Impulse control problem with switching technology

Rim Amami

Institut de Mathématiques de Toulouse
Faculté des Sciences de Tunis
Third SMAI European Summer School Paris, 23-27 August 2010

Outline

(1) Introduction
(2) The model
(3) Optimality criteria

- The maximum conditional profit
- Resolution

4 Work in progress

Problem and objective

- Problem: The firm owner decides to switch technology in random time.
- Consequences:
- Switching technology \Rightarrow Stopping time of system \Rightarrow Impulse.
- The system is revived with a new technology.

Problem and objective

- Problem: The firm owner decides to switch technology in random time.
- Consequences:
- Switching technology \Rightarrow Stopping time of system \Rightarrow Impulse.
- The system is revived with a new technology.
- Objective: To optimize the firm profit
- Observation:
- Markovian ar homogeneous character between two impulse
moments.
- Markovian form of each revival.

Problem and objective

- Problem: The firm owner decides to switch technology in random time.
- Consequences:
- Switching technology \Rightarrow Stopping time of system \Rightarrow Impulse.
- The system is revived with a new technology.
- Objective: To optimize the firm profit.
- Observation:
- Markovian and homogeneous character between two impulse moments.
- Markovian form of each revival.

Problem and objective

- Problem: The firm owner decides to switch technology in random time.
- Consequences:
- Switching technology \Rightarrow Stopping time of system \Rightarrow Impulse.
- The system is revived with a new technology.
- Objective: To optimize the firm profit.
- Observation:
- Markovian and homogeneous character between two impulse moments.
- Markovian form of each revival.

Tools

The impulse control (or the admissible strategy) has the form:

$$
\alpha=\left(\tau_{n}, \zeta_{n+1}, \Delta_{n}, n \geqslant-1\right) .
$$

\Rightarrow The control variable has three components: - Impulse moments: $\left(\tau_{n}\right)_{n \geqslant-1}$ an increasing sequence of
stopping times which converges to the default time τ such
that $\tau_{-1}=0$ and $\tau_{n+1}=\tau_{n}+\tau_{0} \circ \phi_{\tau_{n}}$. the technology choice at time τ_{n}.

Tools

The impulse control (or the admissible strategy) has the form:

$$
\alpha=\left(\tau_{n}, \zeta_{n+1}, \Delta_{n}, n \geqslant-1\right) .
$$

\Rightarrow The control variable has three components:

- Impulse moments: $\left(\tau_{n}\right)_{n \geqslant-1}$ an increasing sequence of stopping times which converges to the default time τ such that $\tau_{-1}=0$ and $\tau_{n+1}=\tau_{n}+\tau_{0} \circ \phi_{\tau_{n}}$.
- ζ_{n+1} the technology choice at time τ_{n}.
- Δ_{n} the jump size.

Tools

The impulse control (or the admissible strategy) has the form:

$$
\alpha=\left(\tau_{n}, \zeta_{n+1}, \Delta_{n}, n \geqslant-1\right) .
$$

\Rightarrow The control variable has three components:

- Impulse moments: $\left(\tau_{n}\right)_{n \geqslant-1}$ an increasing sequence of stopping times which converges to the default time τ such that $\tau_{-1}=0$ and $\tau_{n+1}=\tau_{n}+\tau_{0} \circ \phi_{\tau_{n}}$.
- ζ_{n+1} the technology choice at time τ_{n}.
- Δ_{n} the jump size.

Tools

The impulse control (or the admissible strategy) has the form:

$$
\alpha=\left(\tau_{n}, \zeta_{n+1}, \Delta_{n}, n \geqslant-1\right) .
$$

\Rightarrow The control variable has three components:

- Impulse moments: $\left(\tau_{n}\right)_{n \geqslant-1}$ an increasing sequence of stopping times which converges to the default time τ such that $\tau_{-1}=0$ and $\tau_{n+1}=\tau_{n}+\tau_{0} \circ \phi_{\tau_{n}}$.
- ζ_{n+1} the technology choice at time τ_{n}.
- Δ_{n} the jump size.
- $(\Omega, \mathcal{A}, \mathcal{F}, \mathbb{P})$: a probability space.
- $\left(\mathcal{F}_{t}\right)_{t \geq 0}$: a right continuous complete filtration.
- $\left(\mathcal{G}_{t}\right)_{t>0}$: a predictable filtration $\mathcal{G}_{t}=\vee_{s<t} \mathcal{F}_{s}, \forall s<t$.
- The càdlàg process ξ_{t} indicates the technology at time t :

$$
\xi_{t}=\xi_{0} 1_{\left[0, \tau_{0}[\right.}(t)+\sum_{n \geq 0} \zeta_{n+1} 1_{\left[\tau_{n}, \tau_{n+1}[\right.}(t)+\emptyset 1_{[\tau,+\infty[}(t)
$$

This process takes its values in U, the finite space of possible technologies. ζ_{n+1} is a $\mathcal{G}_{\tau_{n}}$-measurable random variable and $\left(\tau_{n}\right)_{n \geqslant-1}$ is a sequence of \mathcal{G}-stopping times. Note $\bar{U}=U \cup\{\emptyset\}$.

The firm value is given by $S_{t}=\exp Y_{t}, t \geq 0$, where Y is the càdlàg process defined as

$$
\begin{aligned}
Y_{t} & =Y_{0} 1_{\left[0, \tau_{0}\right.}[t)+\sum_{n \geq 0} \Delta_{n} 1_{\left[\tau_{n}, \tau_{n+1}[\right.}(t) \\
& +\int_{0}^{t}\left(b\left(\xi_{s}\right) d s+\sigma\left(\xi_{s}\right) d W_{s}\right)+\{-\infty\} 1_{[\tau,+\infty[}(t)
\end{aligned}
$$

with Δ_{n} is the firm log value jump size, a $\mathcal{G}_{\tau_{n}}$-measurable random variable. Let $\overline{\mathbb{R}}$ be $\mathbb{R} \cup\{-\infty\}$. Denote by r^{α} the transition probability from $\left(\zeta_{n}, Y_{\tau_{n}^{-}}\right)$to $\left(\zeta_{n+1}, Y_{\tau_{n}}\right)$:

$$
\mathbb{P}\left(\zeta_{n+1}=j, Y_{\tau_{n}}=x+d y \mid \zeta_{n}=i, Y_{\tau_{n}^{-}}=x\right)=r^{\alpha}(i, x ; j, d y)
$$

The economic profit function

For each strategy α, the profit is:

$$
\begin{equation*}
k(\alpha)=\int_{0}^{\tau} e^{-\beta s} f\left(\xi_{s}, Y_{s}\right) d s-\sum_{n \geq 0} e^{-\beta \tau_{n}} c\left(\zeta_{n}, Y_{\tau_{n}^{-}}, \zeta_{n+1}, Y_{\tau_{n}}\right) \tag{1}
\end{equation*}
$$

where

- $\beta>0$ is a discount coefficient.
- The function f represents the firm net profit.
- The function c is the switching technology cost with $c(i, x, i, x)=0$.
The expected profit of the firm is defined as:

$$
\begin{equation*}
K(\alpha)=\mathbb{E}\left(k(\alpha) \mid \xi_{0}=i, Y_{0}=x\right) \tag{2}
\end{equation*}
$$

Goal

Find an admissible strategy $\widehat{\alpha}$ which maximizes the expected total profit $K(\alpha)$ defined in (2), i.e.:

$$
\begin{equation*}
K(\widehat{\alpha})=\operatorname{ess} \sup _{\alpha \in \underline{D}} K(\alpha), \tag{3}
\end{equation*}
$$

where \underline{D} is the admissible strategy set.

