## A Direct Proof of the Bichteler-Dellacherie Theorem and Connections to Arbitrage

Bezirgen Veliyev, University of Vienna<br>(joint with Mathias Beiglböck and Walter Schachermayer)

August 23, 2010
Paris, European Summer School in Financial Mathematics

## Introduction

We have a filtered probability space $\left(\Omega, \mathcal{F},\left(\mathcal{F}_{t}\right)_{0 \leq t \leq T}, \mathbb{P}\right)$ satisfying the usual conditions and a real-valued, càdlàg, adapted process $S=\left(S_{t}\right)_{0 \leq t \leq T}$.

## Introduction

We have a filtered probability space $\left(\Omega, \mathcal{F},\left(\mathcal{F}_{t}\right)_{0 \leq t \leq T}, \mathbb{P}\right)$ satisfying the usual conditions and a real-valued, càdlàg, adapted process $S=\left(S_{t}\right)_{0 \leq t \leq T}$. For the talk, we assume that $S$ is locally bounded.

## Introduction

We have a filtered probability space $\left(\Omega, \mathcal{F},\left(\mathcal{F}_{t}\right)_{0 \leq t \leq T}, \mathbb{P}\right)$ satisfying the usual conditions and a real-valued, càdlàg, adapted process $S=\left(S_{t}\right)_{0 \leq t \leq T}$. For the talk, we assume that $S$ is locally bounded.

## Theorem (Bichteler '79,'81; Dellacherie '80)

$S$ is a good integrator if and only if $S$ is a semimartingale.

## Introduction

We have a filtered probability space $\left(\Omega, \mathcal{F},\left(\mathcal{F}_{t}\right)_{0 \leq t \leq T}, \mathbb{P}\right)$ satisfying the usual conditions and a real-valued, càdlàg, adapted process $S=\left(S_{t}\right)_{0 \leq t \leq T}$. For the talk, we assume that $S$ is locally bounded.

## Theorem (Bichteler '79,'81; Dellacherie '80)

$S$ is a good integrator if and only if $S$ is a semimartingale.

## Theorem (DS 94)

If a locally bounded process $S$ satisfies NFLVR for simple integrands, then $S$ is a semimartingale.

## Introduction

We have a filtered probability space $\left(\Omega, \mathcal{F},\left(\mathcal{F}_{t}\right)_{0 \leq t \leq T}, \mathbb{P}\right)$ satisfying the usual conditions and a real-valued, càdlàg, adapted process $S=\left(S_{t}\right)_{0 \leq t \leq T}$. For the talk, we assume that $S$ is locally bounded.

## Theorem (Bichteler '79,'81; Dellacherie '80)

$S$ is a good integrator if and only if $S$ is a semimartingale.

## Theorem (DS 94)

If a locally bounded process $S$ satisfies NFLVR for simple integrands, then $S$ is a semimartingale.
$S$ is a good integrator
$S$ is a semimartingale

## Introduction

We have a filtered probability space $\left(\Omega, \mathcal{F},\left(\mathcal{F}_{t}\right)_{0 \leq t \leq T}, \mathbb{P}\right)$ satisfying the usual conditions and a real-valued, càdlàg, adapted process $S=\left(S_{t}\right)_{0 \leq t \leq T}$. For the talk, we assume that $S$ is locally bounded.

## Theorem (Bichteler '79,'81; Dellacherie '80)

$S$ is a good integrator if and only if $S$ is a semimartingale.

## Theorem (DS 94)

If a locally bounded process $S$ satisfies NFLVR for simple integrands, then $S$ is a semimartingale.

S is a good integrator

S is a semimartingale

## Introduction

We have a filtered probability space $\left(\Omega, \mathcal{F},\left(\mathcal{F}_{t}\right)_{0 \leq t \leq T}, \mathbb{P}\right)$ satisfying the usual conditions and a real-valued, càdlàg, adapted process $S=\left(S_{t}\right)_{0 \leq t \leq T}$. For the talk, we assume that $S$ is locally bounded.

## Theorem (Bichteler '79,'81; Dellacherie '80)

$S$ is a good integrator if and only if $S$ is a semimartingale.

