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Why BSDEs and FBSDEs?

An Example:

A standard “LQ” stochastic control problem:
dX u

t = (aX u
t + but)dt + dWt , X u

0 = x ;

J(u) =
1

2
E

{∫ T

0
{|X u

t |2 + |ut |2}dt + |X u
T |2

}
,

where W is a standard Brownian motion and F = {FW
t }t≥0 is the

natural filtration generated by W ; u = {ut} is the “control”
process; and J(u) is the “cost functional”.

The problem:

Find u∗ ∈ Uad ⊆ L2
F(Ω× [0,T ]) such that J(u∗) = inf

u∈Uad

J(u).
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A necessary condition (Pontryagin’s Maximum Principle):

Assume u∗ is optimal.
Then ∀ε > 0 and ∀v ∈ Uad , one has J(u∗ + εv) ≥ J(u∗) =⇒

0 ≤ d

dε
J(u∗+εv)

∣∣∣∣
ε=0

= E
{∫ T

0
{X u∗

t ξt + u∗t vt}dt + X u∗
T ξT

}
,

where ξ = d
dεX

u∗+εv
∣∣
ε=0

is the solution to the variational
equation:

dξt = {aξt + bvt}dt, ξ0 = 0. (1)

A Lucky Guess (?):

Assume that η is the solution to the following “adjoint equation”
of (1):

dηt = −(aηt + X u∗
t )dt, ηT = X u∗

T . (2)
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Then, “integration by parts” yields

ξTηT =

∫ T

0
{−ξtX u∗

t + bηtvt}dt∫ T

0
{u∗t vt + bηtvt}dt =

∫ T

0
{X u∗

t ξt + u∗t vt}dt + X u∗
T ξT

E
∫ T

0
{u∗t + bηt}vtdt =

E
{∫ T

0
{X u∗

t ξt + u∗t vt}dt + X u∗
T ξT

}
≥ 0

Since v ∈ L2
F(Ω× [0,T ]) is arbitrary, u∗t = −bηt , ∀t, a.s.

u∗ = −bη should have all the reasons to be an optimal
control except...

A Problem:

u∗ /∈ Uad ! (since it is not adapted!!)
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BSDE to the rescue:

Example {
dYt = 0;
YT = ξ ∈ L2(FT ).

(3)

Same Problem: The unique “solution” Yt ≡ ξ is not adapted!

The Solution:

Define Yt = E{ξ|Ft}, t ∈ [0,T ]. Then Y becomes an
L2-martingale, and by Martingale Representation Theorem (Itô,
1951), there exists Z ∈ L2

F(Ω× [0,T ]) such that

Yt = E{ξ}+

∫ t

0
ZtdWt , t ∈ [0,T ].

=⇒ Yt = ξ −
∫ T

t
ZtdWt , t ∈ [0,T ] — A BSDE! (4)
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Back to the LQ problem:

Consider the modified adjoint equation (as a BSDE):{
dηt = −(aηt + X u∗

t )dt+ZtdWt ,
ηT = X u∗

T .
(5)

The Conclusion

Suppose that one can find a pair of process (η,Z ) that is the
solution to (5). Then define u∗t = −bηt , ∀t, we obtain an optimal
control!

Observation:

The “close-loop” system is then
dX u∗

t = (aX ∗
t − b2ηt)dt + dWt ,

dηt = −(aηt + X u∗
t )dt + ZtdWt ,

X u∗
0 = x ηT = X u∗

T ,
— An FBSDE!
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A Brief History

Bismut (’73) — Linear BSDEs (Maximum Principle)

Pardoux-Peng (’90, ’92) — Nonlinear BSDEs

Antonelli (’93) — FBSDEs (Stochastic Recursive Utility —
Duffie-Epstain (’92))

Ma-Yong/Ma-Protter-Yong (’93,’94) — “Four Step Scheme”

El Karoui-Kapoudjian-Pardoux-Peng-Quenez,
Cvitanic-Karatzas, (’97) — BSDEs with reflections

Ma-Yong (’96-’98) — BSPDEs

Ma-Yong (’99) — Book (LNM 1702)

Other Developments

Lepeltier-San Martin (’97) — BSDEs with cont. coefficients

Kobylanski (’01) — BSDEs with quadratic growth (in Z )

Delarue (’02) — FBSDE with Lipschitz coefficients

Ma-Zhang-Zheng (’08) — Weak solution and “FBMP”

Soner-Touzi-Zhang (09?) — 2BSDEs

... ... ...
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2. BSDEs/FBSDEs in Finance
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Option Pricing

The (Black-Scholes) market model:


dS0

t = S0
t rtdt, S0

0 = s0, (Bond/Money Market)

dS i
t = S i

t

{
bi
tdt +

d∑
j=1

σij
t dW j

t

}
, S i

0 = s i , 1 ≤ i ≤ d , (Stocks)

S0
t , S i

t—prices of bond/(i-th) stocks (per share) at time t

rt—interest rate at time t

{bi
t}d

i=1—appreciation rates at time t

[σij
t ]—volatility matrix at time t

More general form of the underlying asset price:

dSt = St{b(t,St)dt + σ(t,St)dWt}, S0 = s.
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The Wealth Equation:

Denote:

Yt—dollar amount of the total wealth of an investor at time t

πi
t—dollars invested in i-th stock at time t, i = 1, · · · ,N

Ct—cumulated consumption up to time t

Then, the wealth process Y satisfies an SDE: for t ∈ [0,T ],

Yt = y +

∫ t

0
{rsYs + 〈πs , [bs − rs1] 〉}ds +

∫ t

0
〈πs , σsdWs 〉−Ct ,

where 1
4
= (1, · · · , 1).

The Contingent Claims:

Any ξ ∈ FT . In particular, ξ = g(ST ) — Options. E.g.,

ξ = (S1
T − q)+—European call

ξ = (S1
τ − q)+—American call (τ -stopping time)
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European Options (Fixed exercise time T )

Define the “fair price” of an option to be

p = inf{v : ∃(π,C ), such that Y y ,π,C
T ≥ ξ}.

Then (El Karoui-Peng-Quenez, ’96), the price p and the “hedging
strategy” (π,C ) can be determined by:

C ≡ 0, p = Y0 = y , and πt = (σT
t )−1Zt ;

(Y ,Z ) solves the BSDE:

Yt = ξ−
∫ T

t
{rsYs +〈Zs , σ

−1
s [bs− rs1] 〉}ds−

∫ T

t
〈Zs , dWs 〉 .

Fair price for American Option:

p = inf{v : ∃(π,C ), such that Y y ,π,C
τ ≥ g(Sτ ),∀τ}.
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American Options (El Karoui-Kapoudjian-Pardoux-Peng-Quenez,
’97)

For ξ = g(Sτ ), where τ is exercise time (any {Ft}-stopping time).
Then the price, hedging strategy, and the optimal exercise time are
solved as:

p = Y0 = y , C = 0,

(Y ,Z ,K ) solves a BSDE with reflection:

Yt = g(ST )−
∫ T

t
{rsYs + 〈Zs , σ

−1
s [bs − rs1] 〉}ds

−
∫ T
t 〈Zs , dWs 〉+KT − Kt ;

Yt ≥ g(St), ∀t ∈ [0,T ], a.s.;

∫ T

0
(Yt − g(St))dKt = 0.

The optimal exercise time is given by
τ = inf{t > 0 : Yt = g(St)}.
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“Large Investors” Problem

Contrary to the Black-Scholes theory, one may assume that some
investors are “large”.

The price-wealth pair satisfies an FBSDE:



dXt = Xt{b(t,Xt ,Yt ,Zt)dt + σ(t,Xt ,Yt ,Zt)dWt},

dYt = −{rtYt + Zt [b(t,Xt ,Yt ,Zt)− rt1]}dt

−Ztσ(t, · · · )dWt + CT − Ct .

X0 = x , YT = g(XT ).

Hedging without constraint (Cvitanic-Ma, 1996)

Hedging with constraint (Buckdahn-Hu, 1998)

American “game” option (FBSDER, Cvitanic-Ma, 2000)
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Stochastic Recursive Utility

Duffie-Epstain (’92) defined the “SRU” by a BSDE:

Ut = Φ(YT ) +

∫ T

t
f (s, cs ,Us ,Vs)ds −

∫ T

t
VsdWs ,

Y — wealth;

Φ — utility function

f — “standard driver” or “aggregator”

|Vt |2 = d
dt 〈U 〉t — the “variability” process

c — consumption (rate) process

Standard Utility: f (c , u, v) = ϕ(c)− βu.

Uzawa Utility: f (c , u, v) = ϕ(c)− β(c)u.

Generalized Uzawa Utility: f (c , u, v) = ϕ(c)− βu − γ|v |,
(Chen-Epstein (1999)).
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Portfolio/Consumption Optimization Problems

General wealth equation with portfolio-consumption strategy (π, c):

dYt = b(t, ct ,Yt , σ
T
t πt)dt − 〈πt , σtdWt 〉 . (6)

Portfolio/consumption optimization problem

Find (π, c) so as to maximize certain “utility”:

U(y , π, c)
4
= E

{
Φ(Y y ,π,c

T ) +

∫ T

0
h(t, ct ,Y

y ,π,c
t )dt

}
.

— A stochastic control problem!

With Stochastic Recursive Utility:

Uy ,π,c
0 = E

{
Φ(Y y ,π,c

T ) +

∫ T

0
f (t, ct ,Y

y ,π,c
t ,Uy ,π,c

t ,V y ,π,c
t )dt

}
.

=⇒ A stochastic control problem for FBSDEs!
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Term Structure of Interest Rates.

Brennan-Schwartz’s Term structure model: (1979){
drt = µ(rt ,Rt)dt + α(rt ,Rt)dWt

dRt = ν(rt ,Rt)dt + β(rt ,Rt)dWt ,

where r—short rate, R—consol rate (consol = perpetual annuity).
This model was later disputed by M. Hogan, by counterexample,
which leads to

Consol Rate Conjecture by Fisher Black:

Assume that the consol price Yt = R−1
t , where R is the consol

rate. Then, under at most technical conditions, ∀µ and α, ∃A(·, ·)
such that {

drt = µ(rt ,Yt)dt + α(rt ,Yt)dWt

dYt = (rtYt − 1)dt + A(rt ,Yt)dWt ,
(7)
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Assume rt = h(Xt) for some “factor” process X and h(·) > 0,

X satisfies an SDE depending on R (or equivalent Y ).

Then the term structure SDEs (7) becomes an FBSDE with
infinite horizon: dXt = b(Xt ,Yt)dt + σ(Xt ,Yt)dWt , X0 = x ,

Yt = E

{∫ ∞

t
e−

∫ s
t h(Xu)duds

∣∣∣∣ Ft

}
, t ∈ [0,∞),

(8)

where Y is uniformly bounded for t ∈ [0,∞).

Or equivalently,
dXt = b(Xt ,Yt)dt + σ(Xt ,Yt)dWt ,
Yt = (h(Xt)Yt − 1)dt + A(Xt ,Yt)dWt ,
X0 = x , esssupω supt∈[0,∞) |Yt(ω)| <∞.

(9)
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Solution of Black’s Consol Rate Conjecture

This result (Duffie-Ma-Yong, 1993) was one of the early successful
applications of FBSDE in finance, and the first application using
the Four Step Scheme.

Theorem

Under some technical conditions, there exists a unique function

A(x , y) = −σ(x , y)T θx(x) such that (X ,Y ) in (8) satisfies (9),
and θ is the unique classical solution to the PDE:

1

2
σσT (x , θ)θxx + b(x , θ)θx − h(x)θ + 1 = 0.

Moreover, Yt = θ(Xt) for any t ∈ [0,∞).
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BSDEs and g -expectations

Consider a Backward SDE of the following general form:

Yt = ξ +

∫ T

t
g(t,Ys ,Zs)ds −

∫ T

t
ZsdBs , t ∈ [0,T ], (10)

where ξ ∈ L2(FT ) is the terminal condition and g(t, y , z) is the
generator.

g -expectation via BSDE (Peng, ’93)

If the BSDE (10) is well-posed, then the solution mapping
E g : ξ 7→ Y0 is called a g-expectation.

For any t ∈ [0,T ], the conditional g-expectation of ξ given

Ft is defined by E g [ξ|Ft ]
4
= Yt .
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BSDEs and g -expectations

Properties of g-expectations: Assume that g |z=0 = 0.

Constant-preserving: E g [ξ|Ft ] = ξ, P-a.s., ∀ ξ ∈ L2(Ft);
In particular, E g [c] = c , ∀ c ∈ R;

Time-consistency: E g
[
E g [ξ|Ft ]

∣∣Fs

]
= E g [ξ|Fs ], P-a.s.,

∀ 0 ≤ s ≤ t ≤ T ;

(Strict) Monotonicity: If ξ ≥ η, then
E g [ξ|Ft ] ≥ E g [η|Ft ], P-a.s., t ∈ [0,T ];

Moreover if “=” holds for some t, then ξ = η, P-a.s.;

“Zero-one” Law: E g [1Aξ|Ft ] = 1AE g [ξ|Ft ], P-a.s.,
∀A ∈ Ft ;

Translation Invariance: If g is independent of y , then

E g [ξ + η|Ft ] = E g [ξ|Ft ] + η, P-a.s., ∀ η ∈ L2(Ft).

Convexity: If g is convex (in z), then so is E g [·|Ft ].
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g -Expectations and Risk Measures

Axioms for Risk Measures (Artzner et al., Barrieu-El Karoui,...)

A (static) RM is a mapping ρ : X 7→ R (for some space of
random variables X ), s.t.,

Monotonicity: ξ ≤ η =⇒ ρ(ξ) ≥ ρ(η);
Translation Invariance: ρ(ξ + m) = ρ(ξ)−m, m ∈ R;
Coherent: if

Subadditivity: ρ(ξ + η) ≤ ρ(ξ) + ρ(η)
Positive homogeneity: ρ(αξ) = αρ(ξ), ∀α ≥ 0;

Convex: (Föllmer and Schied, ’02)
ρ
(
αξ + (1− α)η

)
≤ αρ(ξ) + (1− α)ρ(η), α ∈ [0, 1].

A (dynamic) RM is a family of mappings ρt : X 7→ L0(Ft),
t ∈ [0,T ], s.t. ∀ξ, η ∈ X ,

Monotoncity: If ξ ≤ η, then ρt(ξ) ≥ ρt(η), P-a.s., ∀ t;
Translation Invariance: ρt(ξ + η) = ρt(ξ)− η, ∀η ∈ Ft .
ρ0 is a static risk measure
ρT (ξ) = −ξ for any ξ ∈ X .
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Convex: (Föllmer and Schied, ’02)
ρ
(
αξ + (1− α)η

)
≤ αρ(ξ) + (1− α)ρ(η), α ∈ [0, 1].

A (dynamic) RM is a family of mappings ρt : X 7→ L0(Ft),
t ∈ [0,T ], s.t. ∀ξ, η ∈ X ,

Monotoncity: If ξ ≤ η, then ρt(ξ) ≥ ρt(η), P-a.s., ∀ t;
Translation Invariance: ρt(ξ + η) = ρt(ξ)− η, ∀η ∈ Ft .
ρ0 is a static risk measure
ρT (ξ) = −ξ for any ξ ∈ X .

Jin Ma (University of Southern California) BSDEs in Financial Math Paris Aug. 2009 23/ 218



Example

Worst-case Dynamic Risk Measure:

ρt(ξ)
4
= esssup

Q∈PP

EQ [−ξ|Ft ], t ∈ [0,T ],

Entropic Dynamic Risk Measure: Convex RM

ργt (ξ) = γ ln
{

E
[
e−

1
γ
ξ∣∣Ft

]}
, t ∈ [0,T ].

Convex Dynamic Risk Measure:

ρt(ξ)
4
= esssup

Q∈PP

{
EQ [−ξ|Ft ]− Ft(Q)

}
, t ∈ [0,T ],

where Ft is the “penalty function” of ρt for any t.

{ρt}t∈[0,T ] is called convex (or coherent) if each ρt is.

(e.g., Worst case — coherent; Entropic — convex.)

{ρt}t∈[0,T ] is said to be time-consistent if

ρ0[ξ1A] = ρ0[−ρt(ξ)1A], t ∈ [0,T ], ξ ∈ X ,A ∈ Ft .
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g -Expectations and Risk Measures

Let g be generator with g |z=0 = 0, and is Lipschitz in (y , z).

ρ(ξ)
4
= E g [−ξ] defines a static risk measure on X = L2(FT ).

ρt(ξ)
4
= E g [−ξ|Ft ], t ∈ [0,T ], defines a dynamic risk

measure on X = L2(FT ).

The risk measure (resp. dynamic risk measure) is convex if g
is convex in z .

The risk measure (resp. dynamic risk measure) is coherent if
g is further independent of y .

Question:

Does every risk measure have to be a g -expectation??
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Nonlinear Expectations

Definition

Let (Ω,F ,P, {Ft}) be a given probability space. A functional
E : L2(FT ) 7→ R is called a nonlinear expectation if it satisfies the
following axioms:

Monotonicity: ξ ≥ η, P-a.s. =⇒
E [ξ] ≥ E [η]
E [ξ] = E [η] ⇐⇒ ξ = η, P-a.s.

Constant-preserving: E [c] = c , c ∈ R.

A nonlinear expectation E is called {Ft}-consistent if it satisfies

for all t ∈ [0,T ] and ξ ∈ L2(FT ), there exists η ∈ Ft such
that

E [1Aξ] = E [1Aη], ∀A ∈ Fs

Will denote η = E {ξ|Ft}, for obvious reasons.
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Nonlinear Expectations

Definition

An {Ft}-consistant nonlinear expectation E is said to be
dominated by E µ = E gµ (µ > 0) if Convex RM

E [ξ + η]− E [ξ] ≤ E µ[η], ∀ξ, η ∈ L2(FT ). (11)

where E µ = E gµ is the g -expectation with g ≡ µ|z |. Further, E is
said to satisfy the translability condition if

E [ξ + α|Ft ] = E [ξ|Ft ] + α, ∀ ξ ∈ L2(FT ), α ∈ L2(Ft).

Representation Theorem (Coquet et al. ’02)

If E is a translable {Ft}-expectation dominated by E µ , for some
µ > 0, then ∃! (deterministic) function g , independent of y , such
that |g(t, z)| ≤ µ|z |, and that

E [ξ] = E g [ξ], for all ξ ∈ L2(FT ).
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Nonlinear Expectations
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Representing Risk Measures as g -Expectations

A direct consequence of the Representation Theorem for nonlinear
expectation is the following representation theorem for dynamic
coherent risk measures.

Some Facts:

Let {ρt} be a dynamic, coherent, time-consistent risk measure on

X
4
= L2(FT ). Define Et(ξ)

4
= ρt(−ξ), t ∈ [0,T ]; and E

4
= E0.

Then

E is a nonlinear expectation

Et{·} = E {·|Ft} is the nonlinear conditional expectation
(“time-consistency” =⇒ “{Ft}-consistency”!)

Consequently, if E is further E µ-dominated for some µ > 0,
then there exists a unique Lipschitz generator g such that

ρ0(ξ) = E g (−ξ), ρt(ξ) = E g{−ξ|Ft}, ∀ ξ ∈ L2(FT ).
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3. Wellposedness of BSDEs
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Wellposedness for BSDEs

Consider the BSDE

Yt = ξ +

∫ T

t
f (s,Ys ,Zs)ds −

∫ T

t
ZsdWs , (12)

where ξ ∈ L2
FT

(Ω; Rn), W is a d-dimensional Brownian motion.

Some spaces:

For any β ≥ 0 and Euclidean space H , define

S 2
β (0,T ;H ) to be the space of all H -valued, continuous,

F-adapted processes X , such that

E
{

sup0≤t≤T eβt |Xt |2
}
<∞

H2
β(0,T ; E) to be the space of all H -valued, F-adapted

processes X such that E
{∫ T

0
eβt |Xt |2dt

}
<∞

Nβ[0,T ]
4
= S 2

β (0,T ; Rn)×H2
β(0,T ; Rn×d)
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Main result:

Assumption

f is Lipschitz in (y , z) with a uniform Lipschitz constant L > 0.

Theorem

Under the above assumptions on f , for any ξ ∈ L2
FT

(Ω; Rn), (12)
admits a unique solution (Y ,Z ) ∈ N0[0,T ].

Observations:

Since Nβ[0,T ] is equivalent to N0[0,T ], we need only find
the solution (Y ,Z ) ∈ Nβ(0,T ) for some β > 0.

