On refined volatility smile expansion in the Heston model

Stefan Gerhold
(joint work with P. Friz, A. Gulisashvili, and S. Sturm)

Vienna University of Technology, Austria

SMAI Summer School

Heston Model

- Dynamics

$$
\begin{aligned}
& d S_{t}=S_{t} \sqrt{V_{t}} d W_{t}, \quad S_{0}=1 \\
& d V_{t}=\left(a+b V_{t}\right) d t+c \sqrt{V_{t}} d Z_{t}, \quad V_{0}=v_{0}>0
\end{aligned}
$$

- Correlated Brownian motions

$$
d\langle W, Z\rangle_{t}=\rho d t, \quad \rho \in[-1,1]
$$

- Parameters

$$
a \geq 0, b \leq 0, c>0
$$

Density and smile asymptotics

- Consider a fixed maturity $T>0$.
- $D_{T}:=$ density of S_{T}.
- How heavy are the tails?

$$
D_{T}(x) \sim ? \quad(x \rightarrow 0, \infty)
$$

- Implied Black-Scholes volatility $(k=\log K$ is the log-strike)

$$
\sigma_{B S}^{2}(k, T) \sim ? \quad(k \rightarrow \pm \infty)
$$

Known results

- Leading term of smile asymptotics: Lee's moment formula. Andersen, Piterbarg (2007); Benaim, Friz (2008)
- Drăgulescu, Yakovenko (2002): Stationary variance regime. Leading growth order of distribution function of S_{T}, by (non-rigorous) saddle-point argument
- Gulisashvili-Stein (2009): Precise density asymptotics for uncorrelated Heston model

Main results (right tail), SG et al. 2010

- Density asymptotics for $x \rightarrow \infty$

$$
D_{T}(x)=A_{1} x^{-A_{3}} e^{A_{2} \sqrt{\log x}}(\log x)^{-3 / 4+a / c^{2}}\left(1+O\left((\log x)^{-1 / 2}\right)\right)
$$

- Implied volatility for $k=\log K \rightarrow \infty$

$$
\sigma_{B S}(k, T) \sqrt{T}=\beta_{1} k^{1 / 2}+\beta_{2}+\beta_{3} \frac{\log k}{k^{1 / 2}}+O\left(\frac{\varphi(k)}{k^{1 / 2}}\right)
$$

(φ arbitrary function tending to ∞)

Interpretation of smile expansion

- Implied volatility for $k=\log K \rightarrow \infty$

$$
\sigma_{B S}(k, T) \sqrt{T}=\beta_{1} k^{1 / 2}+\beta_{2}+\beta_{3} \frac{\log k}{k^{1 / 2}}+O\left(\frac{\varphi(k)}{k^{1 / 2}}\right)
$$

- β_{1} does not depend on $\sqrt{V_{0}}$
- β_{2} depends linearly on $\sqrt{v_{0}}$
- Changes of $\sqrt{v_{0}}$ have second-order effects
- Increase $\sqrt{v_{0}}$: parallel shift, slope not affected
- Changes in mean-reversion level $\bar{v}=-a / b$ seen only in β_{3}

General remarks

- Constants depend on: critical moment, critical slope, critical curvature
- Critical moment etc. defined in a model-free manner
- Closed form of Fourier (Mellin) transform not needed
- Work only with affine principles (Riccati equations)

Lee's moment formula (2004)

- Model-free result
- Relates critical moment to implied volatility

$$
\begin{gathered}
s^{*}:=\sup \left\{s: E\left[S_{T}^{s}\right]<\infty\right\} \\
s^{*}=: \frac{1}{2 \beta_{1}^{2}}+\frac{\beta_{1}^{2}}{8}+\frac{1}{2} \\
\limsup _{k \rightarrow \infty} \frac{\sigma_{B S}(k, T) \sqrt{T}}{\sqrt{k}}=\beta_{1}
\end{gathered}
$$

- Refinements by Benaim, Friz (2008), Gulisashvili (2009)

Heston Model: Mgf of log-spot X_{t}

- Moment generating function

$$
E\left[e^{s X_{t}}\right]=\exp \left(\phi(s, t)+v_{0} \psi(s, t)\right)
$$

- Riccati equations

$$
\begin{aligned}
\partial_{t} \phi & =F(s, \psi), \\
\partial_{t} \psi & =R(0)=0, \\
& =(s, \psi), \psi(0)=0
\end{aligned}
$$

$$
\begin{aligned}
& F(s, v)=a v \\
& R(s, v)=\frac{1}{2}\left(s^{2}-s\right)+\frac{1}{2} c^{2} v^{2}+b v+s \rho c v
\end{aligned}
$$

