Work Effort, Consumption and Portfolio Choice: When the Occupational Decision Matters

Sascha Desmettre

Third SMAI European Summer School in Financial Mathematics Paris, France, August 23-27, 2010

Introduction

- Financial Market
- Controls and Wealth Process
- Stochastic Control Problem

Optimal Strategies

- HJB Equation
- Closed-Form Solution

Decision Problem

Illustration of Results

1 Introduction

- Financial Market
- Controls and Wealth Process
- Stochastic Control Problem

Optimal Strategies

- HJB Equation
- Closed-Form Solution

4 Decision Problem

6 Illustration of Results

👩 Outlook

Motivation and Framework

• Observation: Highly-qualified individuals have often the choice between different career paths;

- Decision problem between two career paths:
 - Mid-level management position in a large company with a rather high salary
 - Executive position within a smaller listed company with less salary and the possibility to influence the company's performance
- Modelling of the optimization and decision problem:
 - Studied from the point of view of a highly-qualified individual in a smaller company with the option to join a larger company
 - The individual can invest in the financial market including the share of the smaller listed company
 - Stochastic control problem

Motivation and Framework

- Observation: Highly-qualified individuals have often the choice between different career paths;
- Decision problem between two career paths:
 - Mid-level management position in a large company with a rather high salary
 - Executive position within a smaller listed company with less salary and the possibility to influence the company's performance
- Modelling of the optimization and decision problem:
 - Studied from the point of view of a highly-qualified individual in a smaller company with the option to join a larger company
 - The individual can invest in the financial market including the share of the smaller listed company
 - Stochastic control problem

Motivation and Framework

- Observation: Highly-qualified individuals have often the choice between different career paths;
- Decision problem between two career paths:
 - Mid-level management position in a large company with a rather high salary
 - Executive position within a smaller listed company with less salary and the possibility to influence the company's performance
- Modelling of the optimization and decision problem:
 - Studied from the point of view of a highly-qualified individual in a smaller company with the option to join a larger company
 - The individual can invest in the financial market including the share of the smaller listed company
 - Stochastic control problem

Framework

Utility-maximizing Individual

- The individual receives a constant salary rate δ proportional to her wealth.
 - Gain in utility from a higher salary rate.
- The individual's initial wealth V_0 is invested in the money market account, a diversified market portfolio, and own company shares.
- The value of her own company's stock is influenced via work effort:
 - Gain in utility from the increased value of her direct shareholding.
 - $\bullet~\mbox{Loss}$ in utility for her work effort \rightarrow disutility term.
- The individual consumes at a continuous rate k_t proportional to her wealth.
 - Gain in utility by the ability to consume.

Characterization of the Individual

- Utility function of wealth
- Utility function of consumption with time preference ρ
- \bullet Disutility function associated with time preference $\tilde{\rho}$ and work effectiveness parameters
 - Inverse work productivity κ
 - Disutility stress α

Framework

Utility-maximizing Individual

- The individual receives a constant salary rate δ proportional to her wealth.
 - Gain in utility from a higher salary rate.
- The individual's initial wealth V_0 is invested in the money market account, a diversified market portfolio, and own company shares.
- The value of her own company's stock is influenced via work effort:
 - Gain in utility from the increased value of her direct shareholding.
 - $\bullet~\mbox{Loss}$ in utility for her work effort \rightarrow disutility term.
- The individual consumes at a continuous rate k_t proportional to her wealth.
 - Gain in utility by the ability to consume.

Characterization of the Individual

- Utility function of wealth
- ${\scriptstyle \bullet}$ Utility function of consumption with time preference ρ
- \bullet Disutility function associated with time preference $\tilde{\rho}$ and work effectiveness parameters
 - ${\scriptstyle \bullet }$ Inverse work productivity κ
 - ${\scriptstyle \bullet}$ Disutility stress α

Financial Market Controls and Wealth Process Stochastic Control Problem

Introduction

- Financial Market
- Controls and Wealth Process
- Stochastic Control Problem

Optimal Strategies

- HJB Equation
- Closed-Form Solution

4 Decision Problem

6 Illustration of Results

👩 Outlook

Financial Market Controls and Wealth Process Stochastic Control Problem

Money Market Account:

$$\mathrm{d}B_t = r \, B_t \, \mathrm{d}t \,, \quad B_0 = 1 \,, \tag{1}$$

Market Portfolio:

$$\mathrm{d}P_t = P_t \left(\mu^P \,\mathrm{d}t + \sigma^P \,\mathrm{d}W_t^P \right), \quad P_0 \in \mathbb{R}^+,$$
(2)

• Company's share price process is a controlled diffusion with SDE

$$\mathrm{d}S_t^{\lambda} = S_t^{\lambda} \left(\left[r + \lambda_t \, \sigma \right] \mathrm{d}t + \sigma \, \mathrm{d}W_t + \beta \left[\frac{\mathrm{d}P_t}{P_t} - r \mathrm{d}t \right] \right) \,, \quad S_0 \in \mathbb{R}^+ \,, \quad (3)$$

where the Sharpe ratio $\lambda_t = (\mu_t - r)/\sigma$ is controlled by the individual.