## Theorem (DS 94)

If a locally bounded process $S$ satisfies NFLVR for simple integrands, then $S$ is a semimartingale.

S is a good integrator weak-NFLVR
$S$ is a semimartingale

## Introduction

We have a filtered probability space $\left(\Omega, \mathcal{F},\left(\mathcal{F}_{t}\right)_{0 \leq t \leq T}, \mathbb{P}\right)$ satisfying the usual conditions and a real-valued, càdlàg, adapted process $S=\left(S_{t}\right)_{0 \leq t \leq T}$. For the talk, we assume that $S$ is locally bounded.

## Theorem (Bichteler '79,'81; Dellacherie '80)

$S$ is a good integrator if and only if $S$ is a semimartingale.

## Theorem (DS 94)

If a locally bounded process $S$ satisfies NFLVR for simple integrands, then $S$ is a semimartingale.

S is a good integrator $\longrightarrow$ weak-NFLVR $\longleftarrow$ NFLVR
$S$ is a semimartingale

## Introduction

We have a filtered probability space $\left(\Omega, \mathcal{F},\left(\mathcal{F}_{t}\right)_{0 \leq t \leq T}, \mathbb{P}\right)$ satisfying the usual conditions and a real-valued, càdlàg, adapted process $S=\left(S_{t}\right)_{0 \leq t \leq T}$. For the talk, we assume that $S$ is locally bounded.

## Theorem (Bichteler '79,'81; Dellacherie '80)

$S$ is a good integrator if and only if $S$ is a semimartingale.

## Theorem (DS 94)

If a locally bounded process $S$ satisfies NFLVR for simple integrands, then $S$ is a semimartingale.


## Introduction

We have a filtered probability space $\left(\Omega, \mathcal{F},\left(\mathcal{F}_{t}\right)_{0 \leq t \leq T}, \mathbb{P}\right)$ satisfying the usual conditions and a real-valued, càdlàg, adapted process $S=\left(S_{t}\right)_{0 \leq t \leq T}$. For the talk, we assume that $S$ is locally bounded.

## Theorem (Bichteler '79,'81; Dellacherie '80)

$S$ is a good integrator if and only if $S$ is a semimartingale.

## Theorem (DS 94)

If a locally bounded process $S$ satisfies NFLVR for simple integrands, then $S$ is a semimartingale.

$S$ is a semimartingale

- A simple integrand is a stochastic process of the form

$$
H_{t}=\sum_{j=1}^{n} h_{j} \mathbb{1}_{]_{j-1}, \tau_{j}\right]}(t)
$$

where $0=\tau_{0} \leq \tau_{1} \leq \cdots \leq \tau_{n}=T$ are stopping times and $h_{j} \in L^{\infty}\left(\Omega, \mathcal{F}_{\tau_{j-1}}, \mathbb{P}\right)$. Denote by $\mathcal{S I}$ the vector space of simple integrands.

- A simple integrand is a stochastic process of the form

$$
H_{t}=\sum_{j=1}^{n} h_{j} \mathbb{1}_{]_{j-1}, \tau_{j}\right]}(t)
$$

where $0=\tau_{0} \leq \tau_{1} \leq \cdots \leq \tau_{n}=T$ are stopping times and $h_{j} \in L^{\infty}\left(\Omega, \mathcal{F}_{\tau_{j-1}}, \mathbb{P}\right)$. Denote by $\mathcal{S I}$ the vector space of simple integrands.

- For each $S$, we may well-define the integration operator

$$
\begin{gathered}
I: S \mathcal{S I} \rightarrow L^{0}(\Omega, \mathcal{F}, \mathbb{P}) \\
\sum_{j=1}^{n} h_{j} \mathbb{1}_{]_{j-1}, \tau_{j}\right]} \mapsto \sum_{j=1}^{n} h_{j}\left(S_{\tau_{j}}-S_{\tau_{j-1}}\right)=:(H \cdot S)_{T}
\end{gathered}
$$

- A simple integrand is a stochastic process of the form

$$
H_{t}=\sum_{j=1}^{n} h_{j} \mathbb{1}_{]_{j-1}, \tau_{j}\right]}(t)
$$

where $0=\tau_{0} \leq \tau_{1} \leq \cdots \leq \tau_{n}=T$ are stopping times and $h_{j} \in L^{\infty}\left(\Omega, \mathcal{F}_{\tau_{j-1}}, \mathbb{P}\right)$. Denote by $\mathcal{S I}$ the vector space of simple integrands.