- Explicit solution possible, but cumbersome expression

Moment explosion

- Critical moment for time T

$$
s^{*}:=\sup \left\{s \geq 1: E\left[S_{T}^{s}\right]<\infty\right\}
$$

- Explosion time for moment of order s

$$
T^{*}(s)=\sup \left\{t \geq 0: E\left[S_{t}^{s}\right]<\infty\right\}
$$

- Critical slope, critical curvature:

$$
\sigma:=-\left.\partial_{s} T^{*}\right|_{s^{*}} \geq 0 \quad \text { and } \quad \kappa:=\left.\partial_{s}^{2} T^{*}\right|_{s^{*}}
$$

Explicit Explosion time for the Heston model

- Explosion time for moment of order s

$$
\begin{gathered}
T^{*}(s)=\frac{2}{\sqrt{-\Delta(s)}}\left(\arctan \frac{\sqrt{-\Delta(s)}}{s \rho c+b}+\pi\right) \\
\Delta(s):=(s \rho c+b)^{2}-c^{2}\left(s^{2}-s\right)
\end{gathered}
$$

- Critical moment s^{*} : Find numerically from

$$
T^{*}\left(s^{*}\right)=T
$$

Mellin (Fourier) inversion

- Mellin transform of spot: $M(u)=E\left[e^{(u-1) X_{T}}\right]$
- Analytic in a complex strip
- Density of S_{T} by Mellin inversion:

$$
D_{T}(x)=\frac{1}{2 i \pi} \int_{-i \infty}^{+i \infty} x^{-u} M(u) d u
$$

- Valid for contour in analyticity strip of the Mellin transform
- Justification: exponential decay of $M(u)$ at $\pm i \infty$.

Analyticity and growth

- Mellin transform analytic in a strip

$$
u_{-}<\Re(u)<u^{*}=s^{*}+1
$$

- Leading order of density for $x \rightarrow \infty$

$$
x^{-u^{*}-\varepsilon} \ll D_{T}(x) \ll x^{-u^{*}+\varepsilon}
$$

depends on location of singularity

- Refinement: lower order factors depend on type of singularity

Saddle point method

- Recall:

$$
D_{T}(x)=\frac{1}{2 i \pi} \int_{-i \infty}^{+i \infty} x^{-u} M(u) d u
$$

- Shift contour to the right, close to the singularity.
- Let it pass through a saddle point of the integrand.
- For large x, the integral is concentrated around the saddle.
- Local expansion of integrand yields expansion of whole integral.
- (Laplace, Riemann, Debye...)

New integration contour

- Contour runs through saddle point $\hat{u}=\hat{u}(x)$
- Moves to the right as $x \rightarrow \infty$

The surface $\left|x^{-u} M(u)\right|$

Asymptotics of ψ and ϕ near critical moment

- Recall $M(u)=\exp \left(\phi(u-1, t)+v_{0} \psi(u-1, t)\right)$
- For $u \rightarrow u^{*}$ we have (with $\beta:=\sqrt{2 v_{0}} / c \sqrt{\sigma}$)

$$
\begin{aligned}
\psi(u-1, T) & =\frac{\beta^{2}}{u^{*}-u}+\text { const }+O\left(u^{*}-u\right) \\
\phi(u-1, T) & =\frac{2 a}{c^{2}} \log \frac{1}{u^{*}-u}+\text { const }+O\left(u^{*}-u\right)
\end{aligned}
$$

- Found from Riccati equations

Saddle point method

- Finding the saddle point: $0=$ derivative of integrand
- Use only first order expansion:

$$
0=\frac{\partial}{\partial u} x^{-u} \exp \left(\frac{\beta^{2}}{u^{*}-u}\right)
$$

- Approximate saddle point at

$$
\hat{u}(x)=u^{*}-\beta / \sqrt{\log x}
$$

New integration contour

- Contour depends on x :

$$
u=\hat{u}(x)+i y, \quad-\infty<y<\infty
$$

- Divide contour into three parts:

$$
|y|<(\log x)^{-\alpha} \quad(\text { central part })
$$

upper tail, lower tail (symmetric)

- Uniform local expansion at saddle point \Rightarrow need large α
- Tails negligible \Rightarrow need small α
- Can take $\frac{2}{3}<\alpha<\frac{3}{4}$

Local expansion

- Recall Mellin transform

$$
M(u)=\exp \left(\phi(u-1, t)+v_{0} \psi(u-1, t)\right)
$$

- Determine singular expansions of ϕ and ψ from Riccati equations
- Abbreviation $L:=\log x$
- Local expansion of the integrand:

$$
x^{-u} M(u)=C x^{-u^{*}} \exp \left(2 \beta L^{1 / 2}+\frac{a}{c^{2}} \log L-\beta^{-1} L^{3 / 2} y^{2}+o(1)\right)
$$

Local expansion

- Gaussian integral

$$
\begin{aligned}
& \int_{-L^{-\alpha}}^{L^{-\alpha}} \exp \left(-\beta^{-1} L^{3 / 2} y^{2}\right) d y \\
& =\beta^{1 / 2} L^{-3 / 4} \int_{-\beta^{-1 / 2} L^{3 / 4-\alpha}}^{\beta^{-1 / 2} L^{3 / 4-\alpha}} \exp \left(-w^{2}\right) d w \\
& \sim \beta^{1 / 2} L^{-3 / 4} \int_{-\infty}^{\infty} \exp \left(-w^{2}\right) d w=\sqrt{\pi} \beta^{1 / 2} L^{-3 / 4}
\end{aligned}
$$