Individual influences the own company's share price.

 $\hat{=}$ Gain in utility from the increased value of her direct shareholding.

Remark

 W^P and W are two independent standard Brownian motions, but the instantaneous correlation between S_t^{λ} and P_t is $\rho_t = \beta \sigma^P / \sqrt{\sigma^2 + (\beta \sigma^P)}$.

Financial Market Controls and Wealth Process Stochastic Control Problem

Money Market Account:

$$\mathrm{d}B_t = r \, B_t \, \mathrm{d}t \,, \quad B_0 = 1 \,, \tag{1}$$

Market Portfolio:

$$\mathrm{d}P_t = P_t \left(\mu^P \,\mathrm{d}t + \sigma^P \,\mathrm{d}W_t^P \right), \quad P_0 \in \mathbb{R}^+, \tag{2}$$

Company's share price process is a controlled diffusion with SDE

$$\mathrm{d}S_{t}^{\lambda} = S_{t}^{\lambda} \left(\left[r + \lambda_{t} \, \sigma \right] \mathrm{d}t + \sigma \, \mathrm{d}W_{t} + \beta \left[\frac{\mathrm{d}P_{t}}{P_{t}} - r \mathrm{d}t \right] \right), \quad S_{0} \in \mathbb{R}^{+}, \quad (3)$$

where the Sharpe ratio $\lambda_t = (\mu_t - r)/\sigma$ is controlled by the individual.

Individual influences the own company's share price.

 $\hat{=}$ Gain in utility from the increased value of her direct shareholding.

Remark

 W^P and W are two independent standard Brownian motions, but the instantaneous correlation between S_t^{λ} and P_t is $\rho_t = \beta \sigma^P / \sqrt{\sigma^2 + (\beta \sigma^P)}$.

Financial Market Controls and Wealth Process Stochastic Control Problem

Money Market Account:

$$\mathrm{d}B_t = r \, B_t \, \mathrm{d}t \,, \quad B_0 = 1 \,, \tag{1}$$

Market Portfolio:

$$\mathrm{d}P_t = P_t \left(\mu^P \,\mathrm{d}t + \sigma^P \,\mathrm{d}W_t^P \right), \quad P_0 \in \mathbb{R}^+,$$
(2)

Company's share price process is a controlled diffusion with SDE

$$\mathrm{d}S_{t}^{\lambda} = S_{t}^{\lambda} \left(\left[r + \lambda_{t} \sigma \right] \mathrm{d}t + \sigma \,\mathrm{d}W_{t} + \beta \left[\frac{\mathrm{d}P_{t}}{P_{t}} - r \mathrm{d}t \right] \right), \quad S_{0} \in \mathbb{R}^{+}, \quad (3)$$

where the Sharpe ratio $\lambda_t = (\mu_t - r)/\sigma$ is controlled by the individual.

Individual influences the own company's share price.

 $\hat{=}$ Gain in utility from the increased value of her direct shareholding.

Remark

 W^P and W are two independent standard Brownian motions, but the instantaneous correlation between S_t^{λ} and P_t is $\rho_t = \beta \sigma^P / \sqrt{\sigma^2 + (\beta \sigma^P)}$.

Financial Market Controls and Wealth Process Stochastic Control Problem

Highly-qualified individual

- Endowed with initial wealth $V_0 > 0$.
- Salary rate δ proportional to her current wealth.
- ${\ensuremath{\,\circ\,}}$ Seeks to maximize total utility for a given time horizon ${\ensuremath{\,T}}>0$ by controlling
 - the portfolio holdings π^{P} and π^{s} ,
 - the consumption k,
 - ${\scriptstyle \bullet}\,$ the work effort λ .

\Rightarrow All controls are collected in the vector process $u = (\pi^P, \pi^S, k, \lambda)$.

