ntroduction and preliminary tools General results Applications to ASVM Examples Extensions

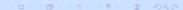
Calibrating affine stochastic volatility models with jumps An asymptotic approach

Antoine Jacquier

Imperial College London, Department of Mathematics

Based on joint works with M. Forde, J. Gatheral, M. Keller-Ressel, R. Lee and A. Mijatović,

3rd SMAI European Summer School in Financial Mathematics, Paris, August 2010



ntroduction and preliminary tools
General results
Applications to ASVM
Examples
Extensions

A short (non) fictitious story

I just finished my MSc (PhD) in Financial Mathematics from — and this is my first day as a bright junior quant in a large bank. First day, first assignment.

Boss: 'Calibrate model H(a) to market data.'

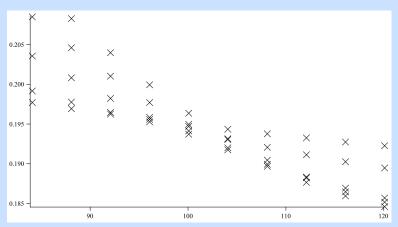


Figure: Market implied volatilities for different strikes and maturities.

ntroduction and preliminary tools General results Applications to ASVM Examples Extensions

A short (non) fictitious story

I just finished my MSc (PhD) in Financial Mathematics from — and this is my first day as a bright junior quant in a large bank. First day, first assignment.

Boss: 'Calibrate model H(a) to market data.'

Me (10 minutes later): 'Done.'

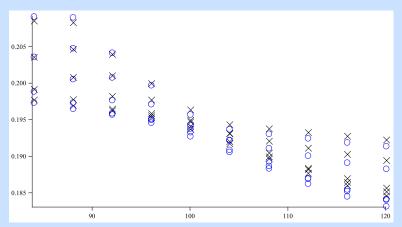


Figure: Sum of squared errors: 4.53061E-05

ntroduction and preliminary tools General results Applications to ASVM Examples Extensions

A short (non) fictitious story

I just finished my MSc (PhD) in Financial Mathematics from — and this is my first day as a bright junior quant in a large bank. First day, first assignment.

Boss: 'Calibrate model H(a) to market data.'

Me (10 minutes later): 'Done.'

Boss: 'Not good enough. Which initial point did you take?'

I just finished my MSc (PhD) in Financial Mathematics from — and this is my first day as a bright junior quant in a large bank. First day, first assignment.

Boss: 'Calibrate model H(a) to market data.'

Me (10 minutes later): 'Done.'

Boss: 'Not good enough. Which initial point did you take?'

Me: 'a₁.'

I just finished my MSc (PhD) in Financial Mathematics from — and this is my first day as a bright junior quant in a large bank. First day, first assignment.

Boss: 'Calibrate model H(a) to market data.'

Me (10 minutes later): 'Done.'

Boss: 'Not good enough. Which initial point did you take?'

Me: 'a1.'

Boss: 'Classic mistake!! You should take a2 instead.'

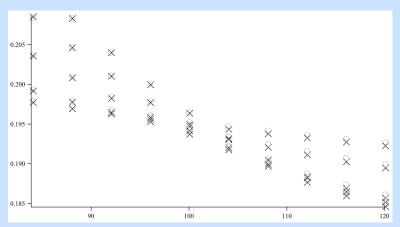


Figure: Sum of squared errors: 2.4856E-06

I just finished my MSc (PhD) in Financial Mathematics from — and this is my first day as a bright junior quant in a large bank. First day, first assignment.

Boss: 'Calibrate model H(a) to market data.'

Me (10 minutes later): 'Done.'

Boss: 'Not good enough Which initial point did you take?'

Me: 'a₁.'

Boss: 'No, you should take a2.'

Moral of the story:

I just finished my MSc (PhD) in Financial Mathematics from — and this is my first day as a bright junior quant in a large bank. First day, first assignment.

Boss: 'Calibrate model H(a) to market data.'

Me (10 minutes later): 'Done.'

Boss: 'Not good enough Which initial point did you take?'

Me: 'a₁.'

Boss: 'No, you should take a2.'

Moral of the story:

(i) I am not that bright, after all.

I just finished my MSc (PhD) in Financial Mathematics from — and this is my first day as a bright junior quant in a large bank. First day, first assignment.

Boss: 'Calibrate model H(a) to market data.'

Me (10 minutes later): 'Done.'

Boss: 'Not good enough Which initial point did you take?'

Me: 'a₁.'

Boss: 'No, you should take a2.'

Moral of the story:

- (i) I am not that bright, after all.
- (ii) My boss is really good.

I just finished my MSc (PhD) in Financial Mathematics from — and this is my first day as a bright junior quant in a large bank. First day, first assignment.

Boss: 'Calibrate model H(a) to market data.'

Me (10 minutes later): 'Done.'

Boss: 'Not good enough Which initial point did you take?'

Me: 'a₁.'

Boss: 'No, you should take a2.'

Moral of the story:

- (i) I am not that bright, after all.
- (ii) My boss is really good.
- (iii) Should I really trust him blindfold?

I just finished my MSc (PhD) in Financial Mathematics from — and this is my first day as a bright junior quant in a large bank. First day, first assignment.

Boss: 'Calibrate model H(a) to market data.'

Me (10 minutes later): 'Done.'

Boss: 'Not good enough Which initial point did you take?'

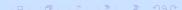
Me: 'a₁.'

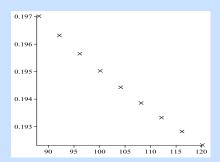
Boss: 'No, you should take a2.'

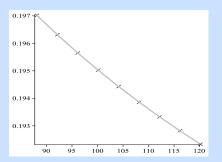
Moral of the story:

- (i) I am not that bright, after all.
- (ii) My boss is really good.
- (iii) Should I really trust him blindfold?

