Option Pricing and the Cost of Risk, via capital reserve and convex risk measures

Ove Göttsche

Department of Applied Mathematics University of Twente

Third SMAI European Summer School in Financial Mathematics, Paris, 2010

<ロ> (四) (四) (三) (三) (三) (三)

Introduction Capital reserve model

3 Risk measures and Inf-convolution

Ove Göttsche Option Pricing and the Cost of Risk

ヘロト ヘアト ヘビト ヘビト

3

Pricing and hedging in an incomplete market

In an incomplete market a perfect hedge is not possible. There are risks which cannot be hedged by continuous trading.

Questions

- How can we price and hedge derivatives in an incomplete market?
- How should we handle the residual risk?

The market model

Let the filtered probability space $(\Omega, \mathcal{F}, \{\mathcal{F}_t\}_{t \in [0,T]}, \mathbb{P})$ be given where T > 0 denotes a fixed time horizon. The discounted price process is described as a \mathbb{R} -valued semimartingale $S = (S_t)_{t \in [0,T]}$ additional we have a set of trading strategies given by $\Pi(x)$ and a derivative $F \in \mathcal{F}_T$ which we want to price and hedge. Pricing and hedging (x, π) :

- Initial capital x.
- Trading strategy π ∈ Π(x), such that the value of our portfolio at time *T* is

$$X_T^{\pi,x} := x + \int_0^T \pi_t dS_t.$$

イロト イボト イヨト イヨト 一日

Different pricing methods in incomplete markets

Some methods are:

- Superhedging: $\mathbb{P}(X_T^{\pi,x} \ge F)$
- Mean-variance optimal: $\mathbb{E}_{\mathbb{P}}|X_T^{\pi,x} F|^2$
- Utility indifference pricing: $u(x,F) := \sup_{\pi \in \Pi(x)} \mathbb{E}_{\mathbb{P}}[U(X_T^{\pi,x} + F)]$

Buyers indifferent price: p: u(x, 0) = u(x - p, F)Sellers indifferent price: s: u(x, 0) = u(x + s, -F)

• Minimization of risk:

Buyer:
$$\inf_{\pi \in \Pi(x)} \rho(F - X_T^{\pi,x})$$

Seller: $\inf_{\pi \in \Pi(x)} \rho(X_T^{\pi,x} - F)$

イロト 不得 とくほ とくほ とう

Trader and regulator

Model pricing and hedging of a derivative as a trade-off between trader and regulator.

- The regulator requires the traders to cover the *residual risk* by an additional bank account Z, which earns a smaller rate of return than the standard deposit bank account. The additional bank account serves as a *capital reserve* and contains the minimal amount of money which depends on the risk of the trader's portfolio.
- The trader knows the risk measure of the regulator and tries to minimize the price.

Therefore, pricing an option consist of two parts: the cost of a hedging strategy that reduces the risk and capital reserve.

Market model with capital reserve

Pricing hedging with a capital reserve (discounted):

- Capital reserve: $dZ_t = \tilde{r}Z_t dt$ with $\tilde{r} < 0$.
- Portfolio:

$$Y_T^{\pi,\theta,x} := x + \int_0^T \pi_t \, dS_t + \int_0^T \theta_t \, dZ_t$$
$$= X_T^{\pi,x} + \int_0^T \theta_t \, dZ_t.$$

Here θ_t represents the wealth invested into the capital reserve at time *t*.

イロト 不得 とくほ とくほう

3

Risk measure as a capital reserve

- The trader wants to price the derivative *F*.
- The regulator requires that the trader covers his hedging error at time 0. The capital reserve is modeled via a risk measure.

$$\theta := \rho(X_T^{\pi, x} - F)$$

 θ is constant over time.

Capital reserve

Two step optimization to price a derivative *F*:

- Optimal hedging strategy π which minimizes the total risk for a given *x*.
- Trader wishes to minimize the price of the derivative.

