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Motivation

(Yt)t≥0 a semimartingale on (Ω,F , (Ft)t≥0,P) with known
terminal value YT = ξ ∈ FT .
Doob-Meyer decomposition:

Yt = Mt − Vt ,

M martingale, V cont. adapted process of finite variation.
If VT is integrable, then:

Mt = M(V , ξ)t = E [ξ + VT |Ft ] ∀ t ∈ [0,T ],

Yt = Y (V , ξ)t = E [ξ + VT |Ft ]− Vt ∀ t ∈ [0,T ]. (1.1)
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Setting

(Ω,F , (Ft)t≥0,P) filtered probability space satisfying the
usual conditions

C([0,T ],Rd ) := {V : Ω× [0,T ]→ Rd |V continuous and
adapted, E [maxj supt |V

j
t |2] <∞}

C0([0,T ],Rd ) := C([0,T ],Rd ) ∩ {V |V0 = 0}

M2([0,T ],Rd ) := {M : Ω× [0,T ]→ Rd |M square integrable
martingale on [0,T ]}
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Setting

‖V ‖C[0,T ] :=
√∑

j E [supt |V
j
t |2]

S([0,T ],Rd ) := C([0,T ],Rd )⊕M2([0,T ],Rd )

H2([0,T ],Rm) := {Z : Ω× [0,T ]→ Rm|Z predictable,
‖Z‖2

H2[0,T ] :=
∑

j E [
∫ T

0 |Z
j
t |2dt] <∞}

L nonlinear functional from M2([0,T ],Rd ) to H2([0,T ],Rm)
[or C([0,T ],Rm)].
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Backward stochastic dynamics

We will consider the backward stochastic dynamics{
dYt = −f (t,Yt , L(M)t)dt + dMt , t ∈ [0,T ],

YT = ξ ∈ FT ,
(1.2)

where f : Ω× R+ × Rd × Rm → Rd .
A solution to (1.2) is a pair of adapted processes (Y ,M) satisfying
the integral formulation of (1.2) and such that M is a
square-integrable martingale.
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Examples for L

Example (1)
B m-dim. BM, (Ft)t≥0 corresponding augmented filtration
L :M2([0,T ],R)→ H2([0,T ],Rm) defined via the Itô
representation theorem, i.e.

Mt = E [Mt ] +
m∑

j=1

∫ t

0
L(M)j

sdBj
s

Backward stochastic dynamics (1.2) ⇒ classical BSDEs
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Examples for L

Example (2)
B m-dim. BM, (Ft)t≥0 with usual assumptions
L :M2([0,T ],R)→ H2([0,T ],Rm) defined via the
orthogonal decomposition w.r.t. B, i.e.

Mt = E [Mt ] +
m∑

j=1

∫ t

0
L(M)j

sdBj
s + M ′t
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Example (3)
(Ft)t≥0 quasi-left continuous
For M ∈M2([0,T ],R) consider the decomposition

M = Mc + Md

Mc continuous martingale null at 0, Md purely discontinuous
martingale
L :M2([0,T ],R)→ C([0,T ],R) defined by

L(M)t :=
√
〈Mc〉t
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Functional differential equation for V

Question
How can we find a solution of (1.2)?

Define L : C0([0,T ],Rd )→ C0([0,T ],Rd ) by

L(V )t :=

∫ t

0
f (s,Y (V )s , L(M(V ))s)ds,

where M(V )t := E [ξ + VT |Ft ] and Y (V )t := M(V )t − Vt .

Assume that L has a fixed point V̂ ∈ C0([0,T ],Rd ). Then it is
easy to check that (Y (V̂ ),M(V̂ )) is a solution of (1.2).
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Existence of local solutions

Assumptions
ξ ∈ L2(FT )

f has linear growth in t, y and z and is Lipschitz in y and z :

|f (t, y , z)| ≤ C1(1 + t + |y |+ |z |),
|f (t, y , z)− f (t, y ′, z ′)| ≤ C1(|y − y ′|+ |z − z ′|) ∀ t, y , z .
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Existence of local solutions

Assumptions
The mapping L is bounded and Lipschitz continuous, i.e.

‖L(M)‖H2[0,T ] ≤ C2‖M‖C[0,T ],

‖L(M)− L(M ′)‖H2[0,T ] ≤ C2‖M −M ′‖C[0,T ] ∀ M,M ′ ∈M2

(resp. with ‖ · ‖C[0,T ] on the l.h.s.)
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Existence of local solutions

Proposition
There is a constant τ ∈ (0, 1] (depending on C1, C2 and the
dimension d, but independent of ξ) such that, for T ≤ τ , L admits
a unique fixed point V on C0([0,T ],Rd ).

Remark
When (Ft)t≥0 is the augmented filtration of a BM and L is given
by Itô representation, then L admits a unique fixed point for any
T > 0.
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Existence of local solutions

As a consequence, we obtain a local solution for the equation (1.2):

Theorem
For T ≤ τ and under the above assumptions, the backward
stochastic dynamics (1.2) have a unique solution (Y ,M), which
may be expressed in terms of the solution of the fixed point
equation L(V ) = V .
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Global solution

Next step: Extend local solutions to global ones

Additional assumptions on L needed!!!