For a fixed salary rate, control strategy $u = (\pi^P, \pi^S, k, \lambda)$ and initial wealth $V_0 > 0$, the wealth process is given by:

$$\mathrm{d}V_t^u = V_t^u \left[(1 - \pi_t^P - \pi_t^S) \,\mathrm{d}B_t / B_t + \pi_t^P \mathrm{d}P_t / P_t + \pi_t^S \mathrm{d}S_t^\lambda / S_t^\lambda + \delta \,\mathrm{dt} - \mathrm{k_t} \,\mathrm{dt} \right] \,. \tag{4}$$

Financial Market Controls and Wealth Process Stochastic Control Problem

Highly-qualified individual

- Endowed with initial wealth $V_0 > 0$.
- Salary rate δ proportional to her current wealth.
- ${\ensuremath{\,\circ\,}}$ Seeks to maximize total utility for a given time horizon ${\ensuremath{\,T}}>0$ by controlling
 - the portfolio holdings π^{P} and π^{s} ,
 - the consumption k,
 - the work effort λ .

 \Rightarrow All controls are collected in the vector process $u = (\pi^P, \pi^S, k, \lambda)$.

For a fixed salary rate, control strategy $u = (\pi^P, \pi^S, k, \lambda)$ and initial wealth $V_0 > 0$, the wealth process is given by:

$$\mathrm{d}V_t^u = V_t^u \left[\left(1 - \pi_t^P - \pi_t^S\right) \mathrm{d}B_t / B_t + \pi_t^P \mathrm{d}P_t / P_t + \pi_t^S \mathrm{d}S_t^\lambda / S_t^\lambda + \delta \,\mathrm{dt} - \mathrm{k_t} \,\mathrm{dt} \right] \,. \tag{4}$$

Financial Market Controls and Wealth Process Stochastic Control Problem

Utility of Wealth and Consumption

- The utility from final wealth at time T is represented by a utility function U_1 .
- The utility from consumption over the period [t, T] is represented by a utility function U_2 .

Work Effort Choice and Disutility

The individual's instanteneous disutility of work effort is represented by a Markovian disutility rate (cost function) $C(t, v, \lambda_t)$ for control strategy (λ_t) , where $c : [0, T] \times \mathbb{R}^+ \times [r, \infty) \times \mathbb{R}^+ \to \mathbb{R}^+_0$.

 \Rightarrow The optimal investment and consumption control decision including work effort is the solution of

$$\Phi(t,v) = \sup_{u \in A(t,v)} \mathbb{E}^{t,v} \left[U_1(V_T^u) + \int_t^T U_2(s, V_s^u, k_s) \mathrm{d}s - \int_t^T C(s, V_s^u, \lambda_s) \mathrm{d}s \right],$$

where $(t,v) \in [0, T] \times \mathbb{R}^+.$

(5)

Financial Market Controls and Wealth Process Stochastic Control Problem

Utility of Wealth and Consumption

- The utility from final wealth at time T is represented by a utility function U_1 .
- The utility from consumption over the period [t, T] is represented by a utility function U_2 .

Work Effort Choice and Disutility

The individual's instanteneous disutility of work effort is represented by a Markovian disutility rate (cost function) $C(t, v, \lambda_t)$ for control strategy (λ_t) , where $c : [0, T] \times \mathbb{R}^+ \times [r, \infty) \times \mathbb{R}^+ \to \mathbb{R}^+_0$.

 \Rightarrow The optimal investment and consumption control decision including work effort is the solution of

$$\Phi(t,v) = \sup_{u \in A(t,v)} \mathbb{E}^{t,v} \left[U_1(V_T^u) + \int_t^T U_2(s, V_s^u, k_s) \mathrm{d}s - \int_t^T C(s, V_s^u, \lambda_s) \mathrm{d}s \right],$$

where $(t, v) \in [0, T] \times \mathbb{R}^+$.

(5)

HJB Equation Closed-Form Solution

Introduction

- Financial Market
- Controls and Wealth Process
- Stochastic Control Problem

Optimal Strategies

- HJB Equation
- Closed-Form Solution

4 Decision Problem

6 Illustration of Results

👩 Outlook

HJB Equation Closed-Form Solution

$$0 = \sup_{u \in \mathbb{R}^{2} \times [0,\infty)^{2}} \Phi_{t}(t,v) + \Phi_{v}(t,v) v (r + \pi^{S} \lambda \sigma + [\pi^{P} + \beta \pi^{S}](\mu^{P} - r) + \delta - k_{t}) + \frac{1}{2} \Phi_{vv}(t,v) v^{2} ([\pi^{S} \sigma]^{2} + [\pi^{P} \sigma^{P} + \beta \pi^{S} \sigma_{P}]^{2}) + U_{2}(t,k_{t},v) - C(t,v,\lambda) where $(t,v) \in [0,T) \times \mathbb{R}^{+}$, and $U_{1}(v) = \Phi(T,v)$, for $v \in \mathbb{R}^{+}$.
(6)$$

