H}_{\lambda, \bar{\lambda}_{1}}$ for some $\bar{\lambda}_{1}$.

A Key Estimate

Let $X^{1}, X^{2} \in \mathbf{H}^{\mathrm{c}}$; and let \bar{X}^{i} and $\left(Y^{i}, Z^{i}\right), i=1,2$, be the corresponding solutions to (42) and (43), respectively. Denote $\Delta \xi=\xi^{1}-\xi^{2}$, for $\xi=X, Y, Z$. Then one shows that (with $\left.C_{4}=\frac{1-\alpha}{K}\right)$

$$
\begin{align*}
& e^{-\lambda T} E\left|\Delta \bar{X}_{T}\right|^{2}+\bar{\lambda}_{1}\|\Delta \bar{X}\|_{\lambda}^{2} \tag{44}\\
& \quad \leq \mu(\alpha, T)\left\{k_{2}^{2} e^{-\lambda T} E\left|\Delta X_{T}\right|^{2}+K C_{3}\|\Delta X\|_{\lambda}^{2}\right\} .
\end{align*}
$$

where

$$
\mu(\alpha, T) \triangleq K\left(C_{1}+K\right) B\left(\bar{\lambda}_{2}, T\right)+\frac{A\left(\bar{\lambda}_{2}, T\right)}{\alpha}\left(K C_{2}+k_{1}^{2}\right) ;
$$

and

$$
\left\{\begin{array}{l}
\bar{\lambda}_{1}=\lambda-K\left(2+C_{1}^{-1}+C_{2}^{-1}\right)-K^{2} \tag{45}\\
\bar{\lambda}_{2}=-\lambda-2 \gamma-K\left(C_{3}^{-1}+C_{4}^{-1}\right) .
\end{array}\right.
$$

Fix $C_{4}=\frac{1-\alpha_{0}^{2}}{K}$.
(i) If $k_{2}=0$, then (44) leads to

$$
\|\Delta \bar{X}\|_{\lambda}^{2} \leq \frac{\mu(\alpha, T) K C_{3}}{\bar{\lambda}_{1}}\|\Delta X\|_{\lambda}^{2}
$$

Find $\alpha \in(0,1)$ so that $\mu(\alpha, T) K C_{3}<1 \Longrightarrow \Gamma$ is a contraction mapping on $\left(H,\|\cdot\|_{\lambda}\right)$.
(ii) If $k_{2}>0$, then we can solve λ from (45) and $\bar{\lambda}_{1}=K C_{3} / k_{2}^{2}$, (44) gives

$$
\mathbf{I} \Delta \bar{X} \mathbf{I}_{\lambda^{0}, \bar{\lambda}_{1}}^{2} \leq \mu\left(\alpha_{0}^{2}, T\right) k_{2}^{2} \mid \Delta X \mathbf{I}_{\lambda^{0}, \bar{\lambda}_{1}}^{2},
$$

Let $C_{i}, i=1,2,3$ and $\alpha_{0} \in\left(k_{1} k_{2}, 1\right)$ be such that $\mu\left(\alpha_{0}^{2}, T\right) k_{2}^{2}<1 \Longrightarrow \Gamma$ is a contraction on $\mathbf{H}_{\lambda, \bar{\lambda}_{1}}$.

Method of Stochastic Control

Purpose: Solve FBSDEs over arbitrary interval $[0, T]$!

Method of Stochastic Control

Purpose: Solve FBSDEs over arbitrary interval $[0, T]$!

Consider the stochastic control problem with

- State equations:

$$
\left\{\begin{array}{l}
X_{t}=x+\int_{s}^{t} b\left(r, X_{r}, Y_{r}, Z_{r}\right) d r+\int_{s}^{t} \sigma\left(r, X_{r}, Y_{r}, Z_{r}\right) d W_{r} \\
Y_{t}=y-\int_{s}^{t} h\left(r, X_{r}, Y_{r}, Z_{r}\right) d r-\int_{s}^{t} \widehat{\sigma}\left(r, X_{r}, Y_{r}, Z_{r}\right) d W_{r}
\end{array}\right.
$$

with Z being the control process, and

- Cost functional

$$
J_{T}(s, x, y ; Z) \triangleq E_{s, x, y}\left|g\left(X_{T}\right)-Y_{T}\right|^{2}
$$

- Value function

$$
V_{T}(s, x, y) \triangleq \inf _{Z} J_{T}(s, x, y ; Z)
$$

Objective:
$\forall x \in \mathbb{R}^{n}, \forall T>0$, find $y \in \mathbb{R}^{m}$ and $Z^{*} \in L_{\mathbb{F}}^{2}\left([0, T] ; \mathbb{R}^{m \times d}\right)$, such that

$$
J_{T}\left(0, x, y ; Z^{*}\right) \stackrel{(1)}{=} V_{T}(0, x, y) \stackrel{(2)}{=} 0
$$

Objective:

$\forall x \in \mathbb{R}^{n}, \forall T>0$, find $y \in \mathbb{R}^{m}$ and $Z^{*} \in L_{\mathbb{F}}^{2}\left([0, T] ; \mathbb{R}^{m \times d}\right)$, such that

$$
J_{T}\left(0, x, y ; Z^{*}\right) \stackrel{(1)}{=} V_{T}(0, x, y) \stackrel{(2)}{=} 0
$$

Remark

- $(1)=$ Existence of optimal control (relaxed control);
- (Hard!) Note that $V_{T}(s, x, y)$ is only a viscosity solution of a fully nonlinear PDE (Hamilton-Jacobi-Bellman equation). If we define the "Nodal set" of V_{T} as

$$
\mathscr{N}\left(V_{T}\right) \triangleq\left\{(t, x, y): V_{T}(t, x, y)=0\right\}
$$

Then (2) amounts to saying that

$$
\forall x \in \mathbb{R}^{n}, T>0, \mathscr{N}\left(V_{T}\right) \cap\left\{(0, x, y): y \in \mathbb{R}^{m}\right\} \neq \emptyset
$$

A Worked-out Case (Ma-Yong, 1993)

Assume that b, h, and σ satisfies some standard conditions (e.g., Lipschitz, linear growth, ...), and that

- σ and h are independent of $Z\left(k_{1}=0\right.$! $)$
- σ is non-degenerate. I.e., , $\exists \mu>0$ such that $\sigma \sigma^{T} \geq \mu l$.

Then, it holds that

$$
\mathscr{N}\left(V_{T}\right)=\left\{(t, x, \theta(t, x)) \mid(t, x) \in[0, T] \times \mathbf{R}^{n}\right\}
$$

where θ is the classical solution of the following PDE:

$$
\left\{\begin{array}{l}
\theta_{t}+\frac{1}{2} \operatorname{tr}\left\{\sigma(x, \theta) \sigma^{T}(x, \theta) \theta_{x x}\right\}+\left\langle b(x, \theta), \theta_{x}\right\rangle+h(x, \theta)=0 \tag{46}\\
\theta(T, x)=g(x)
\end{array}\right.
$$

In other words, $V_{T}(s, x, \theta(s, x)) \equiv 0, \forall(s, x)$; and if we let $y=\theta(0, x)$, then $V_{T}(0, x, y)=0$.

A Deeper Thinking...

In light of the previous theorem, it is natural to conjecture that $Y_{t}=\theta\left(t, X_{t}\right)$ for all $t \in[0, T]$, for some function θ.

Question:
Is there a direct method to figure out the function θ ?

A Deeper Thinking...

In light of the previous theorem, it is natural to conjecture that $Y_{t}=\theta\left(t, X_{t}\right)$ for all $t \in[0, T]$, for some function θ.

Question:

Is there a direct method to figure out the function θ ?

A Heuristic Argument:

- Assume θ is "smooth" and apply Itô's formula:

$$
\begin{aligned}
d Y_{t}= & d \theta\left(t, X_{t}\right) \\
= & \left\{\theta_{t}\left(t, X_{t}\right)+\left\langle\theta_{x}\left(t, X_{t}\right), b\left(t, X_{t}, \theta\left(t, X_{t}\right), Z_{t}\right)\right\rangle\right. \\
& \left.+\frac{1}{2} \operatorname{tr}\left[\theta_{x x}\left(t, X_{t}\right) \sigma \sigma^{T}\left(t, X_{t}, \theta\left(t, X_{t}\right)\right)\right]\right\} d t \\
& +\left\langle\theta_{x}\left(t, X_{t}\right), \sigma\left(t, X_{t}, \theta\left(t, X_{t}\right), Z_{t}\right) d W_{t}\right\rangle,
\end{aligned}
$$

- Comparing this to the BSDE in (39)!

Four Step Scheme

Step 1: Find a "smooth" function $z=z(t, x, y, p)$ so that

$$
\begin{equation*}
p \sigma(t, x, y, z(t, x, y, p))+z(t, x, y, p)=0 \tag{47}
\end{equation*}
$$

Step 1: Find a "smooth" function $z=z(t, x, y, p)$ so that

$$
\begin{equation*}
p \sigma(t, x, y, z(t, x, y, p))+z(t, x, y, p)=0 \tag{47}
\end{equation*}
$$

Step 2: Using z above, solve the quasilinear parabolic system for $\theta(t, x)$:

$$
\left\{\begin{array}{l}
0=\theta_{t}+\frac{1}{2} \operatorname{tr}\left[\theta_{x x} \sigma \sigma^{T}(t, x, \theta)\right]+\left\langle b\left(\cdot, z\left(\cdot, \theta_{x}\right)\right), \theta_{x}\right\rangle \\
\quad+h\left(t, x, \theta, z\left(t, x, \theta, \theta_{x}\right)\right) \tag{48}\\
\theta(T, x)=g(x), \quad x \in \mathbb{R}^{n}
\end{array}\right.
$$

Step 3: Setting

$$
\left\{\begin{array}{l}
\tilde{b}(t, x)=b\left(t, x, \theta(t, x), z\left(t, x, \theta(t, x), \theta_{x}(t, x)\right)\right) \tag{49}\\
\tilde{\sigma}(t, x)=\sigma(t, x, \theta(t, x))
\end{array}\right.
$$

Solve the FSDE:

$$
\begin{equation*}
X_{t}=x+\int_{0}^{t} \tilde{b}\left(s, X_{s}\right) d s+\int_{0}^{t} \tilde{\sigma}\left(s, X_{s}\right) d W_{s} \tag{50}
\end{equation*}
$$

Step 3: Setting

$$
\left\{\begin{align*}
\tilde{b}(t, x) & =b\left(t, x, \theta(t, x), z\left(t, x, \theta(t, x), \theta_{x}(t, x)\right)\right) \tag{49}\\
\tilde{\sigma}(t, x) & =\sigma(t, x, \theta(t, x))
\end{align*}\right.
$$

Solve the FSDE:

$$
\begin{equation*}
X_{t}=x+\int_{0}^{t} \tilde{b}\left(s, X_{s}\right) d s+\int_{0}^{t} \tilde{\sigma}\left(s, X_{s}\right) d W_{s} \tag{50}
\end{equation*}
$$

Step 4: Setting

$$
\left\{\begin{array}{l}
Y_{t}=\theta\left(t, X_{t}\right) \tag{51}\\
Z_{t}=z\left(t, X_{t}, \theta\left(t, X_{t}\right), \theta_{x}\left(t, X_{t}\right)\right)
\end{array}\right.
$$

Step 3: Setting

$$
\left\{\begin{align*}
\tilde{b}(t, x) & =b\left(t, x, \theta(t, x), z\left(t, x, \theta(t, x), \theta_{x}(t, x)\right)\right) \tag{49}\\
\tilde{\sigma}(t, x) & =\sigma(t, x, \theta(t, x))
\end{align*}\right.
$$

Solve the FSDE:

$$
\begin{equation*}
X_{t}=x+\int_{0}^{t} \tilde{b}\left(s, X_{s}\right) d s+\int_{0}^{t} \tilde{\sigma}\left(s, X_{s}\right) d W_{s} \tag{50}
\end{equation*}
$$

Step 4: Setting

$$
\left\{\begin{array}{l}
Y_{t}=\theta\left(t, X_{t}\right) \tag{51}\\
Z_{t}=z\left(t, X_{t}, \theta\left(t, X_{t}\right), \theta_{x}\left(t, X_{t}\right)\right)
\end{array}\right.
$$

\Longrightarrow DONE!

Theorem (Ma-Protter-Yong, '94)

Assume that $d=n$; and that

- σ is independent of z;
- b, σ, h, and g are smooth, and their first order derivatives in (x, y, z) are bounded by a common constant $L>0$;
- \exists continuous function $\nu>0$ and constant $\mu>0$ such that

$$
\left\{\begin{array}{l}
\nu(|y|) \leq \sigma(t, x, y) \sigma(t, x, y)^{T} \leq \mu l ; \\
|b(t, x, 0,0)|+|h(t, x, 0, z)| \leq \mu
\end{array}\right.
$$

- g is bounded in $C^{2+\alpha}\left(\mathbf{R}^{n}\right)$ for some $\alpha \in(0,1)$.

Then, the quasilinear PDE (48) admits a unique classical solution θ which has uniformly bounded derivatives θ_{x} and $\theta_{x x}$; and the FBSDE (39) has a unique adapted solution, constructed via steps (49) -(51).

More generally....

Theorem

Assume that (47) admits a unique solution z, and (48) admits a classical solution θ with bounded θ_{x} and $\theta_{x x}$. Assume that z, b, σ are Lipschitz with linear growth in (x, y, p), uniformly in (t, x, y) and locally uniformly in p. Then the processes defined in (51) give an adapted solution to the FBSDE (39).
Moreover, if h is also uniform Lipschitz in $(x, y, z), \sigma$ is bound, and there exists a constant $\beta>0$ such that

$$
\begin{equation*}
\left|\left(\sigma(s, x, y, z)-\sigma\left(s, x, y, z^{\prime}\right)\right)^{T} \theta_{x}^{k}(s, x)\right| \leq \beta\left|z-z^{\prime}\right| \tag{52}
\end{equation*}
$$

for all (s, x, y, z), then the adapted solution to (39) is unique.

More generally....

Theorem

Assume that (47) admits a unique solution z, and (48) admits a classical solution θ with bounded θ_{x} and $\theta_{x x}$. Assume that z, b, σ are Lipschitz with linear growth in (x, y, p), uniformly in (t, x, y) and locally uniformly in p. Then the processes defined in (51) give an adapted solution to the FBSDE (39).
Moreover, if h is also uniform Lipschitz in $(x, y, z), \sigma$ is bound, and there exists a constant $\beta>0$ such that

$$
\begin{equation*}
\left|\left(\sigma(s, x, y, z)-\sigma\left(s, x, y, z^{\prime}\right)\right)^{T} \theta_{x}^{k}(s, x)\right| \leq \beta\left|z-z^{\prime}\right| \tag{52}
\end{equation*}
$$

for all (s, x, y, z), then the adapted solution to (39) is unique.

Remark

The dependence of σ on z will complicate both the existence and the uniqueness of the solution to an FBSDE (recall FBSDE (41))!

Method of Continuation

Benefits of Previous Methods:

- explicit solution (especially the component Z !)
- numerically "feasible".

Method of Continuation

Benefits of Previous Methods:

- explicit solution (especially the component Z !)
- numerically "feasible".

Shortcomings of Previous Methods

- non-degeneracy of σ
- high regularity of the coefficients
- all coefficients have to be deterministic (PDE)

Method of Continuation

Benefits of Previous Methods:

- explicit solution (especially the component Z !)
- numerically "feasible".

Shortcomings of Previous Methods

- non-degeneracy of σ
- high regularity of the coefficients
- all coefficients have to be deterministic (PDE)

The purpose of the Method of continuation is to replace the smoothness conditions on the coefficients by some structural condition. E.g., the "Monotonicity Conditions".

Still consider the FBSDE (39), and allow even the coefficients to be random(!).

The Monotonicity condition

The coefficients (h, b, σ, g) satisfy the following monotonicity conditions: $\exists \beta>0$ such that

$$
\left\{\begin{array}{l}
\left\langle U\left(t, \theta_{1}\right)-U\left(t, \theta_{2}\right), \theta_{1}-\theta_{2}\right\rangle \leq-\beta\left\|\theta_{1}-\theta_{2}\right\|^{2} \tag{53}\\
\left\langle g\left(x_{1}\right)-g\left(x_{2}\right), x_{1}-x_{2}\right\rangle \geq \beta\left|x_{1}-x_{2}\right|^{2}
\end{array}\right.
$$

where $\theta=(x, y, z)$, and $U=(h, b, \sigma)$.

Main Ideas

Let $\left(h^{i}, b^{i}, \sigma^{i}, g^{i}\right), i=1,2$ be two sets of coefficients. For any $\left(h^{0}, b^{0}, \sigma^{0}\right) \in L_{\mathbf{F}}^{2}(\Omega \times[0, T]), g_{0} \in L_{\mathscr{F}_{T}}^{2}(\Omega)$, and $\alpha \in(0,1)$, consider the FBSDE $\left(\alpha ; h^{0}, b^{0}, \sigma^{0}, g^{0}\right)$:

$$
\left\{\begin{aligned}
& d X_{t}^{\alpha}=\left\{(1-\alpha) b^{1}\left(t, \Theta_{t}^{\alpha}\right)+\alpha b^{2}\left(t, \Theta_{t}^{\alpha}\right)+b_{t}^{0}\right\} d t \\
&+\left\{(1-\alpha) \sigma^{1}\left(t, \Theta_{t}^{\alpha}\right)+\alpha \sigma^{2}\left(t, \Theta_{t}^{\alpha}\right)+\sigma_{t}^{0}\right\} d W_{t} \\
& d Y_{t}^{\alpha}=\left\{(1-\alpha) h^{1}\left(t, \Theta_{t}^{\alpha}\right)+\alpha h^{2}\left(t, \Theta_{t}^{\alpha}\right)+h_{t}^{0}\right\} d t \\
&+Z_{t}^{\alpha} d W_{t} \\
& X_{0}^{\alpha}=x, Y_{T}^{\alpha}=(1-\alpha) g^{1}+\alpha g^{2}+g^{0}
\end{aligned}\right.
$$

where $\Theta^{\alpha}=\left(X^{\alpha}, Y^{\alpha}, Z^{\alpha}\right)$.

The Continuation Step:

Show that, there exists an $\varepsilon_{0}>0$, such that for any $\alpha \in[0,1)$,

- If $\operatorname{FBSDE}\left(\alpha ; h^{0}, b^{0}, \sigma^{0}, g^{0}\right)$ is solvable for all $\left(h^{0}, b^{0}, \sigma^{0}, g^{0}\right)$, then $\operatorname{FBSDE}\left(\alpha+\varepsilon_{0} ; h^{0}, b^{0}, \sigma^{0}, g^{0}\right)$ is solvable for all $\left(h^{0}, b^{0}, \sigma^{0}, g^{0}\right)$.
- Consequently, the solvability of $\operatorname{FBSDE}\left(h^{1}, b^{1}, \sigma^{1} ; g^{1}\right)$ ($\alpha=0$) will imply the solvability of any $\operatorname{FBSDE}\left(h^{2}, b^{2}, \sigma^{2}\right.$; $\left.g^{2}\right)(\alpha=1)$ as long as the coefficients $\left(h^{2}, b^{2}, \sigma^{2} ; g^{2}\right)$ verify the continuation step!

The Continuation Step:

Show that, there exists an $\varepsilon_{0}>0$, such that for any $\alpha \in[0,1)$,

- If $\operatorname{FBSDE}\left(\alpha ; h^{0}, b^{0}, \sigma^{0}, g^{0}\right)$ is solvable for all $\left(h^{0}, b^{0}, \sigma^{0}, g^{0}\right)$, then $\operatorname{FBSDE}\left(\alpha+\varepsilon_{0} ; h^{0}, b^{0}, \sigma^{0}, g^{0}\right)$ is solvable for all $\left(h^{0}, b^{0}, \sigma^{0}, g^{0}\right)$.
- Consequently, the solvability of $\operatorname{FBSDE}\left(h^{1}, b^{1}, \sigma^{1} ; g^{1}\right)$ ($\alpha=0$) will imply the solvability of any $\operatorname{FBSDE}\left(h^{2}, b^{2}, \sigma^{2}\right.$; $\left.g^{2}\right)(\alpha=1)$ as long as the coefficients $\left(h^{2}, b^{2}, \sigma^{2} ; g^{2}\right)$ verify the continuation step!

Theorem (Hu-Peng, '96)

Under the monotonicity condition, the FBSDE (39) admits a unique adapted solution.

Monotonicity condition vs. Four Step Scheme

Consider the following decoupled FBSDE:

$$
\left\{\begin{array}{lc}
d X_{t}=X_{t} d t+d W_{t}, & X_{0}=x \\
d Y_{t}=X_{t} d t+Z_{t} d W_{t}, & Y_{T}=X_{T}
\end{array}\right.
$$

Monotonicity condition vs. Four Step Scheme

Consider the following decoupled FBSDE:

$$
\left\{\begin{array}{lc}
d X_{t}=X_{t} d t+d W_{t}, & X_{0}=x ; \\
d Y_{t}=X_{t} d t+Z_{t} d W_{t}, & Y_{T}=X_{T}
\end{array}\right.
$$

The monotonicity condition does not hold in this case:

$$
\begin{aligned}
\left\langle U\left(\theta_{1}\right)-U\left(\theta_{2}\right), \theta_{1}-\theta_{2}\right\rangle & =\left|x_{1}-x_{2}\right|^{2}+\left\langle x_{1}-x_{2}, y_{1}-y_{2}\right\rangle \\
& \leq C\left\|\theta_{1}-\theta_{2}\right\|^{2}
\end{aligned}
$$

However, the (quasilinear) PDE

$$
\left\{\begin{array}{l}
0=\theta_{t}+\frac{1}{2} \theta_{x x}+x \theta_{x}-x, \\
\theta(T, x)=x, \quad x \in \mathbb{R}^{n}
\end{array}\right.
$$

has a unique solution $\theta(t, x) \equiv x$! That is, $Y_{t} \equiv X_{t}$ and $Z_{t} \equiv 1$ solves the FBSDE (uniquely)!

