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Let W be the real Brownian motion equipped with its canonical
filtration (Ft).
〈W 〉t = t.

If h ∈ L2(Ω), the martingale representation theorem states the
existence of a predictable process ξ ∈ L2(Ω× [0,T ]) such that

h = E[h] +

∫ T

0
ξsdWs

If h ∈ D1,2 in the sense of Malliavin, Clark-Ocone formula
implies that ξs = E [Dmh|Fs ], so that

h = E[h] +

∫ T

0
E [Dmh|Fs ] dWs (1)

where Dm is the Malliavin gradient.
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A generalized Clark-Ocone formula

We discuss about robustness of Clark-Ocone formula.

We suppose that the law of X = W is not anymore a Wiener
measure but X is still a finite quadratic variation process but
not necessarily a semimartingale.

Are there reasonable classes of random variable which can be
represented in the form

h = H0 + ”

∫ T

0
ξsdXs”?
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Examples of processes with finite quadratic variation

1) S is an (Ft)-semimartingale with decomposition
S = M + V , M (Ft)-local martingale and V bounded
variation process. So [S ] = [M].

2) D is a (Ft)-Dirichlet process with decomposition
D = M + A, M (Ft)-local martingale and A an (Ft)-adapted
zero quadratic variation process. [D] = [M]. Föllmer (1981).

3) D is a (Ft)-weak-Dirichlet process with decomposition
D = M + A, M (Ft)-local martingale and A such that
[A,N] = 0 for any continuous (Ft)-local martingale N.
Errami-Russo (2003), Gozzi-Russo (2005)

1 In general D does not have finite quadratic variation
2 If A is a finite quadratic variation process [D] = [M] + [A]
3 There are finite quadratic variation weak Dirichlet processes

which are not Dirichlet processes.
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4) BH,K bifractional Brownian motion with parameters H ∈]0, 1[,
K ∈]0, 1] such that HK ≥ 1/2

If HK > 1/2, [BH,K ] = 0.
If HK = 1/2, then

[BH,K ]t = 21−K t
If K = 1 and if H = 1/2, BH,K is a Brownian motion
If K 6= 1, BH,K is not a semimartingale (not even a Dirichlet
with respect to its own filtration).

5) Skorohod integrals. If (ut) is in L1,2, under reasonable
conditions on Du, [

∫ t
0 usδWs ]t =

∫ t
0 u2

s ds.

6) For fixed k ≥ 1, Föllmer Wu Yor construct a weak k-order
Brownian motion X , which in general is not even Gaussian.
X is a weak k-order Brownian motion if for every
0 ≤ t1 ≤ · · · ≤ tk < +∞, (Xt1 , · · · ,Xtk

) is distributed as
(Wt1 , · · · ,Wtk

). If k ≥ 4 then [X ]t = t.

Cristina Di Girolami Infinite dimensional stochastic calculus via regularization and applications



Motivations
An infinite dimensional stochastic calculus

Window processes
Appendix

4) BH,K bifractional Brownian motion with parameters H ∈]0, 1[,
K ∈]0, 1] such that HK ≥ 1/2

If HK > 1/2, [BH,K ] = 0.
If HK = 1/2, then

[BH,K ]t = 21−K t
If K = 1 and if H = 1/2, BH,K is a Brownian motion
If K 6= 1, BH,K is not a semimartingale (not even a Dirichlet
with respect to its own filtration).

5) Skorohod integrals. If (ut) is in L1,2, under reasonable
conditions on Du, [

∫ t
0 usδWs ]t =

∫ t
0 u2

s ds.
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Notation

Definition

Let T > 0 and X = (Xt)t∈[0,T ] be a real continuous process
prolongated by continuity.
Process X (·) defined by

X (·) = {Xt(u) := Xt+u; u ∈ [−T , 0]}

will be called window process.

X (·) is a C ([−T , 0])-valued stochastic process.