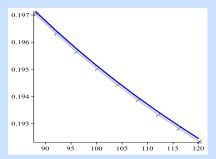
"Start every day off with a smile and get it over with." (W.C. Fields)





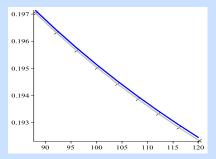


Solid blue:
$$x \mapsto g\left(x\right) := C_{\mathrm{BS}}^{-1}\left(\mathcal{F}^{-1}\Re\left\{f\left(x,z\right)\phi_{a}\left(z\right)\right\}\right)$$



$$\mathsf{Solid}\ \mathsf{blue}\!:\, x\mapsto g\left(x\right) := \! C_{\mathrm{BS}}^{-1}\left(\mathcal{F}^{-1}\Re\!\left\{f\left(x,z\right)\phi_{a}\left(z\right)\right\}\right)$$

Dashed black: $x \mapsto \hat{g}(x) = \alpha x^2 + \beta x + \gamma$



Solid blue:
$$x \mapsto g(x) := C_{\mathrm{BS}}^{-1} \left(\mathcal{F}^{-1} \Re \left\{ f(x, z) \phi_{a}(z) \right\} \right)$$

Dashed black: $x \mapsto \hat{g}(x) = \alpha x^2 + \beta x + \gamma$

Easier to calibrate \hat{g} than g.



Motivation and goals

- Obtain closed-form formulae for the implied volatility under ASVM in the short and in the large-maturity limits.
- Propose an accurate starting point for calibration purposes.
- Discuss conditions on jumps for a model to be usable in practice.

Definition: The implied volatility is the unique parameter $\sigma \geq 0$ such that

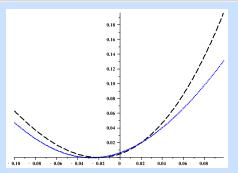
$$C_{\mathrm{BS}}\left(S_{0},K,T,\sigma\right)=C_{\mathrm{obs}}\left(S_{0},K,T\right).$$

Large deviations theory

Lemma

The family of random variables $(Z_t)_{t\geq 1}$ satisfies the large deviations principle (LDP) with the good rate function Λ^* if for every Borel measurable set B in $\mathbb R$

$$-\inf_{x\in B^o}\Lambda^*(x)\leq \liminf_{t\to\infty}\frac{1}{t}\log\mathbb{P}\left(Z_t\in B\right)\leq \limsup_{t\to\infty}\frac{1}{t}\log\mathbb{P}\left(Z_t\in B\right)\leq -\inf_{x\in \overline{B}}\Lambda^*(x),$$



The Gärtner-Ellis theorem

Assumption A.1: For all $u \in \mathbb{R}$, define the limiting cumulant generating function

$$\Lambda(u) := \lim_{t \to \infty} t^{-1} \log \mathbb{E}\left(e^{utX_t}\right) = \lim_{t \to \infty} t^{-1} \Lambda_t\left(ut\right)$$

as an extended real number. Denote $\mathcal{D}_{\Lambda}:=\{u\in\mathbb{R}:\Lambda(u)<\infty\}$. Assume further that

- (i) the origin belongs to \mathcal{D}^0_{Λ} ;
- (ii) Λ is essentially smooth.

The Gärtner-Ellis theorem

Assumption A.1: For all $u \in \mathbb{R}$, define the limiting cumulant generating function

$$\Lambda(u) := \lim_{t \to \infty} t^{-1} \log \mathbb{E}\left(e^{utX_t}\right) = \lim_{t \to \infty} t^{-1} \Lambda_t\left(ut\right)$$

as an extended real number. Denote $\mathcal{D}_{\Lambda} := \{u \in \mathbb{R} : \Lambda(u) < \infty\}$. Assume further that

- (i) the origin belongs to \mathcal{D}^0_{Λ} ;
- (ii) Λ is essentially smooth.

Theorem (Gärtner-Ellis) (special case of the general th. Dembo & Zeitouni)

Under Assumption A.1, the family of random variables $(X_t)_{t\geq0}$ satisfies the LDP with rate function Λ^* , defined as the Fenchel-Legendre transform of Λ ,

$$\Lambda^*(x) := \sup_{u \in \mathbb{R}} \{ux - \Lambda(u)\}, \text{ for all } x \in \mathbb{R}.$$

General results applications to ASVM Examples

Large deviation Methodology

Methodology overview (large-time)

• Let $(S_t)_{t>0}$ be a martingale share price process, and define $X_t := \log(S_t/S_0)$.

- Let $(S_t)_{t>0}$ be a **martingale** share price process, and define $X_t := \log(S_t/S_0)$.
- Find $\Lambda_t(u) := \log \mathbb{E}\left(e^{uX_t}\right)$, and $\Lambda(u) := \lim_{t \to \infty} t^{-1}\Lambda_t(u)$.

- Let $(S_t)_{t\geq 0}$ be a **martingale** share price process, and define $X_t:=\log{(S_t/S_0)}$.
- Find $\Lambda_t(u) := \log \mathbb{E}\left(e^{uX_t}\right)$, and $\Lambda(u) := \lim_{t \to \infty} t^{-1}\Lambda_t(u)$.
- Check the smoothness conditions for Λ , in particular the set $\mathcal{D}_{\Lambda} := \{u : \Lambda(u) < \infty\}.$

- Let $(S_t)_{t\geq 0}$ be a martingale share price process, and define $X_t := \log(S_t/S_0)$.
- Find $\Lambda_t(u) := \log \mathbb{E}\left(e^{uX_t}\right)$, and $\Lambda(u) := \lim_{t \to \infty} t^{-1}\Lambda_t(u)$.
- Check the smoothness conditions for Λ, in particular the set $\mathcal{D}_{\Lambda} := \{u : \Lambda(u) < \infty\}.$
- Conclude that $(X_t/t)_{t>0}$ satisfies a full LDP with (good) rate function Λ^* .

- Let $(S_t)_{t\geq 0}$ be a **martingale** share price process, and define $X_t:=\log{(S_t/S_0)}$.
- Find $\Lambda_t(u) := \log \mathbb{E}(e^{uX_t})$, and $\Lambda(u) := \lim_{t \to \infty} t^{-1}\Lambda_t(u)$.
- Check the smoothness conditions for Λ , in particular the set $\mathcal{D}_{\Lambda} := \{u : \Lambda(u) < \infty\}.$
- Conclude that $(X_t/t)_{t>0}$ satisfies a full LDP with (good) rate function Λ^* .
- Translate the tail behaviour of X into an asymptotic behaviour of Call prices.