An Extended form of Four Step Scheme

Restrictions of the Method presented:

- Contraction Mapping - Small duration
- Four Step Scheme - High regularity of the coefficients(thus exclusively Markovian)
- Continuation - Monotonicity of the coefficients (could not even cover the simple Lipschitz case!)

An Extended form of Four Step Scheme

Restrictions of the Method presented:

- Contraction Mapping - Small duration
- Four Step Scheme - High regularity of the coefficients(thus exclusively Markovian)
- Continuation - Monotonicity of the coefficients (could not even cover the simple Lipschitz case!)

Question:

Can we improve the methods above by combining them?

An Extended form of Four Step Scheme

Restrictions of the Method presented:

- Contraction Mapping - Small duration
- Four Step Scheme - High regularity of the coefficients(thus exclusively Markovian)
- Continuation - Monotonicity of the coefficients (could not even cover the simple Lipschitz case!)

Question:

Can we improve the methods above by combining them?

Answer:

Yes! - F. Delarue (2001) combined the method of Contraction mapping with the Four Step Scheme, and extended latter to the case when coefficients need only be Lipschitz!

An Extended form of Four Step Scheme

Consider the FBSDE:

$$
\left\{\begin{array}{l}
X_{t}=\xi+\int_{0}^{t} b\left(s, X_{s}, Y_{s}, Z_{s}\right) d s+\int_{0}^{t} \sigma\left(s, X_{s}, Y_{s}\right) d W_{s} \tag{55}\\
Y_{t}=g\left(X_{T}\right)+\int_{t}^{T} h\left(s, X_{s}, Y_{s}, Z_{s}\right) d s-\int_{t}^{T} Z_{s} d W_{s}
\end{array}\right.
$$

Main Assumptions

- W is an \mathbb{F}-BM, but $\mathbb{F}^{W} \subset \mathbb{F}\left(\right.$ denote $\left.\mathscr{F}_{t}^{0}=\mathscr{F}_{0} \vee \mathscr{F}_{t}^{W}, \forall t\right)$;
- All coefficients are deterministic, and are of linear growth;
- b is uniformly Lipschitz in (y, z), monotone in x;
- f is uniformly Lipschitz in (x, z), monotone in y;
- g is uniformly Lipschitz in x;
- σ is uniformly Lipschitz in (x, y);

An Extended form of Four Step Scheme

Theorm (Existence and uniqueness in small time duration)

Assume that the main assumptions are all in force. Then

- For every $\xi \in L^{2}\left(\mathscr{F}_{0} ; \mathbb{R}^{d}\right)$, the solution (X, Y, Z) to FBSDE(55) satisfies
- (X, Y) has continuous paths;
- $\mathbb{E}\left\{\sup _{t \in[0, T]}\left|X_{t}\right|^{2}+\sup _{t \in[0, T]}\left|Y_{t}\right|^{2}\right\}<\infty$.
- $\exists T_{K}^{0}>0$, depending only on the common Lipschitz constant of the coefficients K, such that for every $T<T_{K}^{0}$ and for every $\xi \in L^{2}\left(\mathscr{F}_{0} ; \mathbb{R}^{d}\right)$, the FBSDE has a unique solution.

Note: The relaxation of the filtration is possible because of a martingale representation theorem by Jacod-Shiryaev.

An Extended form of Four Step Scheme

A slightly modified form of the small duration case is to consider the following FBSDE for $0 \leq t \leq s \leq T$:

$$
\left\{\begin{array}{l}
X_{s}=\xi+\int_{t}^{s} b\left(r, X_{r}, Y_{r}, Z_{r}\right) d r+\int_{t}^{s} \sigma\left(r, X_{r}, Y_{r}\right) d W_{r} \tag{56}\\
Y_{s}=g\left(X_{T}\right)+\int_{s}^{T} h\left(r, X_{r}, Y_{r}, Z_{r}\right) d s-\int_{s}^{T} Z_{r} d W_{r}
\end{array}\right.
$$

Then for $T \leq T_{K}^{0}$, there exists a unique solution to (56). Denote the solution by $\left(X_{s}^{t, x}, Y_{s}^{t, x}, Z_{s}^{t, x}\right)$, for $s \in[t, T]$, and extend it to $[0, T]$ by setting

$$
X_{s}^{t, x}=x, \quad Y_{s}^{t, x}=Y_{t}^{t, x}, \quad Z_{s}^{t, x}=0, \quad s \in[0, t]
$$

We define the (deterministic) mapping $(t, x) \mapsto Y_{t}^{t, x}$ by $\theta(t, x)$.

Continuous Dependence on Initial Data

First note that for some constants $C_{1}, C_{2}, C_{3}>0$, depending only on K, it holds that

$$
\begin{align*}
& \mathbb{E}\left\{\sup _{0 \leq s \leq T}\left|X_{s}^{t, x}\right|^{2}+\sup _{0 \leq s \leq T}\left|Y_{s}^{t, x}\right|+\int_{0}^{T}\left|Z_{s}^{t, x}\right|^{2} d s\right\} \tag{57}\\
& \leq C_{1}\left(1+|x|^{2}\right) \\
& \mathbb{E}\left\{\sup _{0 \leq s \leq T}\left|X_{s}^{t, x}-X_{s}^{t^{\prime}, x^{\prime}}\right|^{2}+\sup _{0 \leq s \leq T}\left|Y_{s}^{t, x}-Y_{s}^{t^{\prime}, x^{\prime}}\right|\right. \tag{58}\\
& \left.+\int_{0}^{T}\left|Z_{s}^{t, x}-Z_{s}^{t, x}\right|^{2} d s\right\} \leq C_{2}\left|x-x^{\prime}\right|^{2}+C_{3}\left(1+|x|^{2}\right)\left|t-t^{\prime}\right| .
\end{align*}
$$

Consequently,

- $|\theta(t, x)|^{2} \leq C_{1}\left(1+|x|^{2}\right)$;
- $\left|\theta\left(t^{\prime}, x^{\prime}\right)-\theta(t, x)\right| \leq C_{2}\left|x-x^{\prime}\right|^{2}+C_{3}\left(1+|x|^{2}\right)\left|t-t^{\prime}\right|$
- $\forall t \in[0, T]$, and $\forall \xi \in L^{2}\left(\mathscr{F}_{t} ; \mathbb{R}^{n}\right), \exists$ a \mathbb{P}-null set $N \in \mathscr{F}_{0}$ s.t.

$$
Y_{s}^{t, \xi}(\omega)=\theta\left(s, X_{s}^{t, \xi}(\omega)\right), \quad \forall s \in[t, T], \forall \omega \notin N
$$

Continuous Dependence on Coefficients (Stability)

Theorem

Assume that the main assumptions are all in force, and assume that $T \leq T_{K}^{0}$. Let $\left(b_{n}, h_{n}, g_{n}, \sigma_{n}\right)$ be a family of coefficients satisfying the same assumptions as (b, h, g, σ) with the same Lipschitz constants, such that $\left(b_{n}, h_{n}, g_{n}, \sigma_{n}\right) \rightarrow(b, h, g, \sigma)$ pointwisely. Then

$$
\begin{aligned}
& \mathbb{E}\left\{\sup _{0 \leq s \leq T}\left|X_{s}^{n, 0, \xi}-X_{s}^{0, \xi}\right|^{2}+\sup _{0 \leq s \leq T}\left|Y_{s}^{n, 0, \xi}-Y_{s}^{0, \xi^{\prime}}\right|\right. \\
& \left.+\int_{0}^{T}\left|Z_{s}^{n, 0, \xi}-Z_{s}^{0, \xi}\right|^{2} d s\right\} \rightarrow 0, \quad \text { as } n \rightarrow \infty
\end{aligned}
$$

Consequently, $\theta_{n}(t, x) \rightarrow \theta(t, x)$ uniformly on compacta in $[0, T] \times \mathbb{R}^{d}$.

Some Important Facts

Recall the quasi-linear PDE in Four Step Scheme

$$
\left\{\begin{array}{l}
0=\theta_{t}+\frac{1}{2} \operatorname{tr}\left[\theta_{x x} \sigma \sigma^{T}(t, x, \theta)\right]+\left\langle b\left(\cdot, \theta, \theta_{x} \sigma(\cdot, \theta)\right), \theta_{x}\right\rangle \\
\quad+h\left(t, x, \theta, \theta_{x} \sigma(t, x, \theta)\right) \tag{59}\\
\theta(T, x)=g(x), \quad x \in \mathbb{R}^{d}
\end{array}\right.
$$

We know if

- all coefficients are in \mathbb{C}_{b}^{∞}, and
- $\xi^{T}\left(\sigma \sigma^{T}\right) \xi \geq c|\xi|^{2}, \forall \xi \in \mathbb{R}^{d}$, for some $c>0$.

Then the PDE (59) admits a unique bounded solution $\theta \in \mathbb{C}^{1,2}$ with bounded first and second order derivatives.

On the other hand, if θ is a (smooth) solution to the PDE (59), then we define

$$
\begin{aligned}
\widetilde{b}(t, x) & \triangleq b\left(t, x, \theta(t, x), \theta_{x}(t, x) \sigma(t, x, \theta(t, x))\right) \\
\widetilde{\sigma}(t, x) & \triangleq \sigma(t, x, \theta(t, x))
\end{aligned}
$$

For any $t \in[0, T]$ and $\xi \in L^{2}\left(\mathscr{F}_{t} ; \mathbb{R}^{d}\right)$, let $X^{t, \xi}$ denote the solution to the forward SDE:

$$
X_{s}=\xi+\int_{t}^{s} \widetilde{b}\left(r, X_{r}\right) d r+\int_{t}^{s} \widetilde{\sigma}\left(r, X_{r}\right) d W_{r}, \quad s \in[t, T]
$$

and define $Y_{s}^{t, \xi}=\theta\left(r, X_{s}^{t, \xi}\right), Z_{s}^{t, \xi}=\theta_{x}\left(s, X_{s}^{t, \xi}\right) \sigma\left(s, X_{s}, \theta\left(s, X_{s}\right)\right)$. Then, whenever $T-t<T_{K}^{0},\left(X^{t, \xi}, Y^{t, \xi}, Z^{t, \xi}\right)$ should be the the unique solution to the $\operatorname{FBSDE}(46)$ on $[t, T]$, starting from ξ.

The Solution Scheme

A Problem:
Under only Lipschitz assumptions, the PDE(59) DOES NOT have smooth solutions in general!

A Problem:

Under only Lipschitz assumptions, the PDE(59) DOES NOT have smooth solutions in general!

The Solution Scheme:

- Approximate (b, h, g, σ) by $\left(b_{n}, h_{n}, g_{n}, \sigma_{n}\right) \in \mathbb{C}^{\infty}$
- For each n, find $\theta^{n} \in \mathbb{C}^{1,2}$ to the PDE (59), with bounded first and second order derivatives, such that

$$
\left|\theta^{n}(t, x)\right| \leq C_{1},\left|\theta^{n}(t, x)-\theta^{n}\left(t^{\prime}, x^{\prime}\right)\right| \leq C_{2}\left|x-x^{\prime}\right|+C_{3}\left|t-t^{\prime}\right|^{1 / 2}
$$

- By "Continuous Dependence": $\theta^{n} \rightarrow \theta,|\theta(t, x)| \leq C_{1}$, and

$$
\left|\theta(t, x)-\theta\left(t^{\prime}, x^{\prime}\right)\right| \leq C_{2}\left|x-x^{\prime}\right|+C_{3}\left|t-t^{\prime}\right|^{1 / 2}
$$

- Construct a "global" solution via θ.

Note:

The function θ may not be obtained by a simple Arzela-Ascoli argument, because the lack of "equi-continuity" in the variable t and the uniform bound of the second derivatives.

The following "running-down" induction defines the function θ on $[0, T] \times \mathbb{R}^{d}$:

- Partition the interval $[0, T]$ into $0=t_{0}<t_{1}<\cdots<t_{N}=T$,

$$
\text { s.t. } t_{i+1}-t_{i}=T / N<T_{K}^{0} \text {. }
$$

- Consider the following FBSDEs on $\left[t, t_{i+1}\right], i=N-1, \cdots, 1$:

$$
\begin{aligned}
& X_{s}=\xi+\int_{t}^{s} b\left(r, X_{r}, Y_{r}, Z_{r}\right) d r+\int_{t}^{s} \sigma\left(r, X_{r}, Y_{r}\right) d W_{r} \\
& Y_{s}=\theta\left(t_{i+1}, X_{t_{i+1}}\right)+\int_{s}^{t_{i+1}} h\left(r, X_{r}, Y_{r}, Z_{r}\right) d s-\int_{s}^{t_{i+1}} Z_{r} d W_{r}
\end{aligned}
$$

- Then $\theta(t, x)=Y_{t}^{t, x, i}$, for $t \in\left[t_{i}, t_{i+1}\right]$ is the desired function.

Once the "decoupling machine" θ is defined, then the following "running-up" induction gives the desired solution on $[0, T]$:

- For $0 \leq s \leq t_{1}$, let $\left(X^{(0)}, Y^{(0)}, Z^{(0)}\right)$ solve the FBSDE:

$$
\begin{aligned}
& X_{s}^{(0)}=x+\int_{0}^{s} b\left(r, \Theta_{r}^{(0)}\right) d r+\int_{t}^{s} \sigma\left(r, X_{r}^{(0)}, Y_{r}^{(0)}\right) d W_{r} \\
& Y_{s}^{(0)}=\theta\left(t_{1}, X_{t_{1}}^{(0)}\right)+\int_{s}^{t_{i+1}} h\left(r, \Theta^{(0)}\right) d s-\int_{s}^{t_{1}} Z_{r}^{(0)} d W_{r}
\end{aligned}
$$

- For $t_{k-1} \leq s \leq t_{k}$, let $\left(X^{(k)}, Y^{(k)}, Z^{(k)}\right)$ solve the FBSDE:

$$
\begin{aligned}
& X_{s}^{(k)}=X_{t_{k-1}}^{(k-1)}+\int_{t_{k-1}}^{s} b\left(r, \Theta_{r}^{(k)}\right) d r+\int_{t_{k-1}}^{s} \sigma\left(r, X_{r}^{(k)}, Y_{r}^{(k)}\right) d W_{r} \\
& Y_{s}^{(k)}=\theta\left(t_{k}, X_{t_{k}}^{(k)}\right)+\int_{s}^{t_{k}} h\left(r, \Theta^{(k)}\right) d s-\int_{s}^{t_{k}} Z_{r}^{(k)} d W_{r} .
\end{aligned}
$$

- Then, to complete the "patch-up", one needs only check:

$$
X_{t_{k}}^{(k-1)}=X_{t_{k}}^{(k)}, Y_{t_{k}}^{(k)}=\theta\left(t, X_{t_{k}}^{(k)}\right)=\theta\left(t, X_{t_{k}}^{(k-1)}\right)=Y_{t_{k} \equiv}^{(k-1)}!
$$

5. Some Important facts

Feynman-Kac formula (the linear case)

Denote $X^{t, x}$ to be the solution to an SDE on $[t, T]$:

$$
X_{s}^{t, x}=x+\int_{t}^{s} b\left(X_{r}^{t, x}\right) d r+\int_{t}^{s} \sigma\left(X_{r}^{t, x}\right) d W_{r}
$$

Then under appropriate regularity conditions the function

$$
u(t, x) \triangleq E_{t, x}\left\{g\left(X_{T}\right) e^{\int_{t}^{T} c\left(X_{s}\right) d s}+\int_{t}^{T} e^{\int_{t}^{r} c\left(X_{s}\right) d s} f\left(r, X_{r}\right) d r\right\}
$$

is a (probablistic) solution to the (linear) PDE:

$$
\left\{\begin{array}{l}
u_{t}+\frac{1}{2} \operatorname{tr}\left[u_{x x} \sigma \sigma^{T}(x)\right]+\left\langle b(x), u_{x}\right\rangle+c(x) u+f(t, x)=0, \tag{60}\\
u(T, x)=g(x), \quad x \in \mathbb{R}^{n} .
\end{array}\right.
$$

Feynman-Kac formula (the linear case)

Denote $X^{t, x}$ to be the solution to an SDE on $[t, T]$:

$$
X_{s}^{t, x}=x+\int_{t}^{s} b\left(X_{r}^{t, x}\right) d r+\int_{t}^{s} \sigma\left(X_{r}^{t, x}\right) d W_{r}
$$

Then under appropriate regularity conditions the function

$$
u(t, x) \triangleq E_{t, x}\left\{g\left(X_{T}\right) e^{\int_{t}^{T} c\left(X_{s}\right) d s}+\int_{t}^{T} e^{\int_{t}^{r} c\left(X_{s}\right) d s} f\left(r, X_{r}\right) d r\right\}
$$

is a (probablistic) solution to the (linear) PDE:

$$
\left\{\begin{array}{l}
u_{t}+\frac{1}{2} \operatorname{tr}\left[u_{x x} \sigma \sigma^{T}(x)\right]+\left\langle b(x), u_{x}\right\rangle+c(x) u+f(t, x)=0, \tag{60}\\
u(T, x)=g(x), \quad x \in \mathbb{R}^{n} .
\end{array}\right.
$$

Question:

Is it possible to extend the Feynman-Kac formula to the case where PDE obove is nonlinear in u (or even u_{x})?

Non-linear Feynman-Kac Formula via BSDEs

Consider FBSDEs defined on the subinterval $[t, T] \subseteq[0, T]$:

$$
\left\{\begin{array}{l}
X_{s}=x+\int_{t}^{s} b\left(X_{r}\right) d r+\int_{t}^{s} \sigma\left(X_{r}\right) d W_{r} ; \tag{61}\\
Y_{s}=g\left(X_{T}\right)+\int_{s}^{T} f\left(r, X_{r}, Y_{r}, Z_{r}\right) d r-\int_{s}^{T} Z_{r} d W_{r},
\end{array}\right.
$$

where $s \in[t, T]$ and the coefficients are assumed to be only continuous and uniformly Lipschitz in the spatial variables (x, y, z).

Non-linear Feynman-Kac Formula via BSDEs

Consider FBSDEs defined on the subinterval $[t, T] \subseteq[0, T]$:

$$
\left\{\begin{array}{l}
X_{s}=x+\int_{t}^{s} b\left(X_{r}\right) d r+\int_{t}^{s} \sigma\left(X_{r}\right) d W_{r} ; \tag{61}\\
Y_{s}=g\left(X_{T}\right)+\int_{s}^{T} f\left(r, X_{r}, Y_{r}, Z_{r}\right) d r-\int_{s}^{T} Z_{r} d W_{r},
\end{array}\right.
$$

where $s \in[t, T]$ and the coefficients are assumed to be only continuous and uniformly Lipschitz in the spatial variables (x, y, z). Denote the solution by $\left(X^{t, x}, Y^{t, x}, Z^{t, x}\right)$. Then,

- for any $s \in[t, T], Y_{s}^{t, x}$ is \mathscr{F}_{s}^{t}-measurable, where

$$
\mathscr{F}_{s}^{t}=\sigma\left\{W_{s}-W_{t} ; t \leq s \leq T\right\} ;
$$

- in particular, $u(t, x) \triangleq Y_{t}^{t, x}$ is a deterministic function (Blumenthal $0-1$ law!);

Theorem (Pardoux-Peng, '92; Ma-Protter-Yong '94)

Assume b, σ, f, and g are Lipschitz, then

- $u(\cdot, \cdot)$ is continuous, Hölder-1/2 in t and Lipschitz in x;
- u is the unique viscosity solution of the quasilinear PDE:

$$
\left\{\begin{array}{l}
u_{t}+\frac{1}{2} \operatorname{tr}\left[u_{x x} \sigma \sigma^{T}\right]+\left\langle b, u_{x}\right\rangle+f\left(t, x, u, \sigma^{T} u_{x}\right)=0 \tag{62}\\
u(T, x)=g(x), \quad x \in \mathbb{R}^{n}
\end{array}\right.
$$

- Further, under regularity conditions on the coefficients,

$$
\begin{equation*}
u(t, x)=E_{t, x}\left\{g\left(X_{T}\right)+\int_{t}^{T} f\left(r, X_{r}, Y_{r}, Z_{r}\right) d r\right\} \tag{63}
\end{equation*}
$$

is a (classical) solution to (62), where (X, Y, Z) solves (61).

- and the following representation holds

$$
\begin{equation*}
u_{x}\left(s, X_{s}\right)=Z_{s} \sigma^{-1}\left(s, X_{s}\right), \quad s \in[t, T], \quad P \text {-a.s. } \tag{64}
\end{equation*}
$$

Possible generalizations

How far can the representations (63) and (64) go?

Possible generalizations

How far can the representations (63) and (64) go?

For example, one may ask:

- What are the minimum conditions on f and g under which (63) and (64) both hold (e.g., $g(x)=(x-K)^{+}$in finance applications - only Lipschitz!)?
- Will Z always be continuous in light of (64)?
- What if b, σ, f, g are random (I.e., can Four Step Scheme be applied for FBSDEs with random coefficients?);
- Is there a Feynman-Kac type solution to an Stochastic PDE?
- In the SPDE case, can one define the notion of "Stochastic Viscosity Solution")?

A Quick Analysis:

Assume

- $f \equiv 0$ and
- $g \in C^{1}$.

Then, by representation: $u(t, x)=E_{t, x}\left\{g\left(X_{T}\right)\right\}$,
$\Longrightarrow u_{x}(t, x)=E_{t, x}\left\{g^{\prime}\left(X_{T}\right) \nabla X_{T}\right\}$,
where ∇X is the solution to the variational equation of X :

$$
\begin{equation*}
\nabla X_{s}=1+\int_{t}^{s} b^{\prime}\left(X_{r}\right) \nabla X_{r} d r+\int_{t}^{s} \sigma^{\prime}\left(X_{r}\right) \nabla X_{r} d W_{r} \tag{65}
\end{equation*}
$$

A Quick Analysis:

Assume

- $f \equiv 0$ and
- $g \in C^{1}$.