The maximum conditional profit

Definition

We call maximum conditional profit the family defined a.s. as:

$$
F_{\theta}^{\alpha}=\text { ess } \sup _{\left\{\mu_{t}=\alpha_{t}, t<\theta\right\}} \mathbb{E}\left(k(\mu) \mid \mathcal{G}_{\theta}\right) .
$$

Respectively,

$$
F_{\theta}^{\alpha^{+}}=\text {ess } \sup _{\left\{\mu_{t}=\alpha_{t}, t \leq \theta\right\}} \mathbb{E}\left(k(\mu) \mid \mathcal{F}_{\theta}\right)
$$

Introduction

Proposition

The maximum conditional profit $F_{\theta}^{\alpha}\left(\right.$ resp. $\left.F_{\theta}^{\alpha^{+}}\right)$is a positive supermartingale, meaning that $F_{\theta}^{\alpha}\left(\right.$ resp. $\left.F_{\theta}^{\alpha^{+}}\right)$is \mathbb{P}-integrable and

$$
\mathbb{E}\left(F_{\theta}^{\alpha} \mid \mathcal{G}_{\gamma}\right) \leq F_{\gamma}^{\alpha} \quad\left(\text { resp. } \mathbb{E}\left(F_{\theta}^{\alpha^{+}} \mid \mathcal{F}_{\gamma}\right) \leq F_{\gamma^{+}}^{\alpha}\right)
$$

Corollary (First optimality criterion (N. El Karoui, 1981))

A necessary and sufficient condition for a strategy \widehat{a} to be optimal is that the maximum conditional profit $F_{.}^{\widehat{\alpha}^{+}}$is a martingale.

Proposition

The maximum conditional profit $F_{\theta}^{\alpha}\left(\right.$ resp. $\left.F_{\theta}^{\alpha^{+}}\right)$is a positive supermartingale, meaning that $F_{\theta}^{\alpha}\left(\right.$ resp. $\left.F_{\theta}^{\alpha^{+}}\right)$is \mathbb{P}-integrable and

$$
\mathbb{E}\left(F_{\theta}^{\alpha} \mid \mathcal{G}_{\gamma}\right) \leq F_{\gamma}^{\alpha} \quad\left(\text { resp. } \mathbb{E}\left(F_{\theta}^{\alpha^{+}} \mid \mathcal{F}_{\gamma}\right) \leq F_{\gamma^{+}}^{\alpha}\right)
$$

Corollary (First optimality criterion (N. El Karoui, 1981))

A necessary and sufficient condition for a strategy $\widehat{\alpha}$ to be optimal is that the maximum conditional profit $F^{\widehat{\alpha}^{+}}$is a martingale.

Definition

We call maximum conditional profit after $\theta>0$ (respectively right after θ or $\theta=0$), the family defined a.s. as :

$$
W_{\theta}^{\alpha}=\text { ess } \sup _{\left\{\mu_{t}=\alpha_{t}, \forall t<\theta\right\}} \mathbb{E}\left[k_{\theta}(\mu) \mid \mathcal{G}_{\theta}\right],
$$

where k_{θ} is the profit after θ, (respectively, for all $\theta \geq 0$:

$$
W_{\theta}^{\alpha^{+}}=\text {ess } \sup _{\left\{\mu_{t}=\alpha_{t}, \forall t \leq \theta\right\}} \mathbb{E}\left[k_{\theta^{+}}(\mu) \mid \mathcal{F}_{\theta}\right]
$$

where $k_{\theta^{+}}$is the profit right after θ).

Lemma

We have the following equalities:

$$
\begin{aligned}
F_{\theta}^{\alpha} & =\left(k(\alpha)-k_{\theta}(\alpha)\right)+W_{\theta}^{\alpha}, \theta>0 . \\
F_{\theta}^{\alpha^{+}} & =\left(k(\alpha)-k_{\theta^{+}}(\alpha)\right)+W_{\theta}^{\alpha^{+}}
\end{aligned}
$$

The dynamic programming principle

Proposition

For any strategy α and $0<\gamma \leq \theta$, we have a.s.

$$
\begin{equation*}
W_{\gamma}^{\alpha} \geq \mathbb{E}\left[k_{\gamma}(\alpha)-k_{\theta}(\alpha)+W_{\theta}^{\alpha} \mid \mathcal{G}_{\gamma}\right] \tag{4}
\end{equation*}
$$

Respectively, for $0 \leq \gamma \leq \theta$, we get a.s.

$$
\begin{equation*}
W_{\gamma}^{\alpha^{+}} \geq \mathbb{E}\left[k_{\gamma^{+}}(\alpha)-k_{\theta^{+}}(\alpha)+W_{\theta}^{\alpha^{+}} \mid \mathcal{F}_{\gamma}\right] . \tag{5}
\end{equation*}
$$

Moreover, $\widehat{\alpha}$ is optimal if and only if equality (5) holds for every couple (γ, θ).