∀(y , z) ∈ N [0,T ], let h(·) 4
= f (·, y·, z·) ∈ L2

F(Ω× [0,T ]; Rn).

Then, Mt
4
= E

{
ξ +

∫ T

0
h(s)ds

∣∣Ft

}
, t ∈ [0,T ] is an

L2(F)-martingale.
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The First Step:

By the Mart. Rep. Thm, ∃Z ∈ L2
F (0,T ; Rn×d), such that

Mt = M0 +

∫ t

0
ZsdWs , ∀t ∈ [0,T ]. (13)

Define Yt
4
= Mt −

∫ t
0 h(s)ds. Then M0 = Y0, and

ξ +

∫ T

0
h(s)ds = MT = Y0 +

∫ T

0
ZsdWs .

Consequenly,

Yt = Mt −
∫ t

0
h(s)ds = Y0 +

∫ t

0
ZsdWs −

∫ t

0
h(s)ds

= ξ+

∫ T

0
h(s)ds−

∫ T

0
ZsdWs−

∫ t

0
h(s)ds+

∫ t

0
ZsdWs

= ξ +

∫ T

t
h(s)ds −

∫ T

t
ZsdWs . (14)
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A Priori Estimates

For any (y , z) ∈ Nβ[0,T ], let (Y ,Z ) be the solution to (14).

Applying Itô’s formula to F (t,Yt) = eβt |Yt |2, then taking
expectation and applying Fatou:

E
{

eβt |Yt |2
}

+ βE
∫ T

t
eβs |Ys |2ds + E

∫ T

t
eβs |Zs |2ds

≤ eβT E|ξ|2 + 2E
∫ T

t
eβs 〈Ys , h(s) 〉 ds.

Using the trick: 2ab ≤ εa2 + b2/ε, ∀ε > 0, we have

E
{

eβt |Yt |2
}

+(β− 1

ε
)E

∫ T

t
eβs |Ys |2ds+E

∫ T

t
eβs |Zs |2ds

≤ eβT E|ξ|2 + εE
∫ T

t
eβs |h(s)|2ds.
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Continuing from before, one has
‖Y ‖2

H2
β
≤ ε

(εβ − 1)

{
eβT E|ξ|2 + ε‖h‖2

H2
β

}
;

‖Z‖2
H2

β
≤ eβT E|ξ|2 + ε‖h‖2

H2
β
.

(15)

Using Burkholder-Davis-Gundy’s inequality, one then derive
that

‖Y ‖2
S 2

β
≤ 2(1 + C1(β, ε))e

βT E|ξ|2 + 2εC1(β, ε)‖h‖2
H2

β
, (16)

where C1(β, ε)
4
= 1 +

ε

εβ − 1
+ 2(1 + C )2, and C is the

universal constant in the Burkholder-Davis-Gundy inequality.
=⇒ (Y ,Z ) ∈ Nβ[0,T ].
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Furthermore,

For (y , z), (ȳ , z̄) ∈ Nβ[0,T ], let (Y ,Z ), (Ȳ , Z̄ ) ∈ Nβ[0,T ] be
the corresponding solutions of (14), respectively.

Define ζ̂ = ζ − ζ̄, ζ = y , z ,Y ,Z , and
H(s) = f (s, ys , zs)− f (s, ȳs , z̄s). Then,

|H(s)| ≤ L(|ŷs |+ |ẑs |), ŶT = ξ̂ = 0;

Choosing β = β(ε) and ε > 0 small enough, show that

‖(Ŷ , Ẑ )‖2
Nβ [0,T ] ≤ C̃ (ε)‖(ŷ , ẑ)‖2

Nβ [0,T ],

where C̃ (ε) < 1. Thus the mapping (y , z) 7→ (Y ,Z ) is a
contraction on Nβ[0,T ], proving the theorem.
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Comparison Theorems

Suppose that (Y i ,Z i ), i = 1, 2 are solutions to the following two
BSDEs: for t ∈ [0,T ],

Y i
t = ξi +

∫ T

t
f i (s,Y i

s ,Z
i
s )ds −

∫ T

t
Z i

sdWs , i = 1, 2. (17)

Question:

Assume that

ξ1 ≥ ξ2, P-a.s.;

f 1(t, y , z) ≥ f 2(t, y , z), ∀(t, y , z).

Can we conclude that Y 1
t ≥ Y 2

t , ∀t ∈ [0,T ]?

Answer:

Yes, provided f 2 is uniformly Lipschitz in (y , z)!!
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Comparison Theorems

Define ∆Y
4
= Y 1 − Y 2 and ∆Z

4
= Z 1 − Z 2. Then

f 1(t,Y 1
t ,Z

1
t )− f 2(t,Y 2

t ,Z
2
t )=δf (t)+α(t)∆Yt +〈β(t),∆Zt 〉,

where δf (t)
4
= f 1(t,Y 1

t ,Z
1
t )− f 2(t,Y 1

t ,Z
1
t ), and

α(t) =
f 2(t,Y 1

t ,Z
1
t )− f 2(t,Y 2

t ,Z
1
t )

∆Yt
1{∆Yt 6=0};

βi (t) =
f 2(t,Y 2

t ,Z
1,i
t )− f 2(t,Y 2

t ,Z
2,i
t )

∆Z i
t

1{∆Z i
t 6=0},

In other words, we have

∆Yt = ∆ξ +

∫ T

t
{δf (s) + α(s)∆Ys + 〈β(s),∆Zs 〉}ds

−
∫ T

t
〈∆Zs , dWs 〉 .

Jin Ma (University of Southern California) BSDEs in Financial Math Paris Aug. 2009 37/ 218



Comparison Theorems

Note:

Since f 2 is uniformly Lipschitz, both α and β are bounded,
adapted processes!!

Two Tricks:

1. (Change of Measure:) Define
Θ(t) = exp

{
−

∫ t
0 β(s)dWs − 1

2

∫ t
0 |βs |2ds

}
; and

dQ
dP

= Θ(T ).

Since β is bounded, by Girsanov Theorem we know that Θ is

a P-martingale, and W 1
t
4
= Wt +

∫ t
0 βsds is a Q-Brownian

motion.
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Comparison Theorems

2. (Exponentiating:) Define Γt = exp
{
−

∫ t
0 α(s)ds

}
. Then

applying Itô we have, for t ∈ [0,T ],

ΓT∆YT − Γt∆Yt = −
∫ T

t
Γsδf (s)ds +

∫ T

t
Γs 〈∆Zs , dW 1

s 〉 .

Now taking conditional expectation on both sides above, we have

Γt∆Yt = EQ
{

ΓT∆ξ +

∫ T

t
Γsδf (s)ds|Ft

}
, ∀t ∈ [0,T ],P-a.s.

Since ∆ξ = ξ1 − ξ2 ≥ 0, P-a.s. (hence Q-a.s.!); and

δf (t) = f 1(t,Y 1
t ,Z

1
t )− f 2(t,Y 1

t ,Z
1
t ) ≥ 0, ∀t, Q-a.s.,

we conclude that Γt∆Yt ≥ 0, ∀t, Q-a.s. This implies that
∆Yt ≥ 0, ∀t, P-a.s., proving the comparison theorem.
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BSDEs with Continuous Coefficients

Theorem (Lepeltier-San Martin, 1997)

Assume f : [0,T ]× Ω× R× Rd → R is a P ⊗B(Rd+1) m’able
function, s.t. for fixed t, ω, the mapping (y , z) 7→ f (t, ω, y , z) is
continuous, and ∃K > 0, s.t. ∀(t, ω, y , z),

|f (t,w , y , z)| ≤ K (1 + |y |+ |z |).

Then for any ξ ∈ L2(Ω,FT ,P) the BSDE

Yt = ξ +

∫ T

t
f (s,Ys ,Zs)ds −

∫ T

t
ZsdWs (18)

has an adapted solution (Y ,Z ) ∈ H2(Rd+1), where Y is a
continuous process and Z is predictable.

Also, there is a minimal solution (Y ,Z ) of equation (1), in the
sense that for any other solution (Y ,Z ) of (1) we have Y ≤ Y .
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BSDEs with Continuous Coefficients

Lemma 1

Let f : Rp → R be a continuous function with linear growth, that
is: ∃K > 0 such that ∀x ∈ Rp |f (x)| ≤ K (1 + |x |). Then the
sequence of functions

fn(x) = inf
y∈ Qp

{f (y) + n|x − y |} (19)

is well defined for n ≥ K and it satisfies:

(i) Linear growth: ∀x ∈ Rp |fn(x)| ≤ K (1 + |x |);
(ii) Monotonicity in n: ∀x ∈ Rp fn(x) ↗;

(iii) Lipschitz condition: ∀x , y ∈ Rp |fn(x)− fn(y)| ≤ n|x − y |;
(iv) strong convergence: if xn → x as n →∞, then fn(xn) → f (x),

as n →∞.
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Proof of Lemma 1

Since fn ≤ f (=⇒ fn(x) ≤ K (1 + |x |)), and
fn(x) ≥ infy∈ Qp{−K − K |y |+ K |x − y |} = −K (1 + |x |),
=⇒ (i) holds.

(ii) is evident from the definition of the sequence (fn).

∀ε > 0, choose yε ∈ Qp so that

fn(x) ≥ f (yε) + n|x − yε| − ε

≥ f (yε) + n|y − yε|+ n|x − yε|−n|y − yε| − ε

≥ f (yε) + n|y − yε|−n|x − y | − ε

≥ fn(y)− n|x − y | − ε.

Exchanging the roles of x and y , and since ε is arbitrary we
deduce that |fn(x)− fn(y)| ≤ n|x − y |, proving (iii).
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Proof of Lemma 1

To see (iv), assume xn → x as n →∞. For every n, let
yn ∈ Qp be such that

f (xn) ≥ fn(xn) ≥ f (yn) + n|xn − yn| − 1/n.

Since {xn} is bounded and f has linear growth, we deduce
that {yn} is bounded, and so is {f (yn)}.
Consequently limn n|yn − xn| <∞, and in particular yn → x ,
as n →∞. Moreover,

f (xn) ≥ fn(xn) ≥ f (yn)− 1/n,

from which the result follows.
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Proof of the Theorem

Define, for fixed (t, ω), a sequence fn(t, ω, y , z), associated to f by
Lemma 1; and h(t, ω, y , z) = K (1 + |y |+ |z |). Then consider the
following two BSDEs:

Y n
t = ξ +

∫ T

t
fn(s,Y

n
s ,Z

n
s )ds −

∫ T

t
Zn

s dWs, n ≥ K

Ut = ξ +

∫ T

t
h(Us ,Vs)ds −

∫ T

t
VsdWs .

By Comparison Theorem we obtain that

∀n ≥ m ≥ K Y m ≤ Y n ≤ U dt ⊗ dP − a.s.

=⇒ ∃A > 0, depending only on K , T and E(ξ2), s.t.

‖U‖ ≤ A, ‖V ‖ ≤ A, and hence ∀n ≥ K , ‖Y n‖ ≤ A.
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Proof of the Theorem

Claim: ‖Zn‖ ≤ A as well.

Let λ2 > K , and applying Itô to (Y n
t )2:

ξ2 = (Y n
t )2 − 2

∫ T

t
Y n

s fn(s,Y
n
s ,Z

n
s )ds + 2

∫ T

t
Y n

s Zn
s dWs

+

∫ T

t
(Zn

s )2ds.

Taking expectation on both sides, we deduce

E((Y n
t )2)+E

∫ T

t
(Zn

s )2ds =E(ξ2) + 2E
∫ T

t
Y n

s fn(s,Y
n
s ,Z

n
s )ds.

Therefore we obtain from the uniform linear growth condition on fn
(see (i) of Lemma 1), for t = 0

‖Zn‖2 ≤ E(ξ2) + 2K‖Y n‖2 + 2KE
∫ T

0
|Y n

s |(1 + |Zn
s |)ds.
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Proof of the Theorem

Using 2a ≤ a2λ2 + 1
λ2 and 2ab ≤ a2λ2 + b2

λ2 , we have

2K |Y n
s |(1 + |Zn

s |) ≤ K{ 1

λ2
+ 2λ2|Y n

s |2 +
1

λ2
|Zn

s |2},

and

‖Zn‖2 ≤ E(ξ2) +
KT

λ2
+ 2K (λ2 + 1)‖Y n‖2 +

K

λ2
‖Zn‖2.

Since λ2 > K we deduce for n ≥ K

‖Zn‖2 ≤ E(ξ2) + KT/λ2 + 2K (λ2 + 1)B2

1− K/λ2

4
= A,

proving the claim.
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Proof of the Theorem

Now fix n0 ≥ K . Since {Y n} is increasing and bounded in H2(R),
it converges in H2(R) to a limit Y . Then, for n,m ≥ n0:

E(|Y n
0 − Y m

0 |2) + E
∫ T

0
|Zn

u − Zm
u |2du

= 2E
∫ T

0
(Y n

u − Y m
u )(fn(u,Y

n
u ,Z

n
u )− fm(u,Y m

u ,Z
m
u ))du.

Applying Cauchy-Schwartz, and noting the uniform linear growth
of {fn} and boundedness of {‖(Y n,Zn)‖} we obtain

for all n,m ≥ n0, ‖Zn − Zm‖2 ≤ 2C‖Y n − Y m‖.

=⇒ {Zn} is Cauchy in H2(Rd), and thus converge to Z ∈ H(Rd).
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Proof of the Theorem

It then can be checked that, possibly along a subsequence: as
n →∞, P-almost surely,

sup
t≤T

|Y n
t − Yt | ≤

∫ T

0
|fn(s,Y n

s ,Z
n
s )− f (s,Ys ,Zs)|ds

+ sup
t≤T

|
∫ T

t
Zn

s dWs −
∫ T

t
ZsdWs | → 0,

=⇒ Y is continuous, and since {Y n} is monotone, by Dini the
convergence is uniform.
=⇒ One can then pass all the necessary limits to show that
(Y ,Z ) is an adapted solution of the original equation (18).

Finally, let (Ŷ , Ẑ ) any H2 solution of (18). By Comparison Thm
we get that ∀n Y n ≤ Ŷ and therefore Y ≤ Ŷ proving that Y is
the minimal solution.
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BSDEs with Reflections

We now consider the following BSDE with Reflection (cf. e.g., El
Karoui-Kapoudjian-Pardoux-Peng-Quenez, 1997):

Yt = ξ +

∫ T

t
f (s,Ys ,Zs)ds −

∫ T

t
ZsdWs + KT − Kt ,

Yt ≥ St , t ∈ [0,T ], (20)

where

St , t ∈ [0,T ] is the obstacle process, which is assumed to be
continuous, and E{sup0≤t≤T |St |2} <∞; and is given as a
parameter of the equation.

Kt , t ∈ [0,T ] is the reflecting process, which is assumed to be
continuous and increasing, and satisfies:

K0 = 0,

∫ T

0
(Yt − St)dKt = 0;

and it is defined as a part of the solution to the BSDE (20)(!)
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BSDEs with Reflections

Recall the well-known Skorohod Problem:

Let x be a continuous function on [0,∞) such that x0 ≥ 0.
Then there exists a unique pair (y , k) of functions on [0,∞)
such that

y = x + k;
yt ≥ 0, ∀t;
t 7→ kt is continuous, increasing, k0 = 0, and

∫∞
0

ytdkt = 0.

It is known that the solution to the Skorohod Problem for x has an
explicit form: kt = sups≤t x−s , t ≥ 0. In the BSDE case we have

Proposition

Let (Y ,Z ,K ) be a solution to the BSDE (20). Then for all
t ∈ [0,T ], it holds that

KT − Kt = sup
t≤u≤T

{
ξ +

∫ T

u
f (s,Ys ,Zs)ds −

∫ T

u
ZsdWs − Su

}−
.
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Other Observations

Proposition

Let (Y ,Z ,K ) be a solution to (20). Then

for each t ∈ [0,T ],

Yt = esssup
v∈Tt

E
{∫ v

t
f (s,Ys ,Zs)ds + Sv1{v<T} + ξ1{v=T},

}
,

where Tt is the set of all stopping times v , s.t. t ≤ v ≤ T .

Suppose further that the obstacle process S is an Itô process:

St = S0 +

∫ t

0
Usds +

∫ t

0
〈Vs , dWs 〉, t ≥ 0,

where U, V ∈ L2
F([0,T ]× Ω). Then

Zt = Vt , dP⊗ dt-a.e. on the set {Yt = St};
0 ≤ dKt ≤ 1{Yt=St}[f (t,St ,Vt) + Ut ]

−dt.
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A Priori Estimates

Lemma 1

Let (Y ,Z ,K ) be a solution to (20). Then ∃C > 0 such that

E
{

sup
0≤t≤T

Y 2
t +

∫ T

0
|Zt |2dt + K 2

T

}
≤ CE

{
ξ2 +

∫ T

0
f 2(t, 0, 0)dt + sup

0≤t≤T
(S+

t )2
}
. (21)

Proof. First apply Itô’s formula to get

Y 2
t +

∫ T

t
|Zs |2ds = ξ2 + 2

∫ T

s
Ys f (s,Ys ,Zs)ds + 2

∫ T

s
YsdKs

−2

∫ T

s
Ys 〈Zs , dWs 〉 .

Then use
∫ T
0 (Yt − St)dKt = 0, Hölder, and Gronwall.
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A Priori Estimates

Lemma 2

Let (Y i ,Z i ,K i ), i = 1, 2 be solutions to BSDEs (20) with
parameters (ξi , f i ,S i ), i = 1, 2, respectively. Then ∃C > 0 s.t.

E
{

sup
0≤t≤T

(∆Yt)
2 +

∫ T

0
|∆Zt |2dt + (∆KT )2

}
≤ CE

{
(∆ξ)2 +

∫ T

0
[∆f (t, 0, 0)]2dt

}
(22)

+C
[
E

(
sup

0≤t≤T
(∆S+

t )2
)]1/2

Ψ
1/2
T ,

where ∆X = X 1 − X 2, for X = ξ, f , S , Y , Z , and K ; and

ΨT = E
{∑2

i=1(|ξi |2 +
∫ T
0 |f i (t, 0, 0)|2dt + sup0≤t≤T |S i

t |2)
}

.

Note: The uniqueness of BSDE follows directly from Lemma 2!
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Comparison Theorem

Theorem

Let (Y i ,Z i ,K i ), i = 1, 2 be solutions to BSDEs (20) with
parameters (ξi , f i ,S i ), i = 1, 2, respectively. Suppose that

ξ1 ≤ ξ2,

f 1 ≤ f 2,

S1
t ≤ S2

t , 0 ≤ t ≤ T , a.s.

Then Y 1
t ≤ Y 2

t , 0 ≤ t ≤ T , a.s.

Proof. Apply Itô’s formula to |(∆Yt)
+|2, and taking expectation.

Then use the fact that Y 1 > S2
t ≥ S1

t on {∆Yt > 0} to get∫ T

t
(∆Yt)

+(dK 1
t − dK 2

t ) = −
∫ T

t
(∆Yt)

+dK 2
t ≤ 0.

Then apply Gronwall to get (∆Yt)
+ ≡ 0 =⇒ Y 1 ≤ Y 2.
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Well-Posdedness of the Reflected BSDEs

The existence and uniqueness of the adapted solution to the
reflected BSDE (20) can be proved using a standard Picard
iteration (see EK-K-P-P-Q). However, the following “penalization”
method has been used more often for its clarity on the structure of
the solution.

Penalization Scheme

For each n ∈ N, let (Y n,Zn) be the solution to the unconstrained
BSDE:

Y n
t = ξ +

∫ T

t
f (s,Y n

s ,Z
n
s )ds + Kn

T − Kn
t −

∫ T

t
〈Zn

s , dWs 〉, (23)

where Kn
t
4
= n

∫ t
0 (Y n

s − Ss)
−ds, t ∈ [0,T ].
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Well-Posdedness of the Reflected BSDEs

One can show that (as unconstrained BSDE):

E{sup0≤t≤T |Y n|2} <∞
∃C > 0, such that

E
{

sup
0≤t≤T

|Y n
t |2 +

∫ T

0
|Zn

t |2dt + (Kn
T )2

}
≤ C .

Since fn = f + n(y − St)
− ≤ fn+1, by Comparison Theorem,

Y n
t ≤ Y n+1

t , 0 ≤ t ≤ T , a.s. =⇒ Y n ↑Y .

By Fatou, one has E
{

sup0≤t≤T |Yt |2
}
≤ C .