For [T2,T1] ⊂ [0,T ], define the restriction L[T2,T1] from
M2([T2,T1],Rd ) to H2([T2,T1],Rm) [resp. C([T2,T1],Rm)]
by

L[T2,T1](N)t := L(Ñ)t , N ∈M2([T2,T1],Rd ),

where Ñt := E [NT1 |Ft ], t ∈ [0,T ], is the extension of N to
M2([0,T ],Rd ).
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Assumptions
For 0 ≤ T2 < T1 ≤ T and M ∈M2([0,T ],Rd ),

L(M) = L[T2,T1](M̂) on (T2,T1),

where M̂ = M
∣∣
[T2,T1]

.

For 0 ≤ T2 < T1 ≤ T and N ∈M2([T2,T1],Rd ),

L[T2,T1](N − NT2) = L[T2,T1](N) on (T2,T1).

Matteo Casserini (Gechun Liang) A functional differential approach to BSDEs 16/27



Backward stochastic dynamics
Approximation via the functional differential equation approach

Setting
Backward stochastic dynamics
Functional differential equation for V
Existence of local solutions
Global solution

Global solution

Consider a subdivision of [0,T ] in k subintervals [Tj ,Tj−1]:

0 = Tk < · · · < T1 < T0 = T ,

so that Tj−1 − Tj ≤ τ .

Theorem
Under the above additional assumptions, the backward stochastic
dynamics (1.2) have a unique solution (Y ,M) for any T > 0.
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Numerical approximation

Goal
Numerical solution of

V0 = 0, dVt = f (t,Y (V )t , L(M(V ))t)dt on [0,T ] (2.1)

We restrict to classical BSDEs (Example (1)), and assume
that ξ = φ(WT ) for a Lipschitz function φ.

V0 = 0, dVt = f (t,Y (V )t ,Z (V )t)dt on [0,T ], (2.2)

Z (V )t := DtM(V )T = Dt(φ(WT ) + VT ).
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Time discretization

π := (t0, t1, · · · , tn) a partition of [0,T ] with mesh |π|
∆ti = ti − ti−1, ∆Wti = Wti −Wti−1 for 1 ≤ i ≤ n
Discretization of (2.2):

V π
0 = 0, V π

ti = V π
ti−1 + f (ti−1,Y (V π)ti−1 ,Z (V π)ti−1)∆ti

(2.3)
Y (V π)ti−1 = E [φ(WT ) + V π

T |Fti−1 ]− V π
ti−1 ,

Z (V π)ti−1 =
1

∆ti
E
[
(φ(WT ) + V π

T )(∆Wti )
T |Fti−1

]
.
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Time discretization

Extend V π to [0,T ] by linear interpolation.

Theorem
Under the assumption that

|f (t, y , z)− f (t ′, y ′, z ′)| ≤ C1(
√
|t − t ′|+ |y − y ′|+ |z − z ′|),

there is a constant C3, depending only on the constants and
dimensions involved, such that

sup
0≤t≤T

E [|Vt − V π
t |2] ≤ C3|π|.
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Picard iteration of the discretized equation

The discretized equation (2.3) can’t be solved explicitly
(dependence on the terminal value).

Continuous time results ⇒ approximate (2.3) via a Picard
iteration procedure.

Advantage: Avoid the nesting of conditional expectations
(arising in most numerical approaches to BSDEs), thus
reducing the amplificaton of the error.
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Picard iteration of the discretized equation

Define the Picard approximations V p,π of V π recursively by
V 0,π ≡ 0 and, for p ≥ 1 and 1 ≤ i ≤ n,

V p,π
0 = 0,

V p,π
ti = V p,π

ti−1 + f (ti−1,Y (V p−1,π)ti−1 ,Z (V p−1,π)ti−1)∆ti .
(2.4)
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Picard iteration of the discretized equation

Theorem
Under above assumptions, there are constants C4 and C5,
depending only on the constants and dimensions involved, such
that

max
0≤i≤n

E [|V p,π
ti − V π

ti |
2] ≤ C4

(1
2 + C5|π|

)p
.
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Picard iteration of the discretized equation

By collecting the above results, we can get:

Theorem
Under above assumptions, there is a constant C, depending only
on the Lipschitz constants involved and the dimension of the
problem, such that

sup
0≤t≤T

E [|Vt − V p,π
t |2] ≤ C

(
|π|+

(1
2 + C |π|

)p)
.
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Picard iteration of the discretized equation

Possible future directions

Extension to fully coupled FBSDEs (Delarue, ...)

Extend the numerical approximation to other types of
functionals L (Example 3)

Extension to BSDEs of quadratic growth (Kobylanski,
Briand-Hu, Morlais, Tevzadze, ...)
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Thank you for your attention!
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