Then, by representation: $u(t, x)=E_{t, x}\left\{g\left(X_{T}\right)\right\}$,
$\Longrightarrow u_{x}(t, x)=E_{t, x}\left\{g^{\prime}\left(X_{T}\right) \nabla X_{T}\right\}$,
where ∇X is the solution to the variational equation of X :

$$
\begin{equation*}
\nabla X_{s}=1+\int_{t}^{s} b^{\prime}\left(X_{r}\right) \nabla X_{r} d r+\int_{t}^{s} \sigma^{\prime}\left(X_{r}\right) \nabla X_{r} d W_{r} \tag{65}
\end{equation*}
$$

Question:

What if $g(o r f)$ is not differentiable? (Again, consider $g(x)=(x-K)^{+}-$simply Lipschitz! $)$

A New Tool: Malliavin Calculus/Skorohod Integrals

Fournié-Lasry-Lebuchoux-Lions-Touzi, '97; Ma-Zhang, '00:

$$
\begin{aligned}
D_{\tau} g\left(X_{T}\right)= & g^{\prime}\left(X_{T}\right) D_{\tau} X_{T}=g^{\prime}\left(X_{T}\right) \nabla X_{T}\left(\nabla X_{\tau}\right)^{-1} \sigma\left(X_{\tau}\right) \\
\Longrightarrow u_{x}(t, x) & =E_{t, x}\left\{g^{\prime}\left(X_{T}\right) \nabla X_{T}\right\} \\
& =E_{t, x}\left\{\int_{t}^{T} D_{\tau} g\left(X_{T}\right) \frac{\sigma\left(X_{\tau}\right)^{-1}\left(\nabla X_{\tau}\right)}{T-t} d \tau\right\} \\
& =E_{t, x}\left\{g\left(X_{T}\right) \int_{t}^{T} \frac{\sigma\left(X_{\tau}\right)^{-1}\left(\nabla X_{\tau}\right)}{T-t} d W_{\tau}\right\} \\
& =E_{t, x}\left\{g\left(X_{T}\right) N_{T}^{t}\right\} .
\end{aligned}
$$

where $N_{s}^{t} \triangleq \int_{t}^{s} \sigma\left(X_{\tau}\right)^{-1}\left(\nabla X_{\tau}\right) d W_{\tau} /(T-t), 0 \leq t \leq s \leq T$.

A New Tool: Malliavin Calculus/Skorohod Integrals

Fournié-Lasry-Lebuchoux-Lions-Touzi, '97; Ma-Zhang, '00:

$$
\begin{aligned}
D_{\tau} g\left(X_{T}\right)= & g^{\prime}\left(X_{T}\right) D_{\tau} X_{T}=g^{\prime}\left(X_{T}\right) \nabla X_{T}\left(\nabla X_{\tau}\right)^{-1} \sigma\left(X_{\tau}\right) \\
\Longrightarrow u_{x}(t, x) & =E_{t, x}\left\{g^{\prime}\left(X_{T}\right) \nabla X_{T}\right\} \\
& =E_{t, x}\left\{\int_{t}^{T} D_{\tau} g\left(X_{T}\right) \frac{\sigma\left(X_{\tau}\right)^{-1}\left(\nabla X_{\tau}\right)}{T-t} d \tau\right\} \\
& =E_{t, x}\left\{g\left(X_{T}\right) \int_{t}^{T} \frac{\sigma\left(X_{\tau}\right)^{-1}\left(\nabla X_{\tau}\right)}{T-t} d W_{\tau}\right\} \\
& =E_{t, x}\left\{g\left(X_{T}\right) N_{T}^{t}\right\}
\end{aligned}
$$

where $N_{s}^{t} \triangleq \int_{t}^{s} \sigma\left(X_{\tau}\right)^{-1}\left(\nabla X_{\tau}\right) d W_{\tau} /(T-t), 0 \leq t \leq s \leq T$.

Note:

Derivative of g is NOT necessary for u_{x} !

Theorem (Ma-Zhang, 2000)

Suppose that f and g are uniformly Lipschitz in (x, y, z). Let

$$
v(t, x)=E_{t, x}\left\{g\left(X_{T}\right) N_{T}^{t}+\int_{s}^{T} f\left(r, \Theta_{r}\right) N_{r}^{t} d r \mid \mathscr{F}_{s}^{t}\right\} \sigma\left(X_{s}^{t, x}\right)
$$

for $(t, x) \in[0, T) \times \mathbb{R}^{d}$, where $\Theta_{r}=\left(X_{r}, Y_{r}, Z_{r}\right)$, and

$$
N_{r}^{s} \triangleq \frac{1}{r-s}\left(\nabla X_{s}\right)^{-1} \int_{s}^{r} \sigma^{-1}\left(X_{\tau}\right) \nabla X_{\tau} d W_{\tau}, \quad 0 \leq t \leq s<r \leq T
$$

Then, for $(t, x) \in[0, T) \times \mathbb{R}^{d}$,

- v is uniformly bounded and continuous;
- $Z_{s}^{t, x}=v\left(s, X_{s}^{t, x}\right) \sigma\left(X_{s}^{t, x}\right), s \in[t, T), P$-a.s.;
- $u_{x}(t, x)=v(t, x)$;
- If we assume further that $g \in C^{1}$, then all the above hold true on $[0, T] \times \mathbb{R}^{d}$, and $v(T, x)=g^{\prime}(x)$.

Path Regularity of process Z

Recall that if $\xi \in L^{2}\left(\mathscr{F}{ }_{T}^{W} ; \mathbb{R}\right)$, then by Martingale Representation Theorem, \exists ! (predictable) process Z with $E \int_{0}^{T}\left|Z_{s}\right|^{2} d s<\infty$, s.t.

$$
Y_{t} \triangleq E\left\{\xi \mid \mathscr{F}_{t}\right\}=\xi-\int_{t}^{T} Z_{s} d W_{s}, \quad t \in[0, T]
$$

Question: What can we say about the path regularity of Z ?

Path Regularity of process Z

Recall that if $\xi \in L^{2}\left(\mathscr{F}_{T}^{W} ; \mathbb{R}\right)$, then by Martingale Representation Theorem, \exists ! (predictable) process Z with $E \int_{0}^{T}\left|Z_{s}\right|^{2} d s<\infty$, s.t.

$$
Y_{t} \triangleq E\left\{\xi \mid \mathscr{F}_{t}\right\}=\xi-\int_{t}^{T} Z_{s} d W_{s}, \quad t \in[0, T]
$$

Question: What can we say about the path regularity of Z ?
Answer: Nothing!

Examples:

- $\xi=W_{T}$. Then $Z_{t} \equiv 1, \forall t \in[0, T]$;
- $\xi=\max _{0 \leq t \leq T} W_{t}$. Then by the Clark-Ocone formula, $Z_{t}=E\left\{D_{t} \xi \mid \mathscr{F}_{t}\right\}=E\left\{1_{[0, \tau]}(t) \mid \mathscr{F}_{t}\right\}$, where D is the Malliavin derivative and τ is the a.s. maximum point of W.
- $\xi=\int_{0}^{T} h_{s} d W_{s}$, where h is any \mathbb{F}-predictable process such that $E \int_{0}^{T}\left|h_{s}\right|^{2} d s<\infty$, then by uniqueness $Z_{t} \equiv h_{t}, \forall t$, a.s.

Now consider the FBSDE:

$$
\left\{\begin{array}{l}
X_{t}=x+\int_{0}^{t} b\left(s, X_{s}\right) d s+\int_{0}^{t} \sigma\left(s, X_{s}\right) d W_{s} \tag{66}\\
Y_{t}=\xi+\int_{t}^{T} f\left(s, \Theta_{s}\right) d s-\int_{t}^{T} Z_{s} d W_{s}, t \in[0, T]
\end{array}\right.
$$

where $\xi=\Phi(X)_{T}$, and $\Phi: C\left([0, T] ; \mathbb{R}^{d}\right) \mapsto \mathbb{R}$ is a functional.

Now consider the FBSDE:

$$
\left\{\begin{array}{l}
X_{t}=x+\int_{0}^{t} b\left(s, X_{s}\right) d s+\int_{0}^{t} \sigma\left(s, X_{s}\right) d W_{s} \tag{66}\\
Y_{t}=\xi+\int_{t}^{T} f\left(s, \Theta_{s}\right) d s-\int_{t}^{T} Z_{s} d W_{s}, t \in[0, T]
\end{array}\right.
$$

where $\xi=\Phi(X)_{T}$, and $\Phi: C\left([0, T] ; \mathbb{R}^{d}\right) \mapsto \mathbb{R}$ is a functional.

- If $\Phi(X)_{T}=g\left(X_{T}\right)$ and g is Lipschitz, then by Rep. Thm.:

$$
Z_{t}=u_{x}\left(t, X_{t}\right) \sigma\left(t, X_{t}\right) \quad \Longrightarrow \quad Z \text { is continuous; }
$$

- If $\Phi(X)_{T}=g\left(X_{t_{0}}, \ldots, X_{t_{n}}\right)$ and g is Lipschitz, then on each subinterval $\left[t_{i-1}, t_{i}\right)$,

$$
Z_{s}=E\left\{g\left(X_{t_{0}}, \ldots, X_{t_{n}}\right) N_{t_{i}}^{s}+\int_{s}^{T} f\left(\Theta_{r}\right) N_{r \wedge t_{i}}^{s} d r \mid \mathscr{F}_{s}\right\} \sigma\left(X_{s}\right)
$$

$\Longrightarrow Z$ is a.s. continuous on each $\left[t_{i-1}, t_{i}\right)$, hence càdlàg .

Now consider the FBSDE:

$$
\left\{\begin{array}{l}
X_{t}=x+\int_{0}^{t} b\left(s, X_{s}\right) d s+\int_{0}^{t} \sigma\left(s, X_{s}\right) d W_{s} \tag{66}\\
Y_{t}=\xi+\int_{t}^{T} f\left(s, \Theta_{s}\right) d s-\int_{t}^{T} Z_{s} d W_{s}, t \in[0, T]
\end{array}\right.
$$

where $\xi=\Phi(X)_{T}$, and $\Phi: C\left([0, T] ; \mathbb{R}^{d}\right) \mapsto \mathbb{R}$ is a functional.

- If $\Phi(X)_{T}=g\left(X_{T}\right)$ and g is Lipschitz, then by Rep. Thm.:

$$
Z_{t}=u_{x}\left(t, X_{t}\right) \sigma\left(t, X_{t}\right) \quad \Longrightarrow \quad Z \text { is continuous; }
$$

- If $\Phi(X)_{T}=g\left(X_{t_{0}}, \ldots, X_{t_{n}}\right)$ and g is Lipschitz, then on each subinterval $\left[t_{i-1}, t_{i}\right)$,

$$
Z_{s}=E\left\{g\left(X_{t_{0}}, \ldots, X_{t_{n}}\right) N_{t_{i}}^{s}+\int_{s}^{T} f\left(\Theta_{r}\right) N_{r \wedge t_{i}}^{s} d r \mid \mathscr{F}_{s}\right\} \sigma\left(X_{s}\right)
$$

$\Longrightarrow Z$ is a.s. continuous on each $\left[t_{i-1}, t_{i}\right)$, hence càdlàg .
Question: Can we go any further to more general functionals for which the process Z has at least a RCLL (càdlàg) version?

Theorem (Ma-Zhang,00)

Suppose that f is continuous and uniformly Lipschitz in (x, y, z).

- If Φ satisfies the "functional Lipschitz" condition:

$$
\begin{equation*}
\left|\Phi\left(\mathbf{x}^{1}\right)-\Phi\left(\mathbf{x}^{2}\right)\right| \leq L \sup _{t \leq s \leq T}\left|\mathbf{x}^{1}(s)-\mathbf{x}^{2}(s)\right| \tag{67}
\end{equation*}
$$

for all $\mathbf{x}^{1}, \mathbf{x}^{2} \in C\left([0, T] ; \mathbb{R}^{n}\right)$. Then Z has càdlàg paths.

- If Φ satisfies the "Integral Lipschitz" condition:

$$
\begin{equation*}
\left|\Phi\left(\mathbf{x}^{1}\right)-\Phi\left(\mathbf{x}^{2}\right)\right| \leq L \int_{0}^{T}\left|\mathbf{x}^{1}(t)-\mathbf{x}^{2}(t)\right| d t \tag{68}
\end{equation*}
$$

then Z has a.s. continuous paths.

Proof (e.g., the functional Lipschitz case)

For any partition $\pi: 0=t_{0}<t_{1}<\ldots<t_{n}=T$, define $\psi_{\pi}: \mathbb{R}^{n+1} \mapsto C([0, T] ; \mathbb{R})$ and $\varphi_{\pi}: C([0, T] ; \mathbb{R}) \mapsto \mathbb{R}^{n+1}$ by

$$
\begin{gathered}
{\left[\psi_{\pi}\left(x_{0}, \cdots, x_{n}\right)\right](t) \triangleq \frac{t_{i+1}-t}{t_{i+1}-t_{i}} x_{i}+\frac{t-t_{i}}{t_{i+1}-t_{i}} x_{i+1}, t \in\left[t_{i}, t_{i+1}\right)} \\
\varphi_{\pi}(\mathbf{x})=\left(\mathbf{x}_{t_{0}}, \cdots, \mathbf{x}_{t_{n}}\right), \quad \mathbf{x} \in C([0, T])
\end{gathered}
$$

Define $\Phi_{\pi}:=\left[\Phi \circ \psi_{\pi}\right]$ and mollify $\left(\Phi_{\pi}, f\right)$ to $\left(g_{\pi}, f_{\pi}\right) \in C_{b}^{1}$ s.t.

- Φ_{π} is uniform Lipschitz; and g_{π} satisfies

$$
\begin{equation*}
\sum_{i=0}^{n}\left|\partial_{x_{i}} g_{\pi}(x) y_{i}\right| \leq L \max _{i}\left|y_{i}\right|, \quad \forall x, y \in \mathbb{R}^{n+1} \tag{69}
\end{equation*}
$$

- $g_{\pi} \circ \varphi_{\pi} \rightarrow \Phi$ pointwisely on $C([0, T] ; \mathbb{R})$, as $|\pi| \rightarrow 0$;
- $f_{\pi} \rightarrow f$ uniformly in all variables, as $|\pi| \rightarrow 0$.
- Denote the solution to (66) with $\xi=g_{\pi}\left(X_{t_{0}}, \cdots X_{t_{n}}\right)$ and $f=f_{\pi}$ by $\left(X, Y^{\pi}, Z^{\pi}\right)$.
- Let ∇X be the solution of (65), and $\left(\nabla^{i} Y^{\pi}, \nabla^{i} Z^{\pi}\right)$ be the solution of the following BSDE on $\left[t_{i-1}, t_{i}\right)$:

$$
\begin{aligned}
\nabla^{i} Y_{t}= & \sum_{j \geq i} \partial_{j} g \nabla X_{t_{j}}+\int_{t}^{T}\left\langle\nabla f(r), \nabla \Theta_{r}^{i, \pi}\right\rangle d r \\
& -\int_{t}^{T} \nabla^{i} Z_{r}^{\pi} d W_{r}, \quad t \in\left[t_{i-1}, t_{i}\right)
\end{aligned}
$$

where $\partial_{j} g=\partial_{x_{j}} g\left(X_{t_{0}}, \cdots, X_{t_{n}}\right)$, and

$$
\begin{aligned}
& \nabla f(r)=\left(\partial_{x} f\left(\Theta^{\pi}(r)\right), \partial_{y} f\left(\Theta^{\pi}(r)\right), \partial_{z} f\left(\Theta^{\pi}(r)\right)\right. \\
& \nabla \Theta_{r}^{i, \pi}=\left(\nabla X_{r}, \nabla^{i} Y_{r}^{\pi}, \nabla^{i} Z_{r}^{\pi}\right) \\
& \Theta_{r}^{\pi}=\left(X_{r}, Y_{r}^{\pi}, Z_{r}^{\pi}\right)
\end{aligned}
$$

- Define: $\quad \nabla^{\pi} Y_{t}^{\pi} \triangleq \sum_{i=0}^{n} \nabla^{i} Y_{t}^{\pi} \mathbf{1}_{\left[t_{i-1}, t_{i}\right)}(t)+\nabla^{n} Y_{T_{-}}^{\pi} \mathbf{1}_{\{T\}}(t)$.

Show that $\left\{\nabla^{\pi} Y^{\pi}\right\}$ is a family of quasimartingale (i.e., RCLL and for all partition $\hat{\pi}$, it holds that

$$
\left.\sum_{i=1}^{n} E\left\{\left|E\left\{\nabla^{\pi} Y_{t_{i-1}}^{\pi}-\nabla^{\pi} Y_{t_{i}}^{\pi} \mid \mathscr{F}_{t_{i-1}}\right\}\right|\right\}+E\left\{\left|\nabla^{\pi} Y_{T}^{\pi}\right|\right\} \leq C .\right)
$$

- By the Meyer-Zheng Theorem (1986) $\nabla^{\pi} Y^{\pi}$ converges weakly to a càdlàg process \widetilde{Z} under the so-called pseudo-path topology (of Meyer-Zheng).
- Using the stability result of BSDE to show that $\nabla^{\pi} Y^{\pi}$ converges to Z in $L^{2}(\Omega \times[0, T])$, hence a.s. converges to Z in the pseudo-path topology. Identifying the laws of Z and \widetilde{Z} we see that Z is càdlàg, a.s.

Some Extensions

In almost all of the existing theory of Financial Asset Pricing, the "price" process is assumed to be Markov under the so-called risk neutral measure. But by a result of Çinlar-Jacod (1981) states that all "reasonable" strong Markov martingale processes are solutions of equations of the form:

$$
\begin{equation*}
X_{t}=y+\int_{0}^{t} \sigma\left(r, X_{r}\right) d W_{r}+\int_{0}^{t} \int_{\mathbb{R}} b\left(r, X_{r-}, z\right) \widetilde{\mu}(d r d z) \tag{70}
\end{equation*}
$$

where W is a Wiener process $\widetilde{\mu}$ is a compensated Poisson random measure with Lévy measure F.

Consider, for example, the Markov Martingale with $b=b(r, x) z$:

$$
\begin{equation*}
X_{t}=y+\int_{0}^{t} \sigma\left(r, X_{r}\right) d W_{r}+\int_{0}^{t} \int_{\mathbb{R}} b\left(r, X_{r-}\right) z \widetilde{\mu}(d r d z) \tag{71}
\end{equation*}
$$

Let $\Phi: \Delta \mapsto \mathbb{R}$ be s.t. $E|\Phi(X)|^{2}<\infty$, and $M_{t} \triangleq E\left\{\Phi(X) \mid \mathscr{F}_{t}\right\}$, $t \geq 0$. By Mart. Rep. Thm, $\exists \mathbb{F}$-predictable process Z s.t.

$$
\begin{equation*}
M_{t}=M_{0}+\int_{0}^{t} Z_{s} d X_{s}+N_{t} \tag{72}
\end{equation*}
$$

where N is an \mathbb{F}-martingale that is orthogonal to X.

Question:

Under what conditions on Φ will Z have càglàd paths?

Let $\Phi: \Delta \mapsto \mathbb{R}$ be s.t. $E|\Phi(X)|^{2}<\infty$, and $M_{t} \triangleq E\left\{\Phi(X) \mid \mathscr{F}_{t}\right\}$, $t \geq 0$. By Mart. Rep. Thm, $\exists \mathbb{F}$-predictable process Z s.t.

$$
\begin{equation*}
M_{t}=M_{0}+\int_{0}^{t} Z_{s} d X_{s}+N_{t} \tag{72}
\end{equation*}
$$

where N is an \mathbb{F}-martingale that is orthogonal to X.

Question:

Under what conditions on Φ will Z have càglàd paths?

Answer:

- $\Phi(X)=g\left(X_{t_{0}}, X_{t_{1}}, \cdots, X_{t_{n}}\right), g \in C_{b}^{1}\left(\mathbb{R}^{n+1}\right)$
- Jacod-Méléard-Protter (2000)
- $\left|\Phi\left(\mathbf{x}_{1}\right)-\Phi\left(\mathbf{x}_{2}\right)\right| \leq L \int_{0}^{T}\left|\mathbf{x}_{1}(t)-\mathbf{x}_{2}(t)\right| d t, \mathbf{x}_{1}, \mathbf{x}_{2} \in \Delta$
- Ma-Protter-Zhang (2000)

Possible Applications in Finance:

- $\Phi(X)_{T}=\frac{1}{T} \int_{0}^{T} X_{s} d s$;
- $\Phi(X)_{T}=g\left(\sup _{0 \leq t \leq T} h\left(t, X_{t}\right)\right)$, where g and $h(t, \cdot)$ are uniformly Lipschitz with a common constant K, and $h(\cdot, x)$ is continuous for all x. (Lookback option)
- $\Phi(X)_{T}=g\left(\int_{0}^{T} h\left(s, X_{s-}\right) d X_{s}\right)$, where g and $h(t, \cdot)$ are uniformly Lipschitz continuous; h is bounded; and for fixed x, $h(\cdot, x)$ is càglàd .
- $\Phi(X)=g\left(\Phi_{1}(X), \cdots, \Phi_{n}(X)\right)$, where g is Lipschitz and Φ_{i} 's are of any of the forms (i)-(iii). (For example, if $g(x)=(K-x)^{+}$, then g combined with (i) gives an Asian Option.)