Tail estimate

- Finding saddle point + local expansion fairly routine
- Problem: Verify concentration
- Needs some insight into behaviour of function away from saddle point
- Show exponential decay by ODE comparison

Result of saddle point method

- Density asymptotics for $x \rightarrow \infty$

$$
D_{T}(x)=A_{1} x^{-A_{3}} e^{A_{2} \sqrt{\log x}}(\log x)^{-3 / 4+a / c^{2}}\left(1+O\left((\log x)^{-1 / 2}\right)\right)
$$

- Constants in terms of critical moment and critical slope:

$$
A_{3}=u^{*}=s^{*}+1 \quad \text { and } \quad A_{2}=2 \frac{\sqrt{2 v_{0}}}{c \sqrt{\sigma}}
$$

- Easily extended to full asymptotic expansion

Explicit expression for constant factor

- From closed form of ϕ and ψ :

$$
\begin{aligned}
& A_{1}=\frac{1}{2 \sqrt{\pi}}\left(2 v_{0}\right)^{1 / 4-a / c^{2}} c^{2 a / c^{2}-1 / 2} \sigma^{-a / c^{2}-1 / 4} \\
& \times \exp \left(-v_{0}\left(\frac{b+s^{*} \rho c}{c^{2}}+\frac{\kappa}{c^{2} \sigma^{2}}\right)-\frac{a T}{c^{2}}\left(b+c \rho s^{*}\right)\right) \\
& \times\left(\frac{2 \sqrt{b^{2}+2 b c \rho s^{*}+c^{2} s^{*}\left(1-\left(1-\rho^{2}\right) s^{*}\right)}}{c^{2} s^{*}\left(s^{*}-1\right) \sinh \frac{1}{2} \sqrt{b^{2}+2 b c \rho s^{*}+c^{2} s^{*}\left(1-\left(1-\rho^{2}\right) s^{*}\right)}}\right)^{2 a / c^{*}}
\end{aligned}
$$

Call prices and Smile asymptotics

- Gulisashvili (2009): Assumes that density of spot varies regularly at infinity

$$
D_{T}(x)=x^{-\gamma} h(x),
$$

h varies slowly at infinity, $\gamma>2$

- Expansions of call prices and implied volatility
- Similarly for left tail

Smile asymptotics

- Implied volatility for log-strike $k \rightarrow \infty$

$$
\sigma_{B S}(k, T) \sqrt{T}=\beta_{1} k^{1 / 2}+\beta_{2}+\beta_{3} \frac{\log k}{k^{1 / 2}}+O\left(\frac{\varphi(k)}{k^{1 / 2}}\right)
$$

- Constants

$$
\begin{aligned}
& \beta_{1}=\sqrt{2}\left(\sqrt{A_{3}-1}-\sqrt{A_{3}-2}\right) \\
& \beta_{2}=\frac{A_{2}}{\sqrt{2}}\left(\frac{1}{\sqrt{A_{3}-2}}-\frac{1}{\sqrt{A_{3}-1}}\right) \\
& \beta_{3}=\frac{1}{\sqrt{2}}\left(\frac{1}{4}-\frac{a}{c^{2}}\right)\left(\frac{1}{\sqrt{A_{3}-1}}-\frac{1}{\sqrt{A_{3}-2}}\right)
\end{aligned}
$$

Call prices

- Call price for strike $K \rightarrow \infty$

$$
\begin{aligned}
C(K)= & \frac{A_{1}}{\left(-A_{3}+1\right)\left(-A_{3}+2\right)} K^{-A_{3}+2} e^{A_{2} \sqrt{\log K}(\log K)^{-\frac{3}{4}+\frac{a}{c^{2}}}} \\
& \times\left(1+O\left((\log K)^{-\frac{1}{4}}\right)\right)
\end{aligned}
$$

Smile asymptotics

Figure: Implied variance $\sigma(k, 1)^{2}$ in terms of log-strikes compared to the first order (dashed) and third order (dotted) approximations.

References

- P. Friz, S. Gerhold, A. Gulisashvili, S. Sturm: On refined volatility smile expansion in the Heston model, 2010, submitted.
- A. Gulisashvili: Asymptotic formulas with error estimates for call pricing functions and the implied volatility at extreme strikes, 2009
- A. Gulisashvili, E. M. Stein: Asymptotic behavior of distribution densities in stochastic volatility models. To appear in Applied Mathematics and Optimization, 2010.
- A. D. Drăgulescu, V. M. Yakovenko: Probability distribution of returns in the Heston model with stochastic volatility, Quantitative Finance 2002.
- R. W. Lee: The moment formula for implied volatility at extreme strikes, Math. Finance 2004.