Apply DCT to get E
∫ T
0 (Yt − Y n

t )2dt → 0, as n →∞.

Since E
{

supt |(Y n
t − St)

−|2
}
→ 0, as n →∞ (not trivial!!),

it follows that {(Y n,Zn)} is Cauchy in L2
F([0,T ]×Ω; R×Rd).
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Well-Posdedness of the Reflected BSDEs

Thus {(Y n,Zn)} ⊂ L2
F(Ω; C([0,T ]; R)× L2

F([0,T ]× Ω; Rd) is
Cauchy, and {Kn} is Cauchy in L2

F(Ω; C([0,T ]; R) as well

=⇒ The limit (Y ,Z ,K ) (of {(Y n,Zn,Kn)) must satisfy (20)

To check the “flat-off” condition, note that

E
{

supt |(Yt − St)
−|2

}
= limn E

{
supt |(Y n

t − St)
−|2

}
= 0

=⇒ Ys ≥ St , ∀t =⇒
∫ T
0 (Yt − St)dKt ≥ 0.

On the other hand, since∫ T
0 (Y n

t − St)dKn
t = −n

∫ T
0 [(Y n

t − St)
−]2dt ≤ 0,

=⇒
∫ T
0 (Yt − St)dKt= limn

∫ T
0 (Y n

t − St)dKn
t ≤ 0

=⇒
∫ T
0 (Yt − St)dKt = 0.
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BSDEs with Quadratic Growth

Consider the BSDE:

Yt = ξ +

∫ T

t
f (s,Ys ,Zs)ds −

∫ T

t
ZsdWs , t ∈ [0,T ]. (24)

We assume that the generator f takes the following form:

f (t, y , z) = a0(t, y , z)y + F0(t, y , z), (25)

where for constants β0 < α0, it holds for all (y , z) ∈ R1+d that

(H1)

{
β0 ≤ a0(t, y , z) ≤ α0;

|F0(t, y , z)| ≤ k + c(|y |)|z |2;
dt × dP-a.s.

Note:

Under (H1) f grows linearly in y , but quadratically in z!

Jin Ma (University of Southern California) BSDEs in Financial Math Paris Aug. 2009 58/ 218



BSDEs with Quadratic Growth

Theorem (Kobylanski, 2000)

Suppose that the coefficient f satisfies (H1), with α0, β0, k ∈ R,
and c : R+ 7→ R+ being continuous and increasing.
Then, for any ξ ∈ L∞(FT ), the BSDE (24) admits at least one
solution (Y ,Z ) ∈ L∞F (Ω; C([0,T ]; R))×H 2

F ([0,T ]; Rd).

The Power of “Exponential (Hopf-Cole) Transformation”

Consider a simple quadratic BSDE:

Yt = ξ +

∫ T

t

1

2
|Zs |2ds −

∫ T

t
ZsdWs , t ∈ [0,T ]. (26)

Define y = exp[Y ], z = yZ . Then, the BSDE (26) becomes

yt = exp[ξ]−
∫ T

t
zsdWs , t ∈ [0,T ].

Jin Ma (University of Southern California) BSDEs in Financial Math Paris Aug. 2009 59/ 218



BSDEs with Quadratic Growth

Theorem (Kobylanski, 2000)

Suppose that the coefficient f satisfies (H1), with α0, β0, k ∈ R,
and c : R+ 7→ R+ being continuous and increasing.
Then, for any ξ ∈ L∞(FT ), the BSDE (24) admits at least one
solution (Y ,Z ) ∈ L∞F (Ω; C([0,T ]; R))×H 2

F ([0,T ]; Rd).

The Power of “Exponential (Hopf-Cole) Transformation”

Consider a simple quadratic BSDE:

Yt = ξ +

∫ T

t

1

2
|Zs |2ds −

∫ T

t
ZsdWs , t ∈ [0,T ]. (26)

Define y = exp[Y ], z = yZ . Then, the BSDE (26) becomes

yt = exp[ξ]−
∫ T

t
zsdWs , t ∈ [0,T ].

Jin Ma (University of Southern California) BSDEs in Financial Math Paris Aug. 2009 59/ 218



A Priori Estimates

Suppose that the assumption (H1) is replaced by

(H0)

{
a0(t, y , z) ≤ α0;

|F0(t, y , z)| ≤ b(t) + C (|y |)|z |2,
dt × dP-a.s.

where α0 is constant and b ∈ L1([0,T ]). Then the following a
priori estimates hold:

Assume that ξ ∈ L∞FT
(Ω), then

Yt ≤
[
sup
Ω

(ξ)
]+

e
∫ T
t asds +

∫ T

t
bse

∫ s
t aλdλds; (27)

for some constant K > 0, E
∫ T

0
|Zs |2ds ≤ K ;

‖Y ‖∞ ≤ ‖ξ‖∞ +
‖b‖∞
|α0|

.
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A Priori Estimates
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Assume that ξ ∈ L∞FT
(Ω), then

Yt ≥
[
inf
Ω

(ξ)
]−

e
∫ T
t asds −

∫ T

t
bse

∫ s
t aλdλds; (28)

for some constant K > 0, E
∫ T

0
|Zs |2ds ≤ K ;

‖Y ‖∞ ≤ ‖ξ‖∞ +
‖b‖∞
|α0|

.
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A Priori Estimates

Idea of the Proof.

Define the RHS of (27) by ϕ, then ϕ satisfies the ODE:

ϕt =
[
sup
Ω

(ξ)
]+

∫ T

t
(asϕs + bs)ds, t ∈ [0,T ].

Let Φ be a C 2-function to be determined. Applying Itô to get

Φ(Yt − ϕt) = Φ(YT − ϕT )

+

∫ T

t
Φ′(Ys − ϕs)[f (s,Ys ,Zs)− (asϕs + βs)]ds (29)

−
∫ T

t

1

2
Φ′′(Ys − ϕs)|Zs |2ds −

∫ T

t
Φ′(Ys − ϕs)ZsdWs .
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A Priori Estimates

Denote M = ‖Y ‖∞ + ‖ϕ‖∞, and choose

Φ(u) =

{
e2Cu − 1− 2Cu − 2C 2u2, u ∈ [0,M]
0 u ∈ [−M, 0].

One can check that
Φ(u) ≥ 0 and Φ(u) = 0 ⇐⇒ u ≤ 0
Φ′(u) ≥ 0
0 ≤ uΦ′(u) ≤ 2(M + 1)CΦ(u)
CΦ′(u)− 1

2Φ′′(u) ≤ 0.

Applying these to (29) we get, with kt
4
= a+

t 2(M + 1)C ,

0 ≤ Φ(Yt−ϕt) ≤
∫ T

t
ksΦ(Ys−ϕs)ds−

∫ T

t
Φ′(Ys−ϕs)ZsdWs ,

Taking expectation and applying Gronwall one shows that
E{Φ(Yt − ϕt)} = 0 =⇒ Φ(Yt − ϕt) = 0 =⇒ Yt ≤ ϕt .
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A Priori Estimates

The L2-bound for Z can be proved by considering

Φ(u) =
1

2C 2

[
exp(2C (u + M))− (1 + 2C (u + M))

]
,

where M = ‖Y ‖∞. Indeed, since

Φ(u) ≥ 0, Φ′(u) ≥ 0

0 ≤ uΦ′(u) ≤ M
C (e4CM − 1)

4
= K0

1
2Φ′′(u)− CΦ′(u) = 1,

Setting ϕ ≡ 0 in (29) we can check

0 ≤ Φ(Y0) ≤ Φ(YT )+K0

∫ T

t
a+
s ds−

∫ T

t
|Zs |2ds−

∫ T

t
Φ′(Ys)ZsdWs ,

=⇒ E
∫ T

0
|Zs |2ds ≤ Φ(M) + K0‖a+‖L1

4
= K .
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Monotone Stability

Proposition

Suppose that {(f n, ξn)} are a sequence of parameters such that

f n → f locally uniformly on R+ × R× Rd ;

ξn → ξ in L∞.

∃k : R+ → R+, k ∈ L1([0,T ]), such that for some C > 0,

|f n(t, y , z)| ≤ kt +C |z |2, ∀n ∈ N, (t, y , z) ∈ R+×R×Rd .

(Y n,Zn) ∈ L∞F (Ω; C([0,T ]; R))×H 2
F ([0,T ]; Rd) such that

{Y n} ↗ and ‖Y n‖∞ ≤ M.

Then ∃(Y ,Z ) ∈ L∞F (Ω; C([0,T ]; R))×H 2
F ([0,T ]; Rd) such that

lim
n→∞

Y n = Y , uniformly on [0,T ]; Zn → Z in H 2
F ([0,T ]; Rd),

and (Y ,Z ) solves BSDE (24).
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Monotone Stability

Main Points:

{Y n} is monotone and bounded =⇒ ∃Y , s.t., Y n → Y
(pointwisely).

{Zn} is bounded in L2([0,T ]× Ω) =⇒ it has a weakly
convergent subsequence, denoted by itself.

Want to Show:

{Zn} converges Strongly in L2([0,T ]×Ω) (Mazur’s Theorem)

{Y n} converges Uniformly in t (Dini’s Theorem)

Consequently, one can then show that∫ T

t
f n(s,Y n

s ,Z
n
s )ds →

∫ T

t
f (s,Ys ,Zs)ds; and∫ T

t
Zn

s dWs →
∫ T

t
ZsdWs , and thus (Y ,Z ) solves the BSDE.
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Proof of the Main Result

Assumptions:

There exists α0, β0 ∈ R, B,C ∈ R+, such that for all
(t, y , z) ∈ R+ × R× Rd ,

f (t, y , z) = a0(t, y , z)y + F0(t, y , z),

where

β0 ≤ a0(t, y , z) ≤ α0,

F0(t, y , z)| ≤ B + C |z |2.

1. Exponential Change. Define yt
4
= e2CYt and zt

4
= 2CytZt .

Then, by Itô one can check that (y, z) solves the BSDE (24) with
parameters:

yT = e2Cξ;

F (t, y , z)
4
= 2C · yf

(
s,

ln(y)

2C
,

z

2C · y

)
− 1

2

|z |2

y
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Proof of the Main Result

2. Truncation. Define a C∞ function ψ : R 7→ [0, 1] by

ψ(u) =

{
1, if u ∈ [e−2CM , e2CM ];

0, if u /∈ [e−2C(M+1), e2C(M+1)].

Now, define F̃ (t, y , z)
4
= ψ(y)F (t, y , z), and let

`+(y)
4
= ψ(y)(α0y ln(y) + 2CBy);

`−(y , z)
4
= ψ(y)

(
β0y ln(y)− 2CBy − |z |2

y

)
.

Then it is easily checked that

`−(y , z) ≤ F̃ (t, y , z) ≤ `(y), ∀(t, y , z). (30)

Note:

The function y 7→ `+(y) is bounded and Lipschitz!
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Proof of the Main Result

3. Approximation. For any n ∈ N, find F̃ n ∈ C∞
b such that

F̃ +
1

2n+1
≤ F̃ n ≤ F̃ +

1

2n
.

Then, let φn ∈ C∞ be s.t. φ(u) =

{
1, 0 ≤ u ≤ n;
0, u ≥ n + 1.

Define

F n(t, y , z)
4
= F̃ n(t, y , z)φn(|y |+|z |)+

(
`+(y)+

1

2n

)
[1−φn(|y |+|z |)].

Note:

F n’s are uniformly Lipschitz (in (y , z));

For any n ∈ N and all (t, y , z), it holds that

F̃ (t, y , z) ≤ F̃ n(t, y , z) ≤ F n(t, y , z) ≤ `+(y) +
1

2n
. (31)
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Proof of the Main Result

4. Synthesis. Denote (yn, zn) to be solution to BSDE(F n, e2Cξ),
via standard theory.

For n large enough
F n(t, e2CM , 0) ≤ 0, and e2CM ≥ e2Cξ;
F n(t, e−2CM , 0) ≥ 0, and e−2CM ≤ e2Cξ,

Since yt ≡ e2CM , zt ≡ 0 (resp. yt ≡ e−2CM , zt ≡ 0) are
solutions to the BSDE(e2CM , 0) (resp. BSDE(e−2CM , 0)), by
the standard Comparison Theorem we conclude:

e−2CM ≤ yn+1 ≤ yn ≤ e2CM .

Define Y n
t

4
= ln(yn

t )
2C , Zn

t
4
= zn

t
2Cyn

t
, and

f n(t, y , z)
4
=

F n(t, e2Cy , 2Ce2Cyz)

2Ce2Cy
+ C |z |2

f̃ n(t, y , z)
4
=

F̃ n(t, e2Cy , 2Ce2Cyz)

2Ce2Cy
+ C |z |2;
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Proof of the Main Result

Then (Y n,Zn) is the solution to BSDE(f̃ n, ξ), n ∈ N, and
Y n’s are monotone, since yn’s are!

Since f̃ n → f̃ and f n → f , uniformly on compacts, we can
first apply the Monotone Stability Theorem, we know that
∃(Y ,Z ) ∈ L∞F (Ω; C([0,T ]; R))×H 2

F ([0,T ]; Rd) such that

(Y ,Z ) solves BSDE(f̃ , ξ).

One can then show that ‖Y ‖∞ ≤ M as was done in the a
priori estimate, and note that

f̃ (t, y , z) = f (t, y , z), whenever |y | ≤ M

(by the nature of the truncation), we conclude that (Y ,Z )
solves BSDE(f , ξ), proving the existence.
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Uniqueness

We shall assume that the generator f satisfies the following
assumptions throughout the uniqueness discussion.

(H2) For some constants M and C > 0, and positive
functions l(·) and k(·), it holds for all t ∈ R+, y ∈ [−M,M],
and z ∈ Rd that

|f (t, y , z)| ≤ l(t) + C |z |2, a.s.,∣∣∣∂f

∂z
(t, y , z)

∣∣∣ ≤ k(t) + C |z |2, a.s.,

(32)

(H3) For some constant ε > 0 and Cε > 0, it holds for all
t ∈ R+, y ∈ R, and z ∈ Rd that

∂f

∂y
(t, y , z) ≤ lε(t) + C |z |2, a.s. (33)
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Uniqueness

Comparison Theorem

Let (Y i ,Z i ), i = 1, 2 be two solutions of BSDE(f i , ξi ), i = 1, 2.
Assume that

ξ1 ≤ ξ2, a.s., and f 1 ≤ f 2;

For all ε > 0 and M > 0, there exist functions l , lε ∈ L1,
k ∈ L2, and constant C ∈ R, such that either f 1 or f 2

satisfies both (H2) with l , k, and C and (H3) with lε and ε.

Then if (Y 1,Z 1) [resp. (Y 2,Z 2) ∈ L∞(· · · )× L2(· · · )] is a
sub-solution (resp. super-solution) of the BSDEs with parameters
(f 1, ξ1) (resp. (f 2, ξ2)), one has

Y 1
t ≤ Y 2

t , ∀t ∈ R+, a.s.

Proof. Lengthy. (cf. Kobylanski (2000))
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A Quick Summary

We have studied following types of BSDEs beyond the standard
ones:

BSDEs with continuous coefficients

BSDEs with reflections

BSDEs with quadratic growth

Some Variations

Reflected BSDEs with continuous coefficients — Matoussi
(1997), Hamadene-Matoussi-Lepeltier (1997)

BSDEs with superlinear-quadratic coefficients — Lepelier-San
Martin (1998)

Reflected BSDE with superlinear-quadratic coefficients —
Kobylanski-Lepeltier-Quenez-Torres (2001)

· · · · · ·
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Converse Comparison Theorem

Consider the BSDE:

Yt = ξ +

∫ T

t
f (s,Ys ,Zs)ds −

∫ T

t
ZsdWs , t ≥ 0.

We know that “ξ1 ≥ ξ2” ⊕ “f 1 ≥ f 2” =⇒ “Y 1
t ≥ Y 2

t , t ≥ 0”

Question:

Under what condition Y 1 ≥ Y 2 implies f 1 ≥ f 2?

Main Assumptions

(A1) The random field f : [0,T ]× Ω× R× Rd 7→ R is uniformly
Lipschitz in (y , z), uniformly in (t, ω).

(A2) t 7→ f (t, 0, 0), is a square-integrable adapted process.

(A3) f (t, y , 0) = 0

(A4) t 7→ f (t, y , z) is continuous.
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Converse Comparison Theorem

Theorem (Briand-Coquet-Hu-Mémin-Peng, 2000)

Assume (A1)–(A4), and assume further that for any ξ ∈ L2(FT ),
it holds that Y 1

t (ξ) ≤ Y 2
t (ξ), for all t ∈ [0,T ], P-a.s.

Then P-almost surely,

f 1
0 (t, y , z) ≤ f 1

0 (t, y , z), ∀(y , z) ∈ R× R6.

Main Tricks:

Choose ξε = y + z(Wt+ε −Wt), ε > 0; and denote

Y ε
T

4
= Yt(ξε);

Show that 1
ε (Y

ε
t − y) → g(t, y , z), as ε→ 0;

Then Y 1,ε ≤ Y 2,ε =⇒ g1 ≤ g2.
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Quadratic BSDEs with Unbounded Terminal Value

This is based on the works of Briand and Hu (2005-08).
Consider the BSDE:

Yt = ξ +

∫ T

t
f (s,Ys ,Zs)ds −

∫ T

t
ZsdWs , t ∈ [0,T ] (34)

Main Assumptions

∃β ≥ 0, γ > 0, α ∈ L0
F([0,T ]× Ω), and ϕ : R+ 7→ R+ with

ϕ(0) = 0, such that P-a.s.,

(i) For all t ∈ [0,T ], (y , z) 7→ f (t, y , z) is continuous;

(ii) (Monotoniciy in y) ∀(t, z),

y [f (t, y , z)− f (t, 0, z)] ≤ β|y |2;

(iii) (Quadratic growth): ∀(t, y , z),

|f (t, y , z) ≤ α(t) + ϕ(|y |) +
γ

2
|z |2.
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Quadratic BSDEs with Unbounded Terminal Value

Main Purpose:

Find the adapted solution (hopefully unique!) to the BSDE (34),
with terminal value ξ satisfying: E{eγ|ξ|} <∞ (ξ is said to have
“exponential moment of order γ”), for some or all γ > 0.

A Trick: Consider U(t, |Yt |) = eγψ(t,|Yt |), where ψ is a smooth
function to be determined. Applying Itô ⊕ Tanaka:

dU(t, |Yt |)
γU(t, |Yt |)

= {−ψx(t, |Yt |)sgn(Yt)f (t,Yt ,Zt) + ψt(t, |Yt |)

+
γ

2
ψx(t, |Yt |)2|Zt |2}dt +

1

2
ψxx(t, |Yt |)|Zt |2dt

+ψx(t, |Yt |)dLt + ψx(t, |Yt |)sgn(Yt)Zt · dWt ,

where L is the local time of Y at zero.
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Quadratic BSDEs with Unbounded Terminal Value

Since

sgn(Yt)f (t,Yt ,Zt) = sgn(Yt)[f (t,Yt ,Zt)− f (t, 0,Zt)]

+sgn(Yt)f (t, 0,Zt)

≤ β|Yt |+ α(t) +
γ

2
|Zt |2,

assuming ψx(t, x) ≥ 1 for x ≥ 0, one has

ψx(t, |Yt |)sgn(Yt)f (t,Yt ,Zt)−ψt(t, |Yt |)−
γ

2
ψx(t, |Yt |)2|Zt |2

≤ ψx(t, |Yt |)[α(t) + β|Yt |]− ψt(t, |Yt |).

Idea:

Look for ψ that solves the first order PDE for (t, x) ∈ [s,T ]× R:

ψt(t, x)− (α(t) + βx)ψx(t, x) = 0, ψ(s, x) = x . (35)
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Quadratic BSDEs with Unbounded Terminal Value

The solution to the characteristic equation of (35):

v(u; t, x) = x +

∫ t

u
[α(r) + βv(r ; t, x)]dr , 0 ≤ u ≤ t. (36)

is v(s; t, x) = xeβ(t−s) +
∫ t
s α(r)eβ(r−s)dr , 0 ≤ s ≤ t ≤ T .

Since d
duψ(u, v(u; t, x)) = 0, we have for s ≤ t ≤ T ,

ψ(t, x) = ψ(t, v(t; t, x)) = ψ(s, v(s; t, x)) = v(s; t, x).

=⇒ ψx(t, x) ≥ 1 and ψxx(t, x) ≥ 0!!