5. Weak Solutions of FBSDEs

Definition of Weak Solution of FBSDEs

Recall the general form of forward-backward SDE:

$$
\left\{\begin{array}{l}
X_{t}=x+\int_{0}^{t} b\left(s, \Theta_{s}\right) d s+\int_{0}^{t} \sigma\left(s, \Theta_{s}\right) d W_{s} \tag{73}\\
Y_{t}=g(X)_{T}+\int_{t}^{T} h\left(s, \Theta_{s}\right) d s-\int_{t}^{T} Z_{s} d W_{s}
\end{array}\right.
$$

Definition of Weak Solution of FBSDEs

Recall the general form of forward-backward SDE:

$$
\left\{\begin{array}{l}
X_{t}=x+\int_{0}^{t} b\left(s, \Theta_{s}\right) d s+\int_{0}^{t} \sigma\left(s, \Theta_{s}\right) d W_{s} \tag{73}\\
Y_{t}=g(X)_{T}+\int_{t}^{T} h\left(s, \Theta_{s}\right) d s-\int_{t}^{T} Z_{s} d W_{s}
\end{array}\right.
$$

Question:

What can we say about the well-posedness of the FBSDE if the coefficients are only continuous?

Example

(i) Decoupled Case:

$$
\left\{\begin{array}{l}
X_{t}=x+\int_{0}^{t} b\left(s, X_{s}\right) d s+\int_{0}^{t} \sigma\left(s, X_{s}\right) d W_{s} \\
Y_{t}=g(X)_{T}+\int_{t}^{T} h\left(s, X_{s}, Y_{s}, Z_{s}\right) d s-\int_{t}^{T} Z_{s} d W_{s}
\end{array}\right.
$$

In this case we can take a weak solution $(\Omega, \mathscr{F}, \mathbb{P}, X, W)$, and obtain the (strong) solution (Y, Z) on the space $(\Omega, \mathscr{F}, \mathbb{P})$.
(ii) Weakly Coupled Case:

$$
\left\{\begin{array}{l}
X_{t}=x+\int_{0}^{t}\left[b_{0}\left(s, X_{s}\right)+b_{1}\left(s, \Theta_{s}\right)\right] d s+\int_{0}^{t} \sigma\left(s, X_{s}\right) d W_{s} \\
Y_{t}=g(X)_{T}+\int_{t}^{T} h\left(s, \Theta_{s}\right) d s-\int_{t}^{T} Z_{s} d W_{s}
\end{array}\right.
$$

where σ^{-1} and b_{1} are bounded - Girsanov(?)

Some Preparations

- A quintuple $(\Omega, \mathscr{F}, \mathbb{P}, \mathbb{F}, W)$ is called a
- "standard set-up" if $(\Omega, \mathscr{F}, \mathbb{P} ; \mathbb{F})$ is a complete, filtered prob. space satisfying the usual hypotheses and W is a $\mathbb{F}-B . M$.
- "Brownian set-up" if $\mathbb{F}=\mathbb{F}^{W} \triangleq\left\{\mathscr{F}_{t}^{W}\right\}_{t \in[0, T]}$.
- "Canonical Space": $\Omega \triangleq \Omega^{1} \times \Omega^{2}, \mathscr{F} \triangleq \mathscr{F}_{\infty}^{1} \otimes \mathscr{F}_{\infty}^{2}$, where
- $\Omega^{i} \triangleq \mathbb{D}\left([0, \infty) ; \mathbb{R}^{n_{i}}\right), i=1,2$ - path space of X and Y
- $\mathscr{F}_{t}^{i} \triangleq \sigma\left\{\omega^{i}(r \wedge t): r \geq 0\right\}, i=1,2\left(\mathscr{F}_{t} \triangleq \mathscr{F}_{t}^{1} \otimes \mathscr{F}_{t}^{2}, t \geq 0\right)$
- On a canonical space (Ω, \mathscr{F}), denote $\omega=\left(\omega^{1}, \omega^{2}\right) \in \Omega$, and
- $\left(\mathbf{x}_{t}(\omega), \mathbf{y}_{t}(\omega)\right) \triangleq\left(\omega^{1}(t), \omega^{2}(t)\right)$, the "canonical process",
- $\mathscr{P}(\Omega)=$ all prob. meas. on (Ω, \mathscr{F}), with Prohorov metric.

Existing Literature

- Antonelli and Ma ('03) - (FBSDE)
- Existence via Girsanov, Yamada-Watanabe Theorem,
- Buckdahn, Engelbert, and Rascanu ('04) - (BSDE, no "Z")
- Existence via Meyer-Zheng, Yamada-Watanabe Theorem, ...
- Delarue and Guatteri ('05) - (FBSDE)
— Forward "weak" \oplus backward "strong" ...

Existing Literature

- Antonelli and Ma ('03) - (FBSDE)
- Existence via Girsanov, Yamada-Watanabe Theorem,
- Buckdahn, Engelbert, and Rascanu ('04) - (BSDE, no "Z")
- Existence via Meyer-Zheng, Yamada-Watanabe Theorem, ...
- Delarue and Guatteri ('05) - (FBSDE)
— Forward "weak" \oplus backward "strong" ...

Our Main Purpose:

- Find a "backward" version of the "Martingale Problem"
- A more general existence result (multi-dimensional, non-Markovian FBSDEs)
- Uniquenss (in law)!!!

Definition (Antonelli-Ma, '03)

A standard set-up $(\Omega, \mathscr{F}, \mathbb{P}, \mathbb{F}, W)$ along with a triplet of processes (X, Y, Z) defined on the set-up is called a weak solution of (73) if

- (X, Y, Z) is \mathbb{F}-adapted; and (X, Y) are continuous,
- denoting $\eta_{s}=\eta\left(s,(X)_{s}, Y_{s}, Z_{s}\right)$ for $\eta=b, \sigma, h$, it holds that

$$
P\left\{\int_{0}^{T}\left(\left|b_{s}\right|+\left|\sigma_{s}\right|^{2}+\left|h_{s}\right|^{2}+\left|Z_{s}\right|^{2}\right) d s+\left|g(X)_{T}\right|^{2}<\infty\right\}=1
$$

- (X, Y, Z) verifies (73) \mathbb{P}-a.s.

Definition (Antonelli-Ma, '03)

A standard set-up $(\Omega, \mathscr{F}, \mathbb{P}, \mathbb{F}, W)$ along with a triplet of processes (X, Y, Z) defined on the set-up is called a weak solution of (73) if

- (X, Y, Z) is \mathbb{F}-adapted; and (X, Y) are continuous,
- denoting $\eta_{s}=\eta\left(s,(X)_{s}, Y_{s}, Z_{s}\right)$ for $\eta=b, \sigma, h$, it holds that

$$
P\left\{\int_{0}^{T}\left(\left|b_{s}\right|+\left|\sigma_{s}\right|^{2}+\left|h_{s}\right|^{2}+\left|Z_{s}\right|^{2}\right) d s+\left|g(X)_{T}\right|^{2}<\infty\right\}=1
$$

- (X, Y, Z) verifies (73) \mathbb{P}-a.s.

Remark

- Similar to the forward SDE, a weak sol. allows the flexibility of probability space, and relaxed the most fundamental requirement for a BSDE, i.e., that the set-up is Brownian.
- The Tsirelson-type examples for forward SDEs would lead to the fact that there do exist weak sol. that are not "strong".

Forward-Backward Martingale Problems (FBMP)

Assume $\sigma=\sigma(t, \mathbf{x}, y)$, and let (Ω, \mathscr{F}) be the canonical space and (\mathbf{x}, \mathbf{y}) the canonical processes. Denote

- $a=\sigma \sigma^{T}$;
- $\hat{f}(t, \mathbf{x}, y, z)=f(t, \mathbf{x}, y, z \sigma(t, \mathbf{x}, y))$, for $f=b, h$.

Note:

The general case $\sigma=\sigma(t, \mathbf{x}, y, z)$ can can be treated along the lines of "Four Step Scheme":

- find a function $\boldsymbol{\Phi}$ such that

$$
\boldsymbol{\Phi}(t, \mathbf{x}, y, z)=z \sigma(t, \mathbf{x}, y, \boldsymbol{\Phi}(t, \mathbf{x}, y, z))
$$

- define the functions \hat{b}, \hat{h}, and $\hat{\sigma}$ as

$$
\hat{f}(t, \mathbf{x}, y, z)=f(t, \mathbf{x}, y, \boldsymbol{\Phi}(t, \mathbf{x}, y, z)), \quad f=b, h, \sigma .
$$

Definition

$\forall(s, x) \in[0, T] \times \mathbb{R}^{n}$, a solution to $F B M P_{s, x, T}(b, \sigma, h, g)$ is a pair $(\mathbb{P}, \mathbf{z}) \in \mathscr{P}(\Omega) \otimes L_{\mathbf{F}}^{2}\left([0, T] \times \Omega ; \mathbb{R}^{m \times n}\right)$ such that

- Both processes $M_{\mathbf{x}}(t) \triangleq \mathbf{x}_{t}-\int_{s}^{t} \hat{b}\left(r,(\mathbf{x})_{r}, \mathbf{y}_{r}, \mathbf{z}_{r}\right) d r$ and $M_{\mathbf{y}}(t) \triangleq \mathbf{y}_{t}+\int_{s}^{t} \hat{h}\left(r,(\mathbf{x})_{r}, \mathbf{y}_{r}, \mathbf{z}_{r}\right) d r$ are $\mathbb{P}-m g$'s for $t \geq s$;
- $\left[M_{\mathbf{x}}^{i}, M_{\mathbf{x}}^{j}\right](t)=\int_{s}^{t} a_{i j}\left(r,(\mathbf{x})_{r}, \mathbf{y}_{r}\right) d r, \quad t \geq s, \quad i, j=1, \cdots n$,
- $M_{\mathbf{y}}(t)=\int_{s}^{t} \mathbf{z}_{r} d M_{\mathbf{x}}(r), t \geq s$.
- $\mathbb{P}\left\{\mathbf{x}_{s}=x\right\}=1$ and $\mathbb{P}\left\{\mathbf{y}_{T}=g(\mathbf{x})_{T}\right\}=1$.

Remark

- The process $\left\{\mathbf{z}_{t}\right\}$ is different from $\left\{Z_{t}\right\}$ in (73)! In fact, $\left\{\mathbf{z}_{t}\right\} \sim \nabla u, Z \sim \sigma^{T} \nabla u$, where u satisfies PDE (62).
- (73) has a weak solution $\Longleftrightarrow F B M P_{t, x, T}(a, b, h, g)$ has a solution with $a=\sigma \sigma^{T}$.

FBMP vs. Traditional Martingale Problem:

Assume $f(t, \mathbf{x}, y, z)=f(t, x, y, z), f=b, \sigma, h, g$. Then (\mathbb{P}, \mathbf{z}) is a solution to the $\mathrm{FBMP}_{s, x, T}(b, \sigma, h, g)$

$$
\left\{\begin{array}{l}
d \mathbf{x}_{t}=\widehat{b}\left(t, \mathbf{x}_{t}, \mathbf{y}_{t}, \mathbf{z}_{t}\right) d t+d M_{\mathbf{x}}(t) \\
d \mathbf{y}_{t}=-\widehat{h}\left(t, \mathbf{x}_{t}, \mathbf{y}_{t}, \mathbf{z}_{t}\right) d t+d M_{\mathbf{y}}(t)=-\widehat{h}(t, \cdots) d t+\mathbf{z}_{t} d M_{\mathbf{x}}(t)
\end{array}\right.
$$

FBMP vs. Traditional Martingale Problem:

Assume $f(t, \mathbf{x}, y, z)=f(t, x, y, z), f=b, \sigma, h, g$. Then (\mathbb{P}, \mathbf{z}) is a solution to the $\mathrm{FBMP}_{s, x, T}(b, \sigma, h, g)$
$\left\{\begin{array}{l}d \mathbf{x}_{t}=\widehat{b}\left(t, \mathbf{x}_{t}, \mathbf{y}_{t}, \mathbf{z}_{t}\right) d t+d M_{\mathbf{x}}(t), \\ d \mathbf{y}_{t}=-\widehat{h}\left(t, \mathbf{x}_{t}, \mathbf{y}_{t}, \mathbf{z}_{t}\right) d t+d M_{\mathbf{y}}(t)=-\widehat{h}(t, \cdots) d t+\mathbf{z}_{t} d M_{\mathbf{x}}(t) .\end{array}\right.$
(By Itô and choice of φ):

$$
C[\varphi](t) \triangleq \varphi\left(\mathbf{x}_{t}, \mathbf{y}_{t}\right)-\varphi\left(x, \mathbf{y}_{0}\right)-\int_{0}^{t} \mathscr{L}_{s, \mathbf{x}_{s}, \mathbf{y}_{s}, \mathbf{z}_{s}} \varphi\left(\mathbf{x}_{s}, \mathbf{y}_{s}\right) d s
$$

is a \mathbb{P}-martingale for all $\varphi \in C^{2}\left(\mathbb{R}^{n} \times \mathbb{R}^{m}\right)$. where

$$
\begin{aligned}
\mathscr{L}_{t, x, y, z} & \triangleq \frac{1}{2} \operatorname{tr}\left\{A D_{x, y}^{2}\right\}+\left\langle\hat{b}, \nabla_{x}\right\rangle-\left\langle\hat{h}, \nabla_{y}\right\rangle ; \\
A(t, x, y, z) & \triangleq\left[I_{n}, z\right]^{T} a(t, x, y)\left[I_{n}, z^{T}\right] .
\end{aligned}
$$

Solvability of FBMPs (Existence)

Main Assumption:

(H1) b, σ, h, and g are bounded and uniformly continuous on (\mathbf{x}, y, z), uniformly in t.

Solvability of FBMPs (Existence)

Main Assumption:

(H1) b, σ, h, and g are bounded and uniformly continuous on (\mathbf{x}, y, z), uniformly in t.

Theorem

Assume (H1), and that $\exists\left\{\left(b_{n}, \sigma_{n}, h_{n}, g_{n}\right)\right\}$, all satisfying (H1), s.t.

- for $f=b, \sigma, h, g,\left\|f_{n}-f\right\|_{\infty} \leq \frac{1}{n}$;
- FBSDE (73) with $\left(b_{n}, \sigma_{n}, f_{n}, g_{n}\right)$ has strong sol. $\left(X^{n}, Y^{n}, Z^{n}\right)$;
- denoting $Z_{t}^{n, \delta} \triangleq \frac{1}{\delta} \int_{0 \vee(t-\delta)}^{t} Z_{s}^{n} d s$, it holds that

$$
\begin{equation*}
\lim _{\delta \rightarrow 0} \sup _{n} E\left\{\int_{0}^{T}\left|Z_{t}^{n}-Z_{t}^{n, \delta}\right|^{2} d t\right\}=0 \tag{74}
\end{equation*}
$$

Then (73) admits a weak solution.

Sketch of the Proof.

Step 1. Assume $\Theta_{t}^{n} \triangleq\left(\left(X^{n}\right)_{t}, Y_{t}^{n}, Z_{t}^{n}\right)$ "lives" on a fixed prob.
space. Denote

$$
\begin{aligned}
& B_{t}^{n} \triangleq \int_{0}^{t} b_{n}\left(s, \Theta_{s}^{n}\right) d s ; \quad F_{t}^{n} \triangleq \int_{0}^{t} h_{n}\left(s, \Theta_{s}^{n}\right) d s ; \quad A_{t}^{n} \triangleq \int_{0}^{t} Z_{s}^{n} d s ; \\
& M_{t}^{n} \triangleq \int_{0}^{t} \sigma_{n}\left(s, \Theta_{s}^{n}\right) d W_{s} ; \quad N_{t}^{n} \triangleq \int_{0}^{t} Z_{s}^{n} d W_{s} \\
& \text { and } \Sigma^{n} \triangleq\left(W, X^{n}, Y^{n}, B^{n}, F^{n}, A^{n}, M^{n}, N^{n}\right) .
\end{aligned}
$$

Sketch of the Proof.

Step 1. Assume $\Theta_{t}^{n} \triangleq\left(\left(X^{n}\right)_{t}, Y_{t}^{n}, Z_{t}^{n}\right)$ "lives" on a fixed prob. space. Denote

$$
\begin{aligned}
& B_{t}^{n} \triangleq \int_{0}^{t} b_{n}\left(s, \Theta_{s}^{n}\right) d s ; \quad F_{t}^{n} \triangleq \int_{0}^{t} h_{n}\left(s, \Theta_{s}^{n}\right) d s ; \quad A_{t}^{n} \triangleq \int_{0}^{t} Z_{s}^{n} d s ; \\
& M_{t}^{n} \triangleq \int_{0}^{t} \sigma_{n}\left(s, \Theta_{s}^{n}\right) d W_{s} ; \quad N_{t}^{n} \triangleq \int_{0}^{t} Z_{s}^{n} d W_{s} \\
& \text { and } \Sigma^{n} \triangleq\left(W, X^{n}, Y^{n}, B^{n}, F^{n}, A^{n}, M^{n}, N^{n}\right) .
\end{aligned}
$$

Then

- $\left\{\Sigma^{n}\right\}$ are quasimartingales under \mathbb{P} with uniformly bounded conditional variation. (e.g., $\forall 0=t_{0}<\cdots<t_{m}=T$,

$$
\text { C. } \left.\operatorname{Var}\left(Y^{n}\right) \leq \sum_{i=0}^{m-1} E\left\{\int_{t_{i}}^{t_{i+1}}\left|h_{n}\left(t, \Theta_{t}^{n}\right)\right| d t+\left|g_{n}\left(X_{T}^{n}\right)\right|\right\} \leq C .\right)
$$

Sketch of the Proof.

Step 1. Assume $\Theta_{t}^{n} \triangleq\left(\left(X^{n}\right)_{t}, Y_{t}^{n}, Z_{t}^{n}\right)$ "lives" on a fixed prob. space. Denote

$$
\begin{aligned}
& B_{t}^{n} \triangleq \int_{0}^{t} b_{n}\left(s, \Theta_{s}^{n}\right) d s ; \quad F_{t}^{n} \triangleq \int_{0}^{t} h_{n}\left(s, \Theta_{s}^{n}\right) d s ; \quad A_{t}^{n} \triangleq \int_{0}^{t} Z_{s}^{n} d s ; \\
& M_{t}^{n} \triangleq \int_{0}^{t} \sigma_{n}\left(s, \Theta_{s}^{n}\right) d W_{s} ; \quad N_{t}^{n} \triangleq \int_{0}^{t} Z_{s}^{n} d W_{s} \\
& \text { and } \Sigma^{n} \triangleq\left(W, X^{n}, Y^{n}, B^{n}, F^{n}, A^{n}, M^{n}, N^{n}\right)
\end{aligned}
$$

Then

- $\left\{\Sigma^{n}\right\}$ are quasimartingales under \mathbb{P} with uniformly bounded conditional variation. (e.g., $\forall 0=t_{0}<\cdots<t_{m}=T$,

$$
\text { C. } \left.\operatorname{Var}\left(Y^{n}\right) \leq \sum_{i=0}^{m-1} E\left\{\int_{t_{i}}^{t_{i+1}}\left|h_{n}\left(t, \Theta_{t}^{n}\right)\right| d t+\left|g_{n}\left(X_{T}^{n}\right)\right|\right\} \leq C .\right)
$$

- by Meyer-Zheng tightness criteria,
$\mathbb{P}^{n} \triangleq P \circ\left[\Sigma^{n}\right]^{-1} \rightarrow \mathbb{P} \in \mathscr{P}(\widehat{\Omega})$ weakly, as $n \rightarrow \infty$ (possibly along a subsequence), where $\widehat{\Omega} \triangleq \mathbb{D}\left([0, T] ; \mathbb{R}^{8}\right)$;

Step 2. By a slight abuse of notations, denote the coordinate processs of $\widehat{\Omega}$ by $\Sigma=(W, \mathbf{x}, \mathbf{y}, B, F, A, M, N)$. Then

- W is a Brownian motion under \mathbb{P};
- B, F (whence \mathbf{x}), and M are all continuous;
- M, N are martingales ([Meyer-Zheng, Theorem 11], as
$\left.\sup _{n} E\left\{\int_{0}^{T}\left|Z_{t}^{n}\right|^{2} d t\right\}<\infty\right)$;
- A is absolutely continuous w.r.t. $d t, \mathbb{P}$-a.s., and for some
$\mathbf{z} \in L^{2}([0, T] \times \tilde{\Omega})$, it holds that $A_{t}=\int_{0}^{t} \mathbf{z}_{s} d s$,
([Meyer-Zheng, Theorem 10]).
$\Longrightarrow \quad \mathbf{x}_{t}=\mathbf{x}_{0}+B_{t}+M_{t}, \quad \mathbf{y}_{t}=\mathbf{y}_{0}-F_{t}+N_{t}, \quad \forall t, \quad \mathbb{P}$-a.s.

Step 2. By a slight abuse of notations, denote the coordinate processs of $\widehat{\Omega}$ by $\Sigma=(W, \mathbf{x}, \mathbf{y}, B, F, A, M, N)$. Then

- W is a Brownian motion under \mathbb{P};
- B, F (whence \mathbf{x}), and M are all continuous;
- M, N are martingales ([Meyer-Zheng, Theorem 11], as $\left.\sup _{n} E\left\{\int_{0}^{T}\left|Z_{t}^{n}\right|^{2} d t\right\}<\infty\right)$;
- A is absolutely continuous w.r.t. $d t$, \mathbb{P}-a.s., and for some $\mathbf{z} \in L^{2}([0, T] \times \tilde{\Omega})$, it holds that $A_{t}=\int_{0}^{t} \mathbf{z}_{s} d s$, ([Meyer-Zheng, Theorem 10]).

$$
\Longrightarrow \quad \mathbf{x}_{t}=\mathbf{x}_{0}+B_{t}+M_{t}, \quad \mathbf{y}_{t}=\mathbf{y}_{0}-F_{t}+N_{t}, \quad \forall t, \quad \mathbb{P} \text {-a.s. }
$$

Hope:

$$
\begin{aligned}
& B_{t}=\int_{0}^{t} b\left(s, \Theta_{s}\right) d s, M_{t}=\int_{0}^{t} \sigma\left(s, \Theta_{s}\right) d W_{s}, F_{t}=\int_{0}^{t} h\left(s, \Theta_{s}\right) d s \\
& N_{t}=\int_{0}^{t} \mathbf{z}_{s} d W_{s} \ldots
\end{aligned}
$$

Step 3. Show that $B_{t}=\int_{0}^{t} b\left(s, \Theta_{s}\right) d s$ and $F_{t}=\int_{0}^{t} h\left(s, \Theta_{s}\right) d s$.