C ([−T , 0]) is a typical non-reflexive Banach space.
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A representation problem

We suppose X0 = 0 and [X ]t = t.
The main task will consist in looking for classes of functionals

H : C ([−T , 0]) −→ R

such that the r.v.
h := H(XT (·))

admits representation

h = H0 + ”

∫ T

0
ξsdXs”

Moreover we look for an explicit expression for
H0 ∈ R
ξ adapted process with respect to the canonical filtration of X
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Idea

We will obtain the representation formula by expressing
h = H(XT (·)) as

h = H(XT (·)) = lim
t↑T

u(t,Xt(·))

where u ∈ C 1,2 ([0,T [×C ([−T , 0])) solves an infinite dimensional
PDE, if previous limit exists.

Representation of h = H(XT (·))

Then

h = u(0,X0(·)) +

∫ T

0
Dδ0u(s,Xs(·))d−Xs (2)

where Dδ0u(s, η) = D u(s, η)({0}) is the projection of the Fréchet
derivative Du (t, η) on the linear space generated by Dirac measure
δ0, we recall that
D u : [0,T ]× C ([−T , 0]) −→ C ∗([−T , 0]) =M([−T , 0]).

Cristina Di Girolami Infinite dimensional stochastic calculus via regularization and applications



Forward integral for real valued processes

Definition

Let X (resp. Y ) be a continuous (resp. locally integrable) process.
Suppose that the random variables∫ t

0
Ysd

−Xs := lim
ε→0

∫ t

0
Ys

Xs+ε − Xs

ε
ds

exists in probability for every t ∈ [0,T ] and the limiting process
admits a continuous modification, then the limiting process
denoted by

∫ ·
0 Yd

−X is called the (proper) forward integral of Y
with respect to X .

Russo-Vallois 1993
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Covariation for real valued processes

Definition

The covariation of X and Y is defined by

[X ,Y ]t = lim
ε→0+

1

ε

∫ t

0
(Xs+ε − Xs)(Ys+ε − Ys)ds

if the limit exists in the ucp sense with respect to t.
Obviously [X ,Y ] = [Y ,X ].
If X = Y , X is said to be finite quadratic variation process and
[X ] := [X ,X ].
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Connections with semimartingales

1 Let S1, S2 be (Ft)-semimartingales with decomposition
S i = M i + V i , i = 1, 2 where M i (Ft)-local continuous
martingale and V i continuous bounded variation processes.
Then

[S i ] classical bracket and [S i ] = 〈M i 〉.
[S1,S2] classical bracket and [S1,S2] = 〈M1,M2〉.
If S semimartingale and Y cadlag and predictable∫ ·

0

Yd−S =

∫ ·
0

YdS (Itô)
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Itô formula for finite quadratic variation processes

Theorem

Let F : [0,T ]× R −→ R such that F ∈ C 1,2 ([0,T [×R) and X be
a finite quadratic variation process. Then∫ t

0
∂xF (s,Xs)d−Xs

exists in the ucp sense and equals

F (t,Xt)− F (0,X0)−
∫ t

0
∂sF (s,Xs)ds − 1

2

∫ t

0
∂x xF (s,Xs)d [X ]s

Cristina Di Girolami Infinite dimensional stochastic calculus via regularization and applications
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A stochastic integral
Definition of χ-quadratic variation
Itô’s formula

An infinite dimensional framework

We fix now in a general (infinite dimensional) framework. Let

B general Banach space

X a B-valued process

F : B −→ R be of class C 2 in Fréchet sense.

An Ito formula for B-valued processes

We would like to have an Itô type expansion of F (X), available
also for B = C ([−T , 0])-valued processes, as window processes,
i.e. when X = X (·).
The literature does not apply: several problems appear even in the
simple case W (·)!