- For each $S$, we may well-define the integration operator

$$
\begin{gathered}
I: S \mathcal{S I} \rightarrow L^{0}(\Omega, \mathcal{F}, \mathbb{P}) \\
\sum_{j=1}^{n} h_{j} \mathbb{1}_{]_{j-1}, \tau_{j}\right]} \mapsto \sum_{j=1}^{n} h_{j}\left(S_{\tau_{j}}-S_{\tau_{j-1}}\right)=:(H \cdot S)_{T}
\end{gathered}
$$

■ $S$ is a good integrator if $I$ is continuous i.e. if $\left\|H^{n}\right\|_{\infty} \rightarrow 0$, then $\left(H^{n} \cdot S\right)_{T} \rightarrow 0$ in probability.

- $S$ is a good integrator if for every sequence $\left(H^{n}\right)_{n=1}^{\infty}$ satisfying $\left\|H^{n}\right\|_{\infty} \rightarrow 0$, we have $\left(H^{n} \cdot S\right)_{T} \rightarrow 0$ in probability.
- $S$ is a good integrator if for every sequence $\left(H^{n}\right)_{n=1}^{\infty}$ satisfying $\left\|H^{n}\right\|_{\infty} \rightarrow 0$, we have $\left(H^{n} \cdot S\right)_{T} \rightarrow 0$ in probability.
- "little investment" $\rightarrow$ "little outcome"

■ $S$ is a good integrator if for every sequence $\left(H^{n}\right)_{n=1}^{\infty}$ satisfying $\left\|H^{n}\right\|_{\infty} \rightarrow 0$, we have $\left(H^{n} \cdot S\right)_{T} \rightarrow 0$ in probability.
■ "little investment" $\rightarrow$ "little outcome"

- $S$ satisfies NFLVR if for every sequence $\left(H^{n}\right)_{n=1}^{\infty}$ satisfying $\left\|\left(H^{n} \cdot S\right)^{-}\right\|_{\infty} \rightarrow 0$, we have $\left(H^{n} \cdot S\right)_{T} \rightarrow 0 \quad$ in probability.

■ $S$ is a good integrator if for every sequence $\left(H^{n}\right)_{n=1}^{\infty}$ satisfying $\left\|H^{n}\right\|_{\infty} \rightarrow 0$, we have $\left(H^{n} \cdot S\right)_{T} \rightarrow 0$ in probability.
■ "little investment" $\rightarrow$ "little outcome"

- $S$ satisfies NFLVR if for every sequence $\left(H^{n}\right)_{n=1}^{\infty}$ satisfying $\left\|\left(H^{n} \cdot S\right)^{-}\right\|_{\infty} \rightarrow 0$, we have $\left(H^{n} \cdot S\right)_{T} \rightarrow 0 \quad$ in probability.
■ "vanishing risk" $\rightarrow$ "little outcome"

■ $S$ satisfies NFLVRLI if for every sequence $\left(H^{n}\right)_{n=1}^{\infty}$ satisfying $\left\|H^{n}\right\|_{\infty} \rightarrow 0$ and $\left\|\left(H^{n} \cdot S\right)^{-}\right\|_{\infty} \rightarrow 0$, we have $\left(H^{n} \cdot S\right)_{T} \rightarrow 0$ in probability.

■ $S$ satisfies NFLVRLI if for every sequence $\left(H^{n}\right)_{n=1}^{\infty}$ satisfying $\left\|H^{n}\right\|_{\infty} \rightarrow 0$ and $\left\|\left(H^{n} \cdot S\right)^{-}\right\|_{\infty} \rightarrow 0$, we have $\left(H^{n} \cdot S\right)_{T} \rightarrow 0$ in probability.
■ "little investment" and "vanishing risk" $\rightarrow$, "little outcome".