Notation

We introduce $M=\cup_{(i, x) \in \bar{U} \times \overline{\mathbb{R}}} M_{(i, x)}$ where $M_{(i, x)}$ verifies:

$$
\begin{cases}M_{(i, x)}=\left\{r^{\alpha}(i, x ; ., .), \delta_{i, x} ; \alpha \in \underline{D}\right\} & \text { if }(i, x) \neq(\emptyset, \Delta) \\ M_{(\emptyset, \Delta)}=\delta_{(\emptyset, \Delta)} & \text { otherwise. }\end{cases}
$$

We recall that r^{α} is a transition probability from couple $\left(\zeta_{n}, Y_{\tau_{n}^{-}}\right)$ to $\left(\zeta_{n+1}, Y_{\tau_{n}}\right)$.

Hypothesis

The set M is weakly closed, weakly compact and separable.

Theorem: Second optimality criterion

For any strategy α we have a.s. the following inequalities:

$$
\begin{aligned}
W_{0}^{\alpha^{+}} & \geq \mathbb{E}\left(\int_{0}^{\tau_{0}} e^{-\beta s} f\left(\xi_{s}, Y_{s}\right) d s-e^{-\beta \tau_{0}} c\left(\xi_{0}, Y_{\tau_{0}^{-}}, \zeta_{1}, Y_{\tau_{0}}\right) \mid \mathcal{F}_{0}\right) \\
& +\mathbb{E}\left(W_{\tau_{0}}^{\alpha^{+}} \mid \mathcal{F}_{0}\right) \\
W_{\tau_{n}}^{\alpha} & \geq-e^{-\beta \tau_{n}} \int_{\bar{U} \times \overline{\mathbb{R}}} c\left(\zeta_{n}, Y_{\tau_{n}^{-}}, i, x\right) r^{\alpha}(., i, d x)+\mathbb{E}\left(W_{\tau_{n}}^{\alpha^{+}} \mid \mathcal{G}_{\tau_{n}}\right) \\
W_{\tau_{n}}^{\alpha^{+}} & \geq \mathbb{E}\left(\int_{\tau_{n}}^{\tau_{n+1}} e^{-\beta s} f\left(\xi_{s}, Y_{s}\right) d s \mid \mathcal{F}_{\tau_{n}}\right)+\mathbb{E}\left(W_{\tau_{n+1}}^{\alpha} \mid \mathcal{F}_{\tau_{n}}\right)
\end{aligned}
$$

Moreover, the strategy $\widehat{\alpha}$ is optimal if and only if equality has place simultaneously in the following three inequalities.

Corollary

We have the following equalities:

$$
W_{\tau_{n}}^{\alpha}=e^{-\beta \tau_{n}} \rho\left(\zeta_{n}, Y_{\tau_{n}^{-}}\right), \forall n \geq 0
$$

where $\rho(i, x)=\operatorname{ess} \sup _{\mu \in \underline{D}} \mathbb{E}_{\{i, x\}}(k(\mu))$.

$$
W_{\tau_{n}}^{\alpha+}=e^{-\beta \tau_{n}} \rho^{+}\left(\zeta_{n+1}, Y_{\tau_{n}}\right), \forall n \geq-1
$$

where $\rho^{+}(i, x)=\operatorname{ess} \sup _{\left\{\mu \in \underline{D}, \zeta_{1}^{\mu} \neq \emptyset\right\}} \mathbb{E}_{\{i, x\}}(k(\mu))$.