Key estimates:

- Denote $Z_{t}^{\delta} \triangleq \frac{1}{\delta}\left[A_{t}-A_{t-\delta}\right]$ and $\Theta_{s}^{\delta}=\left((X)_{s}, Y_{s}, Z_{s}^{\delta}\right)$;
- by the uniform continuity of b (on $z) \oplus$ Assumption (74)

$$
\begin{aligned}
& E^{\mathbb{P}}\left\{\left|B_{t}-\int_{0}^{t} b\left(s, \Theta_{s}\right) d s\right|\right\}=\lim _{\delta \rightarrow 0} E^{\mathbb{P}}\left\{\left|B_{t}-\int_{0}^{t} b\left(s, \Theta_{s}^{\delta}\right) d s\right|\right\} \\
& \leq \lim _{\delta \rightarrow 0} \lim _{n} E\left\{\int_{0}^{T}\left|b\left(s, \Theta_{s}^{n}\right)-b\left(s, \Theta_{s}^{n, \delta}\right)\right| d s\right\} \\
& =\lim _{n} \lim _{\delta \rightarrow 0} E\left\{\int_{0}^{T}\left|b\left(s, \Theta_{s}^{n}\right)-b\left(s, \Theta_{s}^{n, \delta}\right)\right| d s\right\}=0 \\
& \Longrightarrow E^{\mathbb{P}}\left\{\left|B_{t}-\int_{0}^{t} b\left(s, \Theta_{s}\right) d s\right|\right\}=0 .
\end{aligned}
$$

- Similar for F.

Step 4. Show that $N_{t}=\int_{0}^{t} \mathbf{z}_{s} d W_{s}, M_{t}=\int_{0}^{t} \sigma\left(s, \Theta_{s}\right) d W_{s}$.

Key estimates:

- By Dom. Conv. Thm: $\int_{0}^{T}\left|Z_{t}-Z_{t}^{\delta}\right|^{2} d t \rightarrow 0, \quad P$ - a.s.
- Let $\pi: 0=t_{0}<\cdots<t_{m}=T$ be any partition. Show that

$$
\begin{aligned}
& E^{\mathbb{P}}\left\{\sum_{j=0}^{m-1} \int_{t_{j}}^{t_{j+1}}\left|N_{t}-\sum_{i=0}^{j-1} Z_{t_{i}}^{\delta}\left[W_{t_{i+1}}-W_{t_{i}}\right]\right|^{2} d t\right\}+\frac{C}{\delta^{2}} E^{P}\left\{I^{\pi, \delta}\right\} \\
\leq & C \varlimsup_{n} E\left\{\int_{0}^{T}\left|\int_{0}^{t} Z_{s}^{n} d W_{s}-\int_{0}^{t} Z_{s}^{n, \delta} d W_{s}\right|^{2} d t\right\}+\frac{C|\pi|}{\delta^{2}} \\
\leq & C \sup _{n} E\left\{\int_{0}^{T}\left|Z_{t}^{n}-Z_{t}^{n, \delta}\right|^{2} d t\right\}+\frac{C|\pi|}{\delta^{2}} .
\end{aligned}
$$

Letting $|\pi| \rightarrow 0$ and using (74) (Again!) $\Longrightarrow \lim _{\delta \rightarrow 0} I^{\delta}=0$.

- Similarly, $M_{t}=\int_{0}^{t} \sigma\left(s, \Theta_{s}\right) d W_{s}$.

When will Assumption (74) satisfied?

(H2) b, h, σ, and g are deterministic, Lipschitz, and $\frac{1}{K} I \leq \sigma_{n} \sigma_{n}^{*} \leq K I$, for some $K>0$.

When will Assumption (74) satisfied?

(H2) b, h, σ, and g are deterministic, Lipschitz, and
$\frac{1}{K} I \leq \sigma_{n} \sigma_{n}^{*} \leq K I$, for some $K>0$.

- Let $\left\{\left(b_{n}, \sigma_{n}, h_{n}, g_{n}\right)\right\}$ be the molifiers of (b, σ, h, g), and let (X^{n}, Y^{n}, Z^{n}) be the correspondin strong solutions
- In light of the "Four Step Scheme", the following relations hold:

$$
Y_{t}^{n}=u^{n}\left(t, X_{t}^{n}\right), \quad Z_{t}^{n}=\sigma_{n}\left(t, X_{t}^{n}, u^{n}\left(t, X_{t}^{n}\right)\right) \nabla_{x} u^{n}\left(t, X_{t}^{n}\right)
$$

where $u^{n}(t, x)$ is the (classical) solution to the PDE:

$$
\left\{\begin{array}{l}
u_{t}^{n}+\frac{1}{2} \sigma_{n}^{2} D_{x x}^{2} u^{n}+\nabla_{x} u^{n} \cdot b_{n}\left(\cdots, \sigma_{n} \nabla_{x} u^{n}\right)+h_{n}(\cdots)=0 ; \tag{75}\\
u^{n}(T, x)=g_{n}(x)
\end{array}\right.
$$

Hölder Continuous Case

For simplicity, assume $\underline{b \equiv 0}$ and $\underline{m=d=1}$.

Key Estimates (MZZ-2005):

If σ, h, and g are C^{α}, and $u \in C^{1,2}$ is the solution to the PDE (75), then $\exists C>0, \alpha \in(0,1)$, and $C_{\varepsilon}>0$ for each $\varepsilon>0$, s.t.

$$
\begin{aligned}
& \left|u_{x}(t, x)\right| \leq C(T-t)^{\frac{\alpha-1}{2}} ; \quad\left|u_{x x}(t, x)\right| \leq C(T-t)^{\frac{\alpha}{2}-1} \\
& \left|u_{x}\left(t_{1}, x\right)-u_{x}\left(t_{2}, x\right)\right| \leq C_{\varepsilon} \sqrt{t_{2}-t_{1}}, \quad 0 \leq t_{1}<t_{2} \leq T-\varepsilon
\end{aligned}
$$

Note: $Z_{t}^{n}=\left[u_{x}^{n} \sigma_{n}\right]\left(t, X_{t}^{n}, u^{n}\left(t, X_{t}^{n}\right)\right) \Longrightarrow \forall \delta, \varepsilon>0$, $\exists \beta=\beta(\alpha)>0$, s.t.

$$
E\left\{\int_{0}^{T}\left|Z_{t}^{n}-Z_{t}^{n, \delta}\right|^{2} d t\right\} \leq C_{\varepsilon} \delta^{\beta}+C \varepsilon^{\alpha} .
$$

First letting $\delta \rightarrow 0$ and then $\varepsilon \rightarrow 0 \Longrightarrow$ Assumption (74) holds.

Uniformly Continuous Case

More complicated, but still possible. Need: gradient Estimate of the form:

$$
\begin{equation*}
\left|u_{x}(s, x)-u_{x}(t, y)\right| \leq C\left[|s-t|^{\frac{\alpha}{2}}+|x-y|^{\alpha}\right](!) \tag{76}
\end{equation*}
$$

- One dimensional case, use the result of Nash
- Higher dimensional case, need L^{p}-theory (e.g., Lieberman's book)

Some Facts about "Canonical Weak Solution":

We call the weak solution $(\Omega, \mathscr{F}, \mathbb{P} ; \mathbf{F}, W, X, Y, Z)$ constructed via "Four Step Scheme" the "Canonical Weak Solution". Then,

- $Y_{t}=u\left(t, X_{t}\right)$, where u is a viscosity solution of the corresponding PDE.
- By an estimate on u (cf. e.g., Delarue, 2003), for $t<t+\delta \leq T_{0}<T$,

$$
\left|u\left(t+\delta, X_{t+\delta}\right)-u\left(t, X_{t}\right)\right| \leq \frac{C}{\left(T-T_{0}\right)^{\frac{\alpha}{2}}}\left[\delta^{\frac{\alpha}{2}}+\left|X_{t+\delta}-X_{t}\right|^{\alpha}\right]
$$

Some Facts about "Canonical Weak Solution":

We call the weak solution $(\Omega, \mathscr{F}, \mathbb{P} ; \mathbf{F}, W, X, Y, Z)$ constructed via "Four Step Scheme" the "Canonical Weak Solution". Then,

- $Y_{t}=u\left(t, X_{t}\right)$, where u is a viscosity solution of the corresponding PDE.
- By an estimate on u (cf. e.g., Delarue, 2003), for $t<t+\delta \leq T_{0}<T$,

$$
\left|u\left(t+\delta, X_{t+\delta}\right)-u\left(t, X_{t}\right)\right| \leq \frac{C}{\left(T-T_{0}\right)^{\frac{\alpha}{2}}}\left[\delta^{\frac{\alpha}{2}}+\left|X_{t+\delta}-X_{t}\right|^{\alpha}\right]
$$

- Hence

$$
\begin{aligned}
E_{t}^{\mathbb{P}}\left|Y_{t+\delta}-Y_{t}\right|^{2} & \leq \frac{C}{\left(T-T_{0}\right)^{\alpha}}\left[\delta^{\alpha}+E_{t}^{\mathbb{P}}\left|\int_{t}^{t+\delta} \sigma(\cdot) d W_{s}\right|^{2 \alpha}\right] \\
& \leq \frac{C}{\left(T-T_{0}\right)^{\alpha}} \delta^{\alpha}
\end{aligned}
$$

Consequently,

$$
\begin{aligned}
E_{t}^{\mathbb{P}}\left\{\int_{t}^{t+\delta}\left|Z_{s}\right|^{2} d s\right\} & =E_{t}^{\mathbb{P}}\left\{\left|Y_{t+\delta}-Y_{t}+\int_{t}^{t+\delta} h(\cdots) d s\right|^{2}\right\} \\
& \leq \frac{C}{\left(T-T_{0}\right)^{\alpha}} \delta^{\alpha}
\end{aligned}
$$

Finally,

$$
\begin{equation*}
E_{t}^{\mathbb{P}}\left\{\left|Y_{t+\delta}-Y_{t}\right|^{2}\right\}+E_{t}^{\mathbb{P}}\left\{\int_{t}^{t+\delta}\left|Z_{s}\right|^{2} d s\right\} \leq \frac{C}{\left(T-T_{0}\right)^{\alpha}} \delta^{\alpha} \tag{77}
\end{equation*}
$$

Note:

The estimates (77) will be useful in the discussion of uniqueness!

Uniqueness of FBMP

Main Assumptions:

- $m=1$ and Markovian type
- b, σ, h, and g are bounded and uniformly continuous in (x, y, z), and $\sigma \sigma^{\top} \geq c l, c>0$. Thus WLOG may assume $b=0$ (Girsanov).

Uniqueness of FBMP

Main Assumptions:

- $m=1$ and Markovian type
- b, σ, h, and g are bounded and uniformly continuous in (x, y, z), and $\sigma \sigma^{\top} \geq c l, c>0$. Thus WLOG may assume $b=0$ (Girsanov).

Recall that a weak solution is a pair (\mathbb{P}, Z), where \mathbb{P} is a proba. measure on the canonical space $\Omega=\mathbb{C}\left([0, T] ; \mathbb{R}^{n}\right) \times \mathbb{C}([0, T] ; \mathbb{R})$ and $Z \in L_{\mathbf{F}}^{2}([0, T] \times \Omega ; \mathbb{P})$, such that $W_{t} \triangleq \int_{0}^{t} \sigma^{-1}\left(t, \mathbf{x}_{t}, \mathbf{y}_{t}\right) d \mathbf{x}_{t}$, $t \geq 0$ is a \mathbb{P}-Brownian motion.

Definition of Uniqueness:

If $\left(\mathbb{P}^{i}, Z^{i}\right), i=1,2$ are two weak solutions, then the processes $\left(\mathbf{x}, \mathbf{y}, Z^{1}\right)$ and ($\mathbf{x}, \mathbf{y}, Z^{2}$) have the same finite dimensional distributions, under \mathbb{P}^{1} and \mathbb{P}^{2}, respectively.

K-Weak Solutions

Definition

Let $K:[0, T] \times \mathbb{R}_{+} \mapsto \mathbb{R}_{+}$be such that $\int_{0}^{T} K_{t}^{2} d t<\infty$. We say that a pair (\mathbb{P}, Z) is a " K-weak solution" at
$(s, x, y) \in[0, T] \times \mathbb{R} \times \mathbb{R}$ if the following hold:

- $W_{t} \triangleq \int_{s}^{t} \sigma^{-1}\left(r, \mathbf{x}_{r}, \mathbf{y}_{r}\right) d \mathbf{x}_{r}$ is a \mathbb{P}-Brownian motion for $t \geq s$;
- $\mathbb{P}\left\{\mathbf{x}_{s}=x, \mathbf{y}_{s}=y\right\}=1$;
- $\mathbf{y}_{t}=y-\int_{s}^{t} h\left(r, \mathbf{x}_{r}, \mathbf{y}_{r}\right) d r+\int_{s}^{t} Z_{r} d W_{r}, t \in[s, T], \mathbb{P}-$ a.s.;
- $\mathbb{P}\left\{\mathbf{y}_{T}=g\left(\mathbf{x}_{T}\right)\right\}=1$;
- $\left|Z_{t}\right| \leq K_{t}, \forall t \in(s, T), \mathbb{P}$-a.s.

Objective:

Show that the K-weak solution is unique!

K-Weak Solutions

If σ, h, g are Hölder- α continuous, and $u \in C^{1,2}$ is the classical solution to PDE

$$
\left\{\begin{array}{l}
u_{t}+\frac{1}{2} u_{x x} \sigma^{2}+h\left(t, x, u, u_{x} \sigma\right)=0 \tag{78}\\
u(T, x)=g(x)
\end{array}\right.
$$

Then, recall that we have proved (MZZ-2005) that $\exists C>0$, depending only on L, T, and α, such that

$$
\left|u_{x}(t, x)\right| \leq C(T-t)^{\frac{\alpha-1}{2}} ; \quad\left|u_{x x}(t, x)\right| \leq C(T-t)^{\frac{\alpha}{2}-1}
$$

Consequently, if we assume that $K_{t} \geq C(T-t)^{\frac{\alpha-1}{2}}$, then the class of K-weak solutions is nonempty, and it at least contains the canonical weak solution!

K-Weak Solutions

- Denote $\mathscr{O} \triangleq\{(t, x, y): \exists K$-weak solution at $(t, x, y)\}$.
- Define $\overline{\mathscr{O}}=\operatorname{cl}\{\mathscr{O}\}$, and $\underline{u}(t, x) \triangleq \inf \{y:(t, x, y) \in \overline{\mathscr{O}}\}$; $\bar{u}(t, x) \triangleq \sup \{y:(t, x, y) \in \overline{\mathscr{O}}\}$.

Important Facts

\underline{u} (resp. \bar{u}) is a viscosity super-solution (resp. sub-solution) of (78). Consequently, if the Comparison Theorem (for viscosity solutions) holds for the PDE (78). Then

- $\underline{u} \geq \bar{u} \Longrightarrow \underline{u} \equiv \bar{u}=u$. (I.e., \mathscr{O} is a singleton for each (t, x), and u is the unique viscosity solution to (78).)
- For any K-weak solution (\mathbb{P}, Z), one shows that $\left(t, \mathbf{x}_{t}, \mathbf{y}_{t}\right) \in \mathscr{O} \Longrightarrow \mathbf{y}_{t}=u\left(t, \mathbf{x}_{t}\right)$ holds $\forall t$, \mathbb{P}-a.s., as well. (Compare to the canonical weak solution!)

Uniqueness of K-Weak Solutions

Let $\left(\mathbb{P}^{*}, Z^{*}\right)$ be any K-weak solution, we want to show that it is "identical" to the canonical K-weak solution.

- $d W_{t}^{*}=\sigma^{-1}\left(t, \mathbf{x}_{t}, u\left(t, \mathbf{x}_{t}\right)\right) d \mathbf{x}_{t}$.
- W^{*} is a BM under $\mathbb{P}^{*} \Longrightarrow\left(W^{*}, \mathbf{x}\right)$ is a weak solution to a forward SDE (!)
- $\mathbb{P}^{*} \circ\left(W^{*}, \mathbf{x}\right)^{-1}=\mathbb{P}^{0} \circ\left(W^{0}, \mathbf{x}\right)^{-1}$ (uniqueness of FMP)
- since both \mathbb{P}^{*} and \mathbb{P}^{0} are K-weak solution, one has $\mathbf{y}_{t}=u\left(t, \mathbf{x}_{t}\right)$, both \mathbb{P}^{*} and \mathbb{P}^{0}-a.s. (!)
- $\mathbb{P}^{*} \circ\left(W^{*}, \mathbf{x}, \mathbf{y}\right)^{-1}=\mathbb{P}^{0} \circ\left(W^{0}, \mathbf{x}, \mathbf{y}\right)^{-1}$,
- $\mathbb{P}^{*}=\mathbb{P}^{0}$, and furthermore, $\mathbb{P}^{*} \circ\left\langle\mathbf{y}, W^{*}\right\rangle^{-1}=\mathbb{P}^{0} \circ\left\langle\mathbf{y}, W^{0}\right\rangle^{-1}$
- $Z^{*} \sim \mathbf{z}$!

Uniqueness of K-Weak Solutions

Let $\left(\mathbb{P}^{*}, Z^{*}\right)$ be any K-weak solution, we want to show that it is "identical" to the canonical K-weak solution.

- $d W_{t}^{*}=\sigma^{-1}\left(t, \mathbf{x}_{t}, u\left(t, \mathbf{x}_{t}\right)\right) d \mathbf{x}_{t}$.
- W^{*} is a BM under $\mathbb{P}^{*} \Longrightarrow\left(W^{*}, \mathbf{x}\right)$ is a weak solution to a forward SDE (!)
- $\mathbb{P}^{*} \circ\left(W^{*}, \mathbf{x}\right)^{-1}=\mathbb{P}^{0} \circ\left(W^{0}, \mathbf{x}\right)^{-1}$ (uniqueness of FMP)
- since both \mathbb{P}^{*} and \mathbb{P}^{0} are K-weak solution, one has
$\mathbf{y}_{t}=u\left(t, \mathbf{x}_{t}\right)$, both \mathbb{P}^{*} and \mathbb{P}^{0}-a.s. (!)
- $\mathbb{P}^{*} \circ\left(W^{*}, \mathbf{x}, \mathbf{y}\right)^{-1}=\mathbb{P}^{0} \circ\left(W^{0}, \mathbf{x}, \mathbf{y}\right)^{-1}$,
- $\mathbb{P}^{*}=\mathbb{P}^{0}$, and furthermore, $\mathbb{P}^{*} \circ\left\langle\mathbf{y}, W^{*}\right\rangle^{-1}=\mathbb{P}^{0} \circ\left\langle\mathbf{y}, W^{0}\right\rangle^{-1}$
- $Z^{*} \sim \mathbf{z}$!

DONE!