- Let $(S_t)_{t\geq 0}$ be a **martingale** share price process, and define $X_t:=\log{(S_t/S_0)}$.
- Find $\Lambda_t(u) := \log \mathbb{E}\left(e^{uX_t}\right)$, and $\Lambda(u) := \lim_{t \to \infty} t^{-1}\Lambda_t(u)$.
- Check the smoothness conditions for Λ , in particular the set $\mathcal{D}_{\Lambda} := \{u : \Lambda(u) < \infty\}.$
- Conclude that $(X_t/t)_{t>0}$ satisfies a full LDP with (good) rate function Λ^* .
- Translate the tail behaviour of X into an asymptotic behaviour of Call prices.
- Translate these Call price asymptotics into implied volatility asymptotics.

Option price and Share measure

Define the **Share** measure $\widetilde{\mathbb{P}}$ by $\widetilde{\mathbb{P}}(A) := \mathbb{E}((X_t - X_0) \mathbb{1}_A)$. A European call option price reads

$$\begin{split} \mathbb{E}\left(\mathbf{e}^{X_t} - \mathbf{e}^{x}\right)_{+} &= \mathbb{E}\left(\left(\mathbf{e}^{X_t} - \mathbf{e}^{x}\right) \mathbf{1}_{X_t \ge x}\right) \\ &= \mathbb{E}\left(\mathbf{e}^{X_t} \mathbf{1}_{X_t \ge x}\right) - \mathbf{e}^{x} \mathbb{P}\left(X_t \ge x\right) \\ &= \widetilde{\mathbb{P}}\left(\mathbf{X}_t \ge \mathbf{x}\right) - \mathbf{e}^{x} \mathbb{P}\left(\mathbf{X}_t > \mathbf{x}\right). \end{split}$$

Denote $\widetilde{\Lambda}$ and $\widetilde{\Lambda}^*$ the corresponding limiting cgf and Fenchel-Legendre transform under $\widetilde{\mathbb{P}}$. They satisfy the following relations:

$$\widetilde{\Lambda}(u) = \Lambda(u+1), \quad \text{if } (1+u) \in \mathcal{D}_{\Lambda}, \quad \text{and} \quad \widetilde{\Lambda}^*(x) = \Lambda^*(x) - x, \quad \text{for all } x \in \mathbb{R}.$$

Theorem

Let x be a fixed real number.

(i) If $(X_t/t)_{t\geq 1}$ satisfies a full LDP under the measure $\mathbb P$ with the good rate function Λ^* , the asymptotic behaviour of a put option with strike $\exp(xt)$ reads

$$\lim_{t\to\infty}t^{-1}\log\mathbb{E}\left[\left(\mathrm{e}^{\mathrm{x}t}-\mathrm{e}^{\mathrm{X}_{t}}\right)_{+}\right] \quad = \quad \left\{ \begin{array}{ll} x-\Lambda^{*}\left(x\right) & \text{if } x\leq\Lambda'\left(0\right), \\ x & \text{if } x>\Lambda'\left(0\right). \end{array} \right.$$

(ii) If $(X_t/t)_{t\geq 1}$ satisfies a full LDP under the measure $\widetilde{\mathbb{P}}$ with the good rate function $\widetilde{\Lambda}^*$, the asymptotic behaviour of a call option struck at e^{xt} is given by the formula

$$\lim_{t\to\infty}t^{-1}\log\mathbb{E}\left[\left(\mathrm{e}^{X_{t}}-\mathrm{e}^{xt}\right)_{+}\right] \quad = \quad \left\{ \begin{array}{ll} x-\Lambda^{*}\left(x\right) & \quad \text{if } x\geq\Lambda'\left(1\right), \\ 0 & \quad \text{if } x<\Lambda'\left(1\right), \end{array} \right.$$

(iii) If $(X_t/t)_{t\geq 1}$ satisfies a full LDP under $\mathbb P$ and $\widetilde{\mathbb P}$ with good rate functions Λ^* and $\widetilde{\Lambda}^*$, the covered call option with payoff $\mathrm{e}^{X_t}-\left(\mathrm{e}^{X_t}-\mathrm{e}^{xt}\right)_+$ satisfies

$$\lim_{t\to\infty}t^{-1}\log\left(1-\mathbb{E}\left[\left(\mathrm{e}^{X_{t}}-\mathrm{e}^{\mathrm{x}t}\right)_{+}\right]\right)\quad=\quad x-\Lambda^{*}\left(x\right)\quad\text{if }x\in\left[\Lambda'\left(0\right),\Lambda'\left(1\right)\right].$$

Idea of the proof

The following inequalities hold for all $t \ge 1$ and $\varepsilon > 0$:

$$\mathrm{e}^{xt} \left(1 - \mathrm{e}^{-\varepsilon} \right) 1\!\!1_{ \left\{ X_t/t < x - \varepsilon \right\} } \leq \left(\mathrm{e}^{xt} - \mathrm{e}^{X_t} \right)_+ \leq \mathrm{e}^{xt} 1\!\!1_{ \left\{ X_t/t < x \right\} }.$$

Taking expectations, logarithms, dividing by t and applying the LDP for $(X_t/t)_{t\geq 1}$

$$\begin{split} x - \inf_{y < x - \varepsilon} \Lambda^*(y) &\leq \liminf_{t \to \infty} \frac{1}{t} \log \mathbb{E} \left[\left(e^{xt} - e^{X_t} \right)_+ \right] \\ &\leq \limsup_{t \to \infty} \frac{1}{t} \log \mathbb{E} \left[\left(e^{xt} - e^{X_t} \right)_+ \right] \leq x - \inf_{y \leq x} \Lambda^*(y). \end{split}$$

Black-Scholes intermezzo

Consider the Black-Scholes model: $dX_t = -\Sigma^2/2 dt + \Sigma dW_t$, with $\Sigma > 0$. Then

$$\begin{array}{ll} \Lambda_{\mathrm{BS}}(u) &= u \, (u-1) \, \Sigma^2/2, & \text{for all } u \in \mathbb{R}, \\ \Lambda_{\mathrm{BS}}^*(x,\Sigma) &:= \left(x + \Sigma^2/2\right)^2/\left(2\Sigma^2\right), & \text{for all } x \in \mathbb{R}, \; \Sigma \in \mathbb{R}_+^*, \end{array}$$

Lemma

Under the Black-Scholes model, we have the following option price asymptotics.