The price of the derivative *F* is given by:

$$\inf_{\mathbf{x}\in\mathbb{R}^+} \left\{ x + \inf_{\pi\in\Pi(\mathbf{x})} \rho(X_T^{\pi,\mathbf{x}} - F) \cdot (1 - e^{\tilde{r}T}) \right\}.$$

Optimal hedging strategy: Minimization of the total risk

For a given *x*:

$$\inf_{\pi\in\Pi(x)}\rho(X_T^{\pi,x}-F).$$

Done by *Toussaint, Sircar* (2009) for $X_T^{\pi,x}$, $F \in L^2$.

イロト 不得 とくほ とくほ とう

3

Convex risk measures: First approach

Artzner, Delbaen, Eber, Heath (1999) for coherent / convex risk measures.

Definition

A convex risk measure is a mapping $\rho : L^{\infty} \to \mathbb{R}$ satisfying the following properties for all $X, Y \in L^{\infty}$:

- Monotonicity: If $X \leq Y$, then $\rho(X) \geq \rho(Y)$.
- Translation invariance: If $m \in \mathbb{R}$, then $\rho(X + m) = \rho(X) m$.
- Convexity: $\rho(\lambda X + (1 \lambda)Y) \le \lambda \rho(X) + (1 \lambda)\rho(Y)$, for $0 \le \lambda \le 1$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ ○○○

Convex risk measures: First approach

Dual representation

Suppose $\rho : L^{\infty} \to \mathbb{R}$ is a convex risk measure and ρ has the Fatou property, i.e. for any bounded sequence (X_n) which converges \mathbb{P} -a.s. to some X, $\rho(X) \leq \liminf \rho(X_n)$, then ρ has the following dual representation

$$\rho(X) = \sup_{\mathbb{P} \in \mathcal{P}} \left\{ \mathbb{E}_{\mathbb{P}}[-X] - \alpha_{\rho}(\mathbb{P}) \right\}$$

Jouini, Schachermayer, Touzi (2006) proofed that convex risk measures on L^{∞} which a law invariant have the Fatou property.

Shortcomings of L^{∞}

Bounded financial positions are neither ideal for hedging and general payoffs nor realistic

- Most models are unbounded (Black-Scholes, ...)
- Call Options $F = (S_T K)^+ \notin L^{\infty}$
- Buy-and-hold strategy $aS_T + b \notin L^{\infty}$
- Risk measures defined on L^{∞} are always finite

Extend convex risk measures to L^p , $p \in [1, \infty]$ and allow the measured risk to have the value $+\infty$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ ○○○

Convex risk measures on L^p -spaces

Biagini, Frittelli (2009).

Definition

A L^p -convex risk measure $p \in [0, \infty]$ is a mapping

- $\rho: L^p \to \mathbb{R} \cup \{+\infty\}$ satisfying the following properties:
 - Monotonicity: If $X \leq Y$, then $\rho(X) \geq \rho(Y)$.
 - Translation invariance: If $m \in \mathbb{R}$, then $\rho(X + m) = \rho(X) m$.
 - Convexity: $\rho(\lambda X + (1 \lambda)Y) \le \lambda \rho(X) + (1 \lambda)\rho(Y)$, for $0 \le \lambda \le 1$.
 - Normality: $\rho(0) = 0$.

ヘロト 不得 とく ヨン 不良 とう

Convex risk measures on L^p -spaces

Dual representation

Suppose $\rho : L^p \to \mathbb{R} \cup \{+\infty\}$ is a convex risk measure. Assume ρ is proper and lower semicontinuous w.r.t. $\|\cdot\|_p$, then ρ admits the following dual representation

$$\rho(X) = \sup_{\mathbb{P} \in \mathcal{P}} \left\{ \mathbb{E}_{\mathbb{P}}[-X] - \alpha_{\rho}(\mathbb{P}) \right\}$$

イロト 不得 とくほ とくほ とう

э

Inf-convolution

Barrieu, El Karoui (2005) for L^{∞} , *Toussaint, Sircar (2009)* for L^2 , *Arai (2010)* for L^{Φ} .