Some Observations:

1° For a weak solution (\mathbb{P}, Z) and any $\delta>0$, denoting \mathbb{P}_{t}^{ω} to be the r.c.p.d. of $\mathbb{P}\left\{\cdot \mid \mathscr{F}_{t}\right\}(\omega)$, define

$$
K^{\mathbb{P}, Z}(t, \delta, \omega)=E^{\mathbb{P}_{t}^{\omega}}\left\{\int_{t}^{(t+\delta) \wedge T}\left|Z_{s}\right|^{2} d s\right\}
$$

Some Observations:

1° For a weak solution (\mathbb{P}, Z) and any $\delta>0$, denoting \mathbb{P}_{t}^{ω} to be the r.c.p.d. of $\mathbb{P}\left\{\cdot \mid \mathscr{F}_{t}\right\}(\omega)$, define

$$
K^{\mathbb{P}, Z}(t, \delta, \omega)=E^{\mathbb{P}_{t}^{\omega}}\left\{\int_{t}^{(t+\delta) \wedge T}\left|Z_{s}\right|^{2} d s\right\}
$$

If g, σ, and h are all Hölder continuous, then for any $\delta>0$, the canonical weak solution $\left(\mathbb{P}^{0}, \mathbf{z}\right)$ satisfies:

$$
K^{\mathbb{P}^{0}, \mathbf{z}}(\delta, \omega) \triangleq \sup _{t \in[0, T]} E^{\mathbb{P}_{t}^{0, \omega}}\left\{\int_{t}^{(t+\delta) \wedge T}\left|\mathbf{z}_{s}\right|^{2} d s\right\} \leq C \delta^{\alpha}, \quad \mathbb{P}^{0} \text {-a.s. }
$$

Hence

$$
\begin{equation*}
\lim _{n \rightarrow \infty} E^{\mathbb{P}^{n}}\left\{K^{\mathbb{P}^{n}, Z^{n}}\left(t_{n}, 1 / \sqrt{n}, \cdot\right)\right\}=0 \tag{79}
\end{equation*}
$$

$\mathbf{2}^{\circ}$ Assume (H1) and (H2). Recall the estimate (77) for the canonical weak solution:

$$
E_{t}^{\mathbb{P}^{0}}\left\{\left|\mathbf{y}_{t+\delta}-\mathbf{y}_{t}\right|^{2}\right\}+E_{t}^{\mathbb{P}^{0}}\left\{\int_{t}^{t+\delta}\left|\mathbf{z}_{s}\right|^{2} d s\right\} \leq \frac{C}{(T-t-\delta)^{\alpha}} \delta^{\alpha}
$$

Then, for any $\delta>0, \eta>0$, we have

$$
\mathbb{P}_{t}^{0, \omega}\left\{\left|\mathbf{y}_{t+\delta}-\mathbf{y}_{t}\right| \geq \eta\right\} \leq \frac{C \delta^{\alpha}}{(T-t-\delta)^{\alpha} \eta^{\alpha}} \triangleq k^{0}(t, \delta, \eta), \quad \mathbb{P}^{0} \text {-a.e. }
$$

Or, in line of (79):

$$
\begin{aligned}
K^{\mathbb{P}^{0}, z}(t, \delta, \cdot) & =E^{\mathbb{P}_{t}^{0, \omega}}\left\{\int_{t}^{(t+\delta) \wedge T}\left|\mathbf{z}_{r}\right|^{2} d r\right\} \leq \frac{C \delta^{\alpha}}{(T-t-\delta)^{\alpha}} \\
& \triangleq k^{1}(t, \delta), \quad \mathbb{P}^{0} \text {-a.e. } \omega .
\end{aligned}
$$

Definition

We say that a pair (\mathbb{P}, Z) is a " k-weak solution" (resp. \tilde{k}-weak solution) at $(s, x, y) \in[0, T] \times \mathbb{R} \times \mathbb{R}$ if it is a weak solution (or solution to the FBMP) such that the following hold:

- For any $t \in[s, T), \delta>0$, and $\eta>0$,

$$
\mathbb{P}_{t}^{\omega}\left\{\left|\mathbf{y}_{t}-\mathbf{y}_{(t+\delta) \wedge T}\right| \geq \eta\right\} \leq k(t, \delta, \eta), \quad \mathbb{P} \text {-a.e. } \omega \in \Omega
$$

- (resp. For any $t \in[t, T)$ and $\delta>0$,

$$
E^{\mathbb{P}_{t}^{\omega}}\left\{\int_{t}^{(t+\delta) \wedge T}\left|Z_{r}\right|^{2} d r\right\} \leq \tilde{k}(t, \delta), \quad \mathbb{P} \text {-a.s. } \omega \in \Omega .
$$

k-Weak Solutions

Remark:

Clearly, the " k-", and " \tilde{k}-solutions" are the modifications of the "K-weak solution", with $k:[0, T) \times(0, T) \times(0,1) \mapsto \mathbb{R}_{+}$(resp. $\left.\tilde{k}:[0, T) \times(0, T) \mapsto \mathbb{R}_{+}\right)$now satisfying the following properties:

- $k\left(t_{1}, \delta_{1}, \eta\right) \leq k\left(t_{2}, \delta_{2}, \eta\right), \forall t_{1} \leq t_{2}, \delta_{1} \leq \delta_{2}$
- $\left.\tilde{k}\left(t_{1}, \delta_{1}\right) \leq \tilde{k}\left(t_{2}, \delta_{2}\right)\right) \quad \forall t_{1} \leq t_{2}, \delta_{1} \leq \delta_{2}$;
- $\lim _{\delta \rightarrow 0} k(t, \delta, \eta)=\lim _{\delta \rightarrow 0} \tilde{k}(t, \delta)=0, \quad \forall(t, \eta)$;
- $k(t, \delta, \eta) \geq k^{0}(t, \delta, \eta), \quad \forall t<t+\delta<T$;
- $\left.\tilde{k}(t, \delta) \geq k^{1}(t, \delta)\right), \quad \forall t<t+\delta<T$.

k-Weak Solutions

Remark:

Clearly, the " k-", and " \tilde{k}-solutions" are the modifications of the "K-weak solution", with $k:[0, T) \times(0, T) \times(0,1) \mapsto \mathbb{R}_{+}$(resp. $\left.\tilde{k}:[0, T) \times(0, T) \mapsto \mathbb{R}_{+}\right)$now satisfying the following properties:

- $k\left(t_{1}, \delta_{1}, \eta\right) \leq k\left(t_{2}, \delta_{2}, \eta\right), \forall t_{1} \leq t_{2}, \delta_{1} \leq \delta_{2}$
- $\left.\tilde{k}\left(t_{1}, \delta_{1}\right) \leq \tilde{k}\left(t_{2}, \delta_{2}\right)\right) \quad \forall t_{1} \leq t_{2}, \delta_{1} \leq \delta_{2}$;
- $\lim _{\delta \rightarrow 0} k(t, \delta, \eta)=\lim _{\delta \rightarrow 0} \tilde{k}(t, \delta)=0, \quad \forall(t, \eta)$;
- $k(t, \delta, \eta) \geq k^{0}(t, \delta, \eta), \quad \forall t<t+\delta<T$;
- $\left.\tilde{k}(t, \delta) \geq k^{1}(t, \delta)\right), \quad \forall t<t+\delta<T$.

Theorem (MZZ-2006)

Both k - and \tilde{k}-weak solutions are unique.

Uniqueness of General Weak Solution

Two Possibilities:

- Show that every weak solution is a $k(\tilde{k})$-weak solution
- Show that every weak solution can be "controlled" by a k (\tilde{k})-weak solution

Uniqueness of General Weak Solution

Two Possibilities:

- Show that every weak solution is a $k(\tilde{k})$-weak solution
- Show that every weak solution can be "controlled" by a k (\tilde{k})-weak solution

Example

Assume that the FBSDE is decoupled. (I.e., $b=b(t, x)$, $\sigma=\sigma(t, x)$.) Let
$\mathscr{O} \triangleq\left\{(t, x, y): \exists\right.$ a weak solution on $[t, T]$ s.t. $\left.X_{t}=x, Y_{t}=y\right\}$.
Then, one can show that

- $\mathscr{O}(t, x) \triangleq\{y:(t, x, y) \in \mathscr{O}\}=\left[\underline{\mathrm{Y}}_{t}^{t, x}, \bar{Y}_{t}^{t, x}\right]$ is an interval;
- $\forall y \in \mathscr{O}(t, x), \exists$ a \tilde{k}-weak solution (\mathbb{P}, Z) starting from (t, x, y).

Main Idea:

- Fix a $(\Omega, \mathscr{F}, P, X, W)$ (forward weak solution) starting from (t, x), and find approximation $f_{n} \uparrow f\left(\right.$ resp. $\left.f_{n} \downarrow f\right)$ to obtain solutions \bar{Y} (resp. \underline{Y}) (Lepeltier-San Martin);
- By construction, both \bar{Y} and \underline{Y} are \tilde{k}-solutions.
- Show that all weak sol's from (t, x, y) can be "controlled" by (\bar{Y}, \bar{Z}) and $(\underline{Y}, \underline{Z})$.

Main Idea:

- Fix a $(\Omega, \mathscr{F}, P, X, W)$ (forward weak solution) starting from (t, x), and find approximation $f_{n} \uparrow f\left(\right.$ resp. $\left.f_{n} \downarrow f\right)$ to obtain solutions \bar{Y} (resp. \underline{Y}) (Lepeltier-San Martin);
- By construction, both \bar{Y} and \underline{Y} are \tilde{k}-solutions.
- Show that all weak sol's from (t, x, y) can be "controlled" by (\bar{Y}, \bar{Z}) and $(\underline{Y}, \underline{Z})$.

In general, one needs:

- Comparison Theorem for FBSDEs (only at $t=0$!)
- More knowledge on the PDE solutions
-

7. Backward Stochastic PDEs

Linear BSPDEs

- $W=\left(W^{1}, \cdots, W^{d}\right)$ - a d-dimensional Brownian motion.
- $\left\{\mathscr{F}_{t}\right\}=\left\{\mathscr{F}_{t}^{W}\right\}$.
- $g: \mathbb{R}^{n} \times \Omega \mapsto \mathbb{R}$ - a random field such that for fixed x, $g(x, \cdot)$ is \mathscr{F}_{T}-measurable.

Backward SPDE (linear version):

$$
\begin{align*}
d u(t, x) & =-[\mathscr{L} u+\mathscr{M} q+f](t, x) d t+\left\langle q(t, x), d W_{t}\right\rangle \\
u(T, x) & =g(x), \quad 0 \leq t \leq T \tag{80}
\end{align*}
$$

where, for $\varphi \in C^{2}$ and $\psi \in C^{1}$,

$$
\begin{aligned}
(\mathscr{L} \varphi)(t, x) & =\frac{1}{2} \nabla \cdot(A(t, x) \nabla \varphi)+\langle a(t, x), \nabla \varphi\rangle+c(t, x) \varphi \\
(\mathscr{M} \psi)(t, x) & =B(t, x) \nabla \psi+h(t, x) \psi
\end{aligned}
$$

and A, B, a, c, h and f are \mathbb{F}-prog. measurable random fields.

Main Assumptions

The BSPDE is called

- "Parabolic" if $A-B B^{T} \geq 0, \forall(t, x)$, a.s.
- "Super-parabolic:" if $\exists \delta>0, A-B B^{T} \geq \delta l$, a.e. $(t, x), \mathbb{P}$-a.s.
- "Degenerate Parabolic:" if it is "Parabolic" \oplus $" \exists G \subseteq[0, T] \times \mathbb{R}^{n},|G|>0$, such that $\operatorname{det}\left[A-B B^{T}\right]=0$, $\forall(t, x) \in G$, a.s."
- satisfies the "Symmetric Condition:" if

$$
\left[B\left(\partial_{x_{i}} B^{T}\right)\right]^{T}=B\left(\partial_{x_{i}} B^{T}\right) \text {, for a.e. }(t, x), \mathbb{P} \text {-a.s., } 1 \leq i \leq n
$$

Main Assumptions

The BSPDE is called

- "Parabolic" if $A-B B^{T} \geq 0, \forall(t, x)$, a.s.
- "Super-parabolic:" if $\exists \delta>0, A-B B^{T} \geq \delta I$, a.e. (t, x), \mathbb{P}-a.s.
- "Degenerate Parabolic:" if it is "Parabolic" \oplus $" \exists G \subseteq[0, T] \times \mathbb{R}^{n},|G|>0$, such that $\operatorname{det}\left[A-B B^{T}\right]=0$, $\forall(t, x) \in G$, a.s."
- satisfies the "Symmetric Condition:" if

$$
\left[B\left(\partial_{x_{i}} B^{T}\right)\right]^{T}=B\left(\partial_{x_{i}} B^{T}\right), \text { for a.e. }(t, x), \mathbb{P} \text {-a.s., } 1 \leq i \leq n
$$

Assumptions (H) ${ }_{m}$:

For fixed x, A, B, a, c, h and f are predictable; and g is
\mathscr{F}_{T}-measurable. For fixed (t, ω), they are differentiable in x up to order m, and all the partial derivatives are bounded uniformly in (t, ω), by a constant $K_{m}>0$.

Definitions of Solutions

Let (u, q) be a pair of random fields satisfying (80) $\forall t$, a.s.

- (u, q) is called an adapted classical solution of (80) if

$$
\left\{\begin{array}{l}
u \in C_{\mathscr{F}}\left([0, T] ; L^{2}\left(\Omega ; C^{2}\left(\overline{B_{R}}\right)\right)\right), \\
q \in L_{\mathscr{F}}^{2}\left(0, T ; C^{1}\left(\overline{B_{R}} ; \mathbb{R}^{d}\right)\right),
\end{array} \forall R>0\right.
$$

- (u, q) is called an adapted strong solution of (80) if

$$
\begin{cases}u \in C_{\mathscr{F}}\left([0, T] ; L^{2}\left(\Omega ; H^{2}\left(B_{R}\right)\right)\right), \\ q \in L_{\mathscr{F}}^{2}\left(0, T ; H^{1}\left(B_{R} ; \mathbb{R}^{d}\right)\right), & \forall R>0,\end{cases}
$$

- (u, q) is called an adapted weak solution of (80) if

$$
\left\{\begin{array}{l}
u \in C_{\mathscr{F}}\left([0, T] ; L^{2}\left(\Omega ; H^{1}\left(B_{R}\right)\right)\right), \quad \forall R>0, \\
q \in L_{\mathscr{F}}^{2}\left(0, T ; L^{2}\left(B_{R} ; \mathbb{R}^{d}\right)\right),
\end{array}\right.
$$

such that for all $\varphi \in C_{0}^{\infty}\left(\mathbb{R}^{n}\right)$ and all $t \in[0, T]$, it holds that $\langle u(t, \cdot), \varphi\rangle-\langle g, \varphi\rangle=\int_{t}^{T}\left\{-\frac{1}{2}\langle A \nabla u, \nabla \varphi\rangle+\langle a \nabla u+c u, \varphi\rangle\right.$
$\left.-\langle B q, \nabla \varphi\rangle+\langle(h, q), \varphi\rangle+\langle f, \varphi\rangle\} d s-\int_{t}^{T}\langle q, \varphi\rangle d W_{s}\right\rangle$.

Main Results

Denote

- $m \geq 0$ - integer, $\alpha=\left(\alpha_{1}, \alpha_{2}, \cdots, \alpha_{n}\right)$ - multi-index,
- $|\alpha|=\alpha_{1}+\alpha_{2}+\cdots+\alpha_{n}, \partial^{\alpha} \triangleq \partial_{x_{1}}^{\alpha_{1}} \partial_{x_{2}}^{\alpha_{2}} \cdots \partial_{x_{n}}^{\alpha_{n}}$
- If $\beta=\left(\beta_{1}, \beta_{2}, \cdots, \beta_{n}\right)$ is another multi-index, then

$$
\begin{aligned}
& \beta \leq \alpha \Longleftrightarrow \beta_{i} \leq \alpha_{i} \forall 1 \leq i \leq n \\
& \beta<\alpha \Longleftrightarrow \beta \leq \alpha, \text { and }|\beta|<|\alpha| .
\end{aligned}
$$

Also, for given (u, q), denote

$$
\begin{aligned}
F(t, x ; u, q, m) \triangleq & \sum_{|\alpha| \leq m}\left\langle\left(A-B B^{T}\right) \nabla\left(\partial^{\alpha} u\right), \nabla\left(\partial^{\alpha} u\right)\right\rangle \\
& +\sum_{|\alpha| \leq m}\left|\partial^{\alpha} q+B^{T} \nabla\left(\partial^{\alpha} u\right)-h \partial^{\alpha} u\right|^{2} \geq 0
\end{aligned}
$$

Main Results

Theorem

Suppose that $A(t, x)=A(t)$, and $(H)_{m}$ holds for some $m \geq 1$. Then

- BSPDE (80) has a unique adapted weak solution (u, q).
- the following estimate holds:

$$
\begin{aligned}
& \max _{t \in[0, T]} \mathbb{E}\|u(t, \cdot)\|_{H^{m}}^{2}+\mathbb{E} \int_{0}^{T}\|q(t, \cdot)\|_{H^{m-1}}^{2} d t \\
& \quad+\mathbb{E} \int_{[0, T] \times \mathbb{R}^{d}} F(t, x ; u, q, m) d x d t \\
& \quad \leq C\left\{\|f\|_{L^{2}\left(0, T ; H^{m}\right)}^{2}+\|g\|_{L_{\mathscr{F}_{T}}^{2}\left(\Omega ; H^{m}\right)}^{2}\right\},
\end{aligned}
$$

where $C>0$ depends only on m, T and K_{m}.

Main Results

Theorem

Assume Parabolic and symmetric conditions; and that $(H)_{m}$ holds for some $m \geq 1, f \in L_{\mathscr{F}}^{2}\left(0, T ; H^{m}\left(\mathbb{R}^{n}\right)\right), g \in L_{\mathscr{F}_{T}}^{2}\left(\Omega ; H^{m}\left(\mathbb{R}^{n}\right)\right)$.
Then BSPDE (80) admits a unique weak solution (u, q), s.t.

$$
\begin{gathered}
\max _{t \in[0, T]} \mathbb{E}\|u(t, \cdot)\|_{H^{m}}^{2}+\|q\|_{L^{2}\left([0, T] \times \Omega ; H^{m-1}\right)}^{2}+\|F\|_{L^{1}\left([0, T] \times \mathbb{R}^{n} \times \Omega\right)} \\
\leq C\left\{\|f\|_{L_{\mathscr{F}}^{2}\left(0, T ; H^{m}\right)}^{2}+\|g\|_{L_{\mathscr{F}_{T}}^{2}\left(\Omega ; H^{m}\right)}^{2}\right\},
\end{gathered}
$$

where the constant $C>0$ only depends on m, T and K_{m}, and

$$
\begin{aligned}
F=F(t, x ; u, q, m)= & \sum_{|\alpha| \leq m}\left\{\left\langle\left(A-B B^{T}\right) \nabla\left(\partial^{\alpha} u\right), \nabla\left(\partial^{\alpha} u\right)\right\rangle\right. \\
& \left.+\left|B^{T}\left[\nabla\left(\partial^{\alpha} u\right)\right]+\partial^{\alpha} q\right|^{2}\right\}
\end{aligned}
$$

Main Ideas

- Take an orthonormal basis $\left\{\varphi_{k}\right\}_{k \geq 1} \subset C_{0}^{\infty}\left(\mathbb{R}^{n}\right)$ for the space $H^{m} \equiv H^{m}\left(\mathbb{R}^{n}\right)$, whose inner product is denoted by

$$
(\varphi, \psi)_{m} \equiv \int_{\mathbb{R}^{n}} \sum_{|\alpha| \leq m}\left(\partial^{\alpha} \varphi\right)\left(\partial^{\alpha} \psi\right) d x, \quad \forall \varphi, \psi \in H^{m}
$$

- Consider the following linear BSDE (not BSPDE):

$$
\left\{\begin{aligned}
d u^{k j}(t)= & \left\{-\sum_{i=1}^{k}\left[\left(\mathscr{L} \varphi_{i}, \varphi_{j}\right)_{m} u^{k i}(t)-\left\langle\left(\mathscr{M} \varphi_{i}, \varphi_{j}\right)_{m}, q^{k i}(t)\right\rangle\right]\right. \\
& \left.-\left(f, \varphi_{j}\right)_{m}\right\} d t+\left\langle q^{k j}(t), d W(t)\right\rangle, \\
u^{k j}(T)= & \left(g, \varphi_{j}\right)_{m}, \quad 1 \leq j \leq k .
\end{aligned}\right.
$$

- Define

$$
\left\{\begin{array}{l}
u^{k}(t, x, \omega)=\sum_{j=1}^{k} u^{k j}(t, \omega) \varphi_{j}(x), \\
q^{k}(t, x, \omega)=\sum_{j=1}^{k} q^{k j}(t, \omega) \varphi_{j}(x),
\end{array}\right.
$$

Then $u^{k}(t, \cdot, \omega) \in C_{0}^{\infty}\left(\mathbb{R}^{n}\right), q^{k}(t, \cdot, \omega) \in C_{0}^{\infty}\left(\mathbb{R}^{n} ; \mathbb{R}^{d}\right)$.

Main Ideas

- Prove the a priori estimates hold for $\left(u^{k}, q^{k}\right)$'s, and then conclude that they are bounded in the space of $L^{\infty} \times L^{2}$
- Hence

$$
\begin{cases}u^{k} \rightarrow u, & \text { weak* in } L_{\mathbb{F}}^{\infty}\left(0, T ; L^{2}\left(\Omega ; H^{\ell}\right)\right), \quad 0 \leq \ell \leq m, \\ q^{k} \rightarrow q, & \text { weakly in } L_{\mathscr{F}}^{2}\left(0, T ; H^{\ell}\right)^{d}, \quad 0 \leq \ell \leq m-1,\end{cases}
$$

and for any $|\alpha| \leq m$,

$$
\left\{\begin{array}{c}
\left(A-B B^{T}\right)^{1 / 2} D\left(\partial^{\alpha} u^{k}\right) \rightarrow\left(A-B B^{T}\right)^{1 / 2} D\left(\partial^{\alpha} u\right) \\
B^{T}\left[D\left(\partial^{\alpha} u^{k}\right)\right]+\partial^{\alpha} q^{k} \rightarrow B^{T}\left[D\left(\partial^{\alpha} u\right)\right]+\partial^{\alpha} q \\
\text { weakly in } L_{\mathbb{F}}^{2}\left(0, T ; H^{0}\right)
\end{array}\right.
$$

- Taking limits to show that (u, q) satisfies the estimates, with constant $C>0$ depending only on T, m and K_{m}.
- Argue that the convergence is strong and (u, q) is a weak solution.

Some Remarks

- The "Symmetry Condition" holds in the following cases:
- B is symmetric (in this case, it is necessary that $n=d$);
- $d=n=1$ (B is a scalar);
- B is independent of x;
- $B(t, x)=\varphi(t, x) B_{0}(t)$, where φ is a scalar random field.
- In Theorem 2, if the symmetric condition on B is replaced by either one of the following conditions: for some $\varepsilon_{0}>0$,
(i) $A-B B^{T} \geq \varepsilon_{0} B B^{T} \geq 0$,
(ii) $A-B B^{T} \geq \varepsilon_{0} \sum_{|\alpha|=1}\left(\partial^{\alpha} B\right)\left(\partial^{\alpha} B^{T}\right) \geq 0$,

Then the conclusion of Theorem 2 remains true. Furthermore, if (i) holds, the function F in estimate (4) can be improved to

$$
F(t, x ; u, \boldsymbol{q}, m)=\sum_{|\alpha| \leq m}\left\langle A \nabla\left(\partial^{\alpha} u\right), \nabla\left(\partial^{\alpha} u\right)\right\rangle
$$

Some Direct Consequences

- $m \geq 2 \Longrightarrow$ "weak solution" becomes "strong solution";
- $m>2+n / 2 \Longrightarrow$ "strong solution" becomes "classical sol.";
- "superparabolic condition" \Longrightarrow "

$$
\begin{aligned}
& \max _{t \in[0, T]} \mathbb{E}\|u(t, \cdot)\|_{H^{m}}^{2}+\mathbb{E} \int_{0}^{T}\left\{\|u(t, \cdot)\|_{H^{m+1}}^{2}+\|q(t, \cdot)\|_{H^{m}}^{2}\right\} d t \\
& \quad \leq C\left\{\|f\|_{L^{2}\left([0, T] \times \Omega ; H^{m-1}\right)}^{2}+\|g\|_{L^{2}\left(\Omega ; H^{m}\right)}^{2}\right\} .
\end{aligned}
$$

- "Coefficients are all deterministic" $\Longrightarrow q=0$ and u satisfies

$$
\left\{\begin{array}{l}
u_{t}=-\mathscr{L} u-f, \quad(t, x) \in[0, T] \times \mathbb{R}^{n} \\
\left.u\right|_{t=T}=g
\end{array}\right.
$$

Comparison Theorems

For given $\lambda \geq 0$ and $m \geq 1$, we say that the BSPDE $\{\mathscr{L}, \mathscr{M}, f, g, \lambda, m\}$ is regular if the following conditions are satisfied:

- Parabolicity condition (2) holds;
- $(\mathrm{H})_{m}$ holds;
- the "Symmetry Condition" holds for B,
- for $\varphi_{\lambda}(x) \triangleq e^{-\lambda\langle x\rangle}=e^{-\lambda \sqrt{1+|x|^{2}}}$, it holds that

$$
\varphi_{\lambda} \cdot f \in L_{\mathscr{F}}^{2}\left(0, t ; H^{m}\left(\mathbb{R}^{n}\right)\right), \quad \varphi_{\lambda} \cdot g \in L_{\mathscr{F}_{T}}^{2}\left(\Omega ; H^{m}\left(\mathbb{R}^{n}\right)\right)
$$

Since a regular BSPDE $\{\mathscr{L}, \mathscr{M}, f, g, \lambda, m\}$ must have at least a unique adapted weak solution, we denote it by (u, q). If $\bar{A}, \bar{B}, \bar{a}$, \bar{h}, \bar{c} is another set of coefficients that determines the operators $\overline{\mathscr{L}}$ and $\overline{\mathscr{M}}$, we denote the corresponding adapted solution of BSPDE $\{\overline{\mathscr{L}}, \overline{\mathscr{M}}, \bar{f}, \bar{g}, \lambda, m\}$ by (\bar{u}, \bar{q}).