 \Rightarrow Maximizers π^{P^*} , π^{S^*} , λ^* and k^* of (6) by establishing the FOCs:

$$\pi^{P^*}(t,v) = -\frac{(\mu^P - r)}{v(\sigma^P)^2} \frac{\Phi_v(t,v)}{\Phi_{vv}(t,v)} - \beta \pi^{S^*}(t,v) \quad ,$$

$$\pi^{S^*}(t,v) = -\frac{\lambda^*(t,v)}{v\sigma} \frac{\Phi_v(t,v)}{\Phi_{vv}(t,v)} \quad ,$$

(7)

where λ^* is the solution of the implicit equation

$$\lambda \frac{\Phi_{\nu}^{2}(t,\nu)}{\Phi_{\nu\nu}(t,\nu)} + \frac{\partial C}{\partial \lambda}(t,\nu,\lambda) = 0 \quad \text{ for all } (t,\nu) \in [0,T] \times \mathbb{R}^{+},$$
(8)

and k^* is the solution of the equation

$$\frac{\partial U_2}{\partial k}(t,k,v) - v \,\Phi_v(t,v) = 0. \tag{9}$$

HJB Equation Closed-Form Solution

$$0 = \sup_{u \in \mathbb{R}^{2} \times [0,\infty)^{2}} \Phi_{t}(t,v) + \Phi_{v}(t,v) v (r + \pi^{S} \lambda \sigma + [\pi^{P} + \beta \pi^{S}](\mu^{P} - r) + \delta - k_{t})$$

+ $\frac{1}{2} \Phi_{vv}(t,v) v^{2} ([\pi^{S} \sigma]^{2} + [\pi^{P} \sigma^{P} + \beta \pi^{S} \sigma_{P}]^{2}) + U_{2}(t,k_{t},v) - C(t,v,\lambda)$
where $(t,v) \in [0,T) \times \mathbb{R}^{+}$, and $U_{1}(v) = \Phi(T,v)$, for $v \in \mathbb{R}^{+}$.
(6)

 \Rightarrow Maximizers $\pi^{{\it P}^{\star}}$, $\pi^{{\it S}^{\star}}$, λ^{\star} and k^{\star} of (6) by establishing the FOCs:

$$\pi^{P^{\star}}(t,v) = -\frac{(\mu^{P}-r)}{v(\sigma^{P})^{2}} \frac{\Phi_{v}(t,v)}{\Phi_{vv}(t,v)} - \beta \pi^{S^{\star}}(t,v) \quad ,$$

$$\pi^{S^{\star}}(t,v) = -\frac{\lambda^{\star}(t,v)}{v\sigma} \frac{\Phi_{v}(t,v)}{\Phi_{vv}(t,v)} \quad ,$$

(7)

where λ^{\star} is the solution of the implicit equation

$$\lambda \frac{\Phi_{\nu}^{2}(t,\nu)}{\Phi_{\nu\nu}(t,\nu)} + \frac{\partial C}{\partial \lambda}(t,\nu,\lambda) = 0 \quad \text{ for all } (t,\nu) \in [0,T] \times \mathbb{R}^{+},$$
(8)

and k^* is the solution of the equation

$$\frac{\partial U_2}{\partial k}(t,k,v) - v \,\Phi_v(t,v) = 0. \tag{9}$$

HJB Equation Closed-Form Solution

Substituting the maximizers (7) in the HJB (6) then yields:

$$\Phi_{t}(t,v) + \Phi_{v}(t,v)v (r + \delta - k^{\star}(t,v)) - \frac{1}{2}(\lambda^{\star}(t,v))^{2} \frac{\Phi_{v}^{2}(t,v)}{\Phi_{vv}(t,v)} - \frac{1}{2}(\lambda_{P})^{2} \frac{\Phi_{v}^{2}(t,v)}{\Phi_{vv}(t,v)} + U_{2}(t,k^{\star}(t,v)) - C(t,v,\lambda^{\star}(t,v)) = 0,$$
(10)

where
$$\lambda_P := \frac{\mu_P - r}{\sigma^P}$$
 .

Goal:

Solve equation (10) for a special choice of the utility function of wealth, the utility function of consumption and the disutility function.