■ $S$ satisfies NFLVRLI if for every sequence $\left(H^{n}\right)_{n=1}^{\infty}$ satisfying $\left\|H^{n}\right\|_{\infty} \rightarrow 0$ and $\left\|\left(H^{n} \cdot S\right)^{-}\right\|_{\infty} \rightarrow 0$, we have $\left(H^{n} \cdot S\right)_{T} \rightarrow 0$ in probability.

- "little investment" and "vanishing risk" $\rightarrow$, "little outcome".
$\square S$ is a good integrator $\rightarrow S$ satisfies NFLVRLI.

■ $S$ satisfies NFLVRLI if for every sequence $\left(H^{n}\right)_{n=1}^{\infty}$ satisfying $\left\|H^{n}\right\|_{\infty} \rightarrow 0$ and $\left\|\left(H^{n} \cdot S\right)^{-}\right\|_{\infty} \rightarrow 0$, we have $\left(H^{n} \cdot S\right)_{T} \rightarrow 0$ in probability.

- "little investment" and "vanishing risk" $\rightarrow$, "little outcome".
- $S$ is a good integrator $\rightarrow S$ satisfies NFLVRLI.

■ $S$ satisfies NFLVR $\rightarrow S$ satisfies NFLVRLI.

## Theorem (Main Theorem)

Let $S$ be locally bounded process. TFAE:

- S satisfies NFLVRLI.
- $S$ is a semimartingale.
- Assume $S_{0}=0, T=1$.
- Assume $S_{0}=0, T=1$.
- Being a semimartingale is a local property, hence assume $S$ is bounded. WLOG, $S \leq 1$.
- Assume $S_{0}=0, T=1$.
- Being a semimartingale is a local property, hence assume $S$ is bounded. WLOG, $S \leq 1$.
■ Consider $\mathcal{D}_{n}=\left\{0, \frac{1}{2^{n}}, \ldots, \frac{2^{n}-1}{2^{n}}, 1\right\}$ and $S^{n}$ sampled on $\mathcal{D}_{n}$.
- Assume $S_{0}=0, T=1$.
- Being a semimartingale is a local property, hence assume $S$ is bounded. WLOG, $S \leq 1$.
- Consider $\mathcal{D}_{n}=\left\{0, \frac{1}{2^{n}}, \ldots, \frac{2^{n}-1}{2^{n}}, 1\right\}$ and $S^{n}$ sampled on $\mathcal{D}_{n}$.
- Apply discrete Doob-Meyer to obtain $S^{n}=M^{n}+A^{n}$, where $\left(M_{\frac{j}{2}}^{n}\right)_{j=0}^{2^{n}}$ is a martingale and $\left(A_{\frac{j}{2^{n}}}^{n}\right)_{j=0}^{2^{n}}$ is predictable.


## Lemma

Assume NFLVRLI. For $\varepsilon>0$, there exist a constant $C>0$ and a sequence of $\left\{\frac{j}{2^{n}}\right\}_{j=1}^{2^{n}} \cup\{\infty\}$-valued stopping times $\left(\varrho_{n}\right)_{n=1}^{\infty}$ such that $\mathbb{P}\left(\varrho_{n}<\infty\right)<\varepsilon$ and

$$
\begin{array}{ll}
T V\left(A^{n, \varrho_{n}}\right)=\sum_{j=1}^{2^{n}\left(\varrho_{n} \wedge 1\right)}\left|A_{\frac{j}{2^{n}}}^{n}-A_{\frac{j-1}{2^{n}}}^{n}\right| & \leq C \\
\left\|M_{1}^{n, \varrho_{n}}\right\|_{L^{2}(\Omega)}^{2}=\left\|M_{\varrho_{n} \wedge 1}^{n}\right\|_{L^{2}(\Omega)}^{2} & \leq C . \tag{2}
\end{array}
$$