$$\begin{split} &\lim_{t \to \infty} t^{-1} \log \mathbb{E} \left(\mathbf{e}^{\mathbf{x}t} - \mathbf{e}^{X_t} \right)_+ = \left\{ \begin{array}{ll} x - \Lambda_{\mathrm{BS}}^*(\mathbf{x}) & \text{if } \mathbf{x} \le -\Sigma^2/2, \\ \mathbf{x} & \text{if } \mathbf{x} > -\Sigma^2/2, \end{array} \right. \\ &\lim_{t \to \infty} t^{-1} \log \mathbb{E} \left(\mathbf{e}^{X_t} - \mathbf{e}^{\mathbf{x}t} \right)_+ = \left\{ \begin{array}{ll} x - \Lambda_{\mathrm{BS}}^*(\mathbf{x}) & \text{if } \mathbf{x} \ge \Sigma^2/2, \\ \mathbf{0} & \text{if } \mathbf{x} < \Sigma^2/2, \end{array} \right. \\ \lim_{t \to \infty} t^{-1} \log \left(1 - \mathbb{E} \left(\mathbf{e}^{X_t} - \mathbf{e}^{\mathbf{x}t} \right)_+ \right) = \mathbf{x} - \Lambda_{\mathrm{BS}}^*(\mathbf{x}) & \text{if } \mathbf{x} \in \left[-\Sigma^2/2, \Sigma^2/2 \right]. \end{split}$$

Implied volatility asymptotics

Define the function $\hat{\sigma}^2_{\infty}: \mathbb{R} \to \mathbb{R}_+$ by

$$\hat{\sigma}_{\infty}^{2}(x) := 2\left(2\Lambda^{*}(x) - x + 2\mathcal{I}(x)\sqrt{\Lambda^{*}(x)\left(\Lambda^{*}(x) - x\right)}\right),$$

where

$$\mathcal{I}(x) = \left(\mathbf{1}_{x \in (\Lambda'(0), \Lambda'(1))} - \mathbf{1}_{x \in \mathbb{R} \setminus (\Lambda'(0), \Lambda'(1))} \right).$$

Note that $\Lambda^*\left(\Lambda'(0)\right)=0$ and $\Lambda^*\left(\Lambda'(1)\right)=\Lambda'(1)$ (equivalently $\widetilde{\Lambda}^*\left(\Lambda'(1)\right)=0$).

Theorem

If the random variable $(X_t/t)_{t\geq 1}$ satisfies a full large deviations principle under $\mathbb P$ and $\widetilde{\mathbb P}$, then the function $\hat{\sigma}_\infty$ is continuous on the whole real line and is the uniform limit of $\hat{\sigma}_t$ as t tends to infinity.

Affine stochastic volatility models

Let $(S_t)_{t\geq 0}$ represent a share price process and a martingale. Define $X_t:=\log S_t$ and assume that $(X_t,V_t)_{t\geq 0}$ is a stochastically continuous, time-homogeneous Markov process satisfying

$$\Phi_{t}\left(u,w\right):=\log\mathbb{E}\left(\left.\mathrm{e}^{uX_{t}+wV_{t}}\right|X_{0},V_{0}\right)=\phi\left(t,u,w\right)+\psi\left(t,u,w\right)V_{0}+uX_{0},$$

for all $t, u, w \in \mathbb{R}_+ \times \mathbb{C}^2$ such that the expectation exists.

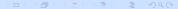
Define $F\left(u,w\right):=\left.\partial_{t}\phi\left(t,u,w\right)\right|_{t=0^{+}}$, and $R\left(u,w\right):=\left.\partial_{t}\psi\left(t,u,w\right)\right|_{t=0^{+}}$. Then

$$F(u,w) = \left\langle \frac{a}{2} \begin{pmatrix} u \\ w \end{pmatrix} + b, \begin{pmatrix} u \\ w \end{pmatrix} \right\rangle + \int_{D \setminus \{0\}} \left(e^{xu + yw} - 1 - \left\langle \omega_F(x,y), \begin{pmatrix} u \\ w \end{pmatrix} \right\rangle \right) \operatorname{m} \left(dx, dy \right),$$

$$R(u,w) = \left\langle \frac{\alpha}{2} \begin{pmatrix} u \\ w \end{pmatrix} + \beta, \begin{pmatrix} u \\ w \end{pmatrix} \right\rangle + \int_{D \setminus \{0\}} \left(\mathrm{e}^{xu + yw} - 1 - \left\langle \omega_R(x,y), \begin{pmatrix} u \\ w \end{pmatrix} \right\rangle \right) \mu\left(\mathrm{d}x,\mathrm{d}y\right),$$

where $D:=\mathbb{R}\times\mathbb{R}_+$, and ω_F and ω_R are truncation functions.

See Duffie, Filipović, Schachermayer (2003) and Keller-Ressel (2009).



ntroduction and preliminary tools
General results
Applications to ASVM
Examples

ASVM Continuous case Large-time Lévy processes Small-time

Why this class of models?

- They feature most market characteristics: jumps, stochastic volatility, ...
- Their analytic properties are known (Duffie, Filipović & Schachermayer).
- They are tractable and pricing can be performed using Carr-Madan or Lewis inverse Fourier transform method.
- Most models used in practice fall into this category: Heston, Bates, exponential Lévy models (VG, CGMY), pure jump process (Merton, Kou), Barndorff-Nielsen & Shephard, . . .

Continuous case

$$\begin{array}{ll} \mathrm{d}X_t &= -\frac{1}{2} \left(a + V_t \right) \mathrm{d}t + \rho \sqrt{V_t} \, \mathrm{d}W_t + \sqrt{a + \left(1 - \rho^2 \right) V_t} \, \mathrm{d}Z_t, & X_0 = x \in \mathbb{R}, \\ \mathrm{d}V_t &= \left(b + \beta V_t \right) \mathrm{d}t + \sqrt{\alpha V_t} \, \mathrm{d}W_t, & V_0 = v \in (0, \infty), \end{array}$$

with $a\geq 0,\ b\geq 0,\ \alpha>0,\ \beta\in\mathbb{R},$ and $\rho\in[-1,1].$ In the Heston model: $a=0,\ b=\kappa\theta>0,\ \beta=-\kappa<0,\ \alpha=\sigma^2.$