Cristina Di Girolami Infinite dimensional stochastic calculus via regularization and applications
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A stochastic integral
Definition of χ-quadratic variation
Itô’s formula

Fréchet derivative and tensor product of Banach spaces

F : B −→ R be of class C 2 in Fréchet sense, then

DF : B −→ L(B;R) := B∗;

D2F : B −→ L(B;B∗) ∼= B(B × B) ∼= (B⊗̂πB)∗

where

B(B,B) Banach space of real valued bounded bilinear forms
on B × B

(B⊗̂πB)∗ dual of the tensor projective tensor product of B
with B.

B⊗̂πB fails to be Hilbert even if B is a Hilbert space (is not
even a reflexive space).

Cristina Di Girolami Infinite dimensional stochastic calculus via regularization and applications
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A stochastic integral
Definition of χ-quadratic variation
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A first attempt to an Itô type expansion of F (X)

F (Xt) = F (X0) +′′
∫ t

0
B∗〈DF (Xs), dXs〉B ′′+

+
1

2

′′ ∫ t

0
(B⊗̂πB)∗〈D

2F (Xs), d [X]s〉B⊗̂πB
′′

Cristina Di Girolami Infinite dimensional stochastic calculus via regularization and applications
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A stochastic integral
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A formal proof

∫ t

0

F (Xs+ε)− F (Xs)

ε
ds

ucp−−→
ε→0

F (Xt)− F (X0)

By a Taylor’s expansion the left-hand side equals the sum of∫ t

0
B∗〈DF (Xs),

Xs+ε − Xs

ε
〉Bds +∫ t

0
(B⊗̂πB)∗〈D

2F (Xs),
(Xs+ε − Xs)⊗2

ε
〉B⊗̂πBds + R(ε, t)

Cristina Di Girolami Infinite dimensional stochastic calculus via regularization and applications
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A stochastic integral
Definition of χ-quadratic variation
Itô’s formula

Stochastic calculus via regularization for Banach valued
processes

We will define

a stochastic integral for B∗-valued integrand with respect to
B-valued integrators, which are not necessarily
semimartingale.

a new concept of quadratic variation which generalizes the
tensor quadratic variation and which involves a Banach
subspace χ of (B⊗̂πB)∗. It will be called χ-quadratic
variation of X.

Cristina Di Girolami Infinite dimensional stochastic calculus via regularization and applications



Forward integral for Banach valued processes

Definition

Let X and Y be respectively a B-valued and a B∗-valued
continuous stochastic processes.
If the process defined for every fixed t ∈ [0,T ] by∫ t

0
B∗〈Ys , d

−Xs〉B := lim
ε→0

∫ t

0
B∗〈Y(s),

X(s + ε)− X(s)

ε
〉Bds

in probability admits a continuous version, then process(∫ t

0
B∗〈Ys , d

−Xs〉B
)

t∈[0,T ]

will be called forward stochastic integral of Y with respect to
X.
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Definition of Chi-subspace

Definition

A Banach subspace χ continuously injected into (B⊗̂πB)∗ will be
called a Chi-subspace of (B⊗̂πB)∗.
In particular it holds

‖ · ‖χ ≥ ‖ · ‖(B⊗̂πB)∗.

Cristina Di Girolami Infinite dimensional stochastic calculus via regularization and applications
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Notion of χ-quadratic variation

Let

X be a B-valued continuous process,

χ a Chi-subspace of (B⊗̂πB)∗,

C ([0,T ]) space of real continuous processes equipped with
the ucp topology.

[X]ε be the application

[X]ε : χ −→ C ([0,T ])

defined by

φ 7→

(∫ t

0
χ〈φ,

J
(
(Xs+ε − Xs)⊗2

)
ε

〉χ∗ ds

)
t∈[0,T ]

where J : B⊗̂πB → (B⊗̂πB)∗∗ is the canonical injection a
Banach space and its bidual, in the sequel will be omitted.