A Key Estimate

eγ|Ys | = U(s, |Ys |)

≤ U(t, |Yt |)−
∫ t

s
γU(r , |Yr |)ψx(r , |Yr |)sgn(Yr )ZrdWr .
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Quadratic BSDEs with Unbounded Terminal Value

Theorem (Existence)

Assume that the main assumption holds. Assume also that
ξ + |α|1 has an exponential moment of order γeβT , then the
BSDE (34) has a solution (Y ,Z ) such that

|Yt | ≤
1

γ
log E

{
exp

{
γeβ(T−t)|ξ|+ γ

∫ T

t
α(r)eβ(r−t)dr

}∣∣∣Ft

}
.

Note:

The Comparison Theorems (whence uniqueness) for quadratic
BSDE were only proved for the bounded terminal value case, based
essentially on the fact that in that case the process Z •W is a
“BMO Martingale”. Since this fact fails in the unbounded terminal
case, a new idea is needed!
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Quadratic BSDEs with Convex Coefficients in z

Assumption (A2)

There exist two constants γ > 0 and β ≥ 0, and a non-negative,
progressively measurable process α(t), t ≥ 0, such that,

∀t ∈ [0,T ], ∀y ∈ R, the mapping z 7→ f (t, y , z) is convex;

∀(t, z) ∈ [0,T ]× R,

|f (t, y , z)− f (t, y ′, z ′)| ≤ β|y − y ′|, ∀(y , y ′) ∈ R2;

f satisfies the growth condition:

|f (t, y , z)| ≤ α(t) + β|y |+ γ

2
|z |2;

|α|1 has exponential moment of all order.
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Quadratic BSDEs with Convex Coefficients in z

Comparison Theorem

Let (Y ,Z ) and (Y ′,Z ′) be two solution to (34) w.r.t. terminal
conditions ξ and ξ′, generators f and f ′, respectively. Assume that

for any λ > 0, E
{

eλY ∗
+ eλY ′∗

}
<∞, where

Y ∗ = supt∈[0,T ] |Yt |;
ξ ≤ ξ′, P-a.s.;

f (t, y , z) ≤ f ′(t, y , z), ∀(t, y , z) ∈ [0,T ]× R× Rd ;

f satisfies (A2).

Then Yt ≤ Y ′
t , for all t ∈ [0,T ], P-a.s. Furthermore, if Y0 = Y ′

0,
then

P
{
ξ′ = ξ,

∫ T

0
(f ′ − f )(t,Y ′

t ,Z
′
t)dt = 0

}
> 0.
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Quadratic BSDEs with Convex Coefficients in z

Main Trick:

For any θ ∈ (0, 1), consider ηθ = η − θη′, η = ξ,Y ,Z .

Let At =
∫ t
0 α(s)ds, then we have

eAtY θ
t = eAT Y θ

T +

∫ T

t
eAs Fsds −

∫ T

t
eAs Z θ

s dWs ,

where, denoting δf (t)
4
= (f − f ′)(t,Y ′

t ,Z
′
t),

Ft = (f (t,Yt ,Zt)− θf ′(t,Y ′
t ,Z

′
t))− α(t)Y θ

t

= (f (t,Yt ,Zt)− f (t,Y ′
t ,Zt))

+(f (t,Y ′
t ,Zt)− θf (t,Y ′

t ,Z
′
t)) + θδf (t).

Using the convexity of f in z , one has

f (t,Y ′
t ,Zt) ≤ θf (t,Y ′

t ,Z
′
t) + (1− θ)f

(
t,Y ′

t ,
Z θ

t

1− θ

)
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Quadratic BSDEs with Convex Coefficients in z

Using the growth condition to get

f (t,Y ′
t ,Zt) ≤ θf (t,Y ′

t ,Z
′
t)+(1−θ)(α(t)+β|Y ′

t |)+
γ

1− θ
|Z θ

t |2.

=⇒ Ft ≤ (1− θ)(α(t) + 2β|Y ′
t |) +

γ

2(1− θ)
|Z θ

t |2 + θδf (t).

Denote Pt = eceAt Y θ
t , Qt = cPtZ

θ
t eAt , then

Pt = PT + c

∫ T

t
Pse

As

(
Fs−

ceAs

2
|Z θ

t |2
)
ds −

∫ T

t
QsdWs .

=⇒ Y θ
t ≤

1− θ

γ
log E

{
exp

{
γe2βT

(
|ξ|+

∫ T

t
G (s, |Y ′

s |)ds
)}∣∣∣Ft

}
.

Letting θ → 1, one obtains Yt ≤ Y ′
t !
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Quadratic BSDEs and Convex Risk Measures

Recall the Entropic dynamic risk measure. Entropic RM

It is shown by Barrieu-El Karoui (’04) that {ργt (ξ)}t∈[0,T ] is
the unique solution of the following quadratic BSDE:

ργt (ξ) = −ξ +
1

2γ

∫ T

t
|Zs |2ds −

∫ T

t
ZsdBs , ∀ t ∈ [0,T ],

But the generator g = 1
2γ |z |

2 is quadratic, and hence NOT a
consequence of the representation theorem!

In fact, in this case the “domination” (11) fails. E.g., γ = 1:

ρ0(ξ+η)−ρ0(ξ) = η+
1

2

∫ T

0
(|Z 2

s +Zs |2−|Z 2
s |2)ds−

∫ T

0
ZsdBs .

where Z = Z 1 − Z 2. But 1
2(|z2 + z |2 − |z2|2) ≤ |z |2 + 1

2 |z
2|2

cannot be dominated by any (quadratic g).
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Quadratic BSDEs and Convex Risk Measures

In fact one needs to consider a quadratic BSDE:

Yt = ξ + zBτ +

∫ T

t
g(s,Zs)ds −

∫ T

t
ZsdBs , (37)

where ξ ∈ L∞(FT ), z ∈ Rd , and τ ∈ M0,T .

Although ξ + zBτ is unbounded, it does have exponential
moment of all orders (recall the moment generating function
of a Brownian motion), and the BSDE is convex in z . Thus
the previous existence and uniqueness applies!

An easier way: Set Ỹt = Yt − zBt∧τ , Z̃t = Zt − zβ1{t≤τ},
then (37) becomes

Ỹt = ξ +

∫ T

t
g(s, Z̃s + zβ1{s≤τ})ds −

∫ T

t
Z̃sdBs . (38)

Since ξ ∈ L∞(FT ), the BSDE (38) is uniquely solvable.

The “domination” problem is more subtle, need to invoke the
“BMO” theory (see, Hu-Ma-Peng-Song, 2008).
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4. Wellposedness of FBSDEs
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Solution Methods for FBSDEs:

General FBSDEs: for t ∈ [0,T ],


Xt = x +

∫ t

0
b(s,Θs)ds +

∫ t

0
σ(s,Θs)dWs ;

Yt = g(XT ) +

∫ T

t
f (s,Θs)ds +

∫ T

t
ZsdWs ,

(39)

where Θs = (Xs ,Ys ,Zs).

Objective:

For any given T > 0, and x ∈ Rn, find an F-adapted,
square-integrable process (X ,Y ,Z ) that satisfies (39) on [0,T ],
P-a.s.

Contraction
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An Example:

Consider the following simple FBSDE:{
dXt = Ytdt + dWt , Xt = x
dYt = −Xtdt + ZtdWt , YT = −XT

(40)

Suppose that (40) has an adapted solutions (X ,Y ,Z )

letting xt = EXt , yt = EYt one has{
dxt = ytdt, x0 = x
dyt = −xtdt, yT = −xT

Solving, ẋT + xT = x(cos T − sin T ) + C (cos T + sin T ).

If T = kπ +
3π

4
, then 0 = yT + xT =

√
2x ⇐⇒ x = 0(!).

Warning

The example shows that an FBSDE is not always solvable over an
arbitrary duration!
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A Simple Case

Consider a simple FBSDE:

dXt = b(t,Xt ,Zt)dt + σ(Zt)dWt

dYt = h(t,Xt ,Yt)dt + ZtdWt , t ∈ [0,T ],

X0 = x ,YT = g(XT ).

Assume that

b and h are Lipschitz in (X ,Y ,Z ) with constant L,

σ is Lipschitz in z with constant L1,

g is Lipschitz in x with constant L0

Define
‖(Y ,Z )‖N [0,T ]

4
= supt∈[0,T ]

{
E |Y (t)|2 + E

∫ T
t |Z (s)|2ds

}1/2
, and

let N [0,T ] be the completion of N [0,T ] in L2.
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A Simple Case

For a given (Y ,Z ) ∈ N [0,T ], define Γ(Y ,Z ) = (Y ,Z ) as follows.
First solve an FSDE for X :{

dXt = b(t,Xt ,Zt)dt + σ(Zt)dWt , t ∈ [0,T ],
X0 = x .

and then solve the BSDE{
dY t = h(Yt ,Zt)dt + Z tdWt , t ∈ [0,T ],

Y T = g(XT ).

We shall see when Γ could be a contraction mapping.

So take (Y i ,Z i ) ∈ N [0,T ], i = 1, 2, and denote X i and (Y
i
,Z

i
)

be the corresponding solutions above. Denote ∆ξ = X 1 − X 2,
ξ = X ,Y ,Z ,Y ,Z .
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A Simple Case

Applying Itô:

E |∆Xt |2 ≤ E
∫ t

0

{
2L|∆Xs |

(
|∆Xs |+ |∆Zs |

)
+ L2

0|∆Zs |2ds

≤ E
∫ t

0

{
Cε

(
|∆Xs |2 + |∆Ys |2

)
+ (L2

0 + ε)|∆Zs |2
}

ds.

=⇒ E|∆Xt |2 ≤ eCεT E
∫ T

0

{
Cε|∆Ys |2 + (L2

0 + ε)|∆Zs |2
}

ds.

Similarly one has

E|∆Y t |2 + E
∫ T

t
|∆Z s |2ds ≤ eCεT

{
C̃εE

∫ T

0
|∆Ys |2ds

+[ε+ (L2
1 + T )(L2

0 + ε)eCεT ]E
∫ T

0
|∆Zs |2ds

}
≤ eCεT [C̃εT + ε+ (L2

1 + T )(L2
0 + ε)eCεT ]‖(∆Y ,∆Z )‖2

N [0,T ]
,
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A Simple Case

By choosing ε > 0 small enough then choosing T > 0 small
enough, we obtain

‖(∆Y ,∆Z‖N [0,T ] ≤ α‖(∆Y ,∆Z )‖N [0,T ],

for some 0 < α < 1, whenever L0L1 < 1.

Namely, the mapping Γ is contraction if

T small;

L0L1 < 1.
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Method of Contraction Mapping

This method was used by Antonelli (’92), Pardoux-Tang (’96),
Cvitanic-Ma (’98)... A more general version can be found in
Ma-Yong (LMN, 1999). Consider the FBSDE (39).

Basic Assumptions:

(A1) b, h, and σ are continuous, F-adapted random fields with
linear growth in (x , y , z), and ∃k1, k2 ≥ 0 and γ ∈ R s.t. for all

(t, ω) and θ
4
= (x , y , z), θi

4
= (xi , yi , zi ), and θ0

4
= (x , y),

|b(ω, t, θ1)− b(ω, t, θ2)| ≤ K |θ1 − θ2|;
〈 h(ω, t, x , y1, z)− h(ω, t, x , y2, z), y1 − y2 〉 ≤ γ|y1 − y2|2;
|h(ω, t, x1, y , z1)− h(ω, t, x2, y , z2)|

≤ K (|x1 − x2|+ ‖z1 − z2‖);
|σ(ω, t, θ1)− σ(ω, t, θ2)|2 ≤ K 2|θ1

0 − θ2
0|2 + k2

1 |z1 − z2|2;
|g(ω, x1)− g(ω, x2)| ≤ k2|x1 − x2|.
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Method of Contraction Mapping

Denote, for any constants C1, C2, C3, C4 > 0, and λ ∈ IR,

λ1 = λ− 2K − K (2 + C−1
1 + C−1

2 )− K 2;

λ2 = −λ− 2γ − K (C−1
3 − C−1

4 ),

µ(α,T ) = K (C1 + K )B(λ2,T ) +
A(λ2,T )

α
(KC2 + k2

1 ),

where A(λ, t) = e−(λ∧0)t and B(λ, t) =
1− e−λt

λ
.

Theorem

Assume (A1), and that 0 ≤ k1k2 < 1. Assume also that one of the
following holds for some constants C1—C3, and C4 = 1−α0

K :

k2 = 0; ∃α0 ∈ (0, 1) such that µ(α0,T )KC3 < λ1;

k2 > 0; λ1 = KC3

k2
2

; ∃α0 ∈ (0, 1) such that µ(α2
0,T )k2

2 < 1.

Then the FBSDE (39) has a unique adapted solution over [0,T ].
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Method of Contraction Mapping

Note:

The “compatibility condition”: 0 ≤ k1k2 < 1 is essential!

If 0 ≤ k1k2 < 1, then there exists T0 > 0 such that for all
0 < T ≤ T0, the FBSDE (39) is uniquely solvable on [0,T ].

This condition is indispensable! For example, consider
Xt =

∫ t

0
ZsdWs ;

Yt = (XT + ξ)−
∫ T

t
ZsdWs ,

(41)

where ξ is an FT -measurable, L2 random variable. This
FBSDE has no adapted solution on any interval [0,T ]!
Indeed, if (X ,Y ,Z ) were an adapted solution, let η = Y − X ,
then ηt ≡ ξ, ∀t ∈ [0,T ]. The F-adaptedness of η then leads
to that ξ is a constant(!). But this is obviously not necessarily
ture.
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Method of Contraction Mapping

Denote, for t ∈ [0,T ),

H(t,T ) = L2
F(t,T ; R),

Hc(t,T ) — elements in H(t,T ), with continuous paths

∀λ ∈ R, ξ ∈ H(t,T ), define ‖ξ‖2
t,λ

4
= E

∫ T
t e−λs |ξ(s)|2ds.

=⇒ Hλ(t,T )
4
= {ξ ∈ H(t,T ) : ‖ξ‖t,λ <∞} = H(t,T )

For ξ ∈ Hc(t,T ), λ ∈ R, and β > 0, define

ξ t,λ,β
4
= e−λT E|ξT |2 + β‖ξ‖2

t,λ,

and let Hλ,β(t,T ) be the completion of Hc(t,T ) under norm
· t,λ,β . Then for any λ and β, Hλ,β(t,T ) is a Banach space.
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Method of Contraction Mapping

The Solution Mapping:

Define Γ : Hc 7→ Hc defined as follows: for fixed x ∈ Rn, let

X
4
= Γ(X ) be the solution to the FSDE:

X t = x +

∫ t

0
b(s,X s ,Ys ,Zs)ds +

∫ t

0
σ(s,X s ,Ys ,Zs)dWs , (42)

where (Y ,Z ) ia the solution to the BSDE:

Yt = g(XT ) +

∫ T

t
h(s,Xs ,Ys ,Zs)ds −

∫ T

t
ZsdWs (43)

Need to show that Γ is a contraction on Hλ,λ̄1
for some λ̄1.
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A Key Estimate

Let X 1,X 2 ∈ Hc; and let X
i
and (Y i ,Z i ), i = 1, 2, be the

corresponding solutions to (42) and (43), respectively. Denote
∆ξ = ξ1 − ξ2, for ξ = X ,Y ,Z . Then one shows that (with
C4 = 1−α

K )

e−λTE |∆XT |2 + λ̄1‖∆X‖2
λ (44)

≤ µ(α,T ){k2
2e−λTE |∆XT |2 + KC3‖∆X‖2

λ}.

where

µ(α,T )
4
= K (C1 + K )B(λ̄2,T ) +

A(λ̄2,T )

α
(KC2 + k2

1 );

and {
λ̄1 = λ− K (2 + C−1

1 + C−1
2 )− K 2;

λ̄2 = −λ− 2γ − K (C−1
3 + C−1

4 ).
(45)
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Fix C4 =
1−α2

0
K .

(i) If k2 = 0, then (44) leads to

‖∆X‖2
λ ≤

µ(α,T )KC3

λ̄1
‖∆X‖2

λ.

Find α ∈ (0, 1) so that µ(α,T )KC3 < 1 =⇒ Γ is a
contraction mapping on (H, ‖ · ‖λ).

(ii) If k2 > 0, then we can solve λ from (45) and λ̄1 = KC3/k
2
2 ,

(44) gives

∆X 2
λ0,λ̄1

≤ µ(α2
0,T )k2

2 ∆X 2
λ0,λ̄1

,

Let Ci , i = 1, 2, 3 and α0 ∈ (k1k2, 1) be such that
µ(α2

0,T )k2
2 < 1 =⇒ Γ is a contraction on Hλ,λ̄1

.

Jin Ma (University of Southern California) BSDEs in Financial Math Paris Aug. 2009 101/ 218



Method of Stochastic Control

Purpose: Solve FBSDEs over arbitrary interval [0,T ]!

Consider the stochastic control problem with

State equations:
Xt = x +

∫ t

s
b(r ,Xr ,Yr ,Zr )dr +

∫ t

s
σ(r ,Xr ,Yr ,Zr )dWr ,

Yt = y −
∫ t

s
h(r ,Xr ,Yr ,Zr )dr −

∫ t

s
σ̂(r ,Xr ,Yr ,Zr )dWr ,

with Z being the control process, and

Cost functional

JT (s, x , y ;Z )
4
= Es,x ,y |g(XT )− YT |2 ;

Value function

VT (s, x , y)
4
= inf

Z
JT (s, x , y ;Z ).
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Objective:

∀x ∈ Rn, ∀T > 0, find y ∈ Rm and Z ∗ ∈ L2
F([0,T ]; Rm×d), such

that

JT (0, x , y ;Z ∗)
(1)
= VT (0, x , y)

(2)
= 0.

Remark

(1) = Existence of optimal control (relaxed control);

(Hard!) Note that VT (s, x , y) is only a viscosity solution of a
fully nonlinear PDE (Hamilton-Jacobi-Bellman equation). If
we define the “Nodal set” of VT as

N (VT )
4
= {(t, x , y) : VT (t, x , y) = 0} ,

Then (2) amounts to saying that

∀x ∈ Rn,T > 0, N (VT ) ∩ {(0, x , y) : y ∈ Rm} 6= ∅.
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A Worked-out Case (Ma-Yong, 1993)

Assume that b, h, and σ satisfies some standard conditions (e.g.,
Lipschitz, linear growth, ... ), and that

σ and h are independent of Z (k1 = 0!)

σ is non-degenerate. I.e., , ∃µ > 0 such that σσT ≥ µI .

Then, it holds that

N (VT ) = {(t, x , θ(t, x))|(t, x) ∈ [0,T ]× Rn} ,

where θ is the classical solution of the following PDE:
θt + 1

2tr
{
σ(x , θ)σT (x , θ)θxx

}
+ 〈b(x , θ), θx〉+ h(x , θ) = 0;

θ(T , x) = g(x).
(46)

In other words, VT (s, x , θ(s, x)) ≡ 0, ∀(s, x); and if we let
y = θ(0, x), then VT (0, x , y) = 0.
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A Deeper Thinking...

In light of the previous theorem, it is natural to conjecture that
Yt = θ(t,Xt) for all t ∈ [0,T ], for some function θ.

Question:

Is there a direct method to figure out the function θ?

A Heuristic Argument:

Assume θ is “smooth” and apply Itô’s formula:

dYt = dθ(t,Xt)

=
{
θt(t,Xt) + 〈θx(t,Xt), b(t,Xt , θ(t,Xt),Zt)〉

+
1

2
tr

[
θxx(t,Xt)σσ

T (t,Xt , θ(t,Xt))
] }

dt

+〈θx(t,Xt), σ(t,Xt , θ(t,Xt),Zt)dWt〉,

Comparing this to the BSDE in (39)!
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Four Step Scheme

Step 1: Find a “smooth” function z = z(t, x , y , p) so that

pσ(t, x , y , z(t, x , y , p)) + z(t, x , y , p) = 0, (47)

Step 2: Using z above, solve the quasilinear parabolic system for
θ(t, x):

0 = θt +
1

2
tr

[
θxxσσ

T (t, x , θ)
]
+〈 b(·, z(·, θx)), θx 〉

+h(t, x , θ, z(t, x , θ, θx)),

θ(T , x) = g(x), x ∈ Rn

(48)
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Step 3: Setting b̃(t, x) = b(t, x , θ(t, x), z(t, x , θ(t, x), θx(t, x)))

σ̃(t, x) = σ(t, x , θ(t, x)),

(49)

Solve the FSDE:

Xt = x +

∫ t

0
b̃(s,Xs)ds +

∫ t

0
σ̃(s,Xs)dWs . (50)

Step 4: Setting 
Yt = θ(t,Xt)

Zt = z(t,Xt , θ(t,Xt), θx(t,Xt)).
(51)

=⇒ DONE!
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Theorem (Ma-Protter-Yong, ’94)

Assume that d = n; and that

σ is independent of z;

b, σ, h, and g are smooth, and their first order derivatives in
(x , y , z) are bounded by a common constant L > 0;

∃ continuous function ν > 0 and constant µ > 0 such that
ν(|y |) ≤ σ(t, x , y)σ(t, x , y)T ≤ µI ;

|b(t, x , 0, 0)|+ |h(t, x , 0, z)| ≤ µ

g is bounded in C 2+α(Rn) for some α ∈ (0, 1).