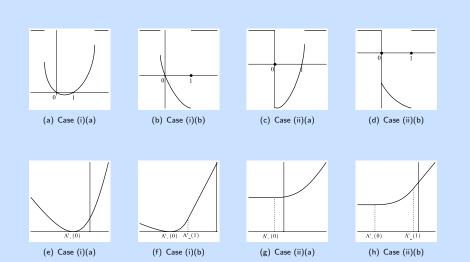
Theorem

$$\Lambda\left(u\right)=-\frac{b}{\alpha}\left(\chi\left(u\right)+\gamma\left(u\right)\right)+\frac{a}{2}u\left(u-1\right)\quad\text{for all }u\in\mathcal{D}_{\Lambda},$$

where
$$\chi(u) := \beta + u\rho\sqrt{\alpha}$$
 and $\gamma(u) := \left(\chi(u)^2 + \alpha u(1-u)\right)^{1/2}$ and

- (i) If $\chi(0) \leq 0$,
 - (a) if $\chi(1) \leq 0$ then $\mathcal{D}_{\Lambda} = [u_-, u_+]$;
 - (b) if $\chi(1) > 0$ then $\mathcal{D}_{\Lambda} = [u_{-}, 1]$.
- (ii) If $\chi(0) > 0$,
 - (a) if $\chi(1) \leq 0$ then $\mathcal{D}_{\Lambda} = [0, u_+];$
 - (b) if $\chi(1) > 0$ then $\mathcal{D}_{\Lambda} = [0, 1]$.

 u_- and u_+ are explicit and $u_- \leq 0$ and $u_+ \geq 1$.



Implied volatility asymptotics

Case (i)(a): "Extended" ($a \neq 0$) Heston model with $\kappa - \rho \sigma > 0$ Λ is essentially smooth on \mathcal{D}_{Λ} hence the theorems apply and (after some rearrangements and changes of variables):

$$\hat{\sigma}_{\infty}^2\left(x\right) = \hat{\sigma}_{\mathrm{SVI}}^2\left(x\right) = \frac{\omega_1}{2}\left(1 + \omega_2\rho x + \sqrt{\left(\omega_2 x + \rho\right)^2 + 1 - \rho^2}\right), \quad \text{for all } x \in \mathbb{R}$$

i.e. Jim Gatheral's SVI parameterisation is the genuine limit of the Heston smile. Note that (X_t/t) converges weakly to a Normal Inverse Gaussian.

Case (i)(b): "Extended" (a \neq 0) Heston model with $\kappa-\rho\sigma\leq$ 0

- $\cdot \ 0 \in \mathcal{D}^o_\Lambda$ but $0 \in \mathcal{D}^o_{\widetilde{\Lambda}}$
- · Λ is steep at u_- but not at 1.

The implied volatility formula holds for $x \leq \Lambda'(0)$.

Other cases:

Implied volatility asymptotics

Case (i)(a): "Extended" ($a \neq 0$) Heston model with $\kappa - \rho \sigma > 0$ Λ is essentially smooth on \mathcal{D}_{Λ} hence the theorems apply and (after some rearrangements and changes of variables):

$$\hat{\sigma}_{\infty}^2\left(x\right) = \hat{\sigma}_{\mathrm{SVI}}^2\left(x\right) = \frac{\omega_1}{2}\left(1 + \omega_2\rho x + \sqrt{(\omega_2 x + \rho)^2 + 1 - \rho^2}\right), \quad \text{for all } x \in \mathbb{R}$$

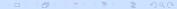
i.e. Jim Gatheral's SVI parameterisation is the genuine limit of the Heston smile. Note that (X_t/t) converges weakly to a Normal Inverse Gaussian.

Case (i)(b): "Extended" (a \neq 0) Heston model with $\kappa-\rho\sigma\leq$ 0

- $\cdot \ 0 \in \mathcal{D}^o_\Lambda$ but $0 \in \mathcal{D}^o_{\widetilde{\Lambda}}$
- · Λ is steep at u_- but not at 1.

The implied volatility formula holds for $x \leq \Lambda'(0)$.

Other cases: all the problems occur. Work in progress...



Jump case

Recall that $\Lambda_t(u, w) := \phi(t, u, w) + \psi(t, u, w) V_0$. We are interested in the behaviour of $\lim_{t\to\infty} t^{-1}\Lambda_t(u, 0)$.

Define the function $\chi:\mathbb{R}\to\mathbb{R}$ by $\chi(u):=\left.\partial_wR(u,w)\right|_{w=0}$, assume that

$$\chi\left(\mathbf{0}\right)<\mathbf{0}\quad \text{and}\quad \chi\left(\mathbf{1}\right)<\mathbf{0}.$$

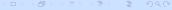
Lemma (Keller-Ressel, 2009)

There exist an interval $\mathcal{I}\subset\mathbb{R}$ and a unique function $w\in\mathcal{C}(\mathcal{I})\cap\mathcal{C}^1(\mathcal{I}^\circ)$ such that R(u,w(u))=0, for all $u\in\mathcal{I}$ with w(0)=w(1)=0. Define the set $\mathcal{J}:=\{u\in\mathcal{I}:F(u,w(u))<\infty\}$ and the function $\Lambda(u):=F(u,w(u))$ on \mathcal{J} , then

$$\lim_{t\to\infty}t^{-1}\Lambda_{t}\left(u,0\right)=\lim_{t\to\infty}t^{-1}\phi\left(t,u,0\right)=\Lambda\left(u\right),\quad\text{for all }u\in\mathcal{J},$$

$$\lim_{t\to\infty}\psi\left(t,u,0\right)=w\left(u\right),\quad\text{for all }u\in\mathcal{I}.$$

For convenience, we shall write $\Lambda_t(u)$ in place of $\Lambda_t(u,0)$.



Continuous cas Large-time Lévy processes Small-time

Properties and issues

• Can we have a limiting effective domain $\mathcal{D}_{\Lambda}=\mathcal{J}$ larger than [0,1]? Yes.

ASVM Continuous cas Large-time Lévy processes Small-time

Properties and issues

- Can we have a limiting effective domain $\mathcal{D}_{\Lambda}=\mathcal{J}$ larger than [0,1]? Yes.
- Is Λ essentially smooth? Not necessarily, but we can find necessary and sufficient conditions.

Properties and issues

- Can we have a limiting effective domain $\mathcal{D}_{\Lambda}=\mathcal{J}$ larger than [0,1]? Yes.
- Is Λ essentially smooth? Not necessarily, but we can find necessary and sufficient conditions.
- What happens when the assumption χ (0) < 0 and χ (1) < 0 fails? Good question.