## Lemma

Assume NFLVRLI. For $\varepsilon>0$, there exist a constant $C>0$ and a sequence of $\left\{\frac{j}{2^{n}}\right\}_{j=1}^{2^{n}} \cup\{\infty\}$-valued stopping times $\left(\varrho_{n}\right)_{n=1}^{\infty}$ such that $\mathbb{P}\left(\varrho_{n}<\infty\right)<\varepsilon$ and

$$
\begin{array}{ll}
T V\left(A^{n, \varrho_{n}}\right)=\sum_{j=1}^{2^{n}\left(\varrho_{n} \wedge 1\right)}\left|A_{\frac{j}{2^{n}}}^{n}-A_{\frac{j-1}{2^{n}}}^{n}\right| & \leq C \\
\left\|M_{1}^{n, \varrho_{n}}\right\|_{L^{2}(\Omega)}^{2}=\left\|M_{\varrho_{n} \wedge 1}^{n}\right\|_{L^{2}(\Omega)}^{2} & \leq C . \tag{2}
\end{array}
$$

Idea:

$$
H_{t}^{n}=-2 \sum_{j=1}^{2^{n}} S_{\frac{j-1}{2^{n}}} \mathbb{1}_{]^{\frac{j-1}{2^{n}}, \frac{j}{\left.2^{n}\right]}}}(t) \Rightarrow\left\|M_{1}^{n, \varrho_{n}}\right\|_{L^{2}(\Omega)}^{2} \leq\left(H^{n} \cdot S\right)_{T}
$$

## Lemma

Assume NFLVRLI. For $\varepsilon>0$, there exist a constant $C>0$ and a sequence of $\left\{\frac{j}{2^{n}}\right\}_{j=1}^{2^{n}} \cup\{\infty\}$-valued stopping times $\left(\varrho_{n}\right)_{n=1}^{\infty}$ such that $\mathbb{P}\left(\varrho_{n}<\infty\right)<\varepsilon$ and

$$
\begin{array}{ll}
T V\left(A^{n, \varrho_{n}}\right)=\sum_{j=1}^{2^{n}\left(\varrho_{n} \wedge 1\right)}\left|A_{\frac{j}{2^{n}}}^{n}-A_{\frac{j-1}{2^{n}}}^{n}\right| & \leq C \\
\left\|M_{1}^{n, \varrho_{n}}\right\|_{L^{2}(\Omega)}^{2}=\left\|M_{\varrho_{n} \wedge 1}^{n}\right\|_{L^{2}(\Omega)}^{2} & \leq C . \tag{2}
\end{array}
$$

Idea:

$$
\begin{aligned}
& H_{t}^{n}=-2 \sum_{j=1}^{2^{n}} S_{\frac{j-1}{2^{n}}} \mathbb{1}_{]^{\frac{j-1}{2 n}}, \frac{j}{\left.2^{n}\right]}}(t) \Rightarrow\left\|M_{1}^{n, \varrho_{n}}\right\|_{L^{2}(\Omega)}^{2} \leq\left(H^{n} \cdot S\right)_{T} \\
& H_{t}^{n}=\sum_{j=1}^{2^{n}} \operatorname{sign}\left(A_{\frac{j}{2^{n}}}-A_{\frac{j-1}{2^{n}}}^{n}\right) \mathbb{1}_{]^{j-1}, \frac{j}{2^{n}}\right]}(t) \Rightarrow T V\left(A^{n}\right) \leq\left(H^{n} \cdot S\right)_{T}
\end{aligned}
$$

We want to pass to the limits

We want to pass to the limits
$■ \varrho_{n} \rightarrow \varrho$ and

We want to pass to the limits
$\varrho_{n} \rightarrow \varrho$ and
$\square A^{n} \rightarrow A$ and $M^{n} \rightarrow M$ on $[0, \varrho]$.

We want to pass to the limits

- $\varrho_{n} \rightarrow \varrho$ and
$\square A^{n} \rightarrow A$ and $M^{n} \rightarrow M$ on $[0, \varrho]$.
■ $S=A+M$ on $[0, \varrho]$. Since $\varepsilon$ was arbitrary, $S$ is a semimartingale.

We want to pass to the limits

- $\varrho_{n} \rightarrow \varrho$ and
$\square A^{n} \rightarrow A$ and $M^{n} \rightarrow M$ on $[0, \varrho]$.
■ $S=A+M$ on $[0, \varrho]$. Since $\varepsilon$ was arbitrary, $S$ is a semimartingale.