Then, the quasilinear PDE (48) admits a unique classical solution
θ which has uniformly bounded derivatives θx and θxx ; and the
FBSDE (39) has a unique adapted solution, constructed via steps
(49)—(51).
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More generally....

Theorem

Assume that (47) admits a unique solution z, and (48) admits a
classical solution θ with bounded θx and θxx . Assume that z, b, σ
are Lipschitz with linear growth in (x , y , p), uniformly in (t, x , y)
and locally uniformly in p. Then the processes defined in (51) give
an adapted solution to the FBSDE (39).
Moreover, if h is also uniform Lipschitz in (x , y , z), σ is bound,
and there exists a constant β > 0 such that

|(σ(s, x , y , z)− σ(s, x , y , z ′))T θk
x (s, x)| ≤ β|z − z ′|, (52)

for all (s, x , y , z), then the adapted solution to (39) is unique.

Remark

The dependence of σ on z will complicate both the existence and
the uniqueness of the solution to an FBSDE (recall FBSDE (41))!
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Method of Continuation

Benefits of Previous Methods:

explicit solution (especially the component Z !)

numerically “feasible”.

Shortcomings of Previous Methods

non-degeneracy of σ

high regularity of the coefficients

all coefficients have to be deterministic (PDE)

The purpose of the Method of continuation is to replace the
smoothness conditions on the coefficients by some structural
condition. E.g., the“Monotonicity Conditions”.

Jin Ma (University of Southern California) BSDEs in Financial Math Paris Aug. 2009 110/ 218



Method of Continuation

Benefits of Previous Methods:

explicit solution (especially the component Z !)

numerically “feasible”.

Shortcomings of Previous Methods

non-degeneracy of σ

high regularity of the coefficients

all coefficients have to be deterministic (PDE)

The purpose of the Method of continuation is to replace the
smoothness conditions on the coefficients by some structural
condition. E.g., the“Monotonicity Conditions”.

Jin Ma (University of Southern California) BSDEs in Financial Math Paris Aug. 2009 110/ 218



Method of Continuation

Benefits of Previous Methods:

explicit solution (especially the component Z !)

numerically “feasible”.

Shortcomings of Previous Methods

non-degeneracy of σ

high regularity of the coefficients

all coefficients have to be deterministic (PDE)

The purpose of the Method of continuation is to replace the
smoothness conditions on the coefficients by some structural
condition. E.g., the“Monotonicity Conditions”.

Jin Ma (University of Southern California) BSDEs in Financial Math Paris Aug. 2009 110/ 218



Still consider the FBSDE (39), and allow even the coefficients to
be random(!).

The Monotonicity condition

The coefficients (h, b, σ, g) satisfy the following monotonicity
conditions: ∃β > 0 such that

〈U(t, θ1)− U(t, θ2), θ1 − θ2 〉 ≤ −β‖θ1 − θ2‖2;

〈 g(x1)− g(x2), x1 − x2 〉 ≥ β|x1 − x2|2,
(53)

where θ = (x , y , z), and U = (h, b, σ).
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Main Ideas

Let (hi , bi , σi , g i ), i = 1, 2 be two sets of coefficients. For any
(h0, b0, σ0) ∈ L2

F(Ω× [0,T ]), g0 ∈ L2
FT

(Ω), and α ∈ (0, 1),

consider the FBSDE (α; h0, b0, σ0, g0):

dXα
t = {(1− α)b1(t,Θα

t ) + αb2(t,Θα
t ) + b0

t }dt

+{(1− α)σ1(t,Θα
t ) + ασ2(t,Θα

t ) + σ0
t }dWt

dY α
t = {(1− α)h1(t,Θα

t ) + αh2(t,Θα
t ) + h0

t }dt

+Zα
t dWt

Xα
0 = x , Y α

T = (1− α)g1 + αg2 + g0

(54)

where Θα = (Xα,Y α,Zα).
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The Continuation Step:

Show that, there exists an ε0 > 0, such that for any α ∈ [0, 1),

If FBSDE(α; h0, b0, σ0, g0) is solvable for all (h0, b0, σ0, g0),
then FBSDE(α+ ε0; h

0, b0, σ0, g0) is solvable for all
(h0, b0, σ0, g0).

Consequently, the solvability of FBSDE(h1, b1, σ1; g1)
(α = 0) will imply the solvability of any FBSDE(h2, b2, σ2;
g2) (α = 1) as long as the coefficients (h2, b2, σ2; g2) verify
the continuation step!

Theorem (Hu-Peng, ’96)

Under the monotonicity condition, the FBSDE (39) admits a
unique adapted solution.
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Monotonicity condition vs. Four Step Scheme

Consider the following decoupled FBSDE:{
dXt = Xtdt + dWt , X0 = x ;
dYt = Xtdt + ZtdWt , YT = XT .

The monotonicity condition does not hold in this case:

〈U(θ1)− U(θ2), θ1 − θ2 〉 = |x1 − x2|2 + 〈 x1 − x2, y1 − y2 〉
≤ C‖θ1 − θ2‖2.

However, the (quasilinear) PDE{
0 = θt + 1

2θxx + xθx − x ,
θ(T , x) = x , x ∈ Rn

has a unique solution θ(t, x) ≡ x! That is, Yt ≡ Xt and Zt ≡ 1
solves the FBSDE (uniquely)!
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An Extended form of Four Step Scheme

Restrictions of the Method presented:

Contraction Mapping — Small duration

Four Step Scheme — High regularity of the coefficients(thus
exclusively Markovian)

Continuation — Monotonicity of the coefficients (could not
even cover the simple Lipschitz case!)

Question:

Can we improve the methods above by combining them?

Answer:

Yes! — F. Delarue (2001) combined the method of Contraction
mapping with the Four Step Scheme, and extended latter to the
case when coefficients need only be Lipschitz!
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An Extended form of Four Step Scheme

Consider the FBSDE:
Xt = ξ +

∫ t

0
b(s,Xs ,Ys ,Zs)ds +

∫ t

0
σ(s,Xs ,Ys)dWs

Yt = g(XT ) +

∫ T

t
h(s,Xs ,Ys ,Zs)ds −

∫ T

t
ZsdWs .

(55)

Main Assumptions

W is an F-BM, but FW ⊂ F (denote F 0
t = F0 ∨FW

t , ∀t);
All coefficients are deterministic, and are of linear growth;

b is uniformly Lipschitz in (y , z), monotone in x ;

f is uniformly Lipschitz in (x , z), monotone in y ;

g is uniformly Lipschitz in x ;

σ is uniformly Lipschitz in (x , y);
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An Extended form of Four Step Scheme

Theorm (Existence and uniqueness in small time duration)

Assume that the main assumptions are all in force. Then

For every ξ ∈ L2(F0; Rd), the solution (X ,Y ,Z ) to
FBSDE(55) satisfies

(X ,Y ) has continuous paths;

E
{

sup
t∈[0,T ]

|Xt |2 + sup
t∈[0,T ]

|Yt |2
}
<∞.

∃T 0
K > 0, depending only on the common Lipschitz constant

of the coefficients K , such that for every T < T 0
K and for

every ξ ∈ L2(F0; Rd), the FBSDE has a unique solution.

Note: The relaxation of the filtration is possible because of a
martingale representation theorem by Jacod-Shiryaev.
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An Extended form of Four Step Scheme

A slightly modified form of the small duration case is to consider
the following FBSDE for 0 ≤ t ≤ s ≤ T :

Xs = ξ +

∫ s

t
b(r ,Xr ,Yr ,Zr )dr +

∫ s

t
σ(r ,Xr ,Yr )dWr

Ys = g(XT ) +

∫ T

s
h(r ,Xr ,Yr ,Zr )ds −

∫ T

s
ZrdWr .

(56)

Then for T ≤ T 0
K , there exists a unique solution to (56). Denote

the solution by (X t,x
s ,Y t,x

s ,Z t,x
s ), for s ∈ [t,T ], and extend it to

[0,T ] by setting

X t,x
s = x , Y t,x

s = Y t,x
t , Z t,x

s = 0, s ∈ [0, t].

We define the (deterministic) mapping (t, x) 7→ Y t,x
t by θ(t, x).
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Continuous Dependence on Initial Data

First note that for some constants C1, C2, C3 > 0, depending only
on K , it holds that

E
{

sup
0≤s≤T

|X t,x
s |2 + sup

0≤s≤T
|Y t,x

s |+
∫ T

0
|Z t,x

s |2ds
}

(57)

≤ C1(1 + |x |2);

E
{

sup
0≤s≤T

|X t,x
s − X t′,x ′

s |2 + sup
0≤s≤T

|Y t,x
s − Y t′,x ′

s | (58)

+

∫ T

0
|Z t,x

s − Z t,x
s |2ds

}
≤ C2|x − x ′|2 + C3(1 + |x |2)|t − t ′|.

Consequently,

|θ(t, x)|2 ≤ C1(1 + |x |2);
|θ(t ′, x ′)− θ(t, x)| ≤ C2|x − x ′|2 + C3(1 + |x |2)|t − t ′|
∀t ∈ [0,T ], and ∀ξ ∈ L2(Ft ; Rn), ∃ a P-null set N ∈ F0 s.t.

Y t,ξ
s (ω) = θ(s,X t,ξ

s (ω)), ∀s ∈ [t,T ], ∀ω /∈ N.

Jin Ma (University of Southern California) BSDEs in Financial Math Paris Aug. 2009 119/ 218



Continuous Dependence on Coefficients (Stability)

Theorem

Assume that the main assumptions are all in force, and assume
that T ≤ T 0

K . Let (bn, hn, gn, σn) be a family of coefficients
satisfying the same assumptions as (b, h, g , σ) with the same
Lipschitz constants, such that (bn, hn, gn, σn) → (b, h, g , σ)
pointwisely. Then

E
{

sup
0≤s≤T

|X n,0,ξ
s − X 0,ξ

s |2 + sup
0≤s≤T

|Y n,0,ξ
s − Y 0,ξ′

s |

+

∫ T

0
|Zn,0,ξ

s − Z 0,ξ
s |2ds

}
→ 0, as n →∞.

Consequently, θn(t, x) → θ(t, x) uniformly on compacta in
[0,T ]× Rd .
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Some Important Facts

Recall the quasi-linear PDE in Four Step Scheme
0 = θt +

1

2
tr

[
θxxσσ

T (t, x , θ)
]
+〈 b(·, θ, θxσ(·, θ)), θx 〉

+h(t, x , θ, θxσ(t, x , θ)),

θ(T , x) = g(x), x ∈ Rd

(59)

We know if

all coefficients are in C∞
b , and

ξT (σσT )ξ ≥ c |ξ|2, ∀ξ ∈ Rd , for some c > 0.

Then the PDE (59) admits a unique bounded solution θ ∈ C1,2

with bounded first and second order derivatives.
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The Solution Scheme

On the other hand, if θ is a (smooth) solution to the PDE (59),
then we define

b̃(t, x)
4
= b(t, x , θ(t, x), θx(t, x)σ(t, x , θ(t, x))),

σ̃(t, x)
4
= σ(t, x , θ(t, x)).

For any t ∈ [0,T ] and ξ ∈ L2(Ft ; Rd), let X t,ξ denote the solution
to the forward SDE:

Xs = ξ +

∫ s

t
b̃(r ,Xr )dr +

∫ s

t
σ̃(r ,Xr )dWr , s ∈ [t,T ],

and define Y t,ξ
s = θ(r ,X t,ξ

s ), Z t,ξ
s = θx(s,X

t,ξ
s )σ(s,Xs , θ(s,Xs)).

Then, whenever T − t < T 0
K , (X t,ξ,Y t,ξ,Z t,ξ) should be the the

unique solution to the FBSDE(46) on [t,T ], starting from ξ.
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The Solution Scheme

A Problem:

Under only Lipschitz assumptions, the PDE(59) DOES NOT have
smooth solutions in general!

The Solution Scheme:

Approximate (b, h, g , σ) by (bn, hn, gn, σn) ∈ C∞

For each n, find θn ∈ C1,2 to the PDE (59), with bounded
first and second order derivatives, such that

|θn(t, x)| ≤ C1, |θn(t, x)−θn(t ′, x ′)| ≤ C2|x−x ′|+C3|t−t ′|1/2.

By “Continuous Dependence”: θn → θ, |θ(t, x)| ≤ C1, and

|θ(t, x)− θ(t ′, x ′)| ≤ C2|x − x ′|+ C3|t − t ′|1/2.

Construct a “global” solution via θ.
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The Solution Scheme

Note:

The function θ may not be obtained by a simple Arzela-Ascoli
argument, because the lack of “equi-continuity” in the variable t
and the uniform bound of the second derivatives.

The following “running-down” induction defines the function θ on
[0,T ]× Rd :

Partition the interval [0,T ] into 0 = t0 < t1 < · · · < tN = T ,
s.t. ti+1 − ti = T/N < T 0

K .

Consider the following FBSDEs on [t, ti+1], i = N − 1, · · · , 1:

Xs = ξ +

∫ s

t
b(r ,Xr ,Yr ,Zr )dr +

∫ s

t
σ(r ,Xr ,Yr )dWr

Ys = θ(ti+1,Xti+1)+

∫ ti+1

s
h(r ,Xr ,Yr ,Zr )ds−

∫ ti+1

s
ZrdWr .

Then θ(t, x) = Y t,x ,i
t , for t ∈ [ti , ti+1] is the desired function.
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The Solution Scheme

Once the “decoupling machine” θ is defined, then the following
“running-up” induction gives the desired solution on [0,T ]:

For 0 ≤ s ≤ t1, let (X (0),Y (0),Z (0)) solve the FBSDE:

X
(0)
s = x +

∫ s

0
b(r ,Θ

(0)
r )dr +

∫ s

t
σ(r ,X

(0)
r ,Y

(0)
r )dWr

Y
(0)
s = θ(t1,X

(0)
t1 )+

∫ ti+1

s
h(r ,Θ(0))ds−

∫ t1

s
Z

(0)
r dWr .

For tk−1 ≤ s ≤ tk , let (X (k),Y (k),Z (k)) solve the FBSDE:

X
(k)
s = X

(k−1)
tk−1

+

∫ s

tk−1

b(r ,Θ
(k)
r )dr +

∫ s

tk−1

σ(r ,X
(k)
r ,Y

(k)
r )dWr

Y
(k)
s = θ(tk ,X

(k)
tk )+

∫ tk

s
h(r ,Θ(k))ds−

∫ tk

s
Z

(k)
r dWr .

Then, to complete the “patch-up”, one needs only check:

X
(k−1)
tk = X

(k)
tk , Y

(k)
tk = θ(t,X

(k)
tk ) = θ(t,X

(k−1)
tk ) = Y

(k−1)
tk !
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5. Some Important facts

Jin Ma (University of Southern California) BSDEs in Financial Math Paris Aug. 2009 126/ 218



Feynman-Kac formula (the linear case)

Denote X t,x to be the solution to an SDE on [t,T ]:

X t,x
s = x +

∫ s

t
b(X t,x

r )dr +

∫ s

t
σ(X t,x

r )dWr .

Then under appropriate regularity conditions the function

u(t, x)
4
= Et,x

{
g(XT )e

∫ T
t c(Xs)ds +

∫ T

t
e

∫ r
t c(Xs)ds f (r ,Xr )dr

}
is a (probablistic) solution to the (linear) PDE:{

ut + 1
2 tr

[
uxxσσ

T (x)
]
+〈 b(x), ux 〉+c(x)u+f (t, x) = 0,

u(T , x) = g(x), x ∈ Rn.
(60)

Question:

Is it possible to extend the Feynman-Kac formula to the case
where PDE obove is nonlinear in u (or even ux)?
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Non-linear Feynman-Kac Formula via BSDEs

Consider FBSDEs defined on the subinterval [t,T ] ⊆ [0,T ]:
Xs = x +

∫ s

t
b(Xr )dr +

∫ s

t
σ(Xr )dWr ;

Ys = g(XT ) +

∫ T

s
f (r ,Xr ,Yr ,Zr )dr −

∫ T

s
ZrdWr ,

(61)

where s ∈ [t,T ] and the coefficients are assumed to be only
continuous and uniformly Lipschitz in the spatial variables (x , y , z).

Denote the solution by (X t,x ,Y t,x ,Z t,x). Then,

for any s ∈ [t,T ], Y t,x
s is F t

s -measurable, where
F t

s = σ{Ws −Wt ; t ≤ s ≤ T};

in particular, u(t, x)
4
= Y t,x

t is a deterministic function
(Blumenthal 0− 1 law!);
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Theorem (Pardoux-Peng, ’92; Ma-Protter-Yong ’94)

Assume b, σ, f , and g are Lipschitz, then FBMP definition

u(·, ·) is continuous, Hölder-1/2 in t and Lipschitz in x;

u is the unique viscosity solution of the quasilinear PDE:{
ut +

1

2
tr

[
uxxσσ

T
]
+〈 b, ux 〉+f (t, x , u, σTux) = 0,

u(T , x) = g(x), x ∈ Rn.
(62)

Further, under regularity conditions on the coefficients,

u(t, x) = Et,x

{
g(XT ) +

∫ T

t
f (r ,Xr ,Yr ,Zr )dr

}
(63)

is a (classical) solution to (62), where (X ,Y ,Z ) solves (61).

and the following representation holds

ux(s,Xs) = Zsσ
−1(s,Xs), s ∈ [t,T ], P-a.s. (64)
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Possible generalizations

How far can the representations (63) and (64) go?

For example, one may ask:

What are the minimum conditions on f and g under which
(63) and (64) both hold (e.g., g(x) = (x − K )+ in finance
applications — only Lipschitz!)?

Will Z always be continuous in light of (64)?

What if b, σ, f , g are random (I.e., can Four Step Scheme be
applied for FBSDEs with random coefficients?);

Is there a Feynman-Kac type solution to an Stochastic PDE?

In the SPDE case, can one define the notion of “Stochastic
Viscosity Solution”)?

... ... ... ...
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A Quick Analysis:

Assume

f ≡ 0 and

g ∈ C 1.

Then, by representation: u(t, x) = Et,x{g(XT )},

=⇒ ux(t, x) = Et,x{g ′(XT )∇XT},

where ∇X is the solution to the variational equation of X :

∇Xs = 1 +

∫ s

t
b′(Xr )∇Xrdr +

∫ s

t
σ′(Xr )∇XrdWr . (65)

Question:

What if g (or f ) is not differentiable? (Again, consider
g(x) = (x − K )+ — simply Lipschitz!)
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A New Tool: Malliavin Calculus/Skorohod Integrals

Fournié-Lasry-Lebuchoux-Lions-Touzi, ’97; Ma-Zhang, ’00:

Dτg(XT ) = g ′(XT )DτXT = g ′(XT )∇XT (∇Xτ )
−1σ(Xτ )

=⇒ ux(t, x) = Et,x{g ′(XT )∇XT}

= Et,x

{∫ T

t
Dτg(XT )

σ(Xτ )
−1(∇Xτ )

T − t
dτ

}
= Et,x

{
g(XT )

∫ T

t

σ(Xτ )
−1(∇Xτ )

T − t
dWτ

}
= Et,x

{
g(XT )Nt

T

}
.

where Nt
s
4
=

∫ s

t
σ(Xτ )

−1(∇Xτ )dWτ/(T − t), 0 ≤ t ≤ s ≤ T .