Let $(X_t)_t \geq 0$ be a Lévy process with triplet (σ, η, ν) . The standard Lévy assumptions as well as the martingale condition impose $\nu\left(\{0\}\right) = 0$ and

$$\int_{\mathbb{R}} \left(x^2 \wedge 1\right) \nu \left(\mathrm{d}x\right) < \infty, \quad \int_{|x| > 1} \mathrm{e}^x \nu \left(\mathrm{d}x\right) < \infty, \quad \frac{\sigma^2}{2} + \int_{\mathbb{R}} \left(\mathrm{e}^x - 1 - x 1\!\!1_{|x| \le 1}\right) \nu \left(\mathrm{d}x\right) = -\eta.$$

Now, $\Phi_t(u,0) = \exp(t\phi_X(u))$. Hence

$$F(u,0) = \phi_X(u)$$
 and $R(u,0) = 0$.

The conditions $\chi(1) < 0$ and $\chi(0) < 0$ fail. But clearly $\Lambda \equiv \phi_X$ holds.

Let $(X_t)_t \ge 0$ be a Lévy process with triplet (σ, η, ν) . The standard Lévy assumptions as well as the martingale condition impose $\nu\left(\{0\}\right) = 0$ and

$$\int_{\mathbb{R}} \left(x^2 \wedge 1\right) \nu \left(\mathrm{d}x\right) < \infty, \quad \int_{|x| > 1} \mathrm{e}^x \nu \left(\mathrm{d}x\right) < \infty, \quad \frac{\sigma^2}{2} + \int_{\mathbb{R}} \left(\mathrm{e}^x - 1 - x 1\!\!1_{|x| \le 1}\right) \nu \left(\mathrm{d}x\right) = -\eta.$$

Now, $\Phi_t(u,0) = \exp(t\phi_X(u))$. Hence

$$F(u,0) = \phi_X(u)$$
 and $R(u,0) = 0$.

The conditions $\chi(1) < 0$ and $\chi(0) < 0$ fail. But clearly $\Lambda \equiv \phi_X$ holds.

· If \mathcal{D}_{Λ} is open and $\{0,1\} \in \mathcal{D}_{\Lambda}^{o}$ then Λ is essentially smooth.

Let $(X_t)_t \ge 0$ be a Lévy process with triplet (σ, η, ν) . The standard Lévy assumptions as well as the martingale condition impose $\nu\left(\{0\}\right) = 0$ and

$$\int_{\mathbb{R}} \left(x^2 \wedge 1\right) \nu \left(\mathrm{d}x\right) < \infty, \quad \int_{|x| > 1} \mathrm{e}^x \nu \left(\mathrm{d}x\right) < \infty, \quad \frac{\sigma^2}{2} + \int_{\mathbb{R}} \left(\mathrm{e}^x - 1 - x 1\!\!1_{|x| \le 1}\right) \nu \left(\mathrm{d}x\right) = -\eta.$$

Now, $\Phi_t(u,0) = \exp(t\phi_X(u))$. Hence

$$F(u,0) = \phi_X(u)$$
 and $R(u,0) = 0$.

The conditions $\chi(1) < 0$ and $\chi(0) < 0$ fail. But clearly $\Lambda \equiv \phi_X$ holds.

- · If \mathcal{D}_{Λ} is open and $\{0,1\} \in \mathcal{D}_{\Lambda}^{o}$ then Λ is essentially smooth.
- · If \mathcal{D}_{Λ} is not open then Λ is not necessarily essentially smooth.

Let $(X_t)_t \ge 0$ be a Lévy process with triplet (σ, η, ν) . The standard Lévy assumptions as well as the martingale condition impose $\nu\left(\{0\}\right) = 0$ and

$$\int_{\mathbb{R}} \left(x^2 \wedge 1\right) \nu \left(\mathrm{d}x\right) < \infty, \quad \int_{|x| \geq 1} \mathrm{e}^x \nu \left(\mathrm{d}x\right) < \infty, \quad \frac{\sigma^2}{2} + \int_{\mathbb{R}} \left(\mathrm{e}^x - 1 - x 1\!\!1_{|x| \leq 1}\right) \nu \left(\mathrm{d}x\right) = -\eta.$$

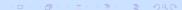
Now, $\Phi_t(u,0) = \exp(t\phi_X(u))$. Hence

$$F(u,0) = \phi_X(u)$$
 and $R(u,0) = 0$.

The conditions $\chi(1) < 0$ and $\chi(0) < 0$ fail. But clearly $\Lambda \equiv \phi_X$ holds.

- · If \mathcal{D}_{Λ} is open and $\{0,1\} \in \mathcal{D}_{\Lambda}^{o}$ then Λ is essentially smooth.
- · If \mathcal{D}_{Λ} is not open then Λ is not necessarily essentially smooth.

Example:
$$\Lambda_{\mathrm{VG}}\left(u\right) = \left(\frac{ab}{\left(a-u\right)\left(b+u\right)}\right)^{c}$$
, and $\mathcal{D}_{\Lambda} = \left(-b,a\right)$.



Continuous cas Large-time Lévy processes Small-time

Small-time asymptotics

We are interested in determining

$$\lambda\left(u\right):=\lim_{t\to0}t\Phi_{t}\left(u/t,0\right)=\lim_{t\to0}\left(t\phi\left(t,u/t,0\right)+v_{0}t\psi\left(t,u/t,0\right)\right),\quad\text{for all }u\in\mathcal{D}_{\lambda}.$$

Let us define the Fenchel-Legendre transform $\lambda^*:\mathbb{R}\to\mathbb{R}_+\cup\{+\infty\}$ of λ by

$$\lambda^{*}\left(x\right):=\sup_{u\in\mathbb{R}}\left\{ ux-\lambda\left(u\right)\right\} ,\quad\text{for all }x\in\mathbb{R}.$$

Continuous case Large-time Lévy processes Small-time

Small-time asymptotics

We are interested in determining

$$\lambda\left(u\right):=\lim_{t\to0}t\Phi_{t}\left(u/t,0\right)=\lim_{t\to0}\left(t\phi\left(t,u/t,0\right)+v_{0}t\psi\left(t,u/t,0\right)\right),\quad\text{for all }u\in\mathcal{D}_{\lambda}.$$

Let us define the Fenchel-Legendre transform $\lambda^*:\mathbb{R}\to\mathbb{R}_+\cup\{+\infty\}$ of λ by

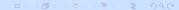
$$\lambda^{*}\left(x\right):=\sup_{u\in\mathbb{R}}\left\{ ux-\lambda\left(u\right)\right\} ,\quad\text{for all }x\in\mathbb{R}.$$

Proposition

If $(X_t - X_0)_{t \geq 0}$ satisfies a full LDP with rate λ^* as t tends to zero. The small-time implied volatility reads

$$\sigma_{0}\left(x
ight):=\lim_{t\to0}\sigma_{t}\left(x
ight)=rac{\left|x
ight|}{\sqrt{2\lambda^{st}\left(x
ight)}},\quad ext{for all }x\in\mathbb{R}^{st},$$

and σ_0 is a continuous function on \mathbb{R} .