## Lemma (Komlos $L^{2}$-version)

Let $\left(f_{n}\right)_{n \geq 1}$ be a sequence of measurable functions on a probability space $(\Omega, \mathcal{F}, \mathbb{P})$ such that $\sup _{n \geq 1}\left\|f_{n}\right\|_{2}<\infty$. Then, there exist functions $g_{n} \in \operatorname{conv}\left(f_{n}, f_{n+1}, \ldots\right)$ such that $\left(g_{n}\right)_{n \geq 1}$ converges almost surely and in $\|\cdot\|_{L^{2}(\Omega)}$.

We want to pass to the limits

- $\varrho_{n} \rightarrow \varrho$ and
- $A^{n} \rightarrow A$ and $M^{n} \rightarrow M$ on $[0, \varrho]$.

■ $S=A+M$ on $[0, \varrho]$. Since $\varepsilon$ was arbitrary, $S$ is a semimartingale.

## Lemma (Komlos $L^{2}$-version)

Let $\left(f_{n}\right)_{n \geq 1}$ be a sequence of measurable functions on a probability space $(\Omega, \mathcal{F}, \mathbb{P})$ such that $\sup _{n \geq 1}\left\|f_{n}\right\|_{2}<\infty$. Then, there exist functions $g_{n} \in \operatorname{conv}\left(f_{n}, f_{n+1}, \ldots\right)$ such that $\left(g_{n}\right)_{n \geq 1}$ converges almost surely and in $\|\cdot\|_{L^{2}(\Omega)}$.

- $R_{T}^{n}=\mathbb{1}_{\left[0, \varrho_{n}\right]} \rightarrow R_{T}$ using Komlos.

We want to pass to the limits

- $\varrho_{n} \rightarrow \varrho$ and
- $A^{n} \rightarrow A$ and $M^{n} \rightarrow M$ on $[0, \varrho]$.

■ $S=A+M$ on $[0, \varrho]$. Since $\varepsilon$ was arbitrary, $S$ is a semimartingale.

## Lemma (Komlos $L^{2}$-version)

Let $\left(f_{n}\right)_{n \geq 1}$ be a sequence of measurable functions on a probability space $(\Omega, \mathcal{F}, \mathbb{P})$ such that $\sup _{n \geq 1}\left\|f_{n}\right\|_{2}<\infty$. Then, there exist functions $g_{n} \in \operatorname{conv}\left(f_{n}, f_{n+1}, \ldots\right)$ such that $\left(g_{n}\right)_{n \geq 1}$ converges almost surely and in $\|\cdot\|_{L^{2}(\Omega)}$.

- $R_{T}^{n}=\mathbb{1}_{\left[0, \varrho_{n}\right]} \rightarrow R_{T}$ using Komlos.

■ $R_{T}$ is a good enough substitute for $\varrho$.

We want to pass to the limits

- $\varrho_{n} \rightarrow \varrho$ and
- $A^{n} \rightarrow A$ and $M^{n} \rightarrow M$ on $[0, \varrho]$.

■ $S=A+M$ on $[0, \varrho]$. Since $\varepsilon$ was arbitrary, $S$ is a semimartingale.

## Lemma (Komlos $L^{2}$-version)

Let $\left(f_{n}\right)_{n \geq 1}$ be a sequence of measurable functions on a probability space $(\Omega, \mathcal{F}, \mathbb{P})$ such that $\sup _{n \geq 1}\left\|f_{n}\right\|_{2}<\infty$. Then, there exist functions $g_{n} \in \operatorname{conv}\left(f_{n}, f_{n+1}, \ldots\right)$ such that $\left(g_{n}\right)_{n \geq 1}$ converges almost surely and in $\|\cdot\|_{L^{2}(\Omega)}$.

- $R_{T}^{n}=\mathbb{1}_{\left[0, \varrho_{n}\right]} \rightarrow R_{T}$ using Komlos.
- $R_{T}$ is a good enough substitute for $\varrho$.
$■$ Using Komlos again, $A^{n} \rightarrow A$ and $M^{n} \rightarrow M$ on $[0, \varrho]$.