Cristina Di Girolami Infinite dimensional stochastic calculus via regularization and applications



Definition of Chi-quadratic variation

Definition

X admits a χ-quadratic variation if

H1 For all (εn) ↓ 0 it exists a subsequence (εnk
) such that

sup
k

∫ T

0

∥∥∥(Xs+εnk
− Xs)⊗2

∥∥∥
χ∗

εnk

ds <∞ a.s.

H2 There exists [X] : χ −→ C ([0,T ]) such that

[X]ε(φ)
ucp−−→
ε→0

[X](φ) ∀ φ ∈ χ

H3 There is a χ∗-valued bounded variation process [̃X], such that

[̃X]t(φ) = [X](φ)t a.s. for all φ ∈ χ.

For every fixed φ ∈ χ, processes [̃X]t(φ) and [X](φ)t are
indistinguishable.
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A stochastic integral
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Global quadratic variation concept

Definition

We say that X admits a global quadratic variation (g.q.v.) if it
admits a χ-quadratic variation with χ = (B⊗̂πB)∗.

Cristina Di Girolami Infinite dimensional stochastic calculus via regularization and applications
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Infinite dimensional Itô’s formula

Let B a separable Banach space

Theorem (Itô’s formula)

Let X a B-valued continuous process admitting a χ-quadratic
variation.
Let F : [0,T ]× B −→ R be C 1,2 Fréchet such that

D2F : [0,T ]× B −→ χ ⊂ (B⊗̂πB)∗ continuously

Then for every t ∈ [0,T ] the forward integral∫ t

0
B∗〈DF (s,Xs), d−Xs〉B

exists and following formula holds.

Cristina Di Girolami Infinite dimensional stochastic calculus via regularization and applications
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Ito’s formula

F (t,Xt) = F (0,X0) +

∫ t

0
∂sF (s,Xs)ds+

+

∫ t

0
B∗〈DF (s,Xs), d−Xs〉B+

+
1

2

∫ t

0
χ〈D

2F (s,Xs), d [̃X]s〉χ∗
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Window processes

We fix attention now on B = C ([−T , 0])-valued window
processes.

X continuous real valued process and X (·) its window process.

X = X (·)

Cristina Di Girolami Infinite dimensional stochastic calculus via regularization and applications
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Evaluations of χ-quadratic variation for window processes

If X has Hölder continuous paths of parameter γ > 1/2, then
X (·) has a zero g.q.v.
For instance:

X = BH fractional Brownian motion with parameter H > 1/2.
X = BH,K bifractional Brownian motion with parameters
H ∈]0, 1[, K ∈]0, 1] s.t. HK > 1/2.

W (·) does not admit a g.q.v.

Cristina Di Girolami Infinite dimensional stochastic calculus via regularization and applications
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Some examples of Chi-subspaces

χ Chi-subspace of (B⊗̂πB)∗ with B = C ([−T , 0]). For
instance:

M([−T , 0]2) equipped with the total variation norm.

L2([−T , 0]2).

D0,0 = {µ(dx , dy) = λ δ0(dx)⊗ δ0(dy)}.(
D0 ⊕ L2

)
⊗̂2

h

= D0,0⊕L2([−T , 0])⊗̂hD0⊕D0⊗̂hL
2([−T , 0])⊕L2([−T , 0]2).

Diag := {µ(dx , dy) = g(x)δy (dx)dy ; g ∈ L∞([−T , 0])}.

Cristina Di Girolami Infinite dimensional stochastic calculus via regularization and applications
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Evaluations of χ-quadratic variation for window processes

W (·) does not admit a M([−T , 0]2)-quadratic variation.

If X is a real finite quadratic variation process, then
X (·) has zero L2([−T , 0]2)-quadratic variation.