Small-time for continuous affine SV models

Assume that the process has continuous paths, i.e. $\mu \equiv 0$ and $m \equiv 0$. Define

$$\lambda_{0}\left(u\right):=\lim_{t\rightarrow0}t\psi\left(t,u/t,0\right),\quad\text{for all }u\in\mathcal{D}_{\lambda_{0}}.$$

Lemma

$$\lambda_0\left(u\right) = \alpha_{22}^{-1}\left(-\alpha_{12}u + \zeta u \tan\left(\zeta u/2 + \arctan\left(\alpha_{12}/\zeta\right)\right)\right) \quad \text{and} \quad \mathcal{D}_{\lambda_0} = \left(u_-, u_+\right),$$

where $u_{\pm}:=\zeta^{-1}\left(\pm\pi-2\arctan\left(\alpha_{12}/\zeta\right)\right)\in\mathbb{R}_{\pm}$ and $\zeta:=\det\left(\alpha\right)^{1/2}>0$. Therefore we obtain

$$\lambda\left(u\right) = \lambda_0\left(u\right) + a_{11}u^2/2.$$

ASVM Continuous case Large-time Lévy processes Small-time

Small-time for continuous affine SV models

Assume that the process has continuous paths, i.e. $\mu \equiv 0$ and $m \equiv 0$. Define

$$\lambda_{0}\left(u
ight):=\lim_{t
ightarrow0}t\psi\left(t,u/t,0
ight),\quad ext{for all }u\in\mathcal{D}_{\lambda_{0}}.$$

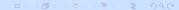
Lemma

$$\lambda_0\left(u\right) = \alpha_{22}^{-1}\left(-\alpha_{12}u + \zeta u\tan\left(\zeta u/2 + \arctan\left(\alpha_{12}/\zeta\right)\right)\right) \quad \text{and} \quad \mathcal{D}_{\lambda_0} = \left(u_-, u_+\right),$$

where $u_{\pm}:=\zeta^{-1}\left(\pm\pi-2\arctan\left(\alpha_{12}/\zeta\right)\right)\in\mathbb{R}_{\pm}$ and $\zeta:=\det\left(\alpha\right)^{1/2}>0$. Therefore we obtain

$$\lambda\left(u\right)=\lambda_{0}\left(u\right)+a_{11}u^{2}/2.$$

- Everything works fine when there are no jumps, and λ is known in closed-form.
- Jump case: proper scaling needed: Nutz & Muhle-Karbe (2010), Rosenbaum & Tankov (2010): in progress.



Heston with jumps I

Consider the Heston model

$$\begin{split} \mathrm{d}X_t &= \left(\delta - \frac{1}{2}V_t\right)\mathrm{d}t + \sqrt{V_t}\,\mathrm{d}W_t + \mathrm{d}J_t, \quad X_0 = x_0 \in \mathbb{R}, \\ \mathrm{d}V_t &= \kappa\left(\theta - V_t\right)\mathrm{d}t + \xi\sqrt{V_t}\,\mathrm{d}Z_t, \quad V_0 = v_0 > 0, \\ \mathrm{d}\left\langle W, Z\right\rangle_t &= \rho\mathrm{d}t, \end{split}$$

where $J:=(J_t)_{t\geq 0}$ is a pure-jump Lévy process independent of $(W_t)_{t\geq 0}$. Assume

$$\chi(1) = \rho \sigma - \kappa < 0$$

It is clear that

$$\Lambda_{t}\left(u
ight):=\log\mathbb{E}\left(\mathrm{e}^{u\left(X_{t}-x_{0}
ight)}
ight)=\Lambda_{t}^{h}\left(u
ight)+\overline{\Lambda}^{J}\left(u
ight)t,$$

with $\overline{\Lambda}^J(u) := \Lambda^J(u) - u\Lambda^J(1)$ (martingale condition). This means

$$F(u,w) = \kappa \theta w + \overline{\Lambda}^J(u)$$
, and $R(u,w) = \frac{u}{2}(u-1) + \frac{\xi^2}{2}w^2 - \kappa w + \rho \xi u w$.

Heston with jumps II

We know that, for all $u \in \left[u_-^h, u_+^h\right]$

$$\Lambda^{h}\left(u\right):=\lim_{t\to\infty}t^{-1}\Lambda^{h}_{t}\left(u\right)=\frac{\kappa\theta}{\xi^{2}}\left(\kappa-\rho\xi u-\sqrt{\left(\kappa-\rho\xi u\right)^{2}}-\xi^{2}u\left(u-1\right)\right),$$

so that

$$\Lambda\left(u\right):=\lim_{t\to\infty}t^{-1}\Lambda_{t}\left(u\right)=\Lambda^{h}\left(u\right)+\overline{\Lambda}^{J}\left(u\right),\quad\text{for all }u\in\left[u_{-}^{h}\vee u_{-}^{J},u_{+}^{h}\wedge u_{+}^{J}\right].$$

and

$$\Lambda^{*}\left(x\right)=\sup_{u\in\left[u_{-}^{h}\vee u_{-}^{J},u_{+}^{h}\wedge u_{+}^{J}\right]}\left\{ux-\Lambda\left(u\right)\right\},\quad\text{for all }x\in\mathbb{R}.$$

Heston with jumps III

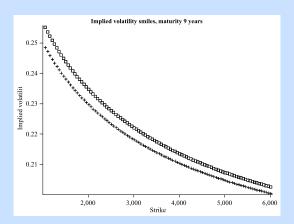
Consider Normal Inverse Gaussian jumps, i.e.