HJB Equation Closed-Form Solution

Substituting the maximizers (7) in the HJB (6) then yields:

$$\Phi_{t}(t,v) + \Phi_{v}(t,v)v (r + \delta - k^{\star}(t,v)) - \frac{1}{2}(\lambda^{\star}(t,v))^{2} \frac{\Phi_{v}^{2}(t,v)}{\Phi_{vv}(t,v)} - \frac{1}{2}(\lambda_{P})^{2} \frac{\Phi_{v}^{2}(t,v)}{\Phi_{vv}(t,v)} + U_{2}(t,k^{\star}(t,v)) - C(t,v,\lambda^{\star}(t,v)) = 0,$$
(10)

where
$$\lambda_P := \frac{\mu_P - r}{\sigma^P}$$
.

Goal:

Solve equation (10) for a special choice of the utility function of wealth, the utility function of consumption and the disutility function.

HJB Equation Closed-Form Solution

Utility and Disutility Functions

The utility function U_1 of wealth satisfies:

$$U_1(v) = K \log(v), \quad \text{for } v \in \mathbb{R}^+,$$
 (11)

for a constant K > 0.

The utility function U_2 of consumption satisfies:

$$U_2(t,k,v) = e^{-\rho t} \log(v k), \quad \text{for } (t,v,k) \in [0,T] \times \mathbb{R}^+ \times \mathbb{R}^+_0, \qquad (12)$$

where $\rho \in \mathbb{R}^+$ is the time preference of consumption.

And the disutility of control (i.e. work effort) C satisfies:

$$C(t, v, \lambda) = e^{-\tilde{\rho} t} \kappa \frac{\lambda^{\alpha}}{\alpha}, \quad \text{for } (t, v, \lambda) \in [0, T] \times \mathbb{R}^+ \times \mathbb{R}^+_0,$$
(13)

where $\kappa =$ inverse work productivity and $\alpha =$ disutility stress and $\tilde{\rho} \in \mathbb{R}^-$ is the time preference for the work effort.

Fraunhofer

HJB Equation Closed-Form Solution

Utility and Disutility Functions

The utility function U_1 of wealth satisfies:

$$U_1(v) = K \log(v), \quad \text{for } v \in \mathbb{R}^+,$$
(11)

for a constant K > 0.

The utility function U_2 of consumption satisfies:

$$U_2(t,k,v) = e^{-\rho t} \log(v k), \quad \text{for } (t,v,k) \in [0,T] \times \mathbb{R}^+ \times \mathbb{R}^+_0, \qquad (12)$$

where $\rho \in \mathbb{R}^+$ is the time preference of consumption.

And the disutility of control (i.e. work effort) C satisfies:

$$C(t, \nu, \lambda) = e^{-\tilde{\rho} t} \kappa \frac{\lambda^{\alpha}}{\alpha}, \quad \text{for } (t, \nu, \lambda) \in [0, T] \times \mathbb{R}^+ \times \mathbb{R}^+_0,$$
(13)

where $\kappa =$ inverse work productivity and $\alpha =$ disutility stress and $\tilde{\rho} \in \mathbb{R}^-$ is the time preference for the work effort.

Fraunhofer

HJB Equation Closed-Form Solution

Utility and Disutility Functions

The utility function U_1 of wealth satisfies:

$$U_1(v) = K \log(v), \quad \text{for } v \in \mathbb{R}^+,$$
(11)

for a constant K > 0.

The utility function U_2 of consumption satisfies:

$$U_2(t,k,v) = e^{-\rho t} \log(v k), \quad \text{ for } (t,v,k) \in [0,T] \times \mathbb{R}^+ \times \mathbb{R}^+_0, \qquad (12)$$

where $\rho \in \mathbb{R}^+$ is the time preference of consumption.

And the disutility of control (i.e. work effort) C satisfies:

$$C(t, v, \lambda) = e^{-\tilde{\rho} t} \kappa \frac{\lambda^{\alpha}}{\alpha}, \quad \text{for } (t, v, \lambda) \in [0, T] \times \mathbb{R}^+ \times \mathbb{R}^+_0,$$
(13)

ITWM

where $\kappa =$ inverse work productivity and $\alpha =$ disutility stress and $\tilde{\rho} \in \mathbb{R}^-$ is the time preference for the work effort.