X (·) has D0,0-quadratic variation

[X (·)] : D0,0 −→ C [0,T ] , [X (·)]t(µ) = µ({0, 0})[X ]t

X (·) has
(
D0 ⊕ L2

)
⊗̂2

h-quadratic variation

[X (·)] :
(
D0 ⊕ L2

)
⊗̂2

h −→ C [0,T ] , [X (·)]t(µ) = µ({0, 0})[X ]t

X (·) has Diag -quadratic variation

[X (·)] : Diag −→ C [0,T ] , [X (·)]t(µ) =

∫ t

0

g(−x)[X ]t−xdx

where µ(dx , dy) = g(x)δy (dx)dy .

Cristina Di Girolami Infinite dimensional stochastic calculus via regularization and applications
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Robustness of Black-Scholes formula

Let (St) be the price of a financial asset of the type

St = exp(σWt −
σ2

2
t) , σ > 0 .

Let h = f̃ (ST ) = f (WT ) where f (y) = f̃
(

exp(σy − σ2

2 T )
)

.

Let ũ : [0,T ]× R −→ R solving{
∂t ũ(t, x) + 1

2∂xx ũ(t, x) = 0

ũ(T , x) = f̃ (x) x ∈ R

Applying classical Itô formula we obtain

h = ũ(0, S0) +

∫ T

0
∂x ũ(s,Ss)dSs = u(0,W0) +

∫ T

0
∂xu(s,Ws)dWs

for a suitable u : [0,T ]× R −→ R.
Cristina Di Girolami Infinite dimensional stochastic calculus via regularization and applications
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Does one have a similar formula if W is replaced by a finite
quadratic variation X such that [X ]t = t? The answer is YES.

Let X such that [X ]t = t

A1 f : R −→ R continuous and polynomial growth
A2 v ∈ C 1,2([0,T [×R) ∩ C 0([0,T ]× R) such that{

∂tv(t, x) + 1
2∂xxv(t, x) = 0

v(T , x) = f (x)

Then

h := f (XT ) = v(0,X0) +

∫ T

0
∂xv(s,Xs)d−Xs︸ ︷︷ ︸

improper forward integral

Schoenmakers-Kloeden (1999) Coviello-Russo (2006)
Bender-Sottinen-Valkeila (2008)
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Natural question

Is it possible to express generalization of it where the option is
path dependent? As first step we revisit the toy model.
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The toy model revisited

Proposition

We set B = C ([−T , 0]) and η ∈ B and we define

H : B −→ R, by H(η) := f (η(0))

u : [0,T ]× B −→ R, by u(t, η) := v(t, η(0))

Then
u ∈ C 1,2 ([0,T [×B;R) ∩ C 0 ([0,T ]× B;R)

and solves ∂tu(t, η) +
1

2
〈D2u (t, η) , 1D〉 = 0

u(T , η) = H(η)
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Proof.

u(T , η) = v(T , η(0)) = f (η(0)) = H(η)

∂tu (t, η) = ∂tv (t, η(0))

Du (t, η) = ∂xv (t, η(0)) δ0

D2u (t, η) = ∂2
x xv (t, η(0)) δ0 ⊗ δ0 D2u(t, η) ∈ D0,0

∂tu (t, η) + 1
2D

2u (t, η)({0, 0}) = 0

And, let X such that [X ]t = t, we have

h := H(XT (·)) = u(0,X0(·)) +
∫ T

0 Dδ0u(s,Xs(·))d−Xs
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Notation

We set B = C ([−T , 0]) and η ∈ B.