Comparison Theorems

Theorem

Assume that for some $\lambda>0$ and $m \geq 2$, the BSPDEs $\{\mathscr{L}, \mathscr{M}, f, g, \lambda, m\}$ and $\{\overline{\mathscr{L}}, \overline{\mathscr{M}}, \bar{f}, \bar{g}, \lambda, m\}$ are both regular. Let (u, q) and (\bar{u}, \bar{q}) be the corresponding adapted strong solutions, respectively. Then for some $\mu>0$,

$$
\begin{aligned}
& \mathbb{E} \int_{\mathbb{R}^{n}} \varphi_{\lambda}(x)\left|[u(t, x)-\bar{u}(t, x)]^{-}\right|^{2} d x \\
\leq & e^{\mu(T-t)} \mathbb{E} \int_{\mathbb{R}^{n}} \varphi_{\lambda}(x)\left|[g(x)-\bar{g}(x)]^{-}\right|^{2} d x \\
& +E \int_{t}^{T} e^{\mu(s-t)} \int_{\mathbb{R}^{n}} \varphi_{\lambda}(x) \mid[(\mathscr{L}-\overline{\mathscr{L}}) \bar{u}(s, x)+(\mathscr{M}-\overline{\mathscr{M}}) \bar{q}(s, x) \\
& +f(s, x)-\bar{f}(s, x)]\left.^{-}\right|^{2} d x d s, \quad \forall t \in[0, T] .
\end{aligned}
$$

Direct Consequences.

- " $g \geq \bar{g} " \oplus$ " $(\mathscr{L}-\overline{\mathscr{L}}) \bar{u}+(\mathscr{M}-\overline{\mathscr{M}}) \bar{q}+f-\bar{f} \geq 0 "$ $\Longrightarrow u \geq \bar{u}$.
- " $\mathscr{L}=\overline{\mathscr{L}}, \mathscr{M}=\overline{\mathscr{M}}, g \geq \bar{g}, f \geq \bar{f} " \Longrightarrow u \geq \bar{u}$.
- " $g \geq 0, f \geq 0 " \Longrightarrow u \geq 0$.
- " $\bar{A}, \bar{B}, \bar{a}, \bar{h}$ and \bar{c} are independent of x " \oplus " \bar{f} and \bar{g} are convex in $x^{\prime \prime} \Longrightarrow \bar{u}$ is convex in x.
- " $\bar{A}, \bar{B}, \bar{a}, \bar{h}, \bar{c}, \bar{f}, \bar{g}$ are all deterministic" \oplus " \bar{u} convex in x " \oplus " $\mathscr{M}=\overline{\mathscr{M}}^{\prime}$ "
$\oplus \quad " A(t, x)=\bar{A}(t)+A_{0}(t, x), c(t, x)=\bar{c}(t)+c_{0}(t, x)$, $f(t, x)=\bar{f}(t, x)+f_{0}(t, x), g(x)=\bar{g}(x)+g_{0}(x) "$
\oplus " $\bar{f} \geq 0, \bar{g} \geq 0, A_{0} \geq 0, c_{0} \geq 0, f_{0} \geq 0, g_{0} \geq 0 "$
$\Longrightarrow u \geq \bar{u}$, where \bar{u} satisfies the PDE

$$
\left\{\begin{array}{l}
\bar{u}_{t}=-\overline{\mathscr{L}} u-\bar{f}, \quad(t, x) \in[0, T] \times \mathbb{R}^{n}, \\
\left.\bar{u}\right|_{t=T}=\bar{g} .
\end{array}\right.
$$

BSPDEs in Stochastic Evolution Equation Form

One can also consider a BSPDE as a BSDE in infinite dimensional space. For example, consider

$$
\begin{equation*}
d Y_{t}=-B Y_{t} d t-\psi\left(t, X_{t}, Y_{t}, Z_{t}\right) d t+Z_{t} d W_{t}, \quad Y_{t}=g\left(X_{T}\right) \tag{81}
\end{equation*}
$$

where

- W is a cylindrical Wiener process in a Hilbert space \mathscr{W},
- B is the infinitesimal generator of a strongly continuous dissipative compact semigroup $S(t)=e^{B t}$ in a Hilbert space \mathscr{K}, and
- X is a Markov process with infinite dimensional state space \mathscr{H}. For example, X could be the solution to the stochastic evolution equation:

$$
\begin{equation*}
d X_{t}=A X_{t} d t+F\left(t, X_{t}\right) d t+G\left(t, X_{t}\right) d W_{t}, \quad X_{0}=x \tag{82}
\end{equation*}
$$

BSPDEs in Stochastic Evolution Equation Form

Note:

There are differences between the BSPDE studied before and the BSDE in infinite dimensional spaces!

Existing Results:

- Hu-Peng (1991) - Semilinear Backward SEEs
- Pardoux-Rascanu (1999) - Backward stochastic Variational Inequalities
- Fuhrman-Tessitore (2002) - Nonlinear Kolmogorov equations in infinite dimensional spaces
- Confortola (2006) — Dissipative BSDEs in infinite dimensional spaces
- Gurtteris - FBSDEs in infinite dimensional spaces
- Hong-Ma-Zhang - FBSPDEs...

8. BSPDEs vs. FBSDEs

Backward Doubly SDE (BDSDE)

The non-linear Feynman-Kac formula was extended to backward SPDEs via the so-called BDSDE, first by Pardoux-Peng ('95).

Consider the following new probabilistic set-up:

- $\left(\Omega^{\prime}, \mathscr{F}^{\prime}, \mathbb{P}^{\prime}\right)$ - another complete probability space;
- B - a (k-dim) Brownian motion;
- $\mathscr{F}_{t, T}^{B} \triangleq \sigma\left\{B_{s}-B_{T}, t \leq s \leq T\right\} \vee \mathscr{N}^{\prime}$, where \mathscr{N}^{\prime} denotes all
\mathbb{P}^{\prime}-null sets in \mathscr{F}^{\prime}. Denote $\mathbb{F}_{T}^{B} \triangleq\left\{\mathscr{F}_{t, T}^{B}\right\}_{0 \leq t \leq T}$.
- $\bar{\Omega}=\Omega \times \Omega^{\prime} ; \quad \overline{\mathscr{F}}=\mathscr{F} \otimes \mathscr{F}^{\prime} ; \quad \overline{\mathbb{P}}=\mathbb{P} \times \mathbb{P}^{\prime} ;$
- $\overline{\mathscr{F}}_{t}=\mathscr{F}_{t}^{W} \otimes \mathscr{F}_{t, T}^{B}$, for $0 \leq t \leq T$.

Backward Doubly SDE (BDSDE)

The non-linear Feynman-Kac formula was extended to backward SPDEs via the so-called BDSDE, first by Pardoux-Peng ('95).

Consider the following new probabilistic set-up:

- $\left(\Omega^{\prime}, \mathscr{F}^{\prime}, \mathbb{P}^{\prime}\right)$ - another complete probability space;
- $B-$ a (k-dim) Brownian motion;
- $\mathscr{F}_{t, T}^{B} \triangleq \sigma\left\{B_{s}-B_{T}, t \leq s \leq T\right\} \vee \mathscr{N}^{\prime}$, where \mathscr{N}^{\prime} denotes all \mathbb{P}^{\prime}-null sets in \mathscr{F}^{\prime}. Denote $\mathbb{F}_{T}^{B} \triangleq\left\{\mathscr{F}_{t, T}^{B}\right\}_{0 \leq t \leq T}$.
- $\bar{\Omega}=\Omega \times \Omega^{\prime} ; \quad \overline{\mathscr{F}}=\mathscr{F} \otimes \mathscr{F}^{\prime} ; \quad \overline{\mathbb{P}}=\mathbb{P} \times \mathbb{P}^{\prime} ;$
- $\overline{\mathscr{F}}_{t}=\mathscr{F}_{t}^{W} \otimes \mathscr{F}_{t, T}^{B}$, for $0 \leq t \leq T$.

Note:

$\overline{\mathbb{F}} \triangleq\left\{\overline{\mathscr{F}}_{t}\right\}_{0 \leq t \leq T}$ is neither increasing nor decreasing, therefore it is NOT a filtration!

Backward Doubly SDE (BDSDE)

- R.v. $\xi(\omega), \omega \in \Omega$ or $\eta\left(\omega^{\prime}\right), \omega^{\prime} \in \Omega^{\prime}$ is viewed as r.v. in $\bar{\Omega}$ by

$$
\xi(\bar{\omega})=\xi(\omega) ; \quad \eta(\bar{\omega})=\eta\left(\omega^{\prime}\right), \quad \bar{\omega} \triangleq\left(\omega, \omega^{\prime}\right) .
$$

- Let $\mathscr{M}^{2}\left(\mathbb{F},[0, T] ; \mathbb{R}^{n}\right)$ be the set of n-dim measurable processes $h=\left\{h_{t}, t \in[0, T]\right\}$ satisfying

$$
\bar{E}\left\{\int_{0}^{T}\left|h_{t}\right|^{2} d t\right\}<\infty ; \text { and } h_{t} \in \overline{\mathscr{F}}_{t} \text {, for a.e. } t \in[0, T] \text {. }
$$

- For $H \in \mathscr{M}^{2}\left(\overline{\mathbb{F}},[0, T] ; \mathbb{R}^{n}\right)$ and $j=1, \cdots, k$, we denote $\int_{s}^{t} H_{r} \downarrow d B_{r}^{j}$ to be the backward stoch. integral against B^{j}.

Note:

The "backward integral" can be understood as a Skorohod integral. But if H is \mathbb{F}^{B}-adapted, then it is a "time-reversed" standard Itô integral from t to s, adapted to \mathbb{F}^{B} !

Backward Doubly SDE (BDSDE)

Consider now the following FBSDE: for $(t, x) \in[0, T] \times \mathbb{R}^{n}$, and $s \in[t, T]$,

$$
\begin{align*}
X_{s}^{t}(x)= & x+\int_{t}^{s} b\left(X_{r}^{t}(x)\right) d r+\int_{t}^{s} \sigma\left(X_{r}^{t}(x)\right) d W_{r} \tag{83}\\
Y_{s}^{t}(x)= & u_{0}\left(X_{T}^{t}(x)\right)+\int_{s}^{T} f\left(r, X_{r}^{t}(x), Y_{r}^{t}(x), Z_{r}^{t}(x)\right) d r \\
& +\int_{s}^{T}\left\langle g\left(r, X_{r}^{t}(x), Y_{r}^{t}(x), Z_{r}^{t}(x)\right), \downarrow d B_{r}\right\rangle \tag{84}\\
& -\int_{s}^{T}\left\langle Z_{r}^{t}(x), d W_{r}\right\rangle
\end{align*}
$$

where u_{0} is a deterministic function. This is the so-called backward doubly SDE proposed by Pardoux-Peng in 1995.

Well-posedness of BDSDE

Theorem (Pardoux-Peng)

Under the standard assumptions on the coefficients, for each $(t, x) \in[0, T] \times \mathbb{R}^{n}$ the BDSDE (83) has a unique solution $\left(X^{t}(x), Y^{t}(x), Z^{t}(x)\right)$ such that

- $\exists \alpha \in\left(0, \frac{1}{2}\right), \forall t>0,(s, x) \mapsto X_{s}^{t}(x)$ is locally Hölder- $C^{\alpha, \alpha / 2}$;
- $\forall q \geq 2, \exists M_{q}>0$, s.t. for $t \in[0, T]$ and $x, x^{\prime} \in \mathbb{R}^{n}$,

$$
\begin{aligned}
& \overline{\mathbb{E}}\left\{\sup _{t \leq r \leq s}\left|X_{r}^{t}(x)-x\right|^{q}\right\} \leq M_{q}(s-t)\left(1+|x|^{q}\right) \\
& \overline{\mathbb{E}}\left\{\left[\sup _{t \leq s \leq T}\left|Y_{s}^{t}(x)\right|^{2}+\int_{t}^{T}\left|Z_{s}^{t}(x)\right|^{2} d s\right]^{q / 2}\right\} \leq M_{q}\left(1+|x|^{q}\right) \\
& \overline{\mathbb{E}}\left\{\sup _{t \leq r \leq s}\left|\left(X_{r}^{t}(x)-X_{r}^{t}\left(x^{\prime}\right)\right)-\left(x-x^{\prime}\right)\right|^{q}\right\} \leq M_{q}(s-t)\left(\left|x-x^{\prime}\right|^{q}\right)
\end{aligned}
$$

$$
\text { - } Y_{s}^{t}(x)=Y_{s}^{r}\left(X_{r}^{t}(x)\right), Z_{s}^{t}(x)=Z_{s}^{r}\left(X_{r}^{t}(x)\right) \text {, a.e. } s \in[0, r] \text {, a.s.; }
$$

BDSDEs vs. BSPDEs

We note that, unlike the single BSDE case, if we define

$$
u(t, x) \triangleq Y_{t}^{t}(x), \quad(t, x) \in[0, T] \times \mathbb{R}^{n}
$$

then by the Blumenthal $0-1$ law, this is a random field on the probability space $\left(\Omega^{\prime}, \mathscr{F}^{\prime}, \mathbb{P}^{\prime}\right)$, and for each $x \in \mathbb{R}^{n}$, the mapping $t \mapsto u(t, x)$ is \mathscr{F}_{t}^{B}-measurable. Namely, with a time-reversal, this is a progressively measurable random field w.r.t. the filtration \mathbb{F}^{B}.

BDSDEs vs. BSPDEs

We note that, unlike the single BSDE case, if we define

$$
u(t, x) \triangleq Y_{t}^{t}(x), \quad(t, x) \in[0, T] \times \mathbb{R}^{n}
$$

then by the Blumenthal $0-1$ law, this is a random field on the probability space $\left(\Omega^{\prime}, \mathscr{F}^{\prime}, \mathbb{P}^{\prime}\right)$, and for each $x \in \mathbb{R}^{n}$, the mapping $t \mapsto u(t, x)$ is \mathscr{F}_{t}^{B}-measurable. Namely, with a time-reversal, this is a progressively measurable random field w.r.t. the filtration \mathbb{F}^{B}.

With the help of Malliavin Calculus, it was first argued in Pardoux-Peng ('94) that, if the coefficients are smooth enough, then the sol. $\left(X^{t}(x), Y^{t}(x), Z^{t}(x)\right)$ has the following regularity:

- $\sup _{t \leq s \leq T}\left\{\left|X_{s}^{t}(x)\right|+\left|\nabla_{x} X_{s}^{t}(x)\right|+\left|D_{x x}^{2} X_{s}^{t}(x)\right|\right\} \in \cap_{p \geq 1} L^{p}\left(\Omega^{\prime}\right)$
- $(s, t, x) \mapsto Y_{s}^{t}(x)$ belongs to $C^{0,0,2}\left([0, T]^{2} \times \mathbb{R}^{n}\right)$;
- $(s, t, x) \mapsto Z_{s}^{t}(x)$ belongs to $C\left([0, T]^{2} \times \mathbb{R}^{n}\right)$, and

$$
Z_{s}^{t}(x)=\nabla Y_{s}^{t}(x)\left(\nabla X_{s}^{t}(x)\right)^{-1} \sigma\left(X_{s}^{t}(x)\right) \Longrightarrow Z_{t}^{t}(x)=u_{x}(t, x) \sigma(x)
$$

BDSDEs vs. BSPDEs

Theorem (Pardoux-Peng, '94)

Assume that the coefficients of BDSDE (83) are smooth, and let $\left(X^{t}(x), Y^{t}(x), Z^{t}(x)\right)$ be the unique solution to (83). Then $u(t, x) \triangleq Y_{t}^{t}(x)$ is the unique classical solution to the (backward) SPDE on the space $\left(\Omega^{\prime}, \mathscr{F}^{\prime}, \mathbb{P}^{\prime} ; \mathbb{F}^{B}\right)$:

$$
\begin{align*}
d u(t, x)= & -\left\{\mathscr{A} u(t, x)+f\left(t, x, u(t, x), \sigma^{*}(x) \nabla u(t, x)\right)\right\} d t \\
& +\left\langle g\left(t, x, u(t, x), \sigma^{*}(x) \nabla u(t, x)\right), \downarrow d B_{t}\right\rangle \\
u(T, x)= & u_{0}(x) \tag{85}
\end{align*}
$$

where \mathscr{A} is the second order differential operator:

$$
\mathscr{A}=\frac{1}{2} \sum_{i, j=1}^{n} \sum_{\ell=1}^{k} \sigma_{i \ell}(x) \sigma_{j \ell}(x) \partial_{x_{i} x_{j}}^{2}+\sum_{i=1}^{n} b_{i}(x) \partial_{x_{i}} .
$$

BDSDEs vs. BSPDEs

Remark

A more interesting connection between the BDSDEs and SPDEs is when the coefficients are NOT smooth. In light of the non-linear Feynman-Kac formula, one would expect that in such a case the random field $u(t, x)=Y_{t}^{t}(x)$ should give the "Stochastic Viscosity Solution" to the BSPDE (85). This was done in Buckdahn-Ma (2001-2002).

BSPDEs and FBSDEs

Consider the following FBSDE with random coefficients: for $t \in[0, T]$,

$$
\left\{\begin{array}{l}
d X_{t}=b\left(t, X_{t}\right) d t+\sigma\left(t, X_{t}\right) d W_{t} \tag{86}\\
d Y_{t}=-\left[\hat{b}_{1}\left(t, X_{t}\right) Y_{t}+\widehat{b}_{2}\left(t, X_{t}\right) Z_{t}\right] d t-Z_{t} d W_{t} \\
X_{0}=x, \quad Y_{T}=g\left(X_{T}\right)
\end{array}\right.
$$

where $b, \hat{b}_{1}, \hat{b}_{2}$, and σ are all random fields.

BSPDEs and FBSDEs

Consider the following FBSDE with random coefficients: for $t \in[0, T]$,

$$
\left\{\begin{array}{l}
d X_{t}=b\left(t, X_{t}\right) d t+\sigma\left(t, X_{t}\right) d W_{t} \tag{86}\\
d Y_{t}=-\left[\hat{b}_{1}\left(t, X_{t}\right) Y_{t}+\widehat{b}_{2}\left(t, X_{t}\right) Z_{t}\right] d t-Z_{t} d W_{t} \\
X_{0}=x, \quad Y_{T}=g\left(X_{T}\right)
\end{array}\right.
$$

where $b, \hat{b}_{1}, \hat{b}_{2}$, and σ are all random fields.

Objective

- Find square-integrable processes (X, Y, Z) such that they are adapted to $\left\{\mathscr{F}_{t}\right\}$, and satisfies (86) almost surely.
- Determine, if possible, the relations among X, Y, and Z.

BSPDEs and FBSDEs

Assume sufficient regularity of the coefficients $b, \sigma, \widehat{b}_{1}, \widehat{b}_{2}$, and g. In light of "Four Step Scheme" we first solve BSPDE (1) with

$$
\begin{aligned}
A(t, x) & =\sigma^{2}(t, x), \quad a(t, x)=b(t, x)+\sigma(t, x) \widehat{b}_{2}(t, x) \\
c(t, x) & =\widehat{b}_{1}(t, x), \quad B(t, x)=\sigma(t, x), \quad h(t, x)=-\widehat{b}_{2}(t, x)
\end{aligned}
$$

and denote its adapted (classical) solution by (u, q). Then, let X be the solution to the forward SDE in (86), and define

$$
Y_{t}=u\left(t, X_{t}, \cdot\right) ; \quad Z_{t}=q\left(t, X_{t}, \cdot\right)+\sigma\left(t, X_{t}, \cdot\right) \nabla u\left(t, X_{t}, \cdot\right),
$$

Using Itô-Ventzell Formula, one shows that (X, Y, Z) solves (86)!

BSPDEs and FBSDEs

Assume sufficient regularity of the coefficients $b, \sigma, \widehat{b}_{1}, \widehat{b}_{2}$, and g. In light of "Four Step Scheme" we first solve BSPDE (1) with

$$
\begin{aligned}
A(t, x) & =\sigma^{2}(t, x), \quad a(t, x)=b(t, x)+\sigma(t, x) \widehat{b}_{2}(t, x) \\
c(t, x) & =\widehat{b}_{1}(t, x), \quad B(t, x)=\sigma(t, x), \quad h(t, x)=-\widehat{b}_{2}(t, x)
\end{aligned}
$$

and denote its adapted (classical) solution by (u, q). Then, let X be the solution to the forward SDE in (86), and define

$$
Y_{t}=u\left(t, X_{t}, \cdot\right) ; \quad Z_{t}=q\left(t, X_{t}, \cdot\right)+\sigma\left(t, X_{t}, \cdot\right) \nabla u\left(t, X_{t}, \cdot\right),
$$

Using Itô-Ventzell Formula, one shows that (X, Y, Z) solves (86)!