Note:

Derivative of g is NOT necessary for ux !
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Theorem (Ma-Zhang, 2000)

Suppose that f and g are uniformly Lipschitz in (x , y , z). Let

v(t, x) = Et,x

{
g(XT )Nt

T +

∫ T

s
f (r ,Θr )N

t
r dr

∣∣∣F t
s

}
σ(X t,x

s ),

for (t, x) ∈ [0,T )× Rd , where Θr = (Xr ,Yr ,Zr ), and

Ns
r
4
=

1

r − s
(∇Xs)

−1

∫ r

s
σ−1(Xτ )∇XτdWτ , 0 ≤ t ≤ s < r ≤ T .

Then, for (t, x) ∈ [0,T )× Rd ,

v is uniformly bounded and continuous;

Z t,x
s = v(s,X t,x

s )σ(X t,x
s ), s ∈ [t,T ), P-a.s.;

ux(t, x) = v(t, x);

If we assume further that g ∈ C 1, then all the above hold true
on [0,T ]× Rd , and v(T , x) = g ′(x).
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Path Regularity of process Z

Recall that if ξ ∈ L2(FW
T ; IR), then by Martingale Representation

Theorem, ∃! (predictable) process Z with E
∫ T
0 |Zs |2ds <∞, s.t.

Yt
4
= E{ξ|Ft} = ξ −

∫ T

t
ZsdWs , t ∈ [0,T ].

Question: What can we say about the path regularity of Z?

Answer: Nothing!

Examples:

ξ = WT . Then Zt ≡ 1, ∀t ∈ [0,T ];

ξ = max0≤t≤T Wt . Then by the Clark-Ocone formula,
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Now consider the FBSDE: Path Regularity
Xt = x +

∫ t

0
b(s,Xs)ds +

∫ t

0
σ(s,Xs)dWs ,

Yt = ξ +

∫ T

t
f (s,Θs)ds −

∫ T

t
ZsdWs , t ∈ [0,T ],

(66)

where ξ = Φ(X )T , and Φ : C ([0,T ]; Rd) 7→ R is a functional.

If Φ(X )T = g(XT ) and g is Lipschitz, then by Rep. Thm.:

Zt = ux(t,Xt)σ(t,Xt) =⇒ Z is continuous;

If Φ(X )T = g(Xt0 , ...,Xtn) and g is Lipschitz, then on each
subinterval [ti−1, ti ),

Zs = E

{
g(Xt0 , ...,Xtn)N

s
ti

+

∫ T

s
f (Θr )N

s
r∧ti

dr |Fs

}
σ(Xs).

=⇒ Z is a.s. continuous on each [ti−1, ti ), hence càdlàg .

Question: Can we go any further to more general functionals for
which the process Z has at least a RCLL (càdlàg) version?
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Question: Can we go any further to more general functionals for
which the process Z has at least a RCLL (càdlàg) version?
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Two Worked-Out Cases :

Theorem (Ma-Zhang,00)

Suppose that f is continuous and uniformly Lipschitz in (x , y , z).

If Φ satisfies the “functional Lipschitz” condition:

|Φ(x1)− Φ(x2)| ≤ L sup
t≤s≤T

|x1(s)− x2(s)| (67)

for all x1, x2 ∈ C ([0,T ]; Rn). Then Z has càdlàg paths.

If Φ satisfies the “Integral Lipschitz” condition:

|Φ(x1)− Φ(x2)| ≤ L

∫ T

0
|x1(t)− x2(t)|dt, (68)

then Z has a.s. continuous paths.
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Proof (e.g., the functional Lipschitz case)

For any partition π : 0 = t0 < t1 < ... < tn = T , define
ψπ : Rn+1 7→ C ([0,T ]; R) and ϕπ : C ([0,T ]; R) 7→ Rn+1 by

[ψπ(x0, · · · , xn)](t)
4
=

ti+1 − t

ti+1 − ti
xi +

t − ti
ti+1 − ti

xi+1, t ∈ [ti , ti+1);

ϕπ(x) = (xt0 , · · · , xtn), x ∈ C ([0,T ]).

Define Φπ := [Φ ◦ ψπ] and mollify (Φπ, f ) to (gπ, fπ) ∈ C 1
b s.t.

Φπ is uniform Lipschitz; and gπ satisfies

n∑
i=0

|∂xi gπ(x)yi | ≤ Lmax
i
|yi |, ∀x , y ∈ Rn+1; (69)

gπ ◦ ϕπ → Φ pointwisely on C ([0,T ]; R), as |π| → 0;

fπ → f uniformly in all variables, as |π| → 0.
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Denote the solution to (66) with ξ = gπ(Xt0 , · · ·Xtn) and
f = fπ by (X ,Y π,Zπ).

Let ∇X be the solution of (65), and (∇iY π,∇iZπ) be the
solution of the following BSDE on [ti−1, ti ):

∇iYt =
∑
j≥i

∂jg∇Xtj +

∫ T

t
〈∇f (r),∇Θi ,π

r 〉 dr

−
∫ T

t
∇iZπ

r dWr , t ∈ [ti−1, ti ),

where ∂jg = ∂xj g(Xt0 , · · · ,Xtn), and

∇f (r) = (∂x f (Θπ(r)), ∂y f (Θπ(r)), ∂z f (Θπ(r))

∇Θi ,π
r = (∇Xr ,∇iY π

r ,∇iZπ
r )

Θπ
r = (Xr ,Y

π
r ,Z

π
r ).
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Define: ∇πY π
t

4
=

n∑
i=0

∇iY π
t 1[ti−1,ti )(t) +∇nY π

T−1{T}(t).

Show that {∇πY π} is a family of quasimartingale (i.e., RCLL
and for all partition π̂, it holds that

n∑
i=1

E
{∣∣∣E {

∇πY π
ti−1

−∇πY π
ti

∣∣∣Fti−1

} ∣∣∣} + E{|∇πY π
T |} ≤ C .)

By the Meyer-Zheng Theorem (1986) ∇πY π converges
weakly to a càdlàg process Z̃ under the so-called pseudo-path
topology (of Meyer-Zheng).

Using the stability result of BSDE to show that ∇πY π

converges to Z in L2(Ω× [0,T ]), hence a.s. converges to Z in
the pseudo-path topology. Identifying the laws of Z and Z̃ we
see that Z is càdlàg , a.s.
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Some Extensions

In almost all of the existing theory of Financial Asset Pricing, the
“price” process is assumed to be Markov under the so-called risk
neutral measure. But by a result of Çinlar-Jacod (1981) states that
all “reasonable” strong Markov martingale processes are solutions
of equations of the form:

Xt = y +

∫ t

0
σ(r ,Xr )dWr +

∫ t

0

∫
R

b(r ,Xr−, z)µ̃(drdz), (70)

where W is a Wiener process µ̃ is a compensated Poisson random
measure with Lévy measure F .

Consider, for example, the Markov Martingale with b = b(r , x)z :

Xt = y +

∫ t

0
σ(r ,Xr )dWr +

∫ t

0

∫
R

b(r ,Xr−)zµ̃(drdz). (71)

Jin Ma (University of Southern California) BSDEs in Financial Math Paris Aug. 2009 140/ 218



Let Φ : ∆ 7→ R be s.t. E |Φ(X )|2 <∞, and Mt
4
= E{Φ(X )|Ft},

t ≥ 0. By Mart. Rep. Thm, ∃ F-predictable process Z s.t.

Mt = M0 +

∫ t

0
ZsdXs + Nt , (72)

where N is an F-martingale that is orthogonal to X .

Question:

Under what conditions on Φ will Z have càglàd paths?

Answer:

Φ(X ) = g(Xt0 ,Xt1 , · · · ,Xtn), g ∈ C 1
b (Rn+1)

— Jacod-Méléard-Protter (2000)

|Φ(x1)− Φ(x2)| ≤ L

∫ T

0
|x1(t)− x2(t)|dt, x1, x2 ∈ ∆

— Ma-Protter-Zhang (2000)
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Possible Applications in Finance:

Φ(X )T =
1

T

∫ T

0
Xsds;

Φ(X )T = g( sup
0≤t≤T

h(t,Xt)), where g and h(t, ·) are uniformly

Lipschitz with a common constant K , and h(·, x) is
continuous for all x . (Lookback option)

Φ(X )T = g(

∫ T

0
h(s,Xs−)dXs), where g and h(t, ·) are

uniformly Lipschitz continuous; h is bounded; and for fixed x ,
h(·, x) is càglàd .

Φ(X ) = g(Φ1(X ), · · · ,Φn(X )), where g is Lipschitz and Φi ’s
are of any of the forms (i)–(iii). (For example, if
g(x) = (K − x)+, then g combined with (i) gives an Asian
Option.)
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5. Weak Solutions of FBSDEs
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Definition of Weak Solution of FBSDEs

Recall the general form of forward-backward SDE:
Xt = x +

∫ t

0
b(s,Θs)ds +

∫ t

0
σ(s,Θs)dWs

Yt = g(X )T +

∫ T

t
h(s,Θs)ds −

∫ T

t
ZsdWs ,

(73)

Question:

What can we say about the well-posedness of the FBSDE if the
coefficients are only continuous?
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Example

(i) Decoupled Case:
Xt = x +

∫ t

0
b(s,Xs)ds +

∫ t

0
σ(s,Xs)dWs

Yt = g(X )T +

∫ T

t
h(s,Xs ,Ys ,Zs)ds −

∫ T

t
ZsdWs ,

In this case we can take a weak solution (Ω,F ,P,X ,W ), and
obtain the (strong) solution (Y ,Z ) on the space (Ω,F ,P).

(ii) Weakly Coupled Case:
Xt = x +

∫ t

0
[b0(s,Xs) + b1(s,Θs)]ds +

∫ t

0
σ(s,Xs)dWs

Yt = g(X )T +

∫ T

t
h(s,Θs)ds −

∫ T

t
ZsdWs ,

where σ−1 and b1 are bounded — Girsanov(?)
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Some Preparations

A quintuple (Ω,F ,P,F,W ) is called a

“standard set-up” if (Ω,F ,P; F) is a complete, filtered prob.
space satisfying the usual hypotheses and W is a F-B.M.

“Brownian set-up” if F = FW 4
= {FW

t }t∈[0,T ].

“Canonical Space”: Ω
4
= Ω1 × Ω2, F

4
= F 1

∞ ⊗F 2
∞, where

Ωi 4= D([0,∞); Rni ), i = 1, 2 — path space of X and Y

F i
t
4
= σ{ωi (r ∧ t) : r ≥ 0}, i = 1, 2 (Ft

4
= F 1

t ⊗F 2
t , t ≥ 0)

On a canonical space (Ω,F ), denote ω = (ω1, ω2) ∈ Ω, and

(xt(ω), yt(ω))
4
= (ω1(t), ω2(t)), the “canonical process”,

P(Ω) = all prob. meas. on (Ω,F ), with Prohorov metric.
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Existing Literature

Antonelli and Ma (’03) — (FBSDE)

— Existence via Girsanov, Yamada-Watanabe Theorem,

Buckdahn, Engelbert, and Rascanu (’04) — (BSDE, no “Z”)

— Existence via Meyer-Zheng, Yamada-Watanabe
Theorem, ...

Delarue and Guatteri (’05) — (FBSDE)

— Forward “weak” ⊕ backward “strong”...

Our Main Purpose:

Find a “backward” version of the “Martingale Problem”

A more general existence result (multi-dimensional,
non-Markovian FBSDEs)

Uniquenss (in law)!!!
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Definition (Antonelli-Ma, ’03)

A standard set-up (Ω,F ,P,F,W ) along with a triplet of processes
(X ,Y ,Z ) defined on the set-up is called a weak solution of (73) if

(X ,Y ,Z ) is F-adapted; and (X ,Y ) are continuous,

denoting ηs = η(s, (X )s ,Ys ,Zs) for η = b, σ, h, it holds that

P

{∫ T

0

(
|bs |+ |σs |2 + |hs |2 + |Zs |2

)
ds + |g(X )T |2 <∞

}
= 1

(X ,Y ,Z ) verifies (73) P−a.s.

Remark

Similar to the forward SDE, a weak sol. allows the flexibility
of probability space, and relaxed the most fundamental
requirement for a BSDE, i.e., that the set-up is Brownian.

The Tsirelson-type examples for forward SDEs would lead to
the fact that there do exist weak sol. that are not “strong”.
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Forward-Backward Martingale Problems (FBMP)

Assume σ = σ(t, x, y), and let (Ω,F ) be the canonical space and
(x, y) the canonical processes. Denote

a = σσT ;

f̂ (t, x, y , z) = f (t, x, y , zσ(t, x, y)), for f = b, h.

Note:

The general case σ = σ(t, x, y , z) can can be treated along the
lines of “Four Step Scheme”:

find a function Φ such that

Φ(t, x, y , z) = zσ(t, x, y ,Φ(t, x, y , z)),

define the functions b̂, ĥ, and σ̂ as

f̂ (t, x, y , z) = f (t, x, y ,Φ(t, x, y , z)), f = b, h, σ.
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Definition

∀(s, x) ∈ [0,T ]× Rn, a solution to FBMPs,x ,T (b, σ, h, g) is a pair
(P, z) ∈ P(Ω)⊗ L2

F([0,T ]× Ω; Rm×n) such that

Both processes Mx(t)
4
= xt −

∫ t
s b̂(r , (x)r , yr , zr )dr and

My(t)
4
= yt +

∫ t
s ĥ(r , (x)r , yr , zr )dr are P-mg’s for t ≥ s;

[M i
x,M

j
x](t) =

∫ t

s
aij(r , (x)r , yr )dr , t ≥ s, i , j = 1, · · · n,

My(t) =
∫ t
s zrdMx(r), t ≥ s.

P{xs = x} = 1 and P{yT = g(x)T} = 1.

Remark

The process {zt} is different from {Zt} in (73)! In fact,
{zt} ∼ ∇u, Z ∼ σT∇u, where u satisfies PDE (62).

(73) has a weak solution ⇐⇒ FBMPt,x ,T (a, b, h, g) has a
solution with a = σσT .
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FBMP vs. Traditional Martingale Problem:

Assume f (t, x, y , z) = f (t, x , y , z), f = b, σ, h, g . Then (P, z) is a
solution to the FBMPs,x ,T (b, σ, h, g) ⇐⇒{

dxt = b̂(t, xt , yt , zt)dt + dMx(t),

dyt = −ĥ(t, xt , yt , zt)dt + dMy(t) = −ĥ(t, · · · )dt + ztdMx(t).

⇐⇒ (By Itô and choice of ϕ):

C [ϕ](t)
4
= ϕ(xt , yt)− ϕ(x , y0)−

∫ t

0
Ls,xs ,ys ,zsϕ(xs , ys)ds

is a P-martingale for all ϕ ∈ C 2(Rn × Rm). where

Lt,x ,y ,z
4
=

1

2
tr {AD2

x ,y}+ 〈 b̂,∇x 〉− 〈 ĥ,∇y 〉;

A(t, x , y , z)
4
= [In, z ]Ta(t, x , y)[In, z

T ].
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Solvability of FBMPs (Existence)

Main Assumption:

(H1) b, σ, h, and g are bounded and uniformly continuous on
(x, y , z), uniformly in t.

Theorem

Assume (H1), and that ∃{(bn, σn, hn, gn)}, all satisfying (H1), s.t.

for f = b, σ, h, g, ‖fn − f ‖∞ ≤ 1
n ;

FBSDE (73) with (bn, σn, fn, gn) has strong sol. (X n,Y n,Zn);

denoting Zn,δ
t

4
= 1

δ

∫ t
0∨(t−δ) Zn

s ds, it holds that

lim
δ→0

sup
n

E
{∫ T

0
|Zn

t − Zn,δ
t |2dt

}
= 0. (74)

Then (73) admits a weak solution. DeepThinking
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Sketch of the Proof.

Step 1. Assume Θn
t
4
= ((X n)t ,Y

n
t ,Z

n
t ) “lives” on a fixed prob.

space. Denote

Bn
t
4
=

∫ t
0 bn(s,Θ

n
s )ds; F n

t
4
=

∫ t
0 hn(s,Θ

n
s )ds; An

t
4
=

∫ t
0 Zn

s ds;

Mn
t
4
=

∫ t
0 σn(s,Θ

n
s )dWs ; Nn

t
4
=

∫ t
0 Zn

s dWs ,

and Σn 4
= (W ,X n,Y n,Bn,F n,An,Mn,Nn).

Then

{Σn} are quasimartingales under P with uniformly bounded
conditional variation. (e.g., ∀0 = t0 < · · · < tm = T ,

C.Var(Y n) ≤
m−1∑
i=0

E
{∫ ti+1

ti

|hn(t,Θ
n
t )|dt + |gn(X

n
T )|

}
≤ C .)

by Meyer-Zheng tightness criteria,

Pn 4
= P ◦ [Σn]−1 → P ∈ P(Ω̂) weakly, as n →∞ (possibly

along a subsequence), where Ω̂
4
= D([0,T ]; R8);
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Step 2. By a slight abuse of notations, denote the coordinate
processs of Ω̂ by Σ = (W , x, y,B,F ,A,M,N). Then

W is a Brownian motion under P;

B, F (whence x), and M are all continuous;

M,N are martingales ([Meyer-Zheng, Theorem 11], as

supn E
{∫ T

0 |Zn
t |2dt

}
<∞);

A is absolutely continuous w.r.t. dt, P-a.s., and for some

z ∈ L2([0,T ]× Ω̃), it holds that At =

∫ t

0
zsds,

([Meyer-Zheng, Theorem 10]).

=⇒ xt = x0+Bt+Mt , yt = y0−Ft+Nt , ∀t, P-a.s.

Hope:

Bt =

∫ t

0
b(s,Θs)ds, Mt =

∫ t

0
σ(s,Θs)dWs , Ft =

∫ t

0
h(s,Θs)ds,

Nt =

∫ t

0
zsdWs ...
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Step 3. Show that Bt =
∫ t
0 b(s,Θs)ds and Ft =

∫ t
0 h(s,Θs)ds.

Key estimates:

Denote Z δ
t
4
=

1

δ
[At − At−δ] and Θδ

s = ((X )s ,Ys ,Z
δ
s );

by the uniform continuity of b (on z) ⊕ Assumption (74)

EP
{
|Bt−

∫ t

0
b(s,Θs)ds|

}
= lim
δ→0

EP
{
|Bt−

∫ t

0
b(s,Θδ

s )ds|
}

≤ lim
δ→0

lim
n

E
{∫ T

0
|b(s,Θn

s )− b(s,Θn,δ
s )|ds

}
= lim

n
lim
δ→0

E
{∫ T

0
|b(s,Θn

s )− b(s,Θn,δ
s )|ds

}
= 0

=⇒ EP
{
|Bt −

∫ t

0
b(s,Θs)ds|

}
= 0.

Similar for F .
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Step 4. Show that Nt =
∫ t
0 zsdWs , Mt =

∫ t
0 σ(s,Θs)dWs .

Key estimates:

By Dom. Conv. Thm:
∫ T
0 |Zt − Z δ

t |2dt → 0, P − a.s.

Let π : 0 = t0 < · · · < tm = T be any partition. Show that

EP
{m−1∑

j=0

∫ tj+1

tj

|Nt−
j−1∑
i=0

Z δ
ti
[Wti+1−Wti ]|

2dt
}

+
C

δ2
EP{Iπ,δ}

≤ C lim
n

E
{∫ T

0
|
∫ t

0
Zn

s dWs −
∫ t

0
Zn,δ

s dWs |2dt
}

+
C |π|
δ2

≤ C sup
n

E
{∫ T

0
|Zn

t − Zn,δ
t |2dt

}
+

C |π|
δ2

.

Letting |π| → 0 and using (74) (Again!) =⇒ limδ→0 I δ = 0.

Similarly, Mt =
∫ t
0 σ(s,Θs)dWs .
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When will Assumption (74) satisfied?

(H2) b, h, σ, and g are deterministic, Lipschitz, and
1

K
I ≤ σnσ

∗
n ≤ KI , for some K > 0.

Let {(bn, σn, hn, gn)} be the molifiers of (b, σ, h, g), and let
(X n,Y n,Zn) be the correspondin strong solutions

In light of the “Four Step Scheme”, the following relations
hold:

Y n
t = un(t,X n

t ), Zn
t = σn(t,X

n
t , u

n(t,X n
t ))∇xu

n(t,X n
t ),

where un(t, x) is the (classical) solution to the PDE:{
un
t +

1

2
σ2

nD
2
xxu

n +∇xu
n ·bn(· · · , σn∇xu

n) + hn(· · · ) = 0;

un(T , x) = gn(x).
(75)
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Hölder Continuous Case

For simplicity, assume b ≡ 0 and m = d = 1.