X real continuous stochastic process

X0 = 0,

[X ]t = t.
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A representation problem

The main task will consist in looking for classes of functionals

H : B −→ R

such that the r.v.
h := H(XT (·))

admits representation

h = H0 +

∫ T

0
ξsd
−Xs

Moreover we look for an explicit expression for

H0 ∈ R
ξ adapted process with respect to the canonical filtration of X
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Idea

Obtain the representation formula by expressing h = H(XT (·)) as

h = H(XT (·)) = lim
t↑T

u(t,Xt(·))

where u ∈ C 1,2 ([0,T [×B) solves an infinite dimensional PDE, if
previous limit exists.
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An infinite dimensional PDE

Let H : B −→ R, in several cases we will show the existence of a
function u : [0,T ]× B −→ R of class
C 1,2 ([0,T [×B) ∩ C 0 ([0,T ]× B) solving

Infinite dimensional PDE

 ∂tu(t, η) +′′
∫ 0
−t D

acu (t, η) dη ′′ + 1
2〈D

2u (t, η) , 1D〉 = 0

u(T , η) = H(η)
(3)

where

1D(x , y) :=

{
1 if x = y , x , y ∈ [−T , 0]
0 otherwise

Dacu (t, η) absolute continuous part of measure Du (t, η)

If x 7→ Dac
x u (t, η) has bounded variation, previous integral is

defined by an integration by parts.
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Representation of h = H(XT (·))

Then

h = H0 +

∫ T

0
ξsd
−Xs (4)

with

H0 = u(0,X0(·))

ξs = Dδ0u(s,Xs(·))
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A general representation theorem

Theorem

H : B −→ R
u ∈ C 1,2 ([0,T [×B) ∩ C 0 ([0,T ]× B)

x 7→ Dac
x u (t, η) has bounded variation

D2u (t, η) ∈ (D0 ⊕ L2)⊗̂2
h

u solves
∂tu(t, η) +

∫
]−t,0]

Dacu(t, η) dη +
1

2
D2u (t, η)({0, 0}) = 0

u(T , η) = H(η)

(5)

then h has representation (4).

The proof follows immediately applying the Itô’s formula.
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Sufficient conditions to solve (5)

1 When X general process such that [X ]t = t.

H has a smooth Fréchet dependence on L2([−T , 0]).

h := H(XT (·)) = f
(∫ T

0
ϕ1(s)d−Xs , . . . ,

∫ T

0
ϕn(s)d−Xs

)
,

f : Rn → R measurable and with linear growth
(ϕi ) ∈ C 2([0,T ];R)

2 When X = W if Clark-Ocone formula does not apply.
For instance when h /∈ D1,2, or h /∈ L2(Ω) (even not in L1(Ω)).
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Thank you!!!
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A stochastic flow

Definition

For 0 < s < t < T and η ∈ B the stochastic flow is defined

Y s,η
t (x) =

{
η(x + t − s) x ∈ [−T , s − t]
η(0) + Wt(x)−Ws x ∈ [s − t, 0]

where W standard Brownian motion.

Remark

(Y s,η
t )0≤s≤t≤T , η∈B is a B-valued random field

Y s,η
r = Y

t,Y s,η
t

r for 0 < s < t < r < T
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Theorem

Let H : L2([−T , 0]) −→ R
H ∈ C 3(L2[−T , 0]) with D2H ∈ L2([−T , 0]2) and D3H
polynomial growth

DH(η) ∈ H1([−T , 0]) and other technical assumptions

u(t, η) := E
[
H(Y t,η

T )
]

Then

u ∈ C 1,2([0,T ]× B)

u solves (5)
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Theorem

Let

H(η) := f

(∫
[−T ,0]

ϕ1(u + T )dη(u), . . . ,

∫
[−T ,0]

ϕn(u + T )dη(u)

)
f : Rn → R continuous and with linear growth and

(ϕi ) ∈ C 2([0,T ];R)

Matrix Σt := (Σt)i ,j =
(∫ T

t ϕi (s)ϕj (s)ds
)

, t ∈ [0,T ].

det (Σt) > 0 ∀ t ∈]0,T [

Remark

Σt is the Covariance matrix of Gaussian vector

G :=
(∫ T

t ϕ1(s)dWs , . . . ,
∫ T

t ϕn(s)dWs

)
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Theorem

u(t, η) := Ψ

(
t,

∫
[−t,0]

ϕ1(s + t)dη(s), . . . ,

∫
[−t,0]