Sascha Desmettre The Occupational Decision

HJB Equation Closed-Form Solution

Deriving the Solution

Knowing the utility and disutility functions now, we can solve the FOCs (8) and (9):

$$\lambda^{\star} = \left(\frac{e^{\tilde{\rho}t}}{\kappa} \frac{\Phi_{\nu}^{2}}{-\Phi_{\nu\nu}}\right)^{\frac{1}{\alpha-2}} \quad \text{and} \quad k^{\star} = \frac{e^{-\rho t}}{\nu \Phi_{\nu}}$$

Substituting this into (10) yields the following simplified equation:

$$0 = \Phi_{t} + \Phi_{v} v (r + \delta) + \frac{1}{2} \frac{\Phi_{v}^{2}}{-\Phi_{vv}} \left(\lambda^{P}\right)^{2} + \frac{\alpha - 2}{2\alpha} \kappa^{-\frac{2}{\alpha - 2}} \left(\frac{\Phi_{v}^{2}}{-\Phi_{vv}}\right)^{\frac{\alpha}{\alpha - 2}} (14) \\ - e^{-\rho t} - \rho t e^{-\rho t} - e^{-\rho t} \log(\Phi_{v}).$$

Now, the solution Φ can be derived by assuming an ansatz of the form

 $\Phi(t,v) = \log(v) f(t) + g(t) \quad \text{with } f(T) = 1 \text{ and } g(T) = 0.$

HJB Equation Closed-Form Solution

Deriving the Solution

Knowing the utility and disutility functions now, we can solve the FOCs (8) and (9):

$$\lambda^{\star} = \left(\frac{e^{\tilde{\rho}t}}{\kappa} \frac{\Phi_{\nu}^{2}}{-\Phi_{\nu\nu}}\right)^{\frac{1}{\alpha-2}} \quad \text{and} \quad k^{\star} = \frac{e^{-\rho t}}{\nu \Phi_{\nu}}$$

Substituting this into (10) yields the following simplified equation:

$$0 = \Phi_{t} + \Phi_{v} v (r + \delta) + \frac{1}{2} \frac{\Phi_{v}^{2}}{-\Phi_{vv}} \left(\lambda^{P}\right)^{2} + \frac{\alpha - 2}{2\alpha} \kappa^{-\frac{2}{\alpha - 2}} \left(\frac{\Phi_{v}^{2}}{-\Phi_{vv}}\right)^{\frac{\alpha}{\alpha - 2}} (14) - e^{-\rho t} - \rho t e^{-\rho t} - e^{-\rho t} \log(\Phi_{v}).$$

Now, the solution Φ can be derived by assuming an ansatz of the form

$$\Phi(t,v) = \log(v) f(t) + g(t)$$
 with $f(T) = 1$ and $g(T) = 0$.

HJB Equation Closed-Form Solution

Deriving the Solution

Knowing the utility and disutility functions now, we can solve the FOCs (8) and (9):

$$\lambda^{\star} = \left(\frac{e^{\tilde{\rho}t}}{\kappa} \frac{\Phi_{\nu}^{2}}{-\Phi_{\nu\nu}}\right)^{\frac{1}{\alpha-2}} \quad \text{and} \quad k^{\star} = \frac{e^{-\rho t}}{\nu \Phi_{\nu}}$$

Substituting this into (10) yields the following simplified equation:

$$0 = \Phi_{t} + \Phi_{v} v (r + \delta) + \frac{1}{2} \frac{\Phi_{v}^{2}}{-\Phi_{vv}} \left(\lambda^{P}\right)^{2} + \frac{\alpha - 2}{2\alpha} \kappa^{-\frac{2}{\alpha - 2}} \left(\frac{\Phi_{v}^{2}}{-\Phi_{vv}}\right)^{\frac{\alpha}{\alpha - 2}} (14) - e^{-\rho t} - \rho t e^{-\rho t} - e^{-\rho t} \log(\Phi_{v}).$$

Now, the solution Φ can be derived by assuming an ansatz of the form

$$\Phi(t,v) = \log(v) f(t) + g(t)$$
 with $f(T) = 1$ and $g(T) = 0$.

HJB Equation Closed-Form Solution

Substituting this approach in (14) produces a easily solvable ODE, which yields the following **solutions**:

$$\pi^{P^{\star}}(t,v) = \frac{\mu^{P} - r}{(\sigma^{P})^{2}} - \beta \pi^{S^{\star}}(t,v), \quad \text{and} \quad \pi^{S^{\star}}(t,v) = \frac{\lambda^{\star}(t,v)}{\sigma},$$

$$\lambda^{\star}(t,v) = \left(\frac{e^{\tilde{\rho} t}}{\kappa}f(t)\right)^{\frac{1}{\alpha-2}}, \quad \text{and} \quad k^{\star}(t,v) = \frac{e^{-\rho t}}{f(t)},$$
(15)

and value function

$$\phi(t,v) = f(t) \log(v) + g(t),$$

with

$$f(t) = \begin{cases} K + \frac{e^{-\rho t} - e^{-\rho T}}{\rho}, & \text{for } \rho \neq 0, \\ K + T - t, & \text{for } \rho = 0, \end{cases}$$
(16)