Key Estimates (MZZ-2005):

If σ, h, and g are Cα, and u ∈ C 1,2 is the solution to the PDE
(75), then ∃C > 0, α ∈ (0, 1), and Cε > 0 for each ε > 0, s.t.

|ux(t, x)| ≤ C (T − t)
α−1

2 ; |uxx(t, x)| ≤ C (T − t)
α
2
−1,

|ux(t1, x)− ux(t2, x)| ≤ Cε
√

t2 − t1, 0 ≤ t1 < t2 ≤ T − ε.

Note: Zn
t = [un

xσn](t,X
n
t , u

n(t,X n
t )) =⇒ ∀δ, ε > 0,

∃β = β(α) > 0, s.t.

E
{∫ T

0
|Zn

t − Zn,δ
t |2dt

}
≤ Cεδ

β + Cεα.

First letting δ → 0 and then ε→ 0 =⇒ Assumption (74) holds.
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Uniformly Continuous Case

More complicated, but still possible. Need: gradient Estimate of
the form:

|ux(s, x)− ux(t, y)| ≤ C [|s − t|
α
2 + |x − y |α] (!) (76)

One dimensional case, use the result of Nash

Higher dimensional case, need Lp-theory (e.g., Lieberman’s
book)
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Some Facts about “Canonical Weak Solution”:

We call the weak solution (Ω,F ,P;F,W ,X ,Y ,Z ) constructed via
“Four Step Scheme” the “Canonical Weak Solution”. Then,

Yt = u(t,Xt), where u is a viscosity solution of the
corresponding PDE.

By an estimate on u (cf. e.g., Delarue, 2003), for
t < t + δ ≤ T0 < T ,

|u(t + δ,Xt+δ)− u(t,Xt)| ≤
C

(T − T0)
α
2

[
δ

α
2 + |Xt+δ − Xt |α

]
.

Hence

EP
t |Yt+δ − Yt |2 ≤

C

(T−T0)α

[
δα+EP

t

∣∣∣ ∫ t+δ

t
σ(·)dWs

∣∣∣2α]
≤ C

(T − T0)α
δα.
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Consequently,

EP
t

{∫ t+δ

t
|Zs |2ds

}
= EP

t

{
|Yt+δ − Yt +

∫ t+δ

t
h(· · · )ds|2

}
≤ C

(T − T0)α
δα.

Finally,

EP
t

{
|Yt+δ − Yt |2

}
+ EP

t

{∫ t+δ

t
|Zs |2ds

}
≤ C

(T − T0)α
δα. (77)

Note:

The estimates (77) will be useful in the discussion of uniqueness!
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Uniqueness of FBMP

Main Assumptions:

m = 1 and Markovian type

b, σ, h, and g are bounded and uniformly continuous in
(x , y , z), and σσT ≥ cI , c > 0. Thus WLOG may assume
b = 0 (Girsanov).

Recall that a weak solution is a pair (P,Z ), where P is a proba.
measure on the canonical space Ω = C([0,T ]; Rn)× C([0,T ]; R)

and Z ∈ L2
F([0,T ]× Ω; P), such that Wt

4
=

∫ t

0
σ−1(t, xt , yt)dxt ,

t ≥ 0 is a P-Brownian motion.

Definition of Uniqueness:

If (Pi ,Z i ), i = 1, 2 are two weak solutions, then the processes
(x, y,Z 1) and (x, y,Z 2) have the same finite dimensional
distributions, under P1 and P2, respectively.
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K -Weak Solutions

Definition

Let K : [0,T ]× R+ 7→ R+ be such that
∫ T
0 K 2

t dt <∞. We say
that a pair (P,Z ) is a “K-weak solution” at
(s, x , y) ∈ [0,T ]× R× R if the following hold:

Wt
4
=

∫ t
s σ

−1(r , xr , yr )dxr is a P-Brownian motion for t ≥ s;

P{xs = x , ys = y} = 1;

yt = y −
∫ t
s h(r , xr , yr )dr +

∫ t
s ZrdWr , t ∈ [s,T ], P-a.s.;

P{yT = g(xT )} = 1;

|Zt | ≤ Kt , ∀t ∈ (s,T ), P-a.s.

Objective:

Show that the K -weak solution is unique!
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K -Weak Solutions

If σ, h, g are Hölder-α continuous, and u ∈ C 1,2 is the classical
solution to PDE{

ut +
1

2
uxxσ

2 + h(t, x , u, uxσ) = 0;

u(T , x) = g(x).
(78)

Then, recall that we have proved (MZZ-2005) that ∃C > 0,
depending only on L, T , and α, such that

|ux(t, x)| ≤ C (T − t)
α−1

2 ; |uxx(t, x)| ≤ C (T − t)
α
2
−1.

Consequently, if we assume that Kt ≥ C (T − t)
α−1

2 , then the class
of K -weak solutions is nonempty, and it at least contains the
canonical weak solution!

Viscosity
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K -Weak Solutions

Denote O
4
= {(t, x , y) : ∃K -weak solution at (t, x , y)}.

Define O =cl{O}, and u(t, x)
4
= inf{y : (t, x , y) ∈ O};

ū(t, x)
4
= sup{y : (t, x , y) ∈ O}.

Important Facts

u (resp. ū) is a viscosity super-solution (resp. sub-solution) of
(78). Consequently, if the Comparison Theorem (for viscosity
solutions) holds for the PDE (78). Then

u ≥ ū =⇒ u ≡ ū = u. (I.e., O is a singleton for each (t, x),
and u is the unique viscosity solution to (78).)

For any K -weak solution (P,Z ), one shows that
(t, xt , yt) ∈ O =⇒ yt = u(t, xt) holds ∀t, P-a.s., as well.
(Compare to the canonical weak solution!)
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Uniqueness of K -Weak Solutions

Let (P∗,Z ∗) be any K -weak solution, we want to show that it is
“identical” to the canonical K -weak solution.

dW ∗
t = σ−1(t, xt , u(t, xt))dxt .

W ∗ is a BM under P∗ =⇒ (W ∗, x) is a weak solution to a
forward SDE (!)

P∗ ◦ (W ∗, x)−1 = P0 ◦ (W 0, x)−1 (uniqueness of FMP)

since both P∗ and P0 are K -weak solution, one has
yt = u(t, xt), both P∗ and P0-a.s. (!)

P∗ ◦ (W ∗, x, y)−1 = P0 ◦ (W 0, x, y)−1,

P∗ = P0, and furthermore, P∗ ◦ 〈 y,W ∗ 〉−1 = P0 ◦ 〈 y,W 0 〉−1

Z ∗ ∼ z!

DONE!
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Some Observations:

1◦ For a weak solution (P,Z ) and any δ > 0, denoting Pωt to be
the r.c.p.d. of P{·|Ft}(ω), define

KP,Z (t, δ, ω) = EPω
t

{∫ (t+δ)∧T

t
|Zs |2ds

}
.

If g , σ, and h are all Hölder continuous, then for any δ > 0, the
canonical weak solution (P0, z) satisfies:

KP0,z(δ, ω)
4
= sup

t∈[0,T ]
EP0,ω

t

{∫ (t+δ)∧T

t
|zs |2ds

}
≤ Cδα, P0-a.s.

Hence

lim
n→∞

EPn{KPn,Zn
(tn, 1/

√
n, ·)} = 0. (79)
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2◦ Assume (H1) and (H2). Recall the estimate (77) for the
canonical weak solution:

EP0

t

{
|yt+δ − yt |2

}
+ EP0

t

{∫ t+δ

t
|zs |2ds

}
≤ C

(T − t − δ)α
δα.

Then, for any δ > 0, η > 0, we have

P0,ω
t {|yt+δ − yt | ≥ η} ≤ Cδα

(T − t − δ)αηα
4
= k0(t, δ, η), P0-a.e.

Or, in line of (79):

KPo ,z(t, δ, ·) = EP0,ω
t

{∫ (t+δ)∧T

t
|zr |2dr

}
≤ Cδα

(T − t − δ)α

4
= k1(t, δ), P0-a.e. ω.

Jin Ma (University of Southern California) BSDEs in Financial Math Paris Aug. 2009 168/ 218



k-Weak Solutions

Definition

We say that a pair (P,Z ) is a “k-weak solution” (resp. k̃-weak
solution) at (s, x , y) ∈ [0,T ]× R× R if it is a weak solution (or
solution to the FBMP) such that the following hold:

For any t ∈ [s,T ), δ > 0, and η > 0,

Pωt {|yt − y(t+δ)∧T | ≥ η} ≤ k(t, δ, η), P-a.e. ω ∈ Ω.

(resp. For any t ∈ [t,T ) and δ > 0,

EPω
t

{∫ (t+δ)∧T

t
|Zr |2dr

}
≤ k̃(t, δ), P-a.s. ω ∈ Ω.
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k-Weak Solutions

Remark:

Clearly, the “k-”, and “k̃-solutions” are the modifications of the
“K -weak solution”, with k : [0,T )× (0,T )× (0, 1) 7→ R+ (resp.
k̃ : [0,T )× (0,T ) 7→ R+) now satisfying the following properties:

k(t1, δ1, η) ≤ k(t2, δ2, η), ∀t1 ≤ t2, δ1 ≤ δ2

k̃(t1, δ1) ≤ k̃(t2, δ2)) ∀t1 ≤ t2, δ1 ≤ δ2;

lim
δ→0

k(t, δ, η) = lim
δ→0

k̃(t, δ) = 0, ∀(t, η);

k(t, δ, η) ≥ k0(t, δ, η), ∀t < t + δ < T ;

k̃(t, δ) ≥ k1(t, δ)), ∀t < t + δ < T .

Theorem (MZZ-2006)

Both k− and k̃−weak solutions are unique.
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k-Weak Solutions

Remark:

Clearly, the “k-”, and “k̃-solutions” are the modifications of the
“K -weak solution”, with k : [0,T )× (0,T )× (0, 1) 7→ R+ (resp.
k̃ : [0,T )× (0,T ) 7→ R+) now satisfying the following properties:

k(t1, δ1, η) ≤ k(t2, δ2, η), ∀t1 ≤ t2, δ1 ≤ δ2

k̃(t1, δ1) ≤ k̃(t2, δ2)) ∀t1 ≤ t2, δ1 ≤ δ2;

lim
δ→0

k(t, δ, η) = lim
δ→0
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Uniqueness of General Weak Solution

Two Possibilities:

Show that every weak solution is a k (k̃)-weak solution

Show that every weak solution can be “controlled” by a k
(k̃)-weak solution

Example

Assume that the FBSDE is decoupled. (I.e., b = b(t, x),
σ = σ(t, x).) Let

O
4
= {(t, x , y) : ∃ a weak solution on [t,T ] s.t. Xt = x , Yt = y}.

Then, one can show that

O(t, x)
4
= {y : (t, x , y) ∈ O} = [Yt,x

t ,Y
t,x
t ] is an interval;

∀y ∈ O(t, x), ∃ a k̃-weak solution (P,Z ) starting from
(t, x , y).
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Main Idea:

Fix a (Ω,F ,P,X ,W ) (forward weak solution) starting from
(t, x), and find approximation fn ↑ f (resp. fn ↓ f ) to obtain
solutions Y (resp. Y ) (Lepeltier-San Martin);

By construction, both Y and Y are k̃-solutions.

Show that all weak sol’s from (t, x , y) can be “controlled” by
(Y ,Z ) and (Y ,Z ).

In general, one needs:

Comparison Theorem for FBSDEs (only at t = 0!)

More knowledge on the PDE solutions

......
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7. Backward Stochastic PDEs
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Linear BSPDEs

W = (W 1, · · · ,W d) — a d-dimensional Brownian motion.

{Ft} = {FW
t }.

g : Rn × Ω 7→ R — a random field such that for fixed x ,
g(x , ·) is FT -measurable.

Backward SPDE (linear version):

du(t, x) = −[L u + M q + f ](t, x)dt + 〈 q(t, x), dWt 〉
u(T , x) = g(x), 0 ≤ t ≤ T , (80)

where, for ϕ ∈ C 2 and ψ ∈ C 1,

(Lϕ)(t, x) =
1

2
∇ · (A(t, x)∇ϕ) + 〈 a(t, x),∇ϕ 〉+c(t, x)ϕ,

(Mψ)(t, x) = B(t, x)∇ψ + h(t, x)ψ,

and A, B, a, c , h and f are F-prog. measurable random fields.
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Main Assumptions

The BSPDE is called

“Parabolic” if A− BBT ≥ 0, ∀(t, x), a.s.

“Super-parabolic:” if ∃δ > 0, A−BBT ≥ δI , a.e. (t, x), P-a.s.

“Degenerate Parabolic:” if it is “Parabolic” ⊕
“∃G ⊆ [0,T ]× Rn, |G | > 0, such that det[A− BBT ] = 0,
∀(t, x) ∈ G , a.s.”

satisfies the “Symmetric Condition:” if[
B(∂xi B

T )
]T

= B(∂xi B
T ), for a.e. (t, x), P-a.s., 1 ≤ i ≤ n.

Assumptions (H)m:

For fixed x , A, B, a, c , h and f are predictable; and g is
FT -measurable. For fixed (t, ω), they are differentiable in x up to
order m, and all the partial derivatives are bounded uniformly in
(t, ω), by a constant Km > 0.
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Definitions of Solutions

Let (u, q) be a pair of random fields satisfying (80) ∀t, a.s.

(u, q) is called an adapted classical solution of (80) if{
u ∈ CF ([0,T ]; L2(Ω; C 2(BR))),

q ∈ L2
F (0,T ;C 1(BR ; Rd)),

∀R > 0,

(u, q) is called an adapted strong solution of (80) if{
u ∈ CF ([0,T ]; L2(Ω; H2(BR))),
q ∈ L2

F (0,T ;H1(BR ; Rd)),
∀R > 0,

(u, q) is called an adapted weak solution of (80) if{
u ∈ CF ([0,T ]; L2(Ω; H1(BR))),
q ∈ L2

F (0,T ; L2(BR ; Rd)),
∀R > 0,

such that for all ϕ ∈ C∞
0 (Rn) and all t ∈ [0,T ], it holds that

〈 u(t, ·), ϕ 〉− 〈 g , ϕ 〉 =

∫ T

t

{
− 1

2
〈A∇u,∇ϕ〉+ 〈 a∇u+cu, ϕ 〉

− 〈Bq,∇ϕ 〉+ 〈(h, q), ϕ 〉+ 〈 f , ϕ 〉
}

ds−
∫ T

t
〈 q, ϕ 〉 dWs 〉 .
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Main Results

Denote

m ≥ 0 — integer, α = (α1, α2, · · · , αn) — multi-index,

|α| = α1 + α2 + · · ·+ αn, ∂
α 4

= ∂α1
x1
∂α2

x2
· · · ∂αn

xn

If β = (β1, β2, · · · , βn) is another multi-index, then

β ≤ α⇐⇒ βi ≤ αi ∀1 ≤ i ≤ n,

β < α⇐⇒ β ≤ α, and |β| < |α|.

Also, for given (u, q), denote

F (t, x ; u, q,m)
4
=

∑
|α|≤m

〈(A− BBT )∇(∂αu),∇(∂αu) 〉

+
∑
|α|≤m

|∂αq + BT∇(∂αu)− h∂αu|2 ≥ 0.

Jin Ma (University of Southern California) BSDEs in Financial Math Paris Aug. 2009 177/ 218



Main Results

Theorem

Suppose that A(t, x) = A(t), and (H)m holds for some m ≥ 1.
Then

BSPDE (80) has a unique adapted weak solution (u, q).

the following estimate holds:

max
t∈[0,T ]

E‖u(t, ·)‖2
Hm + E

∫ T

0
‖q(t, ·)‖2

Hm−1dt

+E
∫

[0,T ]×Rd

F (t, x ; u, q,m)dxdt

≤ C
{
‖f ‖2

L2
F (0,T ;Hm) + ‖g‖2

L2
FT

(Ω;Hm)

}
,

where C > 0 depends only on m, T and Km.
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Main Results

Theorem

Assume Parabolic and symmetric conditions; and that (H)m holds
for some m ≥ 1, f ∈ L2

F (0,T ;Hm(Rn)), g ∈ L2
FT

(Ω; Hm(Rn)).
Then BSPDE (80) admits a unique weak solution (u, q), s.t.

max
t∈[0,T ]

E‖u(t, ·)‖2
Hm + ‖q‖2

L2([0,T ]×Ω;Hm−1) + ‖F‖L1([0,T ]×Rn×Ω)

≤ C
{
‖f ‖2

L2
F (0,T ;Hm) + ‖g‖2

L2
FT

(Ω;Hm)

}
,

where the constant C > 0 only depends on m, T and Km, and

F = F (t, x ; u, q,m) =
∑
|α|≤m

{
〈(A− BBT )∇(∂αu),∇(∂αu) 〉

+
∣∣∣BT [∇(∂αu)] + ∂αq

∣∣∣2}.
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Main Ideas

Take an orthonormal basis {ϕk}k≥1 ⊂ C∞
0 (IRn) for the space

Hm ≡ Hm(Rn), whose inner product is denoted by

(ϕ,ψ)m ≡
∫

Rn

∑
|α|≤m

(∂αϕ)(∂αψ)dx , ∀ϕ,ψ ∈ Hm.

Consider the following linear BSDE (not BSPDE): dukj(t) =
{
−

∑k
i=1

[
(Lϕi , ϕj)muki (t)− 〈(Mϕi , ϕj)m, q

ki (t) 〉
]

−(f , ϕj)m
}
dt + 〈 qkj(t), dW (t) 〉,

ukj(T ) = (g , ϕj)m, 1 ≤ j ≤ k.

Define {
uk(t, x , ω) =

∑k
j=1 ukj(t, ω)ϕj(x),

qk(t, x , ω) =
∑k

j=1 qkj(t, ω)ϕj(x),

Then uk(t, · , ω) ∈ C∞
0 (Rn), qk(t, · , ω) ∈ C∞

0 (Rn; Rd).
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Main Ideas

Prove the a priori estimates hold for (uk , qk)’s, and then
conclude that they are bounded in the space of L∞ × L2

Hence{
uk → u, weak∗ in L∞F (0,T ; L2(Ω; H`)), 0 ≤ ` ≤ m,
qk → q, weakly in L2

F (0,T ;H`)d , 0 ≤ ` ≤ m − 1,

and for any |α| ≤ m,
(A− BBT )1/2D(∂αuk) → (A− BBT )1/2D(∂αu),
BT [D(∂αuk)] + ∂αqk → BT [D(∂αu)] + ∂αq,

weakly in L2
F(0,T ;H0).

Taking limits to show that (u, q) satisfies the estimates, with
constant C > 0 depending only on T , m and Km.

Argue that the convergence is strong and (u, q) is a weak
solution.
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Some Remarks

The “Symmetry Condition” holds in the following cases:

B is symmetric (in this case, it is necessary that n = d);
d = n = 1 (B is a scalar);
B is independent of x ;
B(t, x) = ϕ(t, x)B0(t), where ϕ is a scalar random field.

In Theorem 2, if the symmetric condition on B is replaced by
either one of the following conditions: for some ε0 > 0,

(i) A− BBT ≥ ε0BBT ≥ 0,
(ii) A− BBT ≥ ε0

∑
|α|=1(∂

αB)(∂αBT ) ≥ 0,

Then the conclusion of Theorem 2 remains true. Furthermore,
if (i) holds, the function F in estimate (4) can be improved to

F (t, x ; u, q,m) =
∑
|α|≤m

〈A∇(∂αu),∇(∂αu) 〉 .
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Some Direct Consequences

m ≥ 2 =⇒ “weak solution” becomes “strong solution”;

m > 2 + n/2 =⇒ “strong solution” becomes “classical sol.”;

“superparabolic condition” =⇒ “

max
t∈[0,T ]

E‖u(t, ·)‖2
Hm +E

∫ T

0

{
‖u(t, ·)‖2

Hm+1 +‖q(t, ·)‖2
Hm

}
dt

≤ C
{
‖f ‖2

L2([0,T ]×Ω;Hm−1) + ‖g‖2
L2(Ω;Hm)

}
.

“ Coefficients are all deterministic” =⇒ q = 0 and u satisfies{
ut = −L u − f , (t, x) ∈ [0,T ]× Rn,
u
∣∣
t=T

= g .