Definition

Let ρ be a L^p -convex risk measure and ϕ a functional on $L^p \to \mathbb{R} \cup \{\infty\}$. We define the inf-convolution of ρ and ϕ as

$$p\Box\phi(X) := \inf_{Y \in L^p} \{ \rho(X - Y) + \phi(Y) \} = \inf_{Y \in L^p} \{ \rho(Y) + \phi(X - Y) \}$$

Inf-convolution

Dual representation

Suppose that ρ is a L^p -convex risk measure. Assume that ϕ is convex, proper and lower semi-continuous with dom $(\phi) \subset L^p$, $-\text{dom}(\rho) \cap \text{dom}(\phi) \neq \emptyset$ and dom (ϕ) is weakly compact. Then the inf-convolution $\rho \Box \phi$ is a convex risk measure and admits the dual representation

$$\rho \Box \phi(X) = \sup_{\mathbb{P} \in \mathcal{P}} \left\{ \mathbb{E}_{\mathbb{P}}[-X] - \alpha_{\rho \Box \phi}(\mathbb{P}) \right\}$$

with penalty function

$$\alpha_{\rho\square\phi}(\mathbb{P}) = \alpha_{\rho}(\mathbb{P}) + \alpha_{\phi}(\mathbb{P}),$$

Indicator function

Let *C* be a non-empty convex closed subset of L^p and ϕ be an indicator function of *C*, meaning

$$\phi(X) := \delta_C(X) = \begin{cases} 0, & \text{for } X \in C, \\ +\infty, & \text{otherwise.} \end{cases}$$

Then ϕ is a proper convex, lower semi-continuous functional.

The penalty function is given by the support function ψ on -C

$$\alpha_{\phi}(\mathbb{P}) = \psi_{-C}(\mathbb{P}) := \sup_{X \in -C} \mathbb{E}_{\mathbb{P}}[X].$$

We want to minimize: $\inf_{x \in \Pi(x)} \rho(X_T^{\pi,x} - F)$.

$$\delta_{\Pi(x)}(X_T^{\pi,x}) = \begin{cases} 0, & \text{if } \exists \pi \in \Pi(x) \text{ s.t. } x + \int_0^T \pi_t dS_t = X_T^{\pi,x}, \\ +\infty, & \text{otherwise.} \end{cases}$$

This can be written as a special case of an inf-convolution of ρ and the indicator function δ on the convex set $\Pi(x)$

$$\inf_{\pi \in \Pi(x)} \rho(X_T^{\pi,x} - F) = \inf_{X \in L^p} \left\{ \rho(X_T^{\pi,x} - F) + \delta_{\Pi(x)}(X_T^{\pi,x}) \right\}$$
$$= \rho \Box \delta_{-\Pi(x)}(-F).$$

Need that $\{X_T^{\pi,x}, \pi \in \Pi(x)\}$ is closed and convex for the L^p norm. Solution depends on the

イロト イボト イヨト イヨト 一日

Second step

The problem

$$\inf_{x\in\mathbb{R}^+} \big\{ x + \inf_{\pi\in\Pi(x)} \rho(X_T^{\pi,x} - F) \cdot (1 - e^{\tilde{r}T}) \big\}.$$

- Translation invariance of the risk measure should help.
- Depends on the set of hedging strategies $\Pi(x)$.

イロト 不得 とくほ とくほとう

3

Concluding remarks

Next steps:

- Get some results!
- Dynamic formulation like *Schweizer*, *Klöppel (2007)* for indifference pricing. In this case use the superhedging portfolio as a benchmark $F_t := \text{ess.sup } \mathbb{E}_{\mathbb{Q}}[F|\mathcal{F}_t]$ for a European style $\mathbb{Q} \in \mathcal{Q}$ derivative and for an American style derivative with payoff F_t at *t*.

$$\inf_{x \in \mathbb{R}} \left\{ x + \inf_{\pi \in \Pi(x)} \int_0^T \rho(X_t^{\pi, x} - F_t) dZ_t \right\}$$

イロト イポト イヨト イヨト

э