Proposition (Lepeltier-Marchal, 1984)

For any strategy α and any $n \geq 0$, we have

$$
W_{\tau_{n}}^{\alpha}=e^{-\beta \tau_{n}} m \rho^{+}\left(\zeta_{n}, Y_{\tau_{n}^{-}}\right) \quad \text { a.s. }
$$

where $m \rho^{+}$is the operator defined by

$$
(i, x) \rightarrow \operatorname{ess} \sup _{\nu \in M_{(i, x)}} \int_{\bar{U} \times \overline{\mathbb{R}}} \nu(i, x ; j, d y)\left(-c(i, x, j, y)+\rho^{+}(j, y)\right) .
$$

Moreover, the value function $\rho(i, x)$ is equal to $m \rho^{+}(i, x)$.

Proposition

The application ρ^{+}does not depend on the strategy α and satisfies the following equation:

$$
\begin{align*}
\rho^{+}(i, x) & =\text { ess } \sup _{T>0, T \in \underline{R}_{-1}} \mathbb{E}_{\{i, x\}}\left(\int_{0}^{T((i, x), .)} e^{-\beta s} f\left(i, Y_{s}\right) d s\right. \\
& \left.+e^{-\beta T((i, x), .)} m \rho^{+}\left(i, Y_{T^{-}}((i, x), .)\right)\right) \tag{6}
\end{align*}
$$

where \underline{R}_{-1} : Set of measurable applications T on $\bar{U} \times \overline{\mathbb{R}} \times \Omega$ such that $T((i, x),$.$) is a \mathcal{G}$-stopping time.

Theorem: Optimality criterion

For any strategy α, we have the following inequalities:

$$
\begin{align*}
\rho^{+}(i, x) & \geq \mathbb{E}_{\{i, x\}}\left(\int_{0}^{\tau_{0}} e^{-\beta s} f\left(i, Y_{s}\right) d s\right. \\
& \left.+e^{-\beta \tau_{0}} m \rho^{+}\left(i, Y_{\tau_{0}^{-}}\right)\right) \tag{7}\\
m \rho^{+}\left(\zeta_{n}, Y_{\tau_{n}^{-}}\right) & \geq \int_{\bar{U} \times \overline{\mathbb{R}}} r^{\alpha}\left(\zeta_{n}, Y_{\tau_{n}^{-}}, i, d x\right)\left(-c\left(\zeta_{n}, Y_{\tau_{n}^{-}}, j, y\right)\right. \\
& \left.+\rho^{+}(j, y)\right) . \tag{8}\\
e^{-\beta \tau_{n}} \rho^{+}\left(\zeta_{n+1}, Y_{\tau_{n}}\right) & \geq \mathbb{E}_{\left\{\zeta_{n+1}, Y_{\tau_{n}}\right\}}\left(\int_{\tau_{n}}^{\tau_{n+1}} e^{-\beta s} f\left(\zeta_{n+1}, Y_{s}\right) d s\right. \\
& \left.+e^{-\beta \tau_{n+1} m \rho^{+}}\left(\zeta_{n+1}, Y_{\tau_{n+1}^{-}}\right)\right) . \tag{9}
\end{align*}
$$

$\widehat{\alpha}$ is optimal if and only if equality occurs in (7), (8) and (9).

The impulse set is $I=\left\{(i, x): \rho(i, x)=m^{*} \rho^{+}(i, x)\right\}$, where for $M_{(i, x)}^{*}=M_{(i, x)}-\delta_{(i, x)}, m^{*} \rho^{+}$is the operator:

$$
(i, x) \rightarrow \operatorname{ess} \sup _{\nu \in M_{(i, x)}^{*}} \int_{\bar{U} \times \overline{\mathbb{R}}} \nu(i, x ; j, d y)\left(-c(i, x, j, y)+\rho^{+}(j, y)\right) .
$$

For any (i, x), we define the time

$$
T^{*}((i, x), .)=\left\{\begin{array}{l}
\inf \left\{t \geq 0: e^{-\beta t} \rho\left(i, Y_{t}^{x}\right)=e^{-\beta t} m^{*} \rho^{+}\left(i, Y_{t}^{x}\right)\right\} . \\
+\infty \quad \text { if the above set is empty. }
\end{array}\right.
$$

Lemma

There exists $r^{*} \in M$ which achieves the essential supremum such
that for any $(i, x) \in I$