Jin Ma (University of Southern California) BSDEs in Financial Math Paris Aug. 2009 183/ 218



Comparison Theorems

For given λ ≥ 0 and m ≥ 1, we say that the BSPDE
{L ,M , f , g , λ,m} is regular if the following conditions are
satisfied:

Parabolicity condition (2) holds;

(H)m holds;

the “Symmetry Condition” holds for B,

for ϕλ(x)
4
= e−λ 〈 x 〉 = e−λ

√
1+|x |2 , it holds that

ϕλ · f ∈ L2
F (0, t;Hm(Rn)), ϕλ · g ∈ L2

FT
(Ω; Hm(Rn)).

Since a regular BSPDE {L ,M , f , g , λ,m} must have at least a
unique adapted weak solution, we denote it by (u, q). If Ā, B̄, ā,
h̄, c̄ is another set of coefficients that determines the operators L̄
and M̄ , we denote the corresponding adapted solution of BSPDE
{L̄ , M̄ , f̄ , ḡ , λ,m} by (ū, q̄).
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Comparison Theorems

Theorem

Assume that for some λ > 0 and m ≥ 2, the BSPDEs
{L ,M , f , g , λ,m} and {L̄ , M̄ , f̄ , ḡ , λ,m} are both regular. Let
(u, q) and (u, q) be the corresponding adapted strong solutions,
respectively. Then for some µ > 0,

E
∫

Rn

ϕλ(x)
∣∣[u(t, x)− u(t, x)]−

∣∣2dx

≤ eµ(T−t)E
∫

Rn

ϕλ(x)
∣∣[g(x)− g(x)]−

∣∣2dx

+E

∫ T

t
eµ(s−t)

∫
Rn

ϕλ(x)
∣∣[(L −L )u(s, x) + (M −M )q(s, x)

+f (s, x)− f (s, x)]−
∣∣2dxds, ∀t ∈ [0,T ].

Jin Ma (University of Southern California) BSDEs in Financial Math Paris Aug. 2009 185/ 218



Direct Consequences.

“g ≥ g” ⊕ “(L −L )u + (M −M )q + f − f ≥ 0”
=⇒ u ≥ u.

“L = L , M = M , g ≥ g , f ≥ f ” =⇒ u ≥ u.

“g ≥ 0, f ≥ 0” =⇒ u ≥ 0.

“A, B, a, h and c are independent of x” ⊕ “f and g are
convex in x” =⇒ u is convex in x .

“A, B, a, h, c , f , g are all deterministic” ⊕ “u convex in x”
⊕ “M = M ”

⊕ “A(t, x) = A(t) + A0(t, x), c(t, x) = c(t) + c0(t, x),
f (t, x) = f (t, x) + f0(t, x), g(x) = g(x) + g0(x)”

⊕ “f ≥ 0, g ≥ 0, A0 ≥ 0, c0 ≥ 0, f0 ≥ 0, g0 ≥ 0”
=⇒ u ≥ u, where u satisfies the PDE{

ut = −L u − f , (t, x) ∈ [0,T ]× Rn,
u
∣∣
t=T

= g .
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BSPDEs in Stochastic Evolution Equation Form

One can also consider a BSPDE as a BSDE in infinite dimensional
space. For example, consider

dYt = −BYtdt − ψ(t,Xt ,Yt ,Zt)dt + ZtdWt , Yt = g(XT ), (81)

where

W is a cylindrical Wiener process in a Hilbert space W ,

B is the infinitesimal generator of a strongly continuous
dissipative compact semigroup S(t) = eBt in a Hilbert space
K , and

X is a Markov process with infinite dimensional state space
H . For example, X could be the solution to the stochastic
evolution equation:

dXt = AXtdt + F (t,Xt)dt + G (t,Xt)dWt , X0 = x . (82)
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BSPDEs in Stochastic Evolution Equation Form

Note:

There are differences between the BSPDE studied before and the
BSDE in infinite dimensional spaces!

Existing Results:

Hu-Peng (1991) — Semilinear Backward SEEs

Pardoux-Rascanu (1999) — Backward stochastic Variational
Inequalities

Fuhrman-Tessitore (2002) — Nonlinear Kolmogorov equations
in infinite dimensional spaces

Confortola (2006) — Dissipative BSDEs in infinite
dimensional spaces

Gurtteris — FBSDEs in infinite dimensional spaces

Hong-Ma-Zhang — FBSPDEs...
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8. BSPDEs vs. FBSDEs
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Backward Doubly SDE (BDSDE)

The non-linear Feynman-Kac formula was extended to backward
SPDEs via the so-called BDSDE, first by Pardoux-Peng (’95).

Consider the following new probabilistic set-up:

(Ω′,F ′,P′) — another complete probability space;

B — a (k-dim) Brownian motion;

FB
t,T

4
= σ{Bs − BT , t ≤ s ≤ T} ∨N ′, where N ′ denotes all

P′-null sets in F ′. Denote FB
T

4
= {FB

t,T}0≤t≤T .

Ω = Ω× Ω′; F = F ⊗F ′; P = P× P′;
F t = FW

t ⊗FB
t,T , for 0 ≤ t ≤ T .

Note:

F 4
= {F t}0≤t≤T is neither increasing nor decreasing, therefore it is

NOT a filtration!
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Backward Doubly SDE (BDSDE)

R.v. ξ(ω), ω ∈ Ω or η(ω′), ω′ ∈ Ω′ is viewed as r.v. in Ω by

ξ(ω) = ξ(ω); η(ω) = η(ω′), ω
4
= (ω, ω′).

Let M 2(F, [0,T ]; Rn) be the set of n-dim measurable
processes h = {ht , t ∈ [0,T ]} satisfying

E
{∫ T

0
|ht |2dt

}
<∞; and ht ∈ F t , for a.e.t ∈ [0,T ].

For H ∈ M 2(F, [0,T ]; Rn) and j = 1, · · · , k, we denote∫ t
s Hr↓dB j

r to be the backward stoch. integral against B j .

Note:

The “backward integral” can be understood as a Skorohod
integral. But if H is FB -adapted, then it is a “time-reversed”
standard Itô integral from t to s, adapted to FB !
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Backward Doubly SDE (BDSDE)

Consider now the following FBSDE: for (t, x) ∈ [0,T ]× Rn, and
s ∈ [t,T ],

X t
s (x) = x +

∫ s

t
b(X t

r (x))dr +

∫ s

t
σ(X t

r (x))dWr , (83)

Y t
s (x) = u0(X

t
T (x)) +

∫ T

s
f (r ,X t

r (x),Y t
r (x),Z t

r (x))dr

+

∫ T

s
〈 g(r ,X t

r (x),Y t
r (x),Z t

r (x)),↓dBr 〉 (84)

−
∫ T

s
〈Z t

r (x), dWr 〉,

where u0 is a deterministic function. This is the so-called backward
doubly SDE proposed by Pardoux-Peng in 1995.
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Well-posedness of BDSDE

Theorem (Pardoux-Peng)

Under the standard assumptions on the coefficients, for each
(t, x) ∈ [0,T ]× Rn the BDSDE (83) has a unique solution
(X t(x),Y t(x),Z t(x)) such that

∃α ∈ (0, 1
2), ∀t > 0, (s, x) 7→ X t

s (x) is locally Hölder-Cα,α/2;

∀q ≥ 2, ∃Mq > 0, s.t. for t ∈ [0,T ] and x , x ′ ∈ Rn,

E
{

sup
t≤r≤s

|X t
r (x)− x |q

}
≤ Mq(s − t)(1 + |x |q),

E
{[

sup
t≤s≤T

|Y t
s (x)|2 +

∫ T

t
|Z t

s (x)|2ds
]q/2}

≤ Mq(1 + |x |q);

E
{

sup
t≤r≤s

|(X t
r (x)− X t

r (x ′))− (x − x ′)|q
}
≤ Mq(s − t)(|x − x ′|q);

Y t
s (x) = Y r

s (X t
r (x)), Z t

s (x) = Z r
s (X t

r (x)), a.e. s ∈ [0, r ], a.s.;
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BDSDEs vs. BSPDEs

We note that, unlike the single BSDE case, if we define

u(t, x)
4
= Y t

t (x), (t, x) ∈ [0,T ]× Rn,

then by the Blumenthal 0− 1 law, this is a random field on the
probability space (Ω′,F ′,P′), and for each x ∈ Rn, the mapping
t 7→ u(t, x) is FB

t -measurable. Namely, with a time-reversal, this
is a progressively measurable random field w.r.t. the filtration FB .

With the help of Malliavin Calculus, it was first argued in
Pardoux-Peng (’94) that, if the coefficients are smooth enough,
then the sol. (X t(x),Y t(x),Z t(x)) has the following regularity:

supt≤s≤T{|X t
s (x)|+ |∇xX

t
s (x)|+ |D2

xxX
t
s (x)|} ∈ ∩p≥1L

p(Ω′)

(s, t, x) 7→ Y t
s (x) belongs to C 0,0,2([0,T ]2 × Rn);

(s, t, x) 7→ Z t
s (x) belongs to C ([0,T ]2 × Rn), and

Z t
s (x) = ∇Y t

s (x)(∇X t
s (x))−1σ(X t

s (x)) =⇒ Z t
t (x) = ux(t, x)σ(x).
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BDSDEs vs. BSPDEs
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BDSDEs vs. BSPDEs

Theorem (Pardoux-Peng, ’94)

Assume that the coefficients of BDSDE (83) are smooth, and let
(X t(x),Y t(x),Z t(x)) be the unique solution to (83). Then

u(t, x)
4
= Y t

t (x) is the unique classical solution to the (backward)
SPDE on the space (Ω′,F ′,P′; FB):

du(t, x) = −
{
A u(t, x) + f (t, x , u(t, x), σ∗(x)∇u(t, x))

}
dt

+ 〈 g(t, x , u(t, x), σ∗(x)∇u(t, x)),↓dBt 〉,
u(T , x) = u0(x), (85)

where A is the second order differential operator:

A =
1

2

n∑
i ,j=1

k∑
`=1

σi`(x)σj`(x)∂2
xixj

+
n∑

i=1

bi (x)∂xi .
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BDSDEs vs. BSPDEs

Remark

A more interesting connection between the BDSDEs and SPDEs is
when the coefficients are NOT smooth. In light of the non-linear
Feynman-Kac formula, one would expect that in such a case the
random field u(t, x) = Y t

t (x) should give the “Stochastic Viscosity
Solution” to the BSPDE (85). This was done in Buckdahn-Ma
(2001-2002).
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BSPDEs and FBSDEs

Consider the following FBSDE with random coefficients: for
t ∈ [0,T ],

dXt = b(t,Xt)dt + σ(t,Xt)dWt ;

dYt = −[b̂1(t,Xt)Yt + b̂2(t,Xt)Zt ]dt − ZtdWt ,
X0 = x , YT = g(XT ),

(86)

where b, b̂1, b̂2, and σ are all random fields.

Objective

Find square-integrable processes (X ,Y ,Z ) such that they are
adapted to {Ft}, and satisfies (86) almost surely.

Determine, if possible, the relations among X , Y , and Z .
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BSPDEs and FBSDEs

Assume sufficient regularity of the coefficients b, σ, b̂1, b̂2, and g .
In light of “Four Step Scheme” we first solve BSPDE (1) with

A(t, x) = σ2(t, x), a(t, x) = b(t, x) + σ(t, x)b̂2(t, x),

c(t, x) = b̂1(t, x), B(t, x) = σ(t, x), h(t, x) = −b̂2(t, x).

and denote its adapted (classical) solution by (u, q). Then, let X
be the solution to the forward SDE in (86), and define

Yt = u(t,Xt , ·); Zt = q(t,Xt , ·) + σ(t,Xt , ·)∇u(t,Xt , ·),

Using Itô-Ventzell Formula, one shows that (X ,Y ,Z ) solves (86)!

Note:

In this case A(t, x)− BBT (t, x) = σσT (t, x)− σσT (t, x)≡ 0, and
B(t, x) 6= 0 (i.e., M is unbounded)!
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BSPDEs and FBSDEs

Recall that

D : L2(Ω) 7→ L2([0,T ]× Ω) — the Malliavin derivation
operator,

D1,p, p ≥ 2 — the set of all ξ ∈ L2(Ω) such that

‖ξ‖1,p = ‖ξ‖Lp(Ω) + ‖‖Dξ‖L2([0,T ])‖Lp(Ω) <∞.

Theorem

Under suitable technical conditions, the solutions (X ,Y ,Z ) to
FBSDE and (u, q) to BSPDE satisfy the following relations:

the process u(· ,X· , ·) ∈ D1,2;

Dtu(t,Xt , ·) = DtYt = Zt = q(t,Xt , ·) + σ(t, ·)∇u(t,Xt , ·);
q(t,Xt , ·) = [Dtu](t,Xt , ·), t ∈ [0,T ], -a.s. , where

[Dtu](t,Xt(ω), ω)
4
= Dtu(t, x , ω)

∣∣
x=Xt(ω)

.
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Some Remarks

The theorem regarding BSPDE and FBSDE can be thought of
as a Stochastic Feynman-Kac Formula.

An immediate application in Finance would be the Stochastic
Black-Scholes Formula (Ma-Yong, book)

The Comparison Theorem could be used to prove the
Convexity of the European Contingent Claims and the
Robustness of Black-Scholes Formula, along the lines of El
Karoui-Jeanblanc-Shreve (1999)

The well-posedness of BSPDEs with similar type (or
Stochastic Feynman-Kac formula) was extended to semilinear
case (Hu-Ma-Yong, 2004)

Quasilinear case (or fully coupled FBSDEs) is still not known
so far.
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General Quasi-linear/Random Coefficient Cases

Consider the following FBSDE with possibly random coefficients:
Xt = x +

∫ t

0
b(s,Xs ,Ys)ds +

∫ t

0
σ(s,Xs ,Ys)dWs ;

Yt = g(XT ) +

∫ T

t
f (s,Xs ,Ys ,Zs)ds −

∫ T

t
ZsdWs .

(87)

In the decoupled case, the FBSDE becomes
Xt = x +

∫ t

0
b(s,Xs)ds +

∫ t

0
σ(s,Xs)dWs ;

Yt = g(XT ) +

∫ T

t
f (s,Xs ,Ys ,Zs)ds −

∫ T

t
ZsdWs .

(88)

Definition

We say that FBSDE (87) is well-posed if it has a unique solution
for any initial value (t, x) and |∇xθ| ≤ C , where θ(t, x) is the
random field determined by Yt = θ(t,Xt).
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Random Coefficient Cases

Assume the random field θ is smooth and takes the following form:

dθ(t, x) = α(t, x)dt + β(t, x)dWt .

Applying Itô-Ventzell formula we get

dθ(t,Xt) = [α+ θxb +
1

2
θxxσ

2 + βxσ]dt + [β + θxσ]dWt .

Then formally we should have

Yt = θ(t,Xt), Zt = β(t,Xt) + θx(t,Xt)σ(t,Xt , θ(t,Xt)), (89)

and

α+ θxb +
1

2
θxxσ

2 + βxσ + f (·, θ, β + θxσ(·, θ)) = 0.
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Random Coefficient Cases

Thus we may consider the following “decoupling” BSPDE{
dθ(t, x) = −[

1

2
θxxσ

2 + βxσ + uxb + f ]dt + βdWt ;

θ(T , x) = g(x).
(90)

Corresponding to the well-posedness of the FBSDE, we should have

Definition

We say that θ is a weak solution to (90) if θx is bounded and there
exists β in L2 such that, for any ”good” function ϕ on R, it holds:

d

∫
R
θ(t, x)ϕ(x)dx =

∫
R
[
1

2
θx(σ

2ϕ)x + β(σϕ)x − θxbϕ+ f ϕ]dxdt

+

∫
R
βϕ(x)dxdWt . (91)
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A Conjecture

Theorem (Ma-Zhang, 2009)

Assume that b, σ, f , g are uniformly Lipschitz continuous in
(x , y , z), and b, σ are bounded. Then

(i) If (90) has a weak solution, then FBSDE (73) has a solution
defined by (89).

(ii) FBSDE (73) is wellposed if and only if (90) has a unique weak
solution.

(iii) (90) has at most one weak solution.

In particular, if the FBSDE is decoupled, then the corresponding
BSPDE (90) has a unique weak solution and (89) holds.
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The Decoupled Case

Note that in this case (88) is always wellposed. And if b, σ, f , g are
smooth enough, then (90) has a unique classical solution and (89)
holds.

Lemma

Assume θ is a classical solution to (90). Then for any good

positive ϕ with Kϕ
4
= sup

x

[
|ϕx(x)

ϕ(x)
|+ |ϕxx(x)

ϕ(x)
|
]
<∞, there exists a

constant Cϕ depending only on Kϕ and the bounds of the
coefficients, such that

E
{

sup
t

∫
R
|θ2(t, x)|2ϕ(x)dx+

∫ T

0

∫
R
|[β + θxσ](t, x)|2ϕ(x)dxdt

}
≤ CϕE

{∫
R
|g(x)|2ϕ(x)dx +

∫ T

0

∫
R
|f (t, x , 0, 0)|2ϕ(x)dxdt

}
.
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Comparison Theorems

Consider the following FBSDEs, with Θi = (X i ,Y i ,Z i ), i = 1, 2: X i
t = x +

∫ t

0
b(s, (W i )s ,Θ

i
s)ds +

∫ t

0
σ(s, (W i )s ,X

i
s ,Y

i
s )dW i

s ;

Y i
t = g1((W

i )T ,X
i
T ) +

∫ T
t f1(s, (W

i )s ,Θ
i
s)ds −

∫ T
t Z i

sdW i
s ;

(92)

Theorem

Assume that

(i) b, σ, f2, g2 are uniformly Lipschitz continuous in (x , y , z);

(ii) FBSDE(92)-2 is wellposeded, and Y 2
t
4
= θ(t, (W 2)t ,X

2
t ),

where θ is uniformly Lipschitz continuous in x;

(iv) (92)-1 has a weak solution;

(v) f1(t, (ω)t , ξ) ≤ f2(t, (ω)t , ξ) and g1((ω)T , x) ≤ g2((ω)T , x),
for any ω ∈ C [0,T ] and any ξ = (x , y , z).

Then we have Y 1
t ≤ θ(t, (W 1)t ,X

1
t ). In particular, Y 1

0 ≤ Y 2
0 .
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Fully Nonlinear PDEs and 2BSDEs

Consider the following fully nonlinear parabolic PDE:

ut + H(t, x , u,Du,D2u) = 0, u(T , x) = g(x) (93)

Finding numerical method for such a PDE is rather challenging,
especially in higher dimensional case.

A Feynman-Kac Formula (Cheridito-Soner-Touzi-Victoir, ’06)

Let Xt = x + Wt , and let u be a (smooth) solution to (93).

Define Yt = u(t,Xt), Zt = Du(t,Xt), Γt = D2u(t,Xt),
At = [Dut + D3u](t,Xt). Then, applying Itô, one has

dYt = du(t,Xt) = [ut +
1

2
D2u](t,Xt)dt + Du(t,Xt)dWt

dZt = [Dut +
1

2
D3u](t,Xt)dt + D2u(t,Xt)dWt (94)

= Atdt + ΓtdWt .
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Fully Nonlinear PDEs and 2BSDEs

Note that if we use the Stratonovic integral:

Zt ◦ dWt = ZtdWt +
1

2
d 〈Zt ,Wt 〉 = ZtdWt +

1

2
D2u(t,Xt)dt,

it would be more convenient to write

1

2
D2u(t,Xt)dt + ZtdWt = Zt ◦ dWt ,

and thus (94) becomes

Yt = g(XT ) +

∫ T

t
H(s,Xs , u,Du,D2u)ds −

∫ T

t
Zs ◦ dWs ;

dZt = Atdt + ΓtdWt . (95)

The BSDE (95) is called the Second Order BSDE or simply
2BSDE.
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Fully Nonlinear PDEs and 2BSDEs

To this point the 2BSDEs in which γ 7→ H(t, x , y , z , γ) is convex
have found most applications. In particular when H can be written
as the following Fenchel-Legendre transform:

H(t, x , y , z , γ) = sup
a≤a≤a

{1

2
a2γ + f (t, x , y , a)},

the 2BSDE seem to have the potential of becoming a powerful
new tool. The subjects where 2BSDEs seem to be useful include:

Super-hedging problems under liquidity risk

G -expectations, G -Martingale Representations, and G -BSDEs

Dynamic Risks under volatility uncertainty

Stochastic optimization under volatility uncertainty

Dual formulation of second order target problems

Ask Touzi for more ...
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