ϕn(s + t)dη(s)

)

with

Ψ(t, y1, . . . , yn) =

∫
Rn

f (z1, . . . , zn) p(t, z1−y1, . . . , zn−yn)dz1 · · · dzn

and p ∈ C 3,∞([0,T ]× Rn) density of Gaussian vector G
Then

u ∈ C 1,2([0,T [×B) ∩ C 0 ([0,T ]× C ([−T , 0]))

u solves (5)

Cristina Di Girolami Infinite dimensional stochastic calculus via regularization and applications



Motivations
An infinite dimensional stochastic calculus

Window processes
Appendix

A first regular sufficient condition
A second general result requiring less regularity on H
Representation if a L1(Ω) r.v. in the Brownian case
Stability results

Remark

If X = W an analougous result is true with a weaker condition on f

Let

f polynomial growth

Then

u ∈ C 1,2([0,T [×B)

h = u(0,W0(·)) +

∫ T

0
Dδ0u(s,Ws(·))d−Ws︸ ︷︷ ︸

improper forward integral

u(0,W0(·)) = E[h]

f Lipschitz then Dδ0u(s,Ws(·)) = E [Dm
s h|Ft ] since h ∈ D1,2
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Theorem

H : B −→ R

H(η) = f

(∫ 0

−T
η(s)ds

)
f : R −→ R Borel subexponential (not necessarily continuous)

h = f
(∫ T

0 Wsds
)
∈ L1(Ω)

u(t, η) =

∫
R
f

(∫ 0

−T
η(r)dr + η(0)(T − t) + x

)
pσ(t, x)dx

with σt =

√
(T−t)3

3
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Theorem

Then

u ∈ C 1,2([0,T [×B)

h = u(0,W0(·)) +

∫ T

0
Dδ0u(s,Ws(·))d−Ws︸ ︷︷ ︸

improper forward integral

u(0,W0(·)) = E[h]

Remark

Since h /∈ L2(Ω), a priori neither Clark-Ocone formula nor its
extensions to Wiener distributions apply
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A toy model for X real valued

Let X such that [X ]t = t

A1 f : R −→ R continuous and polynomial growth

A2 v ∈ C 1,2([0,T [×R) ∩ C 0([0,T ]× R) such that{
∂tv(t, x) + 1

2∂xxv(t, x) = 0
v(T , x) = f (x)

Then

h := f (XT ) = v(0,X0) +

∫ T

0
∂xv(s,Xs)d−Xs︸ ︷︷ ︸

improper forward integral

Schoenmakers-Kloeden (1999), Coviello-Russo (2006),
Bender-Sottinen-Valkeila (2008)
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Considerations about previous representation in toy model

If Xt = Wt + t G , G non-negative r.v. /∈ L1(Ω) and f (x) = x
then h = f (XT ) /∈ L1(Ω).

If X = W ,
1 A1 =⇒ h = f (WT ) ∈ Lp(Ω), with p ≥ 1. not new...but...

2

{
f subexponential
f (WT ) ∈ L1(Ω)

=⇒

h := f (WT ) = v(0,W0) +

∫ T

0

∂xv(t,Wt)d−Ws︸ ︷︷ ︸
improper forward integral

Remark

f not necessarily continuous, v /∈ C 0([0,T ]× R)
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A first motivating example

1)

H(η) =

(∫ 0

−T
η(s)ds

)2

u(t, η) :=

(∫ 0

−T
η(s)ds + η(0)(T − t)

)2

+
(T − t)3

3

solves (3) and h has representation (4).
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∂tu(t, η) = −2η(0)

(∫ 0

−T
η(s)ds + η(0)(T − t)

)
− (T − t)2

Ddxu(t, η) = 2

(∫ 0

−T
η(s)ds + η(0)(T − t)

)
·

·
(
1[−T ,0](x)dx + (T − t)δ0(dx)