The impulse set is $I=\left\{(i, x): \rho(i, x)=m^{*} \rho^{+}(i, x)\right\}$, where for $M_{(i, x)}^{*}=M_{(i, x)}-\delta_{(i, x)}, m^{*} \rho^{+}$is the operator:

$$
(i, x) \rightarrow \text { ess } \sup _{\nu \in M_{(i, x)}^{*}} \int_{\bar{U} \times \overline{\mathbb{R}}} \nu(i, x ; j, d y)\left(-c(i, x, j, y)+\rho^{+}(j, y)\right) .
$$

For any (i, x), we define the time

$$
T^{*}((i, x), .)=\left\{\begin{array}{l}
\inf \left\{t \geq 0: e^{-\beta t} \rho\left(i, Y_{t}^{x}\right)=e^{-\beta t} m^{*} \rho^{+}\left(i, Y_{t}^{x}\right)\right\} \\
+\infty \quad \text { if the above set is empty }
\end{array}\right.
$$

Lemma

There exists $r^{*} \in M$ which achieves the essential supremum such that for any $(i, x) \in I$:

$$
m^{*} \rho^{+}(i, x)=\int_{\bar{U} \times \overline{\mathbb{R}}} r^{*}(i, x ; j, d y)\left(-c(i, x, j, y)+\rho^{+}(j, y)\right) .
$$

Theorem: An optimal strategy

The family $\widehat{\alpha}=\left(\widehat{\tau}_{n}, \zeta_{n+1}, \widehat{\Delta}_{n}\right)$ defined as:

$r^{*}\left(\xi_{0}, Y_{0^{-}}, \zeta_{1}, Y_{0}\right)$ is a transition probability measure on $\mathcal{G}_{\widehat{\tau}_{0}}$,
then by recurrence, for all $n \geq 1$:

- $\widehat{\tau}_{n}=\widehat{\tau}_{n-1}+T^{*}\left(\left(\zeta_{n}, Y_{\tau_{n-1}}\right),.\right)$,
- the couple $\left(\zeta_{n+1}, \widehat{\Delta}_{n}\right)$ has the following law:

$$
\begin{cases}r^{*}\left(\zeta_{n}, Y_{\widehat{\tau}_{n}^{-}} ; ., .\right) & \text {on }\left(\xi_{0} \neq \emptyset\right) \cap\left(0<T^{*}\left(\left(\zeta_{n}, Y_{\widehat{\tau}_{n}^{-}}\right), \omega\right)<+\infty\right) \\ \delta_{\{\emptyset, \Delta\}} & \text { otherwise }\end{cases}
$$

is an admissible strategy that satisfies the optimality equalities.

- Use numerical methods to exhibit an optimal solution in a specific example: the transition probability measure is supposed to be: $r^{\alpha}(i, x, 1-i, y)=p_{i, 1-i} \otimes \mathcal{N}(x+m, 1)$. We have $f(i, x)=e^{x}$ and $c(i, x, 1-i, y)=\exp (a x+b(y-x))$. \Rightarrow A Bang-Bang solution.
- Establish a characterization of the value function and consider it as a solution of Hamilton-Bellman-Jacobi inequalities.
- Use numerical methods to exhibit an optimal solution in a specific example: the transition probability measure is supposed to be: $r^{\alpha}(i, x, 1-i, y)=p_{i, 1-i} \otimes \mathcal{N}(x+m, 1)$. We have $f(i, x)=e^{x}$ and $c(i, x, 1-i, y)=\exp (a x+b(y-x))$. \Rightarrow A Bang-Bang solution.
- Establish a characterization of the value function and consider it as a solution of Hamilton-Bellman-Jacobi inequalities.

References

婳 A. Bensoussan et J.L. Lions: Contrôle Impulsionnel et Inéquations quasi-variationnelles. Dunod, Paris, 1982
M.H.A. Davis: Markov Models and Optimization. Chapman et Hall,1993.
© N. El Karoui: Les Aspects Probabilistes du Contrôle Stochastique. Lecture Notes in Mathematics 876, Springer-Verlag, Berlin, 1981.

嗇 P.A. Lepeltier et B. Marchal: Théorie Générale du Contrôle Impulsionnel Markovien. SIAM J.Control and optimization, Vol.22, No.4, 1984.