and

Introduction

2 Set-Up

- Financial Market
- Controls and Wealth Process
- Stochastic Control Problem

Optimal Strategies

- HJB Equation
- Closed-Form Solution

4 Decision Problem

5 Illustration of Results

👩 Outlook

Career Path 1: Job Offer from the smaller listed Company

- Contract offered by the principal at t = 0 with a constant salary rate δ .
- Ability of controlling the Sharpe ratio by spending work effort \rightarrow higher utility from an increased expected return.
- \Rightarrow Value function:

$$\begin{split} \Phi(0, v, \delta) &= \left(\mathcal{K} + \frac{1 - e^{-\rho T}}{\rho} \right) \log(v) + \frac{\alpha - 2}{2\alpha} \int_0^T \left(\frac{e^{\tilde{\rho} s}}{\kappa} \right)^{\frac{2}{\alpha - 2}} f(s)^{\frac{\alpha}{\alpha - 2}} \, \mathrm{d}s \\ &+ \left(r + \delta + \frac{1}{2} \lambda_P^2 \right) \left(\mathcal{K} T + \frac{1}{\rho^2} \left[1 - e^{-\rho T} (1 + \rho T) \right] \right) - \frac{1}{\rho} \left(1 - e^{-\rho T} \right) \\ &+ T e^{-\rho T} + \mathcal{K} \log(\mathcal{K}) - \log \left(\mathcal{K} + \frac{1}{\rho} \left[1 - e^{-\rho T} \right] \right) \left(\mathcal{K} + \frac{1}{\rho} \left[1 - e^{-\rho T} \right] \right) \end{split}$$

Career Path 2: Outside Option

- Contract offered with a constant salary rate δ_0 from a larger company.
- No ability of controlling the Sharpe ratio!
- \Rightarrow Value function:

$$\Phi^{0}(0, v, \delta_{0}) = \Phi(0, v, \delta_{0}) - \frac{\alpha - 2}{2 \alpha} \int_{t}^{T} \left(\frac{e^{\beta s}}{\kappa}\right)^{\frac{\alpha}{\alpha - 2}} f(s)^{\frac{\alpha}{\alpha - 2}} ds$$
 Fraunhofer

Career Path 1: Job Offer from the smaller listed Company

- Contract offered by the principal at t = 0 with a constant salary rate δ .
- \bullet Ability of controlling the Sharpe ratio by spending work effort \to higher utility from an increased expected return.
- \Rightarrow Value function:

$$\begin{split} \Phi(0, v, \delta) &= \left(K + \frac{1 - e^{-\rho T}}{\rho}\right) \log(v) + \frac{\alpha - 2}{2\alpha} \int_0^T \left(\frac{e^{\tilde{\rho}s}}{\kappa}\right)^{\frac{2}{\alpha - 2}} f(s)^{\frac{\alpha}{\alpha - 2}} \,\mathrm{d}s \\ &+ \left(r + \delta + \frac{1}{2}\lambda_P^2\right) \left(K T + \frac{1}{\rho^2} \left[1 - e^{-\rho T}(1 + \rho T)\right]\right) - \frac{1}{\rho} \left(1 - e^{-\rho T}\right) \\ &+ T e^{-\rho T} + K \log(K) - \log\left(K + \frac{1}{\rho} \left[1 - e^{-\rho T}\right]\right) \left(K + \frac{1}{\rho} \left[1 - e^{-\rho T}\right]\right). \end{split}$$

Career Path 2: Outside Option

- Contract offered with a constant salary rate δ_0 from a larger company.
- No ability of controlling the Sharpe ratio!
- \Rightarrow Value function:

$$\Phi^{0}(0, v, \delta_{0}) = \Phi(0, v, \delta_{0}) - \frac{\alpha - 2}{2\alpha} \int_{t}^{T} \left(\frac{e^{\tilde{\rho} s}}{\kappa}\right)^{\frac{1}{\alpha - 2}} f(s)^{\frac{\alpha}{\alpha - 2}} ds.$$
 Fraunhofer

2

Appropriate Salary Rate

Participation Constraint

Utility by accepting the contract > utility of the outside option, i.e. $\Phi(\delta) > \Phi^0(\delta_0)$.