J is an independent Normal Inverse Gaussian process with parameters $(\alpha,\beta,\mu,\delta)$ and Lévy exponent

$$\Lambda^{\rm NIG}(u) = \mu u + \delta \left(\sqrt{\alpha^2 - \beta^2} - \sqrt{\alpha^2 - (\beta + u)^2} \right).$$

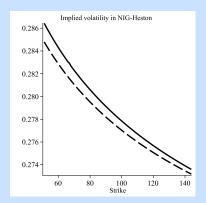
Then
$$u_{+}^{NIG} = -\beta \pm \alpha$$
.

Numerical example: Heston without jumps

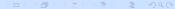


Heston (without jumps) calibrated on the Eurostoxx 50 on February, 15th, 2006, and then generated for T=9 years. $\kappa=1.7609,\,\theta=0.0494,\,\sigma=0.4086,\,\nu_0=0.0464,\,\rho=-0.5195.$

Numerical example: Heston with NIG jumps



Same parameters as before for Heston and the following for NIG: $\alpha=7.104$, $\beta=-3.3$, $\delta=0.193$ and $\mu=0.092$. Heston (with jumps) calibrated on the Eurostoxx 50.



Barndorff-Nielsen & Shephard (2001) I

$$\begin{split} \mathrm{d}X_t &= -\left(\gamma k\left(\rho\right) + \frac{1}{2}V_t\right)\mathrm{d}t + \sqrt{V_t}\,\mathrm{d}W_t + \rho\,\mathrm{d}J_{\gamma t}, \quad X_0 = x_0 \in \mathbb{R}, \\ \mathrm{d}V_t &= -\gamma V_t\mathrm{d}t + \mathrm{d}J_{\gamma t}, \quad V_0 = v_0 > 0, \end{split}$$

where $\gamma > 0$, $\rho < 0$ and $(J_t)_{t \geq 0}$ is a Lévy subordinator where the cgf of J_1 is given by $\Lambda^J(u) = \log \mathbb{E}\left(\mathrm{e}^{uJ_1}\right)$. $\mathcal{D}_{\Lambda} = (u_-, u_+)$, where

$$u_{\pm} := \frac{1}{2} - \rho \gamma \pm \sqrt{\frac{1}{4} - (2k^* - \rho)\gamma + \rho^2 \gamma^2}.$$

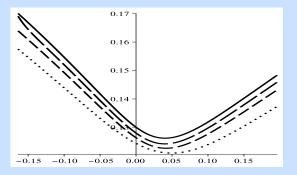
with $k^* := \sup \{u > 0 : k(u) < \infty\}$. We deduce the two functions F and R,

$$R(u,0) = \frac{1}{2}(u^2 - u)$$
, and $F(u,0) = \gamma k(\rho u) - u\gamma k(\rho)$.

Consider the Γ -BNS model, where the subordinator is $\Gamma(a,b)$ -distributed with a, b>0. Hence $k_{\Gamma}(u)=(b-u)^{-1}au$, and $u_{+}^{\Gamma}:=\frac{1}{2}-\rho\gamma\pm\sqrt{\left(\frac{1}{2}-\rho\gamma\right)^{2}+2b\gamma}\in\mathbb{R}_{\pm}$.



Barndorff-Nielsen & Shephard II



Γ-BNS model with a=1.4338, b=11.6641, $v_0=0.0145$, $\gamma=0.5783$, (Schoutens) Solid line: asymptotic smile. Dotted and dashed: 5, 10 and 20 years generated smile.

One step beyond

For more accurate results, it might be interesting to go one step beyond:

$$\hat{\sigma}_t\left(x
ight) = \hat{\sigma}_{\infty}\left(x
ight) + rac{1}{t}\hat{a}\left(x
ight) + o\left(1/t
ight), \qquad ext{as } t o \infty$$

$$\sigma_t(x) = \sigma_0(x) + a(x)t + o(t),$$
 as $t \to 0$.

However large deviations do not provide the first-order term.

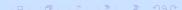
Complex saddlepoint methods (Heston)

From Lee (2004), we have, for any $\alpha \in \mathbb{R}$,

$$\frac{1}{S_0}\mathbb{E}(S_t-K)^+ = \mathsf{Residues} + \frac{1}{2\pi} \int_{-\infty-\mathrm{i}\alpha}^{+\infty-\mathrm{i}\alpha} \mathrm{e}^{-izx} \frac{\phi_t(z-\mathrm{i})}{\mathrm{i}z-z^2} \mathrm{d}z,$$

where $x := \log (K/S_0)$ and ϕ_t is the Heston characteristic function. The methodology is the following (for the large-time):

- approximate $\phi_t(z) \sim e^{-\lambda(z)t}\phi(z)$. The integrand reads $\exp\{(-izx \lambda(z))t\}f(z)$. Find the saddlepoint of this function.
- Deform the integration contour through this saddlepoint using the steepest descent method
- 'Equate' the Black-Scholes expansion with the model expansion.
- Back out the implied volatility.



Infinity is closer than what we think

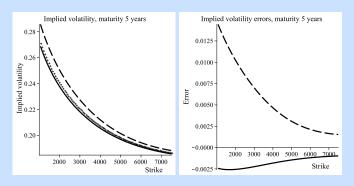


Figure: Same parameters for the Heston model in the large-time regime, with t=5 years.

Zero is even closer

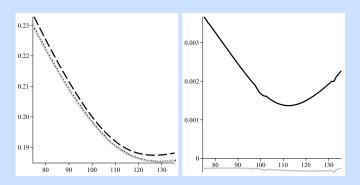


Figure: Same parameters for the Heston model in the small-time regime, with t=0.2 years.

Conclusion

Summary:

- Closed-form formulae for affine stochastic volatility models with jumps for large maturities.
- Closed-form formulae for continuous affine stochastic volatility models for small maturities.

Future research:

- What happens when 0 is not in the interior of \mathcal{D}_{Λ} ?
- Remove the conditions $\chi(0) < 0$ and $\chi(1) < 0$.
- What happens precisely in the small-time when jumps are added?
- Determine the higher-order correction terms (in t or t^{-1}).
- Statistical and numerical tests to assess the calibration efficiency.