Note:

In this case $A(t, x)-B B^{T}(t, x)=\sigma \sigma^{T}(t, x)-\sigma \sigma^{T}(t, x) \equiv 0$, and $B(t, x) \neq 0$ (i.e., \mathscr{M} is unbounded)!

BSPDEs and FBSDEs

Recall that

- $D: L^{2}(\Omega) \mapsto L^{2}([0, T] \times \Omega)$ - the Malliavin derivation operator,
- $\mathbb{D}_{1, p}, p \geq 2$ - the set of all $\xi \in L^{2}(\Omega)$ such that

$$
\|\xi\|_{1, p}=\|\xi\|_{L^{p}(\Omega)}+\| \| D \xi\left\|_{L^{2}([0, T])}\right\|_{L^{p}(\Omega)}<\infty
$$

Theorem

Under suitable technical conditions, the solutions (X, Y, Z) to FBSDE and (u, q) to BSPDE satisfy the following relations:

- the process $u\left(\cdot, X_{.}, \cdot\right) \in \mathbb{D}_{1,2}$;
- $D_{t} u\left(t, X_{t}, \cdot\right)=D_{t} Y_{t}=Z_{t}=q\left(t, X_{t}, \cdot\right)+\sigma(t, \cdot) \nabla u\left(t, X_{t}, \cdot\right)$;
- $q\left(t, X_{t}, \cdot\right)=\left[D_{t} u\right]\left(t, X_{t}, \cdot\right), t \in[0, T]$, -a.s., where

$$
\left.\left[D_{t} u\right]\left(t, X_{t}(\omega), \omega\right) \triangleq D_{t} u(t, x, \omega)\right|_{x=X_{t}(\omega)}
$$

Some Remarks

- The theorem regarding BSPDE and FBSDE can be thought of as a Stochastic Feynman-Kac Formula.
- An immediate application in Finance would be the Stochastic Black-Scholes Formula (Ma-Yong, book)
- The Comparison Theorem could be used to prove the Convexity of the European Contingent Claims and the Robustness of Black-Scholes Formula, along the lines of El Karoui-Jeanblanc-Shreve (1999)
- The well-posedness of BSPDEs with similar type (or Stochastic Feynman-Kac formula) was extended to semilinear case (Hu-Ma-Yong, 2004)
- Quasilinear case (or fully coupled FBSDEs) is still not known so far.

General Quasi-linear/Random Coefficient Cases

Consider the following FBSDE with possibly random coefficients:

$$
\left\{\begin{array}{l}
X_{t}=x+\int_{0}^{t} b\left(s, X_{s}, Y_{s}\right) d s+\int_{0}^{t} \sigma\left(s, X_{s}, Y_{s}\right) d W_{s} \tag{87}\\
Y_{t}=g\left(X_{T}\right)+\int_{t}^{T} f\left(s, X_{s}, Y_{s}, Z_{s}\right) d s-\int_{t}^{T} Z_{s} d W_{s}
\end{array}\right.
$$

In the decoupled case, the FBSDE becomes

$$
\left\{\begin{array}{l}
X_{t}=x+\int_{0}^{t} b\left(s, X_{s}\right) d s+\int_{0}^{t} \sigma\left(s, X_{s}\right) d W_{s} \tag{88}\\
Y_{t}=g\left(X_{T}\right)+\int_{t}^{T} f\left(s, X_{s}, Y_{s}, Z_{s}\right) d s-\int_{t}^{T} Z_{s} d W_{s}
\end{array}\right.
$$

General Quasi-linear/Random Coefficient Cases

Consider the following FBSDE with possibly random coefficients:

$$
\left\{\begin{array}{l}
X_{t}=x+\int_{0}^{t} b\left(s, X_{s}, Y_{s}\right) d s+\int_{0}^{t} \sigma\left(s, X_{s}, Y_{s}\right) d W_{s} \tag{87}\\
Y_{t}=g\left(X_{T}\right)+\int_{t}^{T} f\left(s, X_{s}, Y_{s}, Z_{s}\right) d s-\int_{t}^{T} Z_{s} d W_{s}
\end{array}\right.
$$

In the decoupled case, the FBSDE becomes

$$
\left\{\begin{array}{l}
X_{t}=x+\int_{0}^{t} b\left(s, X_{s}\right) d s+\int_{0}^{t} \sigma\left(s, X_{s}\right) d W_{s} \tag{88}\\
Y_{t}=g\left(X_{T}\right)+\int_{t}^{T} f\left(s, X_{s}, Y_{s}, Z_{s}\right) d s-\int_{t}^{T} Z_{s} d W_{s}
\end{array}\right.
$$

Definition

We say that FBSDE (87) is well-posed if it has a unique solution for any initial value (t, x) and $\left|\nabla_{x} \theta\right| \leq C$, where $\theta(t, x)$ is the random field determined by $Y_{t}=\theta\left(t, X_{t}\right)$.

Random Coefficient Cases

Assume the random field θ is smooth and takes the following form:

$$
d \theta(t, x)=\alpha(t, x) d t+\beta(t, x) d W_{t}
$$

Applying Itô-Ventzell formula we get

$$
d \theta\left(t, X_{t}\right)=\left[\alpha+\theta_{x} b+\frac{1}{2} \theta_{x x} \sigma^{2}+\beta_{x} \sigma\right] d t+\left[\beta+\theta_{x} \sigma\right] d W_{t} .
$$

Then formally we should have

$$
\begin{equation*}
Y_{t}=\theta\left(t, X_{t}\right), \quad Z_{t}=\beta\left(t, X_{t}\right)+\theta_{x}\left(t, X_{t}\right) \sigma\left(t, X_{t}, \theta\left(t, X_{t}\right)\right) \tag{89}
\end{equation*}
$$

and

$$
\alpha+\theta_{x} b+\frac{1}{2} \theta_{x x} \sigma^{2}+\beta_{x} \sigma+f\left(\cdot, \theta, \beta+\theta_{x} \sigma(\cdot, \theta)\right)=0
$$

Thus we may consider the following "decoupling" BSPDE

$$
\left\{\begin{array}{l}
d \theta(t, x)=-\left[\frac{1}{2} \theta_{x x} \sigma^{2}+\beta_{x} \sigma+u_{x} b+f\right] d t+\beta d W_{t} \tag{90}\\
\theta(T, x)=g(x)
\end{array}\right.
$$

Corresponding to the well-posedness of the FBSDE, we should have

Definition

We say that θ is a weak solution to (90) if θ_{x} is bounded and there exists β in L^{2} such that, for any "good" function φ on \mathbb{R}, it holds:

$$
\begin{align*}
d \int_{\mathbb{R}} \theta(t, x) \varphi(x) d x= & \int_{\mathbb{R}}\left[\frac{1}{2} \theta_{x}\left(\sigma^{2} \varphi\right)_{x}+\beta(\sigma \varphi)_{x}-\theta_{x} b \varphi+f \varphi\right] d x d t \\
& +\int_{\mathbb{R}} \beta \varphi(x) d x d W_{t} \tag{91}
\end{align*}
$$

A Conjecture

Theorem (Ma-Zhang, 2009)

Assume that b, σ, f, g are uniformly Lipschitz continuous in (x, y, z), and b, σ are bounded. Then
(i) If (90) has a weak solution, then FBSDE (73) has a solution defined by (89).
(ii) FBSDE (73) is wellposed if and only if (90) has a unique weak solution.
(iii) (90) has at most one weak solution.

In particular, if the FBSDE is decoupled, then the corresponding BSPDE (90) has a unique weak solution and (89) holds.

The Decoupled Case

Note that in this case (88) is always wellposed. And if b, σ, f, g are smooth enough, then (90) has a unique classical solution and (89) holds.

Lemma

Assume θ is a classical solution to (90). Then for any good positive φ with $K_{\varphi} \triangleq \sup _{x}\left[\left|\frac{\varphi_{x}(x)}{\varphi(x)}\right|+\left|\frac{\varphi_{x x}(x)}{\varphi(x)}\right|\right]<\infty$, there exists a constant C_{φ} depending only on K_{φ} and the bounds of the coefficients, such that

$$
\begin{aligned}
& \mathbb{E}\left\{\sup _{t} \int_{\mathbb{R}}\left|\theta^{2}(t, x)\right|^{2} \varphi(x) d x+\int_{0}^{T} \int_{\mathbb{R}}\left|\left[\beta+\theta_{x} \sigma\right](t, x)\right|^{2} \varphi(x) d x d t\right\} \\
& \leq C_{\varphi} E\left\{\int_{\mathbb{R}}|g(x)|^{2} \varphi(x) d x+\int_{0}^{T} \int_{\mathbb{R}}|f(t, x, 0,0)|^{2} \varphi(x) d x d t\right\} .
\end{aligned}
$$

Comparison Theorems

Consider the following FBSDEs, with $\Theta^{i}=\left(X^{i}, Y^{i}, Z^{i}\right), i=1,2$:

$$
\left\{\begin{array}{l}
X_{t}^{i}=x+\int_{0}^{t} b\left(s,\left(W^{i}\right)_{s}, \Theta_{s}^{i}\right) d s+\int_{0}^{t} \sigma\left(s,\left(W^{i}\right)_{s}, X_{s}^{i}, Y_{s}^{i}\right) d W_{s}^{i} ; \tag{92}\\
Y_{t}^{i}=g_{1}\left(\left(W^{i}\right)_{T}, X_{T}^{i}\right)+\int_{t}^{T} f_{1}\left(s,\left(W^{i}\right)_{s}, \Theta_{s}^{i}\right) d s-\int_{t}^{T} Z_{s}^{i} d W_{s}^{i} ;
\end{array}\right.
$$

Theorem

Assume that
(i) b, σ, f_{2}, g_{2} are uniformly Lipschitz continuous in (x, y, z);
(ii) $F B S D E(92)-2$ is wellposeded, and $Y_{t}^{2} \triangleq \theta\left(t,\left(W^{2}\right)_{t}, X_{t}^{2}\right)$, where θ is uniformly Lipschitz continuous in x;
(iv) (92)-1 has a weak solution;
(v) $f_{1}\left(t,(\omega)_{t}, \xi\right) \leq f_{2}\left(t,(\omega)_{t}, \xi\right)$ and $g_{1}\left((\omega)_{T}, x\right) \leq g_{2}\left((\omega)_{T}, x\right)$, for any $\omega \in C[0, T]$ and any $\xi=(x, y, z)$.
Then we have $Y_{t}^{1} \leq \theta\left(t,\left(W^{1}\right)_{t}, X_{t}^{1}\right)$. In particular, $Y_{0}^{1} \leq Y_{0}^{2}$.

Fully Nonlinear PDEs and 2BSDEs

Consider the following fully nonlinear parabolic PDE:

$$
\begin{equation*}
u_{t}+H\left(t, x, u, D u, D^{2} u\right)=0, \quad u(T, x)=g(x) \tag{93}
\end{equation*}
$$

Finding numerical method for such a PDE is rather challenging, especially in higher dimensional case.

Fully Nonlinear PDEs and 2BSDEs

Consider the following fully nonlinear parabolic PDE:

$$
\begin{equation*}
u_{t}+H\left(t, x, u, D u, D^{2} u\right)=0, \quad u(T, x)=g(x) \tag{93}
\end{equation*}
$$

Finding numerical method for such a PDE is rather challenging, especially in higher dimensional case.

A Feynman-Kac Formula (Cheridito-Soner-Touzi-Victoir, '06)

- Let $X_{t}=x+W_{t}$, and let u be a (smooth) solution to (93).
- Define $Y_{t}=u\left(t, X_{t}\right), Z_{t}=D u\left(t, X_{t}\right), \Gamma_{t}=D^{2} u\left(t, X_{t}\right)$, $A_{t}=\left[D u_{t}+D^{3} u\right]\left(t, X_{t}\right)$. Then, applying Itô, one has

$$
\begin{align*}
d Y_{t} & =d u\left(t, X_{t}\right)=\left[u_{t}+\frac{1}{2} D^{2} u\right]\left(t, X_{t}\right) d t+D u\left(t, X_{t}\right) d W_{t} \\
d Z_{t} & =\left[D u_{t}+\frac{1}{2} D^{3} u\right]\left(t, X_{t}\right) d t+D^{2} u\left(t, X_{t}\right) d W_{t} \tag{94}\\
& =A_{t} d t+\Gamma_{t} d W_{t} .
\end{align*}
$$

Fully Nonlinear PDEs and 2BSDEs

Note that if we use the Stratonovic integral:

$$
Z_{t} \circ d W_{t}=Z_{t} d W_{t}+\frac{1}{2} d\left\langle Z_{t}, W_{t}\right\rangle=Z_{t} d W_{t}+\frac{1}{2} D^{2} u\left(t, X_{t}\right) d t,
$$

it would be more convenient to write

$$
\frac{1}{2} D^{2} u\left(t, X_{t}\right) d t+Z_{t} d W_{t}=Z_{t} \circ d W_{t}
$$

and thus (94) becomes

$$
\begin{align*}
Y_{t} & =g\left(X_{T}\right)+\int_{t}^{T} H\left(s, X_{s}, u, D u, D^{2} u\right) d s-\int_{t}^{T} Z_{s} \circ d W_{s} \\
d Z_{t} & =A_{t} d t+\Gamma_{t} d W_{t} \tag{95}
\end{align*}
$$

The BSDE (95) is called the Second Order BSDE or simply 2BSDE.

Fully Nonlinear PDEs and 2BSDEs

To this point the 2BSDEs in which $\gamma \mapsto H(t, x, y, z, \gamma)$ is convex have found most applications. In particular when H can be written as the following Fenchel-Legendre transform:

$$
H(t, x, y, z, \gamma)=\sup _{a \leq a \leq \bar{a}}\left\{\frac{1}{2} a^{2} \gamma+f(t, x, y, a)\right\},
$$

the 2 BSDE seem to have the potential of becoming a powerful new tool. The subjects where 2BSDEs seem to be useful include:

- Super-hedging problems under liquidity risk
- G-expectations, G-Martingale Representations, and G-BSDEs
- Dynamic Risks under volatility uncertainty
- Stochastic optimization under volatility uncertainty
- Dual formulation of second order target problems

Fully Nonlinear PDEs and 2BSDEs

To this point the 2BSDEs in which $\gamma \mapsto H(t, x, y, z, \gamma)$ is convex have found most applications. In particular when H can be written as the following Fenchel-Legendre transform:

$$
H(t, x, y, z, \gamma)=\sup _{\underline{a} \leq a \leq \bar{a}}\left\{\frac{1}{2} a^{2} \gamma+f(t, x, y, a)\right\},
$$

the 2BSDE seem to have the potential of becoming a powerful new tool. The subjects where 2BSDEs seem to be useful include:

- Super-hedging problems under liquidity risk
- G-expectations, G-Martingale Representations, and G-BSDEs
- Dynamic Risks under volatility uncertainty
- Stochastic optimization under volatility uncertainty
- Dual formulation of second order target problems
- Ask Touzi for more ...

F．Antonelli，Backward－forward stochastic differential equations，Ann．Appl．Probab．， 3 （1993），no．3，777－793．

Antonelli，F．and Ma，J．（2003），Weak solutions of forward－backward SDE＇s，Stochastic Analysis and Applications， 21，no．3，493－514．
囯 Barrieu，P．and El Karoui，N．（2004），Optimal derivatives design under dynamic risk measures，Mathematics of finance， 13－25，Contemp．Math．，351，Amer．Math．Soc．，Providence， RI， 2004.
囯 Briand，P．and Hu，Y．（2006），BSDE with quadratic growth and unbounded terminal value，Probab．Theory Relat Fields， 136（4），604－618．
囦 Briand，P．and Hu，Y．（2008），Quadratic BSDEs with convex generators and unbounded terminal conditions，Probab．
Theory Relat Fields，141，543－567．

圊 Briand，P．，Lepeltier，J－P．，San Martin，J．（2007），
One－dimensional backward stochastic differential equations whose coefficient is monotonic in y and non－Lipschitz in z ， Bernoulli，13，no．1，80－91．
R Buckdahn，R．；Engelbert，H．－J．A backward stochastic differential equation without strong solution，Theory Probab． Appl． 50 （2006），no．2，284－289．
Ruckdahn，R．；Engelbert，H．－J．On the continuity of weak solutions of backward stochastic differential equations．，Theory Probab．Appl． 52 （2008），no．1，152－160

雷 Buckdahn，R．；Engelbert，H．－J．；Rascanu，A．（2004），On weak solutions of backward stochastic differential equations，Teor． Veroyatn．Primen．，49，no．1，70－108．

图 Coquet，F．，Hu，Y．，Mémin，J．，and Peng，S．（2002）， Filtration－consistent nonlinear expectations and related \equiv

雷 Delarue, F., (2002) On the existence and uniqueness of solutions to FBSDEs in a non-degenerate case, Stochastic Process. Appl., 99, 209-286.
(Relarue, F.; Guatteri, G. (2006), Weak existence and uniqueness for forward-backward SDEs. Stochastic Process. Appl. 116(12), 1712-1742.
(1907) Hamadene, S.; Lepeltier, J.-P.; Matoussi, A., (1997), Double barrier backward SDEs with continuous coefficient, Backward stochastic differential equations (Paris, 1995-1996), 161-175, Pitman Res. Notes Math. Ser., 364. Longman, Harlow.
R Hu, Y. and Ma, J., (2004), Nonlinear Feynman-Kac formula and discrete-functional-type BSDEs with continuous coefficients, Stochastic Process. Appl., 112, no. 1, 23-51.

圊 Hu, Y., Ma, J., Peng, S., and Yao, S. (2008), Representation theorems for quadratic \mathscr{F}-consistent nonlinear expectations, \equiv

References

國 Hu，Y．，Ma，J．，and Yong，J．（2002），On semi－linear degenerate backward stochastic partial differential equations， Probab．Theory Related Fields，123，no．3，381－411．

Hu，Y．and Peng，S．（1995），Solution of forward－backward stochastic differential equations，Prob．Theory and Rel．Fields， v．103，2，273－283．

围 Kazamaki，N．（1994），Continuous exponential martingales and BMO，Lecture Notes in Math，1579，Springer－Verlag，Berlin．
－Kobylanski，M．（2000），Backward stochastic differential equations and partial differential equations with quadratic growth．Ann．Probab．28，no．2，558－602．
國 Kobylanski，M．；Lepeltier，J．P．；Quenez，M．C．；Torres，S． （2002），Reflected BSDE with superlinear quadratic coefficient， Probab．Math．Statist．，22，no．1，Acta Univ．Wratislav．No． 2409，51－83．
(Lepeltier, M. and San Martin, J. (1997), Backward stochastic differential equations with nonLipschitz coefficients, Stat. and Prob. Letters, v.32, 4, 425-430.
E- Lepeltier, J.-P.; San Martin, J. (1998), Existence for BSDE with superlinear-quadratic coefficient, Stochastics Stochastics Rep., 63, no. 3-4, 227-240.

囲 Lepeltier, J-P. and San Martin, J., (2002), On the existence or non-existence of solutions for certain backward stochastic differential equations, Bernoulli, 8, no. 1, 123-137.
R- Ma, J. and Cvitanic, J., (2001), Reflected forward-backward SDEs and obstacle problems with boundary conditions, J. Appl. Math. Stochastic Anal., 14, no. 2, 113-138.

R Ma, J., Protter, P. and Yong, J. (1994), Solving forward-backward stochastic differential equations explicitly - a four step scheme, Probab. Theory Relat. Fieldss, 98, 339-359

References

䍰 Ma，J．and Yong，J．（1995），Solvability of forward－backward SDEs and the nodal set of Hamilton－Jaccobi－Bellman Equations，Chin．Ann．Math，16B 279－298．

围 Ma，J．and Yong，J．，（1997），Adapted solution of a degenerate backward SPDE，with applications，Stochastic Process．Appl．， 70，no．1，59－84．

圊 Ma，J．and Yong，J．（1999），On linear，degenerate backward stochastic partial differential equations，Probab．Theory Related Fields，113，no．2，135－170．
R Ma，J．and Yong，J．（1999），Forward－Backward Stochastic Differential Equations and Their Applications，Lecture Notes in Math．，1702，Springer．
－Ma，J．and Zhang，J．（2002），Representation theorems for backward stochastic differential equations，Ann．Appl． Probab．，12，no．4，1390－1418．

R Ma，J．and Zhang，J．（2002），Path regularity for solutions of backward stochastic differential equations，Probab．Theory Related Fields，122，no．2，163－190．
R Ma，J．and Zhang，J．（2005），Representations and regularities for solutions to BSDEs with reflections，Stochastic Process． Appl．，115，no．4，539－569．

囦 Ma，J．，Zhang，J．，and Zheng，Z．（2008），Weak solutions for forward－backward SDEs－a martingale problem approach． Ann．Probab．36，no．6，2092－2125．
圊 E．Pardoux and S．Peng S．，（1990），Adapted solutions of backward stochastic equations，System and Control Letters， 14，55－61．
围 E．Pardoux and S．Peng，（1992），Backward stochastic differential equations and quasilinear parabolic partial differential equations，Lecture Notes in CIS，Springer，176，

E E. Pardoux and S. Tang, (1999), Forward-backward stochastic differential equations and quasilinear parabolic PDEs, Probab. Theory Related Fields, 114, no. 2, 123-150.
围 S. Peng and Z. Wu, (1999), Fully coupled forward-backward stochastic differential equations and applications to optimal control, SIAM J. Control Optim., 37, no. 3, 825-843.
E. Yong, (1997), Finding adapted solutions of forward-backward stochastic differential equations: method of continuation, Probab. Theory Related Fields, 107, no. 4, 537-572.
䍰 J. Zhang, (2006), The wellposedness of FBSDEs. Discrete Contin. Dyn. Syst. Ser. B, 6, no. 4, 927-940 (electronic).

THANK YOU VERY MUCH!