Requiring that $\Phi(0, v, \delta) = \Phi^0(0, v, \delta_0)$, we get the minimal appropriate salary rate:

$$\delta = \begin{cases} \delta_0 - \frac{(\alpha - 2)}{2 \, \alpha} \, \frac{\int_{\mathbf{0}}^{\mathbf{T}} \left(\frac{e^{\beta \cdot \mathbf{s}}}{\kappa}\right)^{\frac{2}{\alpha - 2}} \, f(\mathbf{s})^{\frac{\alpha}{\alpha - 2}} \, \mathrm{d}\mathbf{s}} \\ \kappa - \frac{1}{\beta \mathbf{s}} \left(\frac{1}{\kappa}\right)^{\frac{2}{\alpha - 2}} \, f(\mathbf{s})^{\frac{\alpha}{\alpha - 2}} \, \mathrm{d}\mathbf{s}} \\ \delta_0 - \frac{(\alpha - 2)}{2 \, \alpha} \, \frac{\int_{\mathbf{0}}^{\mathbf{T}} \left(\frac{e^{\beta \cdot \mathbf{s}}}{\kappa}\right)^{\frac{2}{\alpha - 2}} \, f(\mathbf{s})^{\frac{\alpha}{\alpha - 2}} \, \mathrm{d}\mathbf{s}} \\ \kappa + \frac{1}{2} \, \tau^2} \, , & \text{for } \rho = 0 \, . \end{cases}$$

- If the principal of the smaller listed company offers at least the salary rate δ , then the individual accepts the contract.
- Note: $\delta \leq \delta_0$ (due to the ability of improve the smaller listed company's performance). Fraunhofer

Introduction

2 Set-Up

- Financial Market
- Controls and Wealth Process
- Stochastic Control Problem

Optimal Strategies

- HJB Equation
- Closed-Form Solution

Decision Problem

Illustration of Results

👩 Outlook

Figure: Optimal work effort λ^* w.r.t. work productivity $1/\kappa$ and time t for fixed disutility stress $\alpha = 5$, time preferences $\rho = 0.11$ and $\tilde{\rho} = -0.09$ and time horizon T = 10 years.

Figure: Optimal work effort λ^* w.r.t. disutility stress α and time t for fixed work productivity $1/\tilde{\kappa} = 100$, time preferences $\rho = 0.11$ and $\tilde{\rho} = -0.09$ and time horizon T = 10 years

Appropriate Salary Rate δ w.r.t. α and $1/\kappa$

Figure: Appropriate salary rate δ w.r.t. disutility stress α and work productivity $1/\kappa$ given outside salary rate $\delta_0 = 0.2$, time horizon T = 5 years and time preferences $\rho = 0.11$, $\tilde{\rho} = -0.09$, respectively.

Introduction

2 Set-Up

- Financial Market
- Controls and Wealth Process
- Stochastic Control Problem

Optimal Strategies

- HJB Equation
- Closed-Form Solution

4 Decision Problem

6 Illustration of Results

Towards optimal option portfolios:

- Pay the individual calls on the own-company's stock (or ESOs).
- Individual invests in the options instead of the own-company's shares.
- Derive optimal option portfolios for this investment problem.

Towards the "constrained indvidual":

- Develop dynamic "game" with company determining the individual's own-company shareholding and the individual controlling work effort, the left investment decisions and the consumption rate;
- $\bullet \rightarrow$ Economic equilibrium game with company taking first step (Stackelberg game).
- Determine optimal mixed compensation (cash, shares, and options);

Towards optimal option portfolios:

- Pay the individual calls on the own-company's stock (or ESOs).
- Individual invests in the options instead of the own-company's shares.
- Derive optimal option portfolios for this investment problem.

Towards the "constrained indvidual":

- Develop dynamic "game" with company determining the individual's own-company shareholding and the individual controlling work effort, the left investment decisions and the consumption rate;
- $\bullet \; \rightarrow$ Economic equilibrium game with company taking first step (Stackelberg game).
- Determine optimal mixed compensation (cash, shares, and options);

References

Desmettre, S. , Gould, J. and Szimayer, A.

Own-Company Shareholding and Work Effort Preferences of an Unconstrained Executive.

Accepted in Mathematical Methods of Operations Research, 2010.

Cadenillas, A. , Cvitanić, J. and Zapatero, F.

Leverage Decision and Manager Compensation with Choice of Effort and Volatility.

Journal of Financial Economics, 36, 2004.

Desmettre, S., Szimayer, A.

Work Effort, Consumption and Portfolio Selection: When the Occupational Choice Matters.

http://papers.ssrn.com/sol3/papers.cfm?abstract_id=1633184,2010.

Holmstrom, B.

Moral hazard and observability.

Bell Journal of Economics, 10, 1979.

Long, N. V., Sorger, G.

A dynamic principal-agent problem as a feedback stackelberg differential game. *Working Paper*, University of Vienna, 2009.