)
D2

dx dyφ(t, η) = 21[−T ,0]2(x , y)dx dy+

+ 2(T − t)1[−T ,0](x)dx δ0(dy)+

+ 2(T − t)δ0(dx)1[−T ,0](y)dy+

+ 2(T − t)2δ0(dx) δ0(dy)

D2u(t, η) ∈ (D0 ⊕ L2)⊗̂2
h and [X ]t = t
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Remark

If X = W

Forward integral equals Itô integral

The representation coincides with Clark-Ocone formula

H0 = E[h].
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An interesting case

2)

H(η) =

∫ 0

−T
η(s)2ds

u(t, η) :=

∫ 0

−T
η2(s)ds + η(0)2(T − t) +

(T − t)2

2

solves (3) and h has representation (4).
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∂tu(t, η) = −η2(0)− (T − t) ;

Ddxu(t, η) = 2η(x)dx + 2η(0)(T − t) δ0(dx)

D2
dx dyφ(t, η) = 2δy (dx) dy + 2(T − t)δ0(dx)δ0(dy) = 2δx (dy) dx + 2(T − t)δ0(dx)δ0(dy)

D2u(t, η) ∈ (Diag ⊕D0,0) and [X ]t = t

Dac is not of bounded variation
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Stability result for Rn valued processes

In the finite dimensional case it holds.

Theorem

Let X be a Rn-valued process having all its mutual covariations
([X ∗,X ]t)1≤i ,j≤n = [X i ,X j ]t and F , G ∈ C 1(Rn). Then the
covariation [F (X ),G (X )] exists and is given by

[F (X ),G (X )]· =
n∑

i ,j=1

∫ ·
0
∂iF (X )∂jG (X )d [X i ,X j ]

Setting n = 2, F (x , y) = f (x), G (x , y) = g(y), f , g ∈ C 1(R) we
have:

[f (X ), g(Y )]· =

∫ ·
0
f ′(X )g ′(Y )d [X ,Y ]
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Stability result for B-valued processes

Previous results admit some generalizations in the infinite
dimensional framework.
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Theorem

Let X be a B-valued continuous stochastic process admitting a
χ-quadratic variation.
Let F i ,F j : B −→ R be C 1 Fréchet such that for i , j = 1, 2

DF i (·)⊗ DF j (·) : B × B −→ χ ⊂ (B⊗̂πB)∗

(x , y) 7→ DF i (x)⊗ DF j (y) continuous

Then [F i (X ),F j (X )] exists and it is given by

[F i (X ),F j (X )]· =

∫ ·
0
〈DF i (Xs)⊗ DF j (Xs), d [̃X ]s〉
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Stability results involving window Dirichlet processes

Let D a real continuous (Ft)−Dirichlet process,

D = M + A,

D a real continuous (Ft)−Dirichlet process, D = M + A,

M an (Ft)−local martingale

A a zero quadratic variation process with A0 = 0.
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Time-homogeneous Stability Theorem

Theorem

Let

F : B −→ R be C 1 Fréchet

DF : B −→ D0 ⊕ L2 continuously

Then F (D(·)) is an (Ft)-Dirichlet process with local martingale
component equal to

M̃· = F
(
D0(·)

)
+

∫ ·
0
Dδ0F

(
Ds(·)

)
dMs

where Dδ0F (η) := DF (η)({0}).
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Stability results involving window weak Dirichlet processes

D a finite quadratic variation (Ft)−weak Dirichlet process

D = M + A

M is the local martingale
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Stability Theorem

Theorem

Let

F : [0,T ]× B −→ R be C 0,1 Fréchet such that

DF : [0,T ]× B −→ D0 ⊕ L2 continuously

Then F (·,D·(·)) is an (Ft)-weak Dirichlet process with martingale
part

M̃F
t = F (0,D0(·)) +

∫ t

0
Dδ0F (s,Ds(·))dMs .
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