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Introduction

We have a filtered probability space (Ω,F , (Ft)0≤t≤T ,P) satisfying
the usual conditions and a real-valued, càdlàg, adapted process
S = (St)0≤t≤T .

For the talk, we assume that S is locally bounded.

Theorem (Bichteler ’79,’81; Dellacherie ’80)

S is a good integrator if and only if S is a semimartingale.

Theorem (DS 94)

If a locally bounded process S satisfies NFLVR for simple
integrands, then S is a semimartingale.
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Good Integrator

A simple integrand is a stochastic process of the form

Ht =
n∑

j=1

hj1]τj−1,τj ](t)

where 0 = τ0 ≤ τ1 ≤ · · · ≤ τn = T are stopping times and
hj ∈ L∞(Ω,Fτj−1 ,P). Denote by SI the vector space of
simple integrands.

For each S , we may well-define the integration operator

I : SI → L0(Ω,F ,P)

n∑
j=1

hj1]τj−1,τj ] 7→
n∑

j=1

hj(Sτj − Sτj−1) =: (H · S)T .

S is a good integrator if I is continuous i.e. if ‖Hn‖∞ → 0,
then (Hn · S)T → 0 in probability.
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Good Integrator and NFLVR

S is a good integrator if for every sequence (Hn)∞n=1 satisfying
‖Hn‖∞ → 0, we have (Hn · S)T → 0 in probability.

“little investment” → “little outcome”

S satisfies NFLVR if for every sequence (Hn)∞n=1 satisfying
‖(Hn · S)−‖∞ → 0, we have (Hn · S)T → 0 in probability.

“vanishing risk” → “little outcome”
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NFLVRLI

S satisfies NFLVRLI if for every sequence (Hn)∞n=1 satisfying
‖Hn‖∞ → 0 and ‖(Hn · S)−‖∞ → 0, we have (Hn · S)T → 0
in probability.

“little investment” and “vanishing risk” →, “little outcome”.

S is a good integrator → S satisfies NFLVRLI.

S satisfies NFLVR → S satisfies NFLVRLI.
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Theorem (Main Theorem)

Let S be locally bounded process. TFAE:

S satisfies NFLVRLI.

S is a semimartingale.



Sketch of Proof

Assume S0 = 0, T = 1.

Being a semimartingale is a local property, hence assume S is
bounded. WLOG, S ≤ 1.

Consider Dn = {0, 1
2n , . . . ,

2n−1
2n , 1} and Sn sampled on Dn.

Apply discrete Doob-Meyer to obtain Sn = Mn + An, where
(Mn

j
2n

)2n

j=0 is a martingale and (An
j

2n
)2n

j=0 is predictable.
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Sketch of Proof Continued...

Lemma

Assume NFLVRLI. For ε > 0, there exist a constant C > 0 and a
sequence of { j

2n }2n

j=1 ∪ {∞}-valued stopping times (%n)∞n=1 such
that P(%n <∞) < ε and

TV (An,%n) =

2n(%n∧1)∑
j=1

∣∣∣An
j

2n
− An

j−1
2n

∣∣∣ ≤ C , (1)

‖Mn,%n
1 ‖2

L2(Ω) = ‖Mn
%n∧1‖2

L2(Ω) ≤ C . (2)

Idea:
Hn

t = −2
∑2n

j=1 S j−1
2n
1

] j−1
2n ,

j
2n ]

(t)⇒ ‖Mn,%n
1 ‖2

L2(Ω) ≤ (Hn · S)T .

Hn
t =

∑2n

j=1 sign
(
An

j
2n
− An

j−1
2n

)
1

] j−1
2n ,

j
2n ]

(t)⇒ TV (An) ≤ (Hn · S)T .



Sketch of Proof Continued...

Lemma

Assume NFLVRLI. For ε > 0, there exist a constant C > 0 and a
sequence of { j

2n }2n

j=1 ∪ {∞}-valued stopping times (%n)∞n=1 such
that P(%n <∞) < ε and

TV (An,%n) =

2n(%n∧1)∑
j=1

∣∣∣An
j

2n
− An

j−1
2n

∣∣∣ ≤ C , (1)

‖Mn,%n
1 ‖2

L2(Ω) = ‖Mn
%n∧1‖2

L2(Ω) ≤ C . (2)

Idea:
Hn

t = −2
∑2n

j=1 S j−1
2n
1

] j−1
2n ,

j
2n ]

(t)⇒ ‖Mn,%n
1 ‖2

L2(Ω) ≤ (Hn · S)T .

Hn
t =

∑2n

j=1 sign
(
An

j
2n
− An

j−1
2n

)
1

] j−1
2n ,

j
2n ]

(t)⇒ TV (An) ≤ (Hn · S)T .



Sketch of Proof Continued...

Lemma

Assume NFLVRLI. For ε > 0, there exist a constant C > 0 and a
sequence of { j

2n }2n

j=1 ∪ {∞}-valued stopping times (%n)∞n=1 such
that P(%n <∞) < ε and

TV (An,%n) =

2n(%n∧1)∑
j=1

∣∣∣An
j

2n
− An

j−1
2n

∣∣∣ ≤ C , (1)

‖Mn,%n
1 ‖2

L2(Ω) = ‖Mn
%n∧1‖2

L2(Ω) ≤ C . (2)

Idea:
Hn

t = −2
∑2n

j=1 S j−1
2n
1

] j−1
2n ,

j
2n ]

(t)⇒ ‖Mn,%n
1 ‖2

L2(Ω) ≤ (Hn · S)T .

Hn
t =

∑2n

j=1 sign
(
An

j
2n
− An

j−1
2n

)
1

] j−1
2n ,

j
2n ]

(t)⇒ TV (An) ≤ (Hn · S)T .



Sketch of Proof Continued...

We want to pass to the limits

%n → % and

An → A and Mn → M on [0, %].

S = A + M on [0, %]. Since ε was arbitrary, S is a
semimartingale.

Lemma (Komlos L2-version)

Let (fn)n≥1 be a sequence of measurable functions on a probability
space (Ω,F ,P) such that supn≥1 ‖fn‖2 <∞. Then, there exist
functions gn ∈ conv(fn, fn+1, . . . ) such that (gn)n≥1 converges
almost surely and in ‖.‖L2(Ω).

Rn
T = 1[0,%n] → RT using Komlos.

RT is a good enough substitute for %.

Using Komlos again, An → A and Mn → M on [0